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ABSTRACT

We present a general algorithm for computing the limit, as 5 -> 1, of the

set of payoffs of perfect public equilibria of repeated games with long-run

and short- run players, allowing for the possibility that the players' actions

are not observable by their opponents. We illustrate the algorithm with two

economic examples. In a simple partnership we show how to compute the

equilibrium payoffs when the folk theorem fails. In an investment game, we

show that two competing capitalists subject to moral hazard may both become

worse off if their firms are merged and they split the profits from the

merger. Finally, we show that with short-run players each long-run player's

highest equilibrium payoff is generally greater when their realized actions

are observed.

Keywords: Folk theorem, repeated games, long-run and short-run players

JEL Classification: C70, C72, D74, D82



1. Introduction

The folk theorem for repeated games shows that any feasible,

individually rational payoff can be supported as a perfect equilibrium if

the players are sufficiently patient. Fudenberg, Levine and Maskin [1990]

show that the same conclusion obtains in repeated games with imperfectly

observed actions, provided that the information players receive allows them

to statistically distinguish between the actions of any pair of opponents.

However, the folk theorem does not obtain in repeated games where some

players are "short run." For example, with a single firm facing a sequence

of short-run consumers, no subgame-perfect equilibrium need yield a payoff

as high as could be obtained if the firm could precommit to a mixed

strategy. The set of equilibrium payoffs in the case of a single long-run

player facing short-run opponents with perfectly observable pure actions was

characterized by Fudenberg, Kreps and Maskin [1990].

This paper considers games with several long—run and short-run players,

and imperfectly observed actions. (Perfect observability is a special

case.) We give an exact characterization of the limit of the payoffs of

"perfect public" equilibria, where strategies depend only on public

information. This characterization does not require assumptions on the

statistical quality of the players' information, and yields the theorems of

Fudenberg, Levine and Maskin [1991], and Fudenberg, Kreps and Maskin [1990]

as special cases, as well as an analog of the theorem of Matsushlma [1989]

in the finite-action case. Our methods build on those developed on these

previous papers, and also on those of Abreu, Pearce, and Stachett [1990].

If there are no short-run players, and there is enough information to

statistically identify the actions played, the limit set of equilibrium

payoffs is independent of whether or not players' actions are observable:



In either case, it is the full socially feasible individually rational set.

This is no longer true once there are short-run players in the game. Even

if there is enough information to statistically identify the players'

actions, the long-run players' highest equilibrium payoff in the limit as

their discount factors approach one can be strictly lower when actions are

imperfectly observed than when they are not. Thus, the introduction of

imperfect information into a game with short-run players has important

economic consequences, even in the limit as the discount factor of the long-

run players approaches one.

We provide two economic applications of the techniques we develop. In

addition, we give more general results for two classes of games: games with

a product structure and moral hazard mixing games. In a game with a product

structure there is an independent signal of each long-run player's action.

In such game we show that the limit set of payoffs is the subset of socially

feasible individually rational sets in which each long-run player's payoff

is bounded above by a number that may easily be computed. The investment

example discussed below is an example of a game with a product structure.

Moral hazard mixing games are defined as games with a product structure

in which every possible outcome has positive probability under every action

profile, and in which the incentive constraints due to moral hazard bind in

a sense we make precise. Ue show that in such game long—run players cannot

do as well even in the limit as 6 - 1 as they could if their actions were

observable.

Our first economic application is to the type of partnership game

studied by Radner, Myerson and Maskin [1986]. They showed that the limit

set of payoffs in this type of game can be strictly less than that obtained

if players have time-average preferences, but they did not characterize the



limit set of equilibrium payoffs. Our methods permit a simple

characterization.

Our second, more extensive, application examines the economic

consequences of competition between different long-lived borrowers. In this

example there are infinitely-lived capitalists, short-lived investors, and

economies of scale in intertemporal production. The short-run investors do

not live long enough to make credible promises to repay loans, so the

capitalists do all the production. However, the behavior of capitalists is

imperfectly monitored by the investors. Each period the capitalist consumes

some of the output and distributes the remainder to the investors as

dividends. The investors observe the dividend payment but do not observe

the realized output, so that the capitalist's action is subject to moral

hazard whenever the distribution of outcomes is stochastic.

If there is a single capitalist and output is deterministic, so there

is no moral hazard, then a first-best payoff is attainable when the

capitalist's discount factor is close to 1. When output is stochastic,

though, the first best cannot be approximated for any discount factor, and

the greater the moral hazard, the greater the loss. Our main conclusion is

that the loss vanishes if there are enough capitalists. In particular,

competition between capitalists can make them better off, in the sense that

a merger between them can make them both worse off.

