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This paper is offered in recognition of the fiftieth birthday of the
Cowles Foundation.

1 . Introduction

In the pioneering research in econometrics done at the Cowles

Foundation, estimation technqiues for simultaneous equations models were

studied extensively. Maximum likelihood estimation methods were applied to

both the single equation case (LIKL) and to the complete simultaneous

equations models (FIML). It is interesting to note that while questions of

identification were completely solved for the case of coefficient

restriction, the problem of identification with covariance restrictions

remained. Further research by Fisher (1966), Rothenberg (1971 ), and Wegge

(1965) advanced our knowledge in this field, with Fisher's examination of

certain special cases especially insightful. In a companion paper, Hausman

and Taylor (1983), we give conditions in terms of the interaction of

restrictions on the disturbance covariance matrix and restrictions on the

coefficients of the endogenous variables for the identification problem.

What is especially interesting about our solution is that covariance

restrictions, if they are to be effective in aiding identification, must take

one of two forms. First, covariance restrictions can cause an endogenous

variable to be predetermined in a particular equation, e.g., a "relatively

recursive" specification. Or, covariance restrictions can lead to an

estimated residual from an identified equation being predetermined in another

equation. Both of these forms of identification have ready interpretations

in estimation as instrumental variable procedures, which links them to the

situation where only coefficient restrictions are present.



For full information maximum likelihood (FIML), the Cowles

Foundation research considered the case of covariance restrictions when

the covariance matrix of the residuals is specified to he diagonal:

Koopmans, Rubin, and Leipnik (1950, pp. 154-211). The case of a diagonal

covariance matrix is also analyzed hy Malinvaud (1970, pp. 678-682) and

hy Rothenberg (1973, pp- 77-79 and pp. 94-115), who also does FIML

estimation in two small simultaneous equations models to assess the value

of the covariance restrictions. But covariance restrictions are a

largely unexplored topic in simultaneous equations estimation, perhaps

because of a reluctance to specify a priori restrictions on the

disturbance covariances.^ However, an important contributory cause of

this situation may have been the lack of a simple, asymptotically

efficient, estimation procedure for the case of covariance restrictions.

Rothenberg and Leenders (1964), in their proof of the efficiency of the

Zellner-Theil (1962) three stage least squares (3SLS) estimator, showed

that the presence of covariance restrictions would make FIML

asymptotically more efficient than 3SLS. The Cramer-Rao asymptotic lower

bound is reduced by covariance restrictions, but 3SLS does not adequately

account for these restrictions. The reason for this finding is that

simply imposing the restrictions on the covariance matrix is not adequate

^ . Of course, at a more fundamental level covariance restrictions are
required for any structural estimation in terms of the specification of
variables as exogenous or predetermined, c.f. Fisher (1966, Ch.4)«



when endogenous variables are present because of the lack of block-

diagonality of the information matrix between the slope coefficients and

the unknown covariance parameters. In fact, imposing the covariance

restrictions on the 5SLS estimator does not improve its asymptotic

efficiency. Thus efficient estimation seemed to require FIML.^

The role of covariance restrictions in establishing identification in the

simultaneous equations model was not fully understood, nor did imposing

such restrictions improve the asymptotic efficiency of the most popular

full information estimator. Perhaps these two reasons, more than the

lack of a priori disturbance covariance restrictions may have led to

their infrequent use.

Since our identification results have an instrumental variable

interpretation, it is natural to think of using them in a 3SLS-like

instrumental variables estimator. Madansky (1964) gave an instrumental

variable interpretation to 3SLS and here we augment the 3SLS estimator by

the additional instruments which the covariance restrictions imply. That

*. Rothenberg and Leenders (1964) do propose a linearized maximum
likelihood estimator which corresponds to one Newton step beginning from
a consistent estimate. As usual, this estimator is asymptotically
equivalent to FIML. Also, an important case in which covariance
restrictions have been widely used is that of a recursive specification
in which FIML coincides with ordinary least squares (OLS).



is, in an equation where the covariance restrictions cause a previously

endogeneous variable to be predetermined, we use the variable as an

instrument for itself - if it is included in the equation - or just as an

instrument if it is not included. In the alternative case, we use the

appropriate estimated residuals from other identified equations to form

instruments for a given equation. This estimator which we call the

augmented three stage least squares estimator (A3SLS) is shown to be

more efficient than the 3SLS estimator when effective covariance

restrictions are present.

To see how efficient the A3SLS estimator is, we need to compare it

to FIML which takes account of the covariance restrictions. Hausman

(1975) gave an instrumental variable interpretation of FIML when no

covariance restrictions were present, which we extend to the case with

covariance restrictions. The interpretation seems especially attractive

because we see that instead of using the predicted value of the

endogenous variables based only on the predetermined variables from the

reduced form as instruments, when covariance restrictions are present,

FIML also uses that part of the estimated residual from the appropriate

reduced form equation which is uncorrelated with the residual in the

equation where the endogenous variables are included. Thus more

information is used in forming the instruments than in the case where



covariance restrictions are absent. More importantly, the instrumental

variable interpretation of FIML leads to a straightforward proof that the

A3SLS estimator is asymptotically efficient with respect to the FIML

estimator. The A3SLS estimator provides a computationally convenient

estimator which is also asjrmptotically efficient. Thus we are left with

an attractive solution to both identification and estimation of the

traditional simultaneous equations model. Identification and estimation

both are closely related to the notion of instrumental variables which

provides an extremely useful concept upon which to base our understanding

of simultaneous equations model specifications.

In addition to the development of the A3SLS estimator, we also

reconsider the assignment condition for identification defined by Hausman

and Taylor (1985). ¥e prove that the assignment condition which assigns

covariance restrictions to one of the two equations from which the

restriction arises provides a necessary condition for identification.

The rank condition provides a stronger necessary condition than the

condition of Fisher (1966). These necessary conditions apply equation by

equation. ¥e also provide a sufficient condition for identification in

terms of the structural parameters of the entire system. Lastly, we

provide straightforward specification tests for the covariance

restrictions which can be used to test non-zero covariances.



2. Estimation in a Two Equation Model

¥e begin with a simple two equation simultaneous equation model with

a diagonal covariance matrix, since many of the key results are straight-

forward to derive in this context. Consider an industry supply curve

which in the short run exhibits decreasing returns to scale. Quantity

demanded is thus an appropriate included variable in the supply equation

which determines price, y. , as a function of quantity demanded, y^. Also

included in the specification of the supply equation are the quantities

of fixed factors and prices of variable factors, both of which are

assumed to be exogenous. The demand equation has price as a jointly

endogenous explanatory variable together with an income variable assumed

to be exogenous. ¥e assume the covariance matrix of the residuals to be

diagonal, since shocks from the demand side of the market are assumed to

be fully captured by the inclusion of y_ in the supply equation. The

model specification in this simple case is

(2.1) ^1 =Pl2y2-^Yl1^l "^1

(2.2) ^2 = ^21^1 "^22^2" ^2

where we have further simplified by including only one exogenous variable

in equation (2.1). ¥e assume that we have T observations so that each

variable in equations (2.1) and (2.2) represents a T X 1 vector. The
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stochastic assumptions are E(e.|z. ,Zp) = for i=1,2, var(e.|z ,z„) =

''ii'
"^ 12"°°''^'^ 1^2' ^V'^2^ " °' '

Inspection of equations (2.1 ) and (2.2) shows that the order

condition is satisfied so that each equation is identified by coefficient

restrictions alone, so long as the rank condition does not fail. If the

covariance restriction is neglected, each equation is just-identified so

that 5SLS is identical to 2SLS on each equation. Note that for each

A
equation, 2SLS uses the instruments W. = (Z 11 . z.), i*j, where Z =

1 J J-

A
(z.z„) and n . is the vector of reduced form coefficients for the (other)

•^

3

included endogenous variables. To see how FIML differs from the

instrumental variables (IV) estimator, we solve for the first order

conditions of the likelihood function under the assumption that the c.'s

are normally distributed. Of course, as is the case for linear

simultaneous equation estimation with only coefficient restrictions,

failure of the normality assumption does not lead to inconsistency of the

estimates. For the two equation example, the likelihood function takes

the form

(2.3) L = c --|- log (0^^022) + T log 11-^^2^21 I

2 ^i~ (yrVi^'^^r^i^i^ ^ 5~ (y2-^2*2^'^y2~V2^^
11 "22

where c is a constant and the X. 's and 6.'s contains the right hand side

Of course, because of the condition of just identification, a
numerically identical result would be obtained if instruments
W. = (z. ,z-) were used.
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variables and unknown coefficients respectively, e.g., X = (y z.) and

To solve for the FIML estimator, we find the first order conditions

for equation (2.3); results for the second equation are identical. The

three first order conditions are

1P
(2.4a)- .To^ + -!- (y.- xaJVo =

(2.4b) r-(yr ^i^i^'^i
=

11

(2.4e) __^._i_(y^_.X^6,)'(y^~X^6^) =0

Rearranging equation (2.4c) yields the familiar solution for the

variance, <?..= (l/T)(y.- X.6)'(y,- X.6). Equation (2.4b) has the usual

OLS form which is to be expected since z. is an exogenous variable. It is

equation (2.4a) where the simultaneous equations nature of the model

appears with the presence of -{Dp . -/(l-p .pp^. ) which arises from the

Jacobian term in the likelihood function: see Hausman(l975)«

Now the first order conditions for equations (2.4a) - (2.4c) can be

solved by numerical methods which maximize the likelihood function.