This is true despite the fact that neither the monitoring technology

nor the utility possibilities are changed by adding a capitalist. Rather,

adding more capitalists promotes efficiency because the Investors can

"punish" one capitalist by switching their lending to another capitalist,

rather than withdrawing from the market. This is important when there is

moral hazard, because investors cannot distinguish between an unlucky



capitalist with low output, and a greedy one. Consequently, to induce the

capitalist to pay dividends when output is high, the capitalist must be

punished for failing to make dividend payments when output is low. This

means that even an honest capitalist faces positive probability of

punishment. With a single capitalist, punishment is socially inefficient,

while with several capitalists the strategy of investing in another firm

when dividends are not paid provides incentives without this social cost.

The effect of competition here is different than in the papers of

Ausabel and Denecker [1989] and Gul [1986], who study sales of a durable

good. In their models, a single monopolist may be unable to credibly keep

prices high, while with two sellers there is an equilibrium where each

seller keeps price high for fear of provoking a price war. Consequently,

adding a seller reduces social efficiency by pricing willing buyers out of

the market, but increases the greatest possible profit that either or both

sellers can obtain. In our example, adding a capitalist (or subdividing a

capitalist into two competing firms) increases social efficiency by

increasing the probability of full employment and increases their maximum

combined total profit, but has no effect on the maximum profit that can be

attained by a single capitalist. From an economic point of view, our

example is most closely related to those of Atkeson [1987] and Marimon

[1988], who study issues of wealth accumulation and borrowing in a game with

two long-run players and moral hazard.

2. The Model

In the stage game , each player i — 1 to n simultaneously chooses a

(pure) action a. from a finite set A. with m. elements. Each action

profile a e A X. A. induces a probability distribution over publicly

observed outcomes y and privately observed outcomes z — (z-,...,z ). For



a given action profile a let tt (a) denote the probability of (y,z) and
yz

let w (a) denote the marginal probability for the public outcome y. The

public outcomes lie in a finite set Y with m elements. Each player i's

realized payoff r.(z.,y) depends only on the realized outcome: actions

matter only in their influence on the distribution over outcomes. This

model includes as a special case games where y — a, so the public informa-

tion perfectly reveals the actions chosen. It also includes games where y

conveys only imperfect information about the actions. For example, y can

be the realized market price and the z. — a. can be choices of output

levels as in Green-Porter [1984], or y can be the realized quantity of a

good and z. - a. the care with which the good is manufactured. Other

examples with a mix of public and private information are analyzed in detail

below. The key assumption is that there is some outcome y that is

publicly observed. This rules out games where the players receive only

private signals, a case is considered in Lehrer [1988] and Fudenberg and

Levine [1991a].

Player i's expected payoff to an action profile a is

&A^) - X) "yz(a)ri(zi,y),
^ yeY

zeZ

which gives the normal form of the game.

We will also consider mixed actions a. for each player i. For each

profile a — (a- a ) of mixed actions, we can compute the induced

distribution over outcomes,

JT (a) - J^ Wy2(a)a(a), ffy(a) = J^ iry(a)a(a)
^ a€A aeA



and the expected payoffs

g,-(a) - 52 IT ffyz(a)a(a)ri(zi,y)
^ yeYaeA

zeZ

We denote the profile where player i plays a and all other players

follow profile a by (a ,a_.); «• (q ,a_. ) and g. (a, ,a_, ) are defined in

the obvious way.

As in Fudenberg, Kreps and Maskin [1990], we label players so that

i e LR - (1,2,...,L), L < n, are long-run players, whose objective is to

maximize the average discounted value of per-period payoffs using the common

discount factor 6. If {g.(t)) is a sequence of payoffs for long-run

player i, player i's average discounted payoff is

00

(1-5) Y, «^"-^gi(t)
t=l

where we normalize by (1-5) to measure the repeated game payoffs in the

same units as payoffs in the stage game.

The remaining players j 6 SR - (L+1 n) represent different types

of short-run players, each representative of which plays only once. One

example of a model with long and short-run players is Selten's [1977] chain-

store game, where a single long-run incumbent faces a sequence of short-run

opponents. A more extensive example is given below.

In the repeated game, in each period t - 1,2,..., the stage game is

played, and the corresponding public outcome is then revealed. The .public

history at the end of period t is h(t) - (y(l) y(t)). The private

history for long-run player 1 at the end of period t is

hj^(t) - (a^(l).z^(l) aj^(t),z^(t)). We also let h(0) and h^(0)

denote the null public and private histories in which nothing has happened.