Koopmans et al., (1950) have a lengthy discussion of various numerical

technques for maximization which must be one of the earliest treatments

of this problem in the econometrics literature. But we can solve
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equation (2.4a) in a particular way, using the reduced form specification

to see the precise role of the covariance restrictions in the model. ¥e

first multiply equation (2.4a) hja.. to get

+y2'(yr^iSi) = o<

We now do the substitutions from the reduced form equations y. =211.+ v.Ill
using the fact that v- = Ppi^ 1'''^^"^ 1^21 ^ * ^2'''^^"^ 1^21 ^' ^® transform

equation (2.5) to

(2-6)(i4;^^/y2-V2^-2^' V¥i)

+ (21 2+ v^)' (y^-X^6^) = 0.

Canceling terms, we find the key result

(2.7) (zn,* T-r-^ y^^ = 0-
2 1-^12^21 ^

Without the covariance restriction, we would have the result

(2.8) (Zn2)'e,=0, n„ =(-^J?F^ ,1^\ )

'

2 1 2 ^ 1-^12^21 ^-^12^21
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which is the instrumental variable interpretation of FIML given by

Hausman (1975), equation (12). But in equation (2.7), we have the

additional term c^/{]-^ .^^^.) . What has happened is that FIML has used

the covariance restrictions to form a better instrument. Remember that

y_ forms the best instrument for itself if it is predetermined in

equation (2.1). But here, jp is jointly endogenous since it is

correlated with e . : from the reduced form equation

^2 ^21^1

2 1-^12^21 ^"^12^21

FIML cannot use the last term in forming the instrument for y. since

pp.E ./(l-p .pPp. ) is correlated with the residual e. in equation (2.1).

It is this last term which makes yp endogenous in the first equation.

However, FIML can use ep/(1-p .^^^p, ) because ep is uncorrelated with e. by

the covariance restriction a. p= 0. By using this term, FIML creates a

better instrument than ordinary 2SLS which ignores ep/(l—p,p3p. ). Our

two equation example makes it clear why 3SLS is not as3nnptotically

efficient when covariance restrictions are present. FIML uses better

instruments than 3SLS and produces a better estimate of the included

endogenous variables.

Two other important cases can be examined with our simple two

equation model. First, suppose that ? ^. - 0.' The specification is then

triangular, and given the diagonal covariance matrix, the model is

recursive. Here, the FIML instrument is aip '*' ^o ^ ^2 ^° *^^* y'o^'^
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predetermined and FIML becomes OLS as expected. The second case returns

to p.» *0 but sets Y =0. The first equation is no longer identified by

coefficient restrictions alone, but it is identified by the covariance

restrictions because the FIML instruments are

(2.9) w^ -[zn^^^^^.z^].

Because of the addition of the residual term in W. , the instrument matrix

has full rank and the coefficients can be estimated. Both of these

estimation results arise because we have restrictions on the matrix B Z

,

where B is the matrix of all coefficients of endogenous variables and S

is the disturbance covariance matrix. The estimation results are closely

connected with the identification results when covariance restrictions

are present, see Lemma 3, Proposition 6 of Hausman and Taylor (1982), and

Section 5«

FIML needs to be iterated to solve the first order conditions; in

our two equation case, we see that the original first order condition

(2.4a) or its tranformed version, equation (2.7), is nonlinear.

Computational considerations when estimating FIML in this form are

discussed in Hausman (1974). But we know if the covariance restrictions

were not present, 3SLS (or here 2SLS) gives asymptotically efficient

instruments. Since 3SLS is a linear IV estimator, it is straightforward

to compute and is included in many econometric computer packages. Yet we

also know that if a.- = then 5SLS is not asjnnptotically efficient.

Furthermore, if Pp/^ ^^^ Y p? ~^' ^* would not be clear how to do 2SLS on
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the first equation, since it is not itjentified by the coefficient

A
restrictions alone. If we had to use the 2SLS instruments y ( = Z 11-)

and z. , the instrument matrix (W 'X.) would be singular as expected since

the rank condition fails. The FIML solution which accounts for the

covariance restriction a .^ Q> is very suggestive. Suppose for the first

equation in the specification of equations (2.1) and (2.2) Ep= y^-X„6 is

used as an instrument in addition to z.and z-, as is the case for FIML.

It follows immediately that the optimal estimator which use z.,z_, and e^

as instruments for the first equation and z and z- as instruments for

the second equation, which we call augmented 3SLS or A3SLS, is

asymptotically more efficient than ordinary 3SLS since it uses more

instruments. But the important question is whether A3SLS is

asymptotically equivalent to FIML, as it is without covariance

restrictions. We have accounted for all the restrictions in the model

by adding e„ as an instrument for the first equation. A3SLS differs

from FIML because it replaces efficient estimates of parameters in the

instrument matrix with inefficient estimates. Unlike the case of only

coefficient restrictions, this replacement does affect the asymptotic

distribution of the coefficient estimator. However, this replacement is

corrected for by the optimal IV estimator in such a way that A3SLS is

asymptotically equivalent to FIML.

To investigate the asymptotic properties of the estimators in this

case, we first calculate the information matrix for the example of

equations (2.1) and (2.2). We denoted d = {\-^ p ),let 6 = (Pip'Yii'

^21'"'' 22^'' ^°** ° ^^^W ^22)' ^^"^ ^ denote lim(l/T)Z'Z,e^ = (l ,0)
' ,

e^

«(0,1)', and D. = (n.,e.), i^tj. The lower triangle of the information



matrix is

13

(2.10)
J =

•^11 '^2

•^21 "^22 US-^T-

2-5 L

d6d6'

8^L
d65a' dada'

a^L

where

^21

2 p 21
* ''22/'' 11

e^e; -D^'MD^/a^,

12 ^1^

^21

a,^d 1 1

11

^Pl2 "^11/^22

d^ ^1^

'12

0221

r^^2™2/^22

^2^1

and

22 -1/(2JiP

-1/(2022)

* 11
We now compute the covariance matrix for 6 using the formula J =

^'^11~*^12"^22'^21 ^~ *° ^^^^

(2.11) Var(6) = J^
^

-^S^^i^*^^r«^i/^ii :2 ^1^1

1

^ ^ ^1 -Il-f^e,e/ .D2'ra)2/a22
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It is interesting to note that without covariance restrictions we

would have

(2.12) Var(6) =
°r« ^1/^11

^2'«^2/^22

BO that the covariance restrictions have produced a more efficient

estimator via the addition of the positive semi-definite matrix

(l/d^)F'P to (J^^ '\ where P =[^^'^^^^\ ' ^^U^2^\h
We now compare these results to the A3SLS estimator, which we will

denote by 6 . Stack equations (2.1) and (2.2) as

(2.13) y - X5 + e , e , X = X
X,

Let the 2T x 5 matrix of instrumental variables for the system given in

equation (2.13)be ¥, where

,
e^ = yg - ^2 62, 62= (Z'X2)"'' Z'yg •Z.Cg,

0,0, Z

The A3SLS estimator is an instrumental variables estimator which

satisfies

(2.14) 6 = (A^'W'X)-'' A^'w'y
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where the 5x4 linear combination matrix A^ is optimally chosen. Any

sequence {A^ which satisfies plim A_ «= A, where

-Jv-I
(2.15) A = V' plim (W'X/T)

and "^ is the asymptotic covariance matrix of Vr'e//T, is optimal in the

sense of obtaining the linear combination of instrumental variables with

the smallest asymptotic covariance matrix for 6 • The asymptotic

A
covariance matrix of 6 will then be

iTt /rn\'ir~1 1-1
(2.16) Var (6) = [plim(X'W/T)V" plim(W'X/T)]' .

Some care must be exercised when applying a central limit theorem to

calculate V, due to the instrument Sp depending on an estimated

parameter d^- Let V be the instrument matrix obtained from W by

replacing e, by the true disturbance e,. Then by ECe.e,) = E(£.£_) =
rz' rz'

2 2s
and E(e.ep) = o^.o^ot *® c^^ ^se a central limit theorem to obtain

•_ 1 • //Tfr d
(2.17) We//T = [Z'e^, E'e^.Z'E^jV/T -? N(0,V)

where

a^^N

0^^322

^00 ^22 N

Also, since £2= Eg - 7i^ ( 62" ^2^"^ ^2" ^2^^'^2^~ ^'^2 *® °*"^ write
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.V ^-U.W'e//T = W'e//T - [ O.e^'X^Cz'X^)" Z'sg/ZT, O]

P/'e//T ,

where, for !„ denoting a two dimensional identity matrix,

Ig

1 -^^'H^iZ'T^)

I«

-1

Note that

plim c'^X2(Z'X2)"^ = (plim eJX2/T)(plim Z'X2/T)"^ = {a ^^e'^/d^){m)^)''^

Then for P = plim P , equation (2.17) implies

(2.18) W'e//T ^ N(0,PVP'),

so that V = PVP". ¥e also calculate that

(2.19) plim¥'X/T plim
J

Z'X^

Ej'X^

Z'X

MD^

a^^e^Wi

MD,

,-1
P" plim(W'X/T) =

rwD

^22^r/<i ^11^1*/^

MD
2 J.
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Prom equations (2.16), (2.18), and (2.19) we can obtain the asymptotic

covariance matrix for the A3SLS estimator

.^-^,-1 T,-1
(2.20) Var(6) ={ plim(X'¥/T)(P')~ V" P" plim(¥'X/T)]

i-i

d

1 ee •

d^'

^ 2 ®1®1

'^1l/''22^^r *^2'"V^22

which is also the FIML asymptotic covariance matrix obtained as equation

(2.11). Consequently, A5SLS is asymptotically efficient.