A strategy for long-run player i is a sequence of maps mapping public and



private histories (h(t-l) ,h. (t-1) ) to mixed actions. A strategy for the

period-t players of type
i . j G SR, is a map from the public information

h(t-l) to mixed actions. Note that the short-run player j observes the

public information at t, but not the private history corresponding to the

play of his predecessors. However, for the class of equilibria we will

consider, this assumption does not matter.

Each strategy profile generates probability distributions over

histories in the obvious way, and thus also generates a distribution over

histories of the players' per-period payoffs.

Let A. denote the space of mixed actions, and

B: A.. X ... xA^ -A X ... xA

be the correspondence that maps any mixed action profile (a. a ) for

the long run players to the corresponding static equilibria for the short

run players. That is, for each a e graph ( B) , and each j > L, a

maximizes g.(a.,a .).

Our focus is on a special class of the Nash equilibria that we call

perfect public equilibria . A strategy for long-run player i is public if at

each time t, it depends only on the public information h(t-l) and not on

the private information h.(t-l). A perfect public equilibrium is a profile

of public strategies such that at every date t and for every history h(t-l)

the strategies are a Nash equilibrium from that date on. Note that in a

public equilibrium the players' beliefs about each others' past play are

Irrelevant: No matter how player i plays, all nodes in the same informa-

tion set for i at the beginning of period t lead to the same probability

distribution over other player's current and future play. One consequence

of this is that the assumption that short-run players do not observe the

private information of earlier short-run players is irrelevant. The other



is that when we define "perfection" , it made sense to speak of "Nash

equilibrium" as though each period began a new subgame

.

It is easy to show that perfect public equilibria are sequential, and

that the set of public equilibrium payoffs is stationary, that is, the set

of perfect public equilibrium payoffs in any period t and for any public

history h(t-l) is independent of t and h(t—1). However, when the

players' actions are not perfectly observed, there may be sequential

equilibrium payoffs that are not obtainable with public strategies. (With

observed actions all equilibria are public.)

In any period t of a public equilibria, the players' period-t mixed

actions a(h(t—1)) are common knowledge. In particular, each short-run

player j believes he will face the mixed action q .(h(t—1)). Since the

short-run players care only about their one-period payoffs, in a public

equilibrium each period's mixed action must lie in the graph of B. (This

need not be true of the sequential equilibria that are not public, for

subsets of the players can use their knowledge of their own past actions to

correlate their play. See Fudenberg, Levine and Maskin [1990] for an

example of the way this correlation can generate additional equilibrium

payoffs.

)

We define E(5) c R to be the set of average present values for the

long-run player that can arise in perfect public equilibria when the

discount factor is S. We define V to be the subset of S generated as

convex combinations of payoffs to long-run players (g^ (a) , . . . ,g^ (a))

,

where a e graph ( B) . Note that this set is closed (since B is), convex,

and of course E(5) C V.



3. Enforceability on Halfspaces and the Set of Limit Equilibria

This section describes an algorithm that computes the limiting value of

the set E(5) as 6 tends to one. We consider various applications below.

Definition 3.1 : Let 5, W c R and v e R be given. Action a is

enforceable with respect to v. W and S if there exists a map w: Y - W

such that a 6 graph (B) and for all i € LR and a, e A,

,

v. - (l-5)g.(a.,a .) + S Y ir (a. ,a .)w.(y) for a, s.t. a. (a.) >
._ -. 1 *i 1 -1 ^ y 1 -1 i -^ i i 1

V. > (l-5)g.(a.,a .) + 5 y ir (a. ,a . )w. (y) for a. s.t. a. (a.) - 0.

We also say that w enforces (a,v) with respect to W and 5. If for a

given a, a v exists satisfying (3.1), we say that a is enforceable

with respect to W and S . Note that each w(y) specifies continuation

payoffs only for the long-run players. If such w(y)'s exist, we say that

V is generated by W and S

.

Equation 3.1 says that if all players j »* i play a_. then (i) no

short-run player i can increase his payoff by deviating from a, , and (ii)

if long-run player i's discounted average payoff starting tomorrow on when

y occurs today is given by w. (y) , then player i receives exactly average

payoff V from any of the actions in the support of a, , and no choice of

action yields a higher average payoff.

The key to the algorithm for finding the limit of E(fi) is the study

of the payoffs that can be generated using continuation payoffs that lie in

half-spaces H of 1 : these are sets of the form H(A,k) - {v|A»v<k)

for A e R and k e R.