It is clear that A3SLS must be more efficient, asymptotically, than

3SLS because 3SLS ignores the instrumental variable e_when forming the

instruments. It is somewhat surprising that A3SLS is efficient, since

A3SLS uses an inefficient estimator when forming e^. A3SLS corrects for

the use of Opby using a different linear combination of the instruments

than FIML. Rather than using y. = Zn.+ e ./(l-p 4oPpi ) ^^ an instrument

for y , i=1,2,A3SLS is a system IV estimator, with linear combination

matrix

.N-1 „-U-1(2.21) A = (P*)"^ V" P"^ plim(w'X/T)
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The reason that this correction for the use of the inefficient

estimator Sp in forming Sp results in fully efficient estimates is that

the FIML estimate 6 is also an IV estimator of the form given in equation

(2.14). To see why this is so, note that asymptotically W'e//T is a

nonsingular linear transformation of We |
/T. If two sets of instrument-

al variables differ only by a nonsingular linear transformation, they

span the same column space and therefore lead to equivalent estimators

when used in an optimal manner.

Similarily, we can show that for the FIML instruments ¥*, it is the

case that

(2.22) Vr*'e//T = S(W'e//T ) + (I),

1^0
1

I,

1

a^^e^ Yd

0^2 e^' /d

,11
e^ (/(J22<=') ^2' /''22

Prom equation (2.22) it follows that

(2.23) W*'e//T = SP"'' W'e//T + (I).
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Ve can also compute

(2.24) plim W»'X/T = SP" plim ¥'X/T.

Since the FIML estimator 6 solves B' W*'e = 0, where plimBm=B and

B

^1

1/d

D^

1/d

it follows from equations (2.24) and (2.25) that

(2.25) /T(6 -6) = (B'W*'X/T)"^B'W*'e//T + o (1)
i" p

- (B'S P"^ ¥'X/T) B'S P~^ W'e//T + o (1 ) so that FIML

is an instrumental variables estimator with instruments W.
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3. FIML Estimation in the M-eq.uation case

We now turn to the general case where zero restrictions are present

on some elements of the covariance matrix, but the covariance matrix is

not necessarily assumed to be diagonal.** We consider the standard linear

simultaneous equations model where all identities are assumed to have

been substituted out of the system of equations:

(5-1) YB + Z r = U

where Y is the TXM matrix of jointly endogenous variables, Z is the TXK

matrix of predetermined variables, and U is the TXM matrix of the

structural disturbances of the system. The model has M equations and T

observations. It is assumed that B is nonsingular and that Z is of full

rank. We assume that plim (l/T) (Z'U) = 0, and that the second order

moment matrices of the current predetermined and endogenous variables

have nonsingular probability limits. Lastly, if lagged endogenous

variables are included as predetermined variables, the system is assumed

to be stable.

The structural disturbances are assumed to be mutually independent

and identically distributed as a nonsingular M-variate normal

distribution:

(3.2) U~ N(0,£(2)l5,)

**
. This set-up is fairly general since all linear restrictions on the

covariance matrix can be put into this form by appropriate
transformations of model specification. However, an important case which
our approach does not treat occurs when unknown slope parameteres are

present in the covariance matrix. This sometimes will occur when errors
in variables are present in a simultaneous equations equations model,

e.g., Hausman (1977).
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where E is positive definite.^ However, we allow for restrictions on the

elements of Z of the form a . .= for i^j, which distinguishes this from

the case that Hausman (1975) examined. In deriving the first order

conditions from the likelihood functions, we will only solve for the

unknown elements of E rather than the complete matrix as is the usual

case. Using the results of Hausman and Taylor (1982) and Section 5, we

assume that each equation in the model is identified by use of

coefficient restrictions on the elements of B and r and covariance

restrictions on elements of Z .

¥e will make use of the reduced form specification.

(5-3) y = -ZTB"^ + UB'^ = Z n + V.

As we saw in the last section, it is the components of the (row) vector

V, (UB ), that give the extra instruments that arise because of the

covariance restrictions. The other form of the original system of

equations which will be useful is the so-called "stacked" form. ¥e use

the normalization rule B. . = 1 for all i and then rewrite each equation

in regression form where only unknown parameters appear on the right-hand

side:

(3.4) X^ .[Y. Z.],6.' =[p.' Y.'].

'
. If U is not normal but has the same first two moments as in equation

(3.2), the FIML estimator will be consistent and asymptotically normal.
However, unlike the case of no covariance restrictions, standard errors
which are calculated using the normal disturbance information matrix may
be inconsistent, due to third and fourth order moments of the non-normal
disturbances. For this same reason, FIML assuming normal disturbances
may not lead to the optimal IV estimator when the disturbances are non-
normal.
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It will prove convenient to stack these M equations into a system

(3.5) y = 3B + u

vhere

^1 .

• X =

1

• « •

,6 = • , u =

"1

•

^M
•

• h ^M

•

Likewise, we stack the reduced form equations

(3.6) = a! + V

where Z = [ I x z] and 11 = [ll. "... n„'] ' is the vector of reduced form

coefficients.

The log likelihood function arises from the model specifiction in

equation (3.1) and the distribution assumption of equation (3.2):

(3.7) L(B,r,E) = c + I log det(E)"^ + T log |det (b)

- |[ii:"''(YB + zr)'(YB + zr)]
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where the constant c is disregarded in maximization procedures. ¥e now

calculate the first order necessary conditions for a maximum by matrix

differentiation. The procedures used and the conditions derived are the

same as in Hausman (1975, p« 750). To reduce confusion, we emphasize that

we only differentiate with respect to unknown parameters, and we use the

symbol = to remind the reader of this fact.^ Thus the number of equations

in each block of the first order conditions equals the number of unknown

parameters; e.g., the number of equations in (5.8a) below equals the

2
number of unknown parameters in B rather than M . The first order

conditions are

"aB
(3.8a) -II ' T(B')'^ - Y'(YB + 2r)z''^ = 0,

(3.8b) -W"' ~ ^'^^^ ^ ^^^'^ ^ °'

(3.8c) -^ : TC - (YB + a:')'(YB + ZP) = 0.

bz

In particular, note that we cannot postmultiply equation (3.8b), or later,

the transformed versions of equation (3.8a), to eliminate S ,as a

simple two equation example will easily convince the reader.

Let us consider the first order conditions in reverse order. ¥e already

know some elements of S because of the covariance restrictions. The

unknown elements are then estimated byo..= (1/T)(y. - X.6.)'(y. - X.6.)
ij 1 1 1 "^j J J

where the 6's contain the estimates of the unknown elements of the B and

* . An alternative procedure is to us Lagrange Multiplier relationships
of the type = a^. = (y^ - X.6^)' (y. - X. 6.) for known elements of Z

but the approach adopted in the paper seems more straightforward.
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r matrices. Equation (5'8b) causes no special problems because it has

the form of the first order conditions of the multivariate regression

model. But it is equation (3.8a) which we must transform to put the

solution into instrumental variable form. The presence of the term

T(B')" which arises from the Jacobian term in the log likelihood

function of equation (2.7) distinguishes the problem from the non-

simultaneous equations case. ¥e now transform equation (3.8a) to

eliminate T(B') and to replace the matrix Y' by the appropriate matrix

of predicted Y's which are orthogonal to the U matrix.

First we transform equation (3.8a) by using the identity EE~ =1:

(3-9) [t(B')"''2: - Y'(YB + ZT )]£"''= 0.

Note the presence in equation (3-9) of the term (B') 2 which is the key

term for the identification results in Hausman and Taylor (1982). ¥e now

do the substitution similar to the one we used for equations (2.5) to

(2.7) in the two equation case. For equation (3.8c), we know that the

elements of Z take one of two forms. Either they equal the inner product

of the residuals from the appropriate equations divided by T or they

equal zero. To establish some notation, define the set N. as the indices

m which denote for the j'th row of S that a. =0. Now we return to the

first part of equation (3.9) and consider the ij'th element of the matrix

product

(3.10) [t(B')-''e].. = TS P^V ,= (v". - Z P'^^u- )u.
^^ k=1

^^ ^ kE N. ^ ^

J



25

ik -1
where p is the ik'th element of the inverse matrix B . Note that if

no zero elements existed in column i of E we would have v'.u. on the

right hand side of (3«10), as in Hausman (1975, equation '11). W6 now use

the expression from equation (3»10) and combine it with the other terms

from the bracketed term in equation (5-9)

:

(3.11) [t(b')"^z - Y'(YB+Zr)],, =[v.- E p^\- (zn,)-v,]'u,
^^ ^ k e N.