Definition 3.2 : The maximal score attainable by action a in direction A

with discount factor S, denoted k (a,X,8), is the maximum of A»v such

that there exists v e R and k e R with (a,v) enforceable with respect



10

to S and H(A,k) and such that k - A • v. The halfspace associated with

* *
this maximum is H (a, A, 5); its boundary is the hyperplane h (a,X,S)

*
given by A»v-k(a,A,6).

This definition asks us to fix a mixed action a and a direction A, and

then find the "highest" halfspace in direction A such that a point on the

boundary of the hyperplane can just be generated with action a and

continuation payoffs in the halfspace. Since a halfspace is defined by a

*
system of linear inequalities, the maximal score k may also be expressed

as the solution to the linear programming problem:

max A • V sub i act to
V, w '

(a) v^ - (l-5)g^(a^,a_^) + S I tt (a^,a_^)w^(y) for a^ s.t. a^(a^) > <3

(3.2)
(b) v^ > (l-6)g^(a^,a_^) + 6 I n^(a^.a_^)v^iy) for a^ s.t. a^(a^) =

for i - 1, . . . ,L

(c) A • V > A • w(y) for y e Y.

* *
Lemma 3.1 : (i) k (a, A, 6) - k (a, A) independent of S.

(ii) k*(Q.A) < A . g(a);

*
(iii) k (a, A) - A • g(a) if and only if g(a) is enforceable with respect

to the hyperplane orthogonal to A at g(a)

.

Proof : (i) Suppose w' and v are feasible in (3.2) for (a,A,5').

Define

w"(y) - [(5"-6')/5"(l-fi')]v + [5'(l-5")/5"(l-5')]w'(y).

It may then be checked that w" and v are feasible in (3.2) for

(a, A, 5"). This implies that the set of feasible v in (3.2) is independent

of 5 , so the maximum is as well.
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*
(ii) k (q,A) > X • g(a) would imply that g(a) is in the interior

* *
of the maximal halfspace. Since each v G H is a strict convex combina-

*
tion of g(ai) and points in H , this is impossible.

(iii) k (a, A) - g(a) requires that (a,g(a)) be enforceable with

continuation payoffs on the hyperplane orthogonal to A and passing through

g(a).

*
We should point out that k (a, A) is not necessary upper semi-

continuous in a. Although the constraints in the definition of

enforceability (3.1) have the closed graph property, half-spaces are not

compact, so the set of payoffs enforceable with continuations on a given

half—space is not generally upper hemi—continuous in a.

*
Definition 3.3 : The maximal score in direction A, k (A), solves

k (A) = sup k (a, A). The maximal halfspace in direction A is
aegraph(B)

H*(A) - H(A,k*(A)).

The following lemma is sometimes used in characterizing the equilibrium

set. Let e. be the vector whose i component equals 1, and whose

other components are all zero.

*
Lemma 3.2 : The maxima score k (-e.) in the direction -e. that

J J

corresponds to minimizing player j's payoff Is no greater than

-min max g^ (a^ ,a^

)

a€graph B ^ij^Aj

Proof : For A - -e., constraint 3.2(c) simplifies to w (y) > v .

Constraint 3.2(a) and (b) for player j then imply that v. > g.(a ,a_.) for
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all a. and here in particular that v. > ™^^ g.(a.,Qt .)• Hence for any
J > J 3^i J J ~J

*
Q, k (-e.,a) is no greater than -min max g.(o'. ,a .).

J aegraph B ^'.^^^ J J "J

Definition 3.4 : Q - n H (A).

Note that Q is convex, and that each point q on the boundary of Q is

enforceable on all of the halfspaces that are tangent to Q at q.

Theorem 3.1 : (i) For all S, E(S) C Q.

(ii) If the dimension of Q c R is L, then lim. , E(6) - Q.

Proof : See the Appendix.

4. A Partnership Game

Our first application of Theorem 3.1 will be to a game involving only

long—run players. If a deviation by each player can be statistically

distinguished from that of any other player, it is an impliction of Theorem

3 . 1 that the folk theorem holds , and indeed this has been shown by Fuden-

berg, Levine and Maskin [1991]. This leads us to study a partnership

example in which deviations by different players cannot be distinguished,

and one closely related to the example of Radner, Myerson and Maskin [1986]

in which the folk theorem is known to fail with discounting. However, while

Radner, Myerson and Maskin showed that the folk theorem failed, they did not

show what the actual set of limit equilibrium payoffs is, which our.

algorithm enables us to do.