^ 1 1 J

J

.ki
= -[21+ S PV'^i

^ k c N. ^ ^
3

= - [zn. + b' ..u.l 'u.,

where b'..u'. corresponds to the sum of the elements p multiplied by

the residuals u^ in the set N .

.

As with equation (2.7) we see that FIML replaces the jointly-

endogenous variable y. = ZII . + v. with the prediction from the

predetermined variables 31 . and those elements of v. = (UB ) . which are

uncorrelated with u. because of zero restrictions on the a. .'s. Thus we

rewrite equation (3»9) as

(3.12) -
[ (a7B"^ + V)'(YB + 2r)]E"^ =

-1 u
- [ (Y + V)'(YB + 2r)]E" = 0.

Equation (3.12) demonstrates the essential difference for FIML estimation

which arises between the case of no covariance constraints and the

A
present situation. We see that in addition to the usual term Y, we have

the extra elements V which are uncorrelated structural residuals

multiplied by the appropriate elements of B . Thus FIML uses the
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covariance restrictions to form a better predictor of Y than the usual

Y.

Note that if (B E ) . . = in equation (5. 10), equations i and j are

relatively recursive. Then y. is predetermined in the j'th equation

rather than jointly endogenous, ' and equation (3'11) reduces to the same

form as equation (5.8b): columns of Y are treated like columns of Z. In

general, however, y. is replaced by a predicted value which is composed of

two terms: a prediction of the mean from the predetermined variables and

an estimate of part of the reduced form disturbance from the uncorrelated

structural residuals. For future reference, we gather together our

transformed first order conditions which arise from equations (3»8a) -

(3.8c):

(3-13)
(B-^)T'z' *v'l(YB.zr)i:-^ So.T 'Z' + V'l

Z'
J

TE - (yb + 2r)'(YB + zr) = 0.

¥e now calculate the asymptotic Cramer-Rao bound for the estimator.

Under our assumptions, we have a linear structural model for an i.n.i.d.

specification. We do not verify regularity conditions here since they

have been given for this model before, e.g.. Hood and Koopmans (1953) or

Rothenberg (1973).® Let

"^
. See Hausman and Taylor (1983)

^
. The most straightforward approach to regularity conditions is to use

the reduced form. The reduced form has a classical multivariate least

squares specification subject to nonlinear parameter restrictions. Since
the likelihood function is identical for either the structural or reduced

form specification, the more convenient form can be used for the specific
problem being considered.
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_ _1

where 0. is an s.xM null matrix which corresponds to the's. included

predetermined variables and (B') ~ is the matrix of rows of (B')~ which
i

correspond to the r. included explanatory endogenous variables. B is the

matrix B with normalization and exclusion restrictions imposed. Let E be

the ITxM matrix whose ij'th block (i,j=1,...M) is given by E.., a matrix

with one in (j,i) and zeros elsewhere. With no restrictions on the

disturbance covariance matrix, the information matrix for the unknown

parameters is given by

(3.14) J(6,a*) =

BEB ' + plim^X'(2-l (?) Ij)X ^(E-1 © l^)r

2
where R is the M x 1/2M(M + 1) matrix of ones and zeros that maps a* =

(a. .
, . . . ,(j„- fCTpp, . . . ,a„p, . . . ,0j_.) into the full vector of a..'s which

ignores the symmetry restrictions: see Richard (1975)« If L covariances

are restricted to be zero, let S be the (1/2)M(M + 1)x(1/2)M(M + 1)-L

selection matrix which selects the non-zero elements of a*. The

information matrix with covariance restrictions is then identical to that

in equation (3.14) with S'R substituted for R: see Appendix A, equation

(A. 15).

The inverse of the corresponding Cramer-Rao bound for the slope

coefficients is given by
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(3.15)
11^1 =(J") plim D'(I Q Z')(Z-1 Q I )(I z)D

+ 2B(S-1 © Ijj)R'[(R(E-l <D I-1)R')-1

- s(s'R(z-i ^ z-i)r's)-is']r(z-i © i„)b'

where D = diag(D. , . .
. ,D„), and D. = [n.I.l, where I. is a selection"^1 M 1 ^1 i-" 1

matrix which choses the explanatory variables for the i'th structural

equation: ZI. = Z : see Appendix A, equation (A. 14). The first term in

equation (3«15) is the inverse of the covariance matrix for the 3SLS

estimates of the slope coefficients. Since the second term can be shown

to be positive semi-definite, 3SLS is asymptotically inefficient relative

to FIML, in the presence of covariance restrictions.

For a diagonal covariance matrix, these expressions simply further.

If E'* is the M X I^ matrix given by [e, ,E„„. . .E,_,] then the information
1 1 22 MM

matrix reduces to

J(6,cJ^^...Oj^) -

BEB' + plim X'(S-^ © IJX BE*Z-1

z-1e'^' ^z-iz-1

Similarly, the Cramer-Rao bound for the slope coefficients is given by

(J^^)-I = B(E+E-1 @Z - 2E*E'*)B'

+ plim ^D'CS-l Ql'lll.

We now wish to compare these results with the limiting covariance matrix

of our A3SLS instrumental variables estimator.
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4* Instrumental Variables in the M-Equation Case

To analyze the limiting distribution of the A3SLS estimator in the

general case, it will be helpful to rewrite the FIML estimator from

equations (3-13) in an instrumental variables form, following the

derivation in Hausman (1975) for the unrestricted ^ case. Since we have

one equation in equation (3- 13) for each unknown 6, we take each equation

from the first block of the gradient (3' 13) corresponding to the system

of equations (3*1 ), impose the normalization p..= 1 and the exclusion

restrictions on the slope parameters, and stack the results in the form

of equation (3«5)« We then have

-1
(4.1) X'(S X I)" (y - »)=

80

(4.2) 6 = a'(E X l)"4)-''a'(Z X l)-^)y

(Wj,'X)"''¥j,'y

where J. = diag (X^ ,1:^, . . . ,X^) , X= [z(rB)^ +(V)^,zJ , 1 has its known

elements set to zero and its unknown elements calculated by o..= (1/T)

(y. - X.6.)'(y. - X.6.). The instniments are given by
"^ V J J

(4.3) V' = X'(Z g>I)"^



50

Since the instruments depend on elements of 6 , the resulting problem is

nonlinear and needs to be solved by iterative methods. While we could

iterate on equation (4.2) and see if covergence occured, better methods

exist: see Hausman (1974).

The ordinary 3SLS estimator

(4.4) 63 = (X'[E(g)Pj-^ X)-^X'[2 0Pj-V

can be written in the form of equation (4-2), where the instruments are

(4.5) w^ = x'[i (g> pJ[e © i]-i

and P = Z(Z'Z)~^Z'. Compare equations (4.5) and (4-5) and note that

PIML and 3SLS differ in their prediction of the explanatory variables

(f.') in forming their instruments. Ordinary 3SLS projects X onto the

space spanned by the exogenous variables Z, whereas PIML replaces Y.in

equation j by Z(rB)7V +'v. ..

The system A3SLS estimator differs from the ordinary 3SLS estimator

in the set of variables which it takes to be uncorrelated with the

structural disturbance in each equation. For 3SLS, these are simply the

exogenous variables Z and they are the same for all M structural

equations. For A3SLS, these instruments are augmented for each equation

by the residuals which are assumed uncorrelated with the given

disturbance by the covariance restrictions. The set of predetermined
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variables thus differs across structural equations for the A3SLS

estimator.

Residuals can be added to the list of instruments by allowing

W =[ Z,(l„ X U)sj to be the matrix of instrumental variables, where U

is a T X M matrix of estimated residuals and S is a selection matrix.

A
> 11For example, in the two equation example of Section 2, in order to use u

as an instrument for equation (2.1), let S = (0,1,0,0)' so

that

W =
Z ^2

Z

We will assume that S is an n x L matrix, where each column correspond

to a distinct covariance restriction a . .
= for some i^j. This column

-, A A
of S will either select u.as an instrument for equation j or u. as an

1 J

instrument for equation i

.

Instrumental variables estimators which use residuals can be

obtained from

(4.6) 6^ = (W^X)-lw^y,

where W = WA is the Txq matrix of instruments, ¥'X is nonsingular, A

is a (MK + L) X q linear combination matrix, and q is the dimension of 6

.

Depending on the choice of An,, many different system instrumental

variables estimators can be obtained from equation (4.6). For example,

if A' = [^(^M © Z(Z'Z)-^ ),0] where is a qxL matrix of zeros, then 6

.

is the vector of 2SLS estimates.
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The A3SLS estimator will te 6. with A,^ chosen so as to minimize the

A
asymptotic covariance matrix of 6 .

.

A
The asymptotic distribution theory for 6. is complicated by the fact

that V contains residuals. Following the usual instrumental variables

analysis, we substitute y = 3S + u into equation (4-7) to obtain

(4.7) /T(6^ - 6) = (W^X/T)-l¥^u//T

= (a^w'x/t)-1a^w'u//t

To use equation (4.7) to obtain the asymptotic distribution of 6 , , it is
A

useful to be able to apply a central limit theorem to ¥'u//T, which is

the vector of /T normalized sums of cross-products of instrumental

variables and disturbances . To use a central limit theorem the presence

of residuals needs to be accounted for, which requires us to be specific

concerning the way in which U was obtained. ¥e will assume that each

equation is identified by coefficient restrictions alone, so that

rank(D. ) = rank(rn
. , I. 1) = q. , i=1,...,M, where q. = r. + s. is the

1 ^11 1 ^1 1 1

dimension of 6 .
.^ a .

1

Since plim(Z'X./T) = ND. , (i=1,...,M), for N = plim(Z'Z/T)

nonsingular, we can obtain

(4.8) plim[Z'X/T] = (1^ © N)'l).

which has rank q. Let A._ be a MK x q matrix satisfying plim A.^ = A.

,

where A' plim( Z'X/T) is nonsingular.

®a. Estimation when covariance restrictions are necessary for
identification is treated in Newey (1985). Included in this treatment is

a relatively simple means of obtaining an initial estimator, and the

appropriate A3SLS estimator.
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Let 6 be an instrumental variables estimator which satisfies

(4.9) 6 - (A;j'z'x)-iA;^z'y.

/
We now will assume that the matrix of residuals U is obtained from U, .

=
ti

Jjx -
^-i+^-i'

(t=1.-".T, i=1,...,M). That is, the residuals used to form

A
the instrument matrix ¥ are obtained from an estimator 6 which uses the

predetermined variables Z as instruments. For example, U could be

obtained from the 2SLS or the 5SLS estimator. This assumption allows us

to purge 6 from W'u//T as follows. Let

T

"2T
" "t ^ "t ^ (BU|/a6)]/T,

t=1

where U is the tth row of U and aU'/96 = - diag[x ,...,X^ ]. Then

Ta
(4.10) S'djj ® U)'u = S' Z U'^(x) U^

t=1

T
= 'S'[ E U^© U^- TMgj (6 - 6)]

= S*[(Ijj@U)'u-TM2j(a;^Z'X)-U^j'Z'u]

where the last equality is obtained by substituting y = X6 + u into

equation (4.9). Let P and W be denoted by
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MK

-ts'M2j(aj^'z'x)-ia;^ 1^

. w = [z.djj © u)s],

Rote that W is obtained from W by replacing U by the true disturbance

matrix U. It follows from equation (4-10) that

(4.11) V'u//T = P ¥'u//T,

80 that W'u//T is a nonsingular linear combination of ¥'u//T, which

consists of cross-products of predetermined variables and disturbances.

It is now straightforward to use a central limit theorem. Let e =

(U. ©U, )S be the 1 x L vector of cross-products of true disturbances

corresponding to the zero covariance restrictions. Suppose

that, conditional on the 1 x K vector Z, of contemporaneous predetermined

variables , U, has constant moments up to the fourth order. Then by the

orthogonality of disturbances and predetermined variables, the covariance

restrictions, and the absence of autocorrelation an appropriate central

limit theorem gives

(4.12) W'u//T ^ N(0,V)

1

V = plim^ I E([U^© Z^, eJ'[U^Z^,eJ | Z^)

X~ 1

E © N

T

E(e. *U.) ©plim(Z Z./T)
^ ^ t=1

*

12

E(^'s)

where the last equality follows by e,'(U@ Z ) = (e. 'U ) (^Z,.
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If the disturbances are normally distributed then the off diagonal blocks

of V are zero, since all third order moments of a joint normal

distribution are zero. Let M„ = plim M^ , so that

(4.13) Mg " P^i"^
T

diag(u;x^,...,u'Xj^)

diag(uj;x^,.,.,u^)
E(lj^Z)B'

where E . is the ith row of E (i=1 , . . . ,M) , plim(u.X./T) =Z.B.,and the last

equality in equation (4-14) follows from Lemma A1 of Appendix A.

Also, let plim P_ = P, so that equations (4.8) and (4.13) we can compute

(4.14) MK
-'S'M2(a;(i^ ^ n)']3)-ia; i^

Then by equation (3.7) we have

(4.15)
A _ d

W'u//T * N(0,PVP'),

80 that rVP' is the asymptotic covariance matrix of ¥'u//T.
A

The rest of the derivation of the asymptotic distribution of 6, is
A

straightforward. Our assximptions are sufficient to guarantee that

plim 6 =6. Then by plim(U'X./T) =Z B. (i=1 , . . . ,M) , and by equation

(4.8),
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plim ¥'X/T = plim

(Ijj @ N) D

Let G denote G = plim W'X/T. ¥e will assume that plim A = A and that

A' 6 is nonsingular. By equations (4»7), (4-15)f and (4. 16) we obtain

(4.17) /T(6, -6) ^ N(0,(A'G)-1a'PVP'A(G'A)-1 )A

The A3SLS estimator is obtained by choosing an optimal linear

combination matrix A. We will assume that the covariance matrix V is

nonsingular. In the normal disturbances case, the nonsingularity of V

follows from previous assumptions: see Lemma 5.1 below . Note also that

P is nonsingular. Since the asymptotic covariance matrix of V'u//T is

PVP', the linear combination matrix A* which minimize the asymptotic

covariance of the instrumental variables estimator 6 .(e.g. , see White

(1982) satisfies

(4.18) A* = (PVP')-1g= (P-M'V-lp-lG.

The asymptotic covariance matrix of 6. will be

(4.19) Var(6._) = (G'(P-M'V-lp-lG)-l
A*

Since W'X/T is a natural estimator of its probability limit G, we
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only need to consider consistent estimators of P and V to obtain an

estimate A* satisfying plim A* = A*p which is required for

implementation of A5SLS. ¥e will assume that sample averages of up to

fourth order cross-products of elements of X = [y. ,Z ](t=1 , . .
. ,T) have

finite probability limits. Then by plim 6 = 6, a consistent estimator

A A ^ ^ ^
of V^ of V can be obtained as follows. Let e.= (U.^U.)S and

A
Q

T A

t=l

"12

21 ^22

Then we can take

(4.20)
^T

=

I I (Z'Z/T)

Q21 X ( I Z^/T)
t=1

A
V

A
Q

12T

22

A consistent estimator P^ of P can be obtained by replacing M^^ in the

A A
definition of P_, by an estimate Mp„ satisfying plim Mp^, = M_. By plim

6 '^ 6 such an estimator is given ty

"2T = ^^^M^"
"^'^/"^

80 that we can let
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(4.21) ^. '^ MK
s- M2^(a;^'z'x/t)-ia;^ i^

Then we can take A* = (p-l)'V-l P=1W'X/T, so that the A3SLS estimator can

be obtained from equation (4-6),

(4.22)
A /\ A A A A . A A

6*, = (X'W(PlM'Vrlp-lWX)-lX'W(p-l)'V;lp-lWy

A consistent estimator of the asymptotic covarianCe matrix of 6.^^ is also

given by .

(4.23) Var(6j^^) = [(X'¥/T)(P-1 ) "V"! P"! (rX/T)]-l .

Computation of the A3SLS estimator (and estimating its covariance

matrix) is only a little more laborious than computation of 3SLS except

A
for the presence of P~^ in equation (4.22). Note though that because P

is block triangular,

A
P-1
T

(4.24)
MK

^•m2^(a;^z'x/t)-ia;^ i^

80 that P_ need not be inverted numerically. Also, M^ consists mostly

A
of zeros, and if the estimator 6 used to form the instrumental variable

residuals U is 2SLS, then both (A*^ZX/T)-1 and Aj^ will be block

diagonal.^

^. It may appear that FIML is more easy to compute than A3SLS.
However, A3SLS is a linear estimator (once U is chosen) so that no
iterative process is needed to obtain A3SLS. FIML is also complicated by

the fact with covariance restrictions, it is more difficult to

concentrate out the covariance matrix parameters.
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It remains for us to demonstrate that for the general M-equation

case, if the disturtances are normally distributed then A5SLS is

asymptotically efficient. To obtain this result, it is convenient to

simplify the asymptotic covariance matrix for A5SLS. Let the (MK + L) z

q matrix G be denoted by G = P~^ G, so that the asjrmptotic covariance

matrix of A3SLS is (G'V-^G)-^. From equations (4-8) and (4-10) it

follows that,

(4.25) G =
"(lj^g>N)'l)

S (E + I J(I ^Z) B*

M M

To prove efficiency of A3SLS we can compute G'V'^G for the normal

disturbance case and show that this matrix is equal to

Jet. - J j~. (J )'^ J • where a = a*S is the (1/2)m(M + 1)-L vector of
** *° To' c6'

distinct, unrestricted elements of Z - Since the derivation of this

equality is tedious, we relegate it to Appendix B.

Lemma 4-1: If N = plim(Z'Z/T) and Z = E(U'U ) are nonsingular and U has

a joint normal distribution then V and J are nonsingular and

aa'

g*v-1g = Js, .
- J ,(J )-^ J

6a aa a6

The reason that A5SLS is efficient in the general case is the same as for

the example of Section 2. Using computations similar to those of Section
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2 (see equations (2.24) and (2.25)) we can show that there is a

nonsingular matrix H such that

(4.26) W^,u//T = HW^u//T + 0^(1), W^»X/T = HV^X/T + o (l)

80 that, asymptotically, the Aj5SLS instruments are a nonsingular linear

transformation of the FIML instruments.

Lemma 4-1 also has implications for the question of identification

of the system of equations using covariance restriction. When the

hypothesis of Lemma 4-1 are satisfied, J , is nonsingular so that the

aa

information matrix J is nonsingular if and only if the q dimensional

^66square matrix J--, - J (J )~^ J is nonsingular. Since V"^ is also
6cr ' aa' a5

'

nonsingular, it follows that J is nonsingular if and only if G has rank

q. Therefore, local identification of the parameters of a system of

simultaneous equations subject to covariance restrictions is related to

the matrix G . In the next section we will derive necessary and

sufficient conditions for local identification by studying the properties

of G.
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5« Identification

During the discussion of A3SLS we assumed that the coefficient

vector 6 of the system of equations

y = X 6 + u

is identified by coefficient restrictions alone. It is well known,

though, that covariance restrictions can help to identify the parameters

of a simultaneous equations system (see the references in Hsiao (1983))

•

Hausman and Taylor (1985) have recently provided necessary and sufficient

conditions for identification of a single equation of a simultaneous

system using covariance restrictions, and have suggested a possible

interpretation of identification of a simultaneous system which is stated

in terms of an assignment of residuals as instruments. In this section

we show that a necessary condition for first order identification is that

there must exist an assignment of residuals as instruments which has the

property that for each equation the matrix of cross-products of

instrumental variables and right-hand side variables has rank equal to

the number of coefficients to be estimated in the equation.

Lemma 4.1 implies that a necessary and sufficient condition for

nonsingularity of the information matrix J is that the matrix G have rank

q, which is also equivalent to the condition that the Jacobian, with

respect to unknown parameters, of the equation system
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(5.1) nB + r = 0, S-B'QB =

has full rank, when 11 and Q are taken to be fixed constants and the

parameter restrictions are imposed. The matrix G. = plimCz'X/T) is

familiar from the analysis of identification via coefficient

restrictions. The matrix G^ has an interesting structure. The ith row

of G^, corresponding to the covariance restriction a. . =0, has zero for
•- J-

J

each element except for the elements corresponding to 6 .
, where Z.(B~^).

1 J 1

« plim(u].X./T) appears, and the elements corresponding to 6 ., where

E,(B~^). = plim(uIX./T) appears. For example, in a three equation

simultaneous equation system, where the Ath row of G , which we will

denote hy (Gp)„ , corresponds to 0._ = 0, we

have

(G^)^ = [plim(u^X^/T), 0, plim(ujX^/T)].

We can exploit this structure to obtain necessary conditions for

identification which are stated in terms of using residuals as

instruments.

An assignment of residuals as instruments is a choice for each

covariance restriction to either assign u. as an instrument for equation
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j or assign u . as a residual for equation i, but not both, ¥e can think
t)

of an assignment of residuals as instruments to equations as an L-tuple

a « (a 4 , . .
. ,a T )» where p indexes the assignment and each element a „

p ^ p1 ' pL ' ^ pt

of a corresponds to a unique restriction a. ., with a „ = i if u, is

assigned to equation i and a = j if u . is assigned to equation j

.

pL 1

Since for each covariance restriction there are two distinct ways of

assigning a residual as an instrument, there are 2 possible distinct

assignments.

For each assignment, p, of residuals as instruments let U . be the

(possibly nonexistent) matrix of observations on the disturbances

assigned to equation i. Let ¥ . = [Z,U .] be the resulting matrix of

instrumental variables and C . = plim (¥'.X./T) be the population cross-
pi -^ pi 1 ^ -^

product matrix of instrumental variables and right-hand side variables

for equation i, i=1,...,M. The following necessary condition for

identification is proved in Appendix B.

Theorem 5.1: If N = plim(Z'Z/T) and I are nonsingular, then if the

information matrix is nonsingular there exists an assignment p* such

that

(5.2) rank(C ^. ) = q^ , i=1 , . .
. ,M.

Theorem 5»1 says that a necessary condition for first-order local

identification is that after assigning residuals as instruments the

cross-product matrix of instrumental variables and right-hand side

variables has rank equal to the number of coefficients in the equation.

Note that if rank(C
. ) = q. there must be at least q. instrumental

pi 1 1

variables for the ith equation. ¥e can thus obtain the following order
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condition from Theorem 5-1 • Let a = max(0,q. - K) (i=1,...,M).

Corollary 5«2: If £ and N are nonsingular then J nonsingular implies

that there exists an assignment of residuals as instruments such that at

least a residuals are assigned to equation i, for i=1,...,M.

For the ith equation, a. is the number of instrumental variables which

are required for estimation, in addition to the predetermined variables

Z. Therefore, Corollary 5*2 says that first-order local identification

implies the existence of an assignment of residuals such that there are

enough instruments for each equation. Following Geraci's (1976) analysis

of identification of a simultaneous equation system with measurement

error we can obtain an algorithm for determining whether or not such an

assignment exists. Let R be the set of indices SL such that a.. = for

some I , for all 1=1 , . .
. ,M. For a. > 0, let R. , . .

. ,R be a. copies of R .

M
Let R be the ^ a. tuple with components equal to R. for (j=1,...a.,

i=1 ^ J 1

i«=1,...M).

Theorem 5«3: There exists an assignment of residuals as instruments such

that for each i=1,...,M at least a. residuals are assigned as instruments
_

to each equation if and only if for each n=1,...,
J|

a. the union of any
i=1 ^

n components of R contains at least n distinct indexes i .
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So far, each of the identification results of this section have been

stated in terms of the number and variety of instruments for each

equation; see Koopmans et. al. (1950). It is well known that when only

coefficient restrictions are present the condition that plim(Z'X./T) have

rank q.,i=1 M is easily translated into a more transparent condition

on the structural parameters A = [B',r']'. ¥e can also state an

equivalent rank condition to plim(W'.X.T) having rank q, when covariance

restrictions are present. For an assignment p, let Z . be the rows of S

corresponding for residuals which are assigned as instruments to the ith

equation, i=1,...,M. Let
(J»

be the (M-1-q.) x MK selection matrix such

that the exclusion restrictions on the ith equation can be written as

*,A, = 0, where A. is the ith column of A.^1 i 1

Lemma 5.4: For a particular assignment p and an equation i, the rank of

equation C . equals q. if and only if rank [a'(j) .' ,2 '
. ] = M-1 .

We prove this result in Appendix B. Together with Lemma 5.1, Lemma 5*4

implies the following necessary rank condition for identification of a

linear simultaneous equations system subject to covariance restrictions.

Theorem 5-5: If Z and N are nonsingular, then nonsingularity of J

implies that there exists an assignment, p*, of residuals such that
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(5.3) rank[A'4.^,E^^^^] = M - 1, (i=1 M).

This rank condition is a strengthening of Fisher (1966). Fisher shows

that if a system of equations is first-order locally identified then

(5.4) rank[A>^,S^] = M - 1,

where E. is the matrix of all rows (s ), of S such that a., = 0. Theorem
1 k ik

5*5 strengthens this condition by requiring that equation (5-3) only hold

for those rows of ^ corresponding to residuals which are assigned to

equation i.

It is sufficient for first-order local identification that the rank

of G equals q. It would be useful to have other sufficient conditions

for local identification which are more readily interpretable in terms of

the structural parameters. We can obtain a sufficiency result which is

the system analog of Lemma 5-4

Theorem 5.6: The rank of G equals q if and only if

(5.5) rank ([diagC*^, . . . ,(|.j^, 's' )]•[ I^j x A' , (Ij^©e)(E+I 3)] ') = M^-M.

M
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6. Testing the Overidentifying Covariance Restrictions

Since covariance restrictions specify that the distribution of

unobservables has certain properties, such restrictions may have weaker a

priori justification than coefficient restrictions, so that it is useful

to have available a test for the validity of overidentifying covariance

restrictions. The case we considered for the A3SLS estimator the

simultaneous system was identified in the absence of covariance

restrictions, so that these restrictions only help in obtaining a more

efficient A5SLS estimator of the structural parameters 6 . If the

restrictions are false then the A3SLS estimator will not be consistent.

We can use these facts to form a Hausman test based on the difference of

the 3SLS and A3SLS estimators . Consider the test statistic

(6.1) m = T(6^,-65gj^g)'[Var(65gj^g)-Var(6^*)]-(6^, "^3313)'

where A denotes a generalized inverse of a matrix A. Under the null

hypothesis that the covariance restrictions are true this test statistic

will have an asjrmptotic chi-squared distribution. Except in an

exceptional case, where adding an additional covariance restriction a. .
=

does not improve the efficiency of enough components of 6 , the degrees

of freedom of this test will be min(q,L). The case L < q is of most

practical interest, since it seems unlikely that more covariance

restrictions than structural parameters will be available (e.g., see the

example of Section 2). When m has degrees of freedom L and the

disturbances are distributed normally, then because 3SLS and A5SLS are
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asymptotically equivalent to PIML without and with covarlance

restrictions, respectively, m will be asymptotically equivalent to the

classical tests,* see Holly (1982). When the disturbances are not

normally distributed this test will have the optimality properties

discussed in Newey (1983).

The statistic m can be computed by forming a Hausman (1978) test on a

subset of L coefficients. This method corresponds to a particular

choice of generalized inverse of the difference of variance matrices in

equation (6.1), but the test statistic will be numerically invariant to

A
such a choice of g-inverse as long as the same estimator S of Z is used

throughout: see Newey (1983). Thus, the specification test proposed here

is asjrmptotically equivalent under the null hypothesis and local

alternatives to the ¥ald and LM tests which seem more difficult to

compute. Since it is likely that both the A3SLS and 3SLS estimators

would both be computed in an applied situation, comparison of the

estimates provides a convenient test of the underlying covariance

restriction assumptions.
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APPENDIX A

¥e will first enumerate some properties of the matrix E which will

be useful when obtaining the information matrix. Let A and B be M-

dimensional square matrices. Let A. be the ith row of A, (i=1,...,M).

Let Q be a matrix obtained from R by Q.= R.for each row of R

corresponding to o,= and Q. = (1/2) R. for each row corresponding to

Lemma A1 : The matrix E satisfies

(i) E' = E,

(ii) E' - I ,,
M

(iii) E(Ag)B)E = B g)A,

(iv) E(ljj®A) =

(v) (1/2)(E + I 5) = R'Q,

(vi) ER* = R', EQ' = Q',

(vii) For A nonsingular , 3 An | detAJ/dvecA a(vecA)' =

- (I„©a'^') E (I 0A'^
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Proof: (i): Follows from E. .' = E...(ii): The ijth block of E equals

TE ^E, . Also, E .E. =0 for i*j and E.E.= E so that EE .E. = for
m mi jm mi jm mi im mm m mi jm

i*J and EE ,E. = EE =1 .(iii): The ijth block of E(A x B)E is
m mi im m mm m

EEa E .BE. = b. .EEa E = b. .A. (iv): The inth block of E(I,jc A) is
mn mn mi jn ijmn mn mn ij M .

E,.A, which is a matrix of zeros, except for the jth row, where A.
ji 1

appears. (v): Number the rows of R' by h(M-1 ) + i, h, i=1 , . . .M. Also,

number the columns of Q by j(M-l) + k, j,k=1 , . . .M. Note that the h(M-l)

+ i and i (M-1 ) + h rows of R' are identical, because these rows each

give a., in the equality a = R'o^. Similiarly the j(M-l) +k and k(M-1

)

+j columns of Q are identical. Also note that the h(M-1 )+i row of R' is

all zeros except in ecxect for a one in the place which selects

a, from o^- The j(M-1 )+k column of Q is all zeros except for a one

(one-half) in the place which selects o ., from a^, for j = k(j^k). It

follows that the i(M-1 )+i row of R'Q has a one in the i(M-1 )+i place and

zeros elsewhere, and that the h(M-1 )+i row of R'Q, for l^i has one-half

in the h(M-l)+i element and the i(M-l)+h elements and zeros elsewhere.

Then the h(M-l)+i row of R'Q-(1/2)I ^ has a 1/2 in the i(M-l)+h place
M

and zeros elsewhere. Consider the i(M-1 )+h of (1/2)E, which will be

the hth row of (1/2)[e. ., Ep. , ... , E...] , and will thus have zeros

elsewhere but in the h(M-1 ) +i position, where a 1/2 will appear, (vi)

It is known that QR' = I«f«+^ Wo^ s®® Richard (1975). Then ER' = ER'QR" =

E(E +I)R'/2= (I + E)R'/2 which implies ER* = R'. The proof of EQ' = Q'

is similar, (vii): Suppose detA < 0. By Theil (1971), SAn |
detA

|
/d

a

so

= dJln(-detA)/da. .
= (-1 /detA)[d (-detA)/aa. .] = a*' , where A* = [a '']

,
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that d^An 1 detAl ./aa^.aaj^ = a''^^^.

-1^., -1
Consider the j, kth block of -(l„(x)A )'E(I„(x)A ), which is

-A~^ ' \-A~^. The i,h th element of this matrix is -(A?^^

)

'Ej^.aT^ =

-a a'' , where A~ is the Ath column of A" . Since this order is the

same used to form vecA=(a.., ..., a . , a..,
' ^M2 •••'^MM^'

^""^^^

follows.

The information matrix is given by

(A.1) J(6,a) = plim- ^

where H is the Hession matrix of the log likelihood function L„ given in

equation (5*7) and o is a vector of elements of E . ¥e derive the

information matrix by ignoring symmetry of S when taking derivatives of

L_, followed by accounting for symmetry of Z by transforming J(6,a), as

in Richard (1975).

By matrix differentiation •
•

Using the exclusion restrictions and Lemma Al(vii), we compute

(A. 3) a An
I
det B |/56d6 ' = B E B'

,
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so that

(A. 4) J^^, = B e'b' + plim [X'(e"^<DI^) X]/T.

Lemma Al(vii) is also useful in obtaining Jao ' , for a = vec 2, since

(A. 5) a^An det S/Qoao' = -(Ij^^e"^) E (lj^(g)s'^).

¥e can use the result that for a non-singular matrix A,

(A. 6) aA"^ /aa. . = - A"^E. . A~^

and matrix differentiation to obtain

(A.7) a^u' (E"^(g)Ij) Vaa^^ScTj^ = u'(e'''e^^E"''Ej^E"^®I^) u

+ u' (2""'Ej^E""''Ej^^e"^ Q>1^) u

-1 -1 -1 -1

=tr(E (E E E + E E E )e U'U)

Am hk hk Am

where the last equality follows by

u'(A0I ) u = tr(A'U'U'),
T
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for any M dimensional square matrix A. This equation and plim(U'U/T) =

imply

1m nlc

(1/2) [tr(z"''E^^ ^"^\k^ " *^^^'^\k ^'^^Am^l = A^, so that

2

(A. 9) plim -i 4^[ J
"'(2"^ ^IJ u ]

= (I„(2)i:"b E(I ©Z"^)
dodo'

Equations (A. 9) and (A. 5) imply

(A. 10) J~~. = (1/2) (Ijj®z"^ E (Ij^©e"^)

To obtain J . "
i » we again use equation (A. 6) to compute

o o

(A. 11) b\/ b&da^ = - (1/2) X' [(z'^Ej^z"'' + z'^'Ej^j^ z'^ )ffj I^ ]u

from which we compute

(A. 12) J^^, = (1/2) B(z"''©Ij) (E + I )

To complete the derivation of the information matrix, we now

incorporate the symmetry restrictions a.. = a . . , i*j. Let a* = (o......

o„ttO^-, ...o„„, •••<?«„). By Lemma A1 and ER' = R' for the matrix which
Ml 22 M2 MM
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has zeros and ones and satisfies vec S = R'o*', the information matrix is

(A. 13) J(6,a*) =

B e'b' + plim X'(z'^g>I^) X/T B(r^@Ijj)R'

21 (l/2)R(E"^(g)Z"'')R'

For the case of covariance restrictions, the information matrix is

obtained from equation (A. 13) by deleting the rows and columns of

J(6 , a*) corresponding to those covariances restricted to be zero. If L

covariances are restricted to be zero, let S be the (l/2) M (M+1 ) x

(1/2) M (M+1) - L selection matrix for which a S is the vector of

unrestricted elements of a. For example, for M=2 with the restriction

a.„"= imposed we have

S =

1

1

The information matrix with covariance restrictions is then

(A. 14) J (6, a**) =

B e'b + plim X'{Z~ W I ) X/T B(2 '^^I )R'S

K

(1/2 )S'R(Z'''^Z"*')R'S
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To compute the Cramer-Rao lower bound, we use the fact that

(A. 15) (R(E"^g)E"'')R')"^ = Q(2|S>E) Q"

Lemma Al(iii), (v), (vi) yields

(A. 16) B (S"^g>lj^) 2R*Q (S(x)S) Q'R(e"''^Ij^) B'

= B E B' + B (Z ^E) B'

We can also compute

(A. 17) plim X'(e"^ (g)Ij) X = D* (z"'' ^ N) D + B" (e"''(x)S ) B.

where N = plim Z'Z/T. Subtracting and adding equation (A. 16), we can

obtain the inverse of the Cramer-Rao lower bound

(A. 18) (J^^)~^ = B e'b' + plim X'(z"^(x)Ij) X/T

-2B(Z"^ g)Ij^)R's[s'R(z"'g)Z"^)R'S]"'s'R(z"'(Dljj)B,

= D'(E"''g)D)'l)

-1o.1t,^.-1/+2B(e" (5)Ij^)R'[f" - S(S'FS)" S']r(z"(x)Ijj)B

where F = R(z"^g)Z~^ )R'
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APPENDIX B

Proof of Lemma 4.1: For normally distributed disturbances V and

V are each zero matrices. By S and N nonsingular, V = Z ^ N is also

2
nonsingular. Let R and Q be the M x (1/2)M(M +1) matrices defined in

Appendix A. Let U^= (U^^
,
U^^» U^^' •••»

^tM* "tr ^t2'
' '

* '^tM^ '
^® *^®

(1/2)M(M+1) X 1 vector of distinct products of disturbances, so that

"t* ^ "t' ^ ^' \

Let S' = S'R", so that 's'{V^' x U^
' ) = 's' U^ and S' is a L x (1/2)M(M+1)

selection matrix- It then follows from Richard (I975)and E[S'U,] =

that

(B.1) V22 = e(s'U^U^'S ]
= Var(S'U^) = S'Var(U^)S = 2S'Q(Z x S)Q'S.

For Z nonsingular, X 0Z is also nonsingular, and since Q has full row

rank and S has full column rank, it follows that V^p is nonsingular, and

consequently that V is nonsingular. Also, from Appendix A, it follows

that if Z is nonsingular, so is J

a a

For normally distributed disturbances, V and V are both zero

matrices, so that
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(B.2) G'VG = G^'V^J G^ + G2'v22 °2
"

'^' ^^'^©^^ "^ * ^2*^22 °2*

We now proceed to calculate G^'V^p Gp. Using equations (4-26), the

definition of S, and Lemma Al(v),

(B.3) G^ ='S (E + l)(lj^Z;)B' = 2S'R'Q(lj^s)B' = 2S'Q(Ij^Z)B'

-1 -1 -1
Let F = R(E ®£ )R', so that hy eqution (A. 15) we have F = Q(s 0S

)

Q*. Then by equations (B.I) and (B.3)

(B.4) G2*V22G2 = 2BiZ~'^Q 1^) R'F"''s (S* F"''s)''' S'F"''r(Z"^@ Ijj)B' .

Then from equations (B.5), (B.1), and (A. 18) the conclusion will follow

if

(B.6) F"^S (S'F"''s)"'' S'F"^ = F"^+ S(S'FS)""'s'

Note that S selects the unrestricted components of a^ and S the

restricted. Therefore, rank (S) + rank (S^) = rank (F) and S^'S = 0, and

(B.7) F'^/^ S(s;f'^S)"^S'F"''/^ + F^/^S (S'FS)"^S'F^/^ = I

since the matrix on the left-hand side of equation (B.?) is the sum of

two orthogonal , indempotent matrices , and the sum of their ranks equals
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their dimension. The conclusion follows by substituting equation (B.7)

into equation (B.5).

The following Lenuna will be useful in obtaining proofs of the

identification results of Section 5- Suppose for the moment that G is

square. For a particular assignment of residuals as instruments, which

is indexed by p=1,...2 , let C = diag(C .,..., C „)

Lemma B1 : For some 2 -tuple of positive integers {Z.,...,Z„L)

Jlp

det(G) = Z^, (-1) 'det(C ).
p=1 p

Proof: Let the rows of G be denoted by s , k=1,...,L. Each k

corresponds to a restriction a .
.= for some i^ j. Further, each s, is a

sum of two 1xq vectors, s + s where s has plim(u'.X./T) for the

subvector corresponding to 6 . and zeros for all other subvectors and s .

1 KJ

has plim(u. 'X ./T) for the subvector corresponding to 6 . and zeros for all

other subvectors. We can identify s with an assignment of

residual j to equation i and s, . with an assignment of residual i to
kj

equation j. We have

- G
^1i ; ^1j

s, . + s, .

Li Lj
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where we drop k subscript on i and j for notational convenience. For

each of the s distinct assignments, indexed by P, let

G
P

(lpjg)N)'l)

8
P

where s is the Lxq matrix which has its kth row s, . if u . is assigned to
P ki J ^

equation i or s, . if u. is assigned to equation j. The determinant of

a matrix is a linear function of any particular row of the matrix. It

follows that if L = 1

(5.18) det(-G) = det(-G^) + detC-G^).

2^
Then induction on L gives det(-G) = S. det(-G )

P=1 P

Now consider G for each p. The matrix (l„@N)'l) is block diagonal,

where the column partition corresponds to 6. for i=1,...,M, and the ith

diagonal block is plim Z'X./T. Further the kth row of s consists of

zeros except for the subvector corresponding to 6 .where plim(u .'X./T)
J- J "^

appears. Then by interchanging pairs of rows of G , we can obtain N

from G . That is , N = E G , where E is a product of matrices which
P P P P P

interchange a pair of rows of G . Note that E satisfies E 'E =1,
P P P P
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SO that det(E ) = (-1 ) p for i equal to 1 or 2. It follows that

det(G ) = (-1) p det(C ). Then since det(-G) = (-l)'^det(G) and for each

p detC-Ti ) = (-1) ^p detC5 ) det(G) = E^ detCS ) = ^ (-1) *p det(N )
P P p=1 P p=1 P

Proof of Theorem 5-1 :

If rank(G) = q, then there exists a q-dimensional square submatrix

of G, denoted by G, which is nonsingular. The matrix G is obtained by

deleting MK+L-q rows of G. Each row of (l x N)D which is deleted

corresponds to ignoring an a variable in Z when considering instruments

for an equation i. For each i let Zi denote the predetermined variables

which remain as instruments for equation i after forming G. Each row of

Gp deleted corresponds to ignoring a covariance restriction. Let k = 1,

...,L index the remaining covariance restrictions. For each asignment of

disturbances as instruments, indexed as before by p, from the remaining

covariance restrictions, let W .
= (Z. , U . ) be the matrix of

pi 1 pi

observations on the. instrumental variables for equation i, and let

C" .
= plim(W .'X/T) and C" .

= diag(c" ,,..., C",,). Then from Lemma B1 it
pi pi pi p1 pM

_ pL A^ _
follows that det(G = S (-1) ^det(C ).

P=1
P

Then G non-singular implies det(C ) ^ for some p and consequently

*** Air

rank(C_ ) = q. Since C_ is block diagonal,

P P
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M _ _
(B.8) 2 rank (C ) = rank(C ) = q.

i=1 pi p

Bach C has q columns so that rank(C ) < q for i=1,...,M, and
-. i -. i
pi pi

consequently equation (B.8) implies rank (C ) = q • Now let m* be an
—. i

assignment of disturbances as instruments such that the covariance

restrictions indexed by k = 1,...,L have disturbances assigned as the

assignment indexed by p and for the other covariance restrictions the

disturbances are assigned in any feasible fashion. Then for i=1,...,M

q > rank(C ) = rank(plim [Z:U ] "X /T) > rank(plim [z :U_ ] 'X /T)= q
1 p*i p*i i i pi i i

so that q, = rank (C ».)
^i p*i

Proof of Theorem 4.5: This follows as in the algorithm for the

assignment condition of Geraci (1977).

Proof of Lemma 5«4: We drop the p subscript for notational convenience.

We also assume i=1 . Note that the first column of Z. consists entirely

of zeros, since to qualify as an instrument for the first equation a

disturbance u. must satisfy E(u. u.) = a, .
= 0. Let e. be an M

J 1 J 1j 1

dimensional unit vector with a one in the first position and zeros

elsewhere. Then ^k.= and the covariance restrictions imply Fe. =

where F = (A'(j. ' ,S
^

'
)

' . Note that rank (FB"^ = rank(F). Also FB"S^ =

Fe. = where B. is the first column
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of B, 80 that the first column of F is a linear combination of the other

columns of F by B = 1. Let r. be the rows of T corresponding to the

excluded predetermined variables. Then (t)AB =[e ',(B'') F.']' where

E. is an (M-1-r.)xM matrix for which each row has a one in the position

corresponding to a distinct excluded endogenous variable and zeros

elsewhere. Let (B )^ be the columns of B corresponding to included

right-hand side endogenous variables. Note that FB =
^1 ^

1^1 ^

Then row reduction of FB using the rows of E. , and the fact that the

first column of FB is a linear combination of the other columns imply

r

(B.9) rank(FB"^) = rank
1

(B-^^

S, (B-^)^
+ M-1-r .

Now consider N . Note that for any j^ 1 , plim u.'X /T =
[ plim(u . 'Y /T)

,

plim(u^'Z^/T)] = [plim(u^'V^/T), Oj =[z ^(b"^
^ ,0^] ,

where is a Ixs. vector of zeros and S . is the jth row of Z • By C non-

singular

(B.10) rank(C^) = rank ([q J ] [ plim ^(u^*X^/T)])

By column reduction, using the columns of [l ' ']', equation (B.10)

implies
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r.(B~ ),

(B.11) rank(C^) = rank [j,^ ^^'^ j^] + s^

Then equations (B.9) and (B.11) imply M-l-raiik(F) = q -rank(C ), from

which the conclusion of the proposition follows.

Proof of Theorem 5 •6: This proof follows closely the proof of Lemma 5.4-

Let F = diag((j)^,...,(|.jj, 'S') • (ljjg)A', I^j ^Z(E+l)) ' .

Post-multiplication of F by I„ (x) B and row reduction using E.

,

i»1,...,M as in the proof of Lemma 5«4- gives

MM
(B.12) rank"^ (I^B"') = rank(G) - S s + M -M- E r = (rank(G)-q)

i=1 i 1=1 i

+ M^-M.
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