The example we study is a two-player partnership game. Each identical

partner must choose one of two effort levels a. - or 1. Output per

person is either or 1. The probability of the high output level is
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(a^ + a„); the additivity is important as we discuss below. Effort is

unobserved, so each player's private signal z. is identified with his

action; per capita output is publicly observed. Effort has a disutility q,

so payoffs are

ri(a.,y)
y if ai =

y-q if a^ = 1.

The strategic form of this game is given in Figure 4.1,

partner 2

effort 1

partner 1 1 2p-q , 2p-q p-q ,

p

p,p-q 0,0

FIGURE 4.1

We assume p < q, so that the effort level is the unique dominant

strategy Nash equilibrium in the stage game. We also assume q < 2p , so

that both partners providing effort maximizes the sum of the player's

payoffs

.

At the profile where both partners work, the probability that output is

high is 2p. If either partner deviates, the probability that output is

high is p, so it is impossible to determine which partner deviated even if

the probability of y is observed. In Fudenberg, Levine and Maskin [1990],

we showed that the ability to make such determinations is one of several

conditions that are sufficient for the folk theorem to hold. In this

example deviations cannot be distinguished in part because the game is

symmetric and we are considering a profile in which both players behave in

the same way. However, in some symmetric games it is possible to endogen-

ously introduce an asymmetry by having the players mix in different ways.
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1
ways

.

This game has the special feature that the probability of high output

is linear in the players' actions, so that changing a. from to 1

increases the probability that y - 1 by p, regardless of the play of

player -i. Thus, whether player i prefers a. - 1 or a. - depends

only on the specification of the continuation payoffs w.(«), and is

independent of a_. . In particular, player i prefers a, - 1 if the

reduction of (1-5) (p-q) in his immediate payoff is outweighed by the

change of 5p[w. (1)—w. (0) ] in his expected continuation payoff. To

simplify future notation, we define A - (q—p)/p, and note that player i

prefers a. - 1 or a. - as w.(l)-w.(0) > or < A(l-5)/6.

Moreover, and this is a key simplification, the linear structure

*
implies that in determining the maximal scores k (A) in each direction A,

we need only consider the four pure action profiles, as shown by Lemma 4.1.

Say that continuation payoffs w. :Y - R enforce profile a for player

i if they satisfy the incentive constraint (3.1) for player i.

Lemma 4.1 : In a game with only long-run players, suppose that for each

player i, for all a., and all <»_. , whenever continuation payoffs w.(»)

enforce (a. ,a .) for player i they also enforce (a., a'.) for player i

Indeed if there are three outcomes and we fix the strategic form
payoffs, Fudenberg, Levine and Maskin show that almost all perturbations of

the matrix of outcome probabilities result in the folk theorem. Here,
however, the additive structure of probabilities are a non-generic case in

which mixing does not introduce an asymmetry. (It should be noted that

perturbing the marginal probabilities of an additive structure will
generally change the strategic form payoffs.)
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* *
for all a'.. Then to determine the maximal scores k (A) - sup k (a, A),

it suffices to consider only the pure action profiles.

Proof : If V and w solve the LP problem 3.2 for a given a and X,

then for each a. e support(Q.), (a. ,a .) is enforced by w. On the hypo-

thesis of the lemma, this implies that each a, e support(a .) is enforced

by w for any q . , and so any profile a € support(a) is enforced by w.

Define v(a) - (l-5)g(a) + 52 w (a)w (y) , and let a be an element of

* ...
argmax , . Aov(a) . Since k (a, A) - Aov < Aov(a) , a gives at° a€support(a) v . / \ / . e

least as high a score, so we need only show that {v(a),w) is a solution of

problem 3.2 for profile a. The first equality is satisfied from the

definition of v, the incentive constraints are satisfied as we observed

above, and the inequalities Aov(a) > Aow(y) follow from

Aov(a) > Aov(a) > Aow(y)

.

To determine the set of limit payoffs, we will compute the maximal scores

* * *
k (A), the maximal half-spaces H (A), and the set Q - n H (A). Since

each player's minmax value is zero, Lemma 3.2 implies that the maximal feas-

ible score in directions -e- and -e„ is zero, so Q contains at most the

nonnegative feasible payoffs. Moreover, since the minmax profile (0,0) is a

static equilibrium, the score of can be obtained on any half space, so the

maximal half spaces in directions A with both A., and A- negative contain

the point (0,0) and hence imply no further restrictions on Q.

For A with A„ > > A- , the maximum feasible value of Aov is

A„p + A., (p-q) ; since this value can be obtained as a solution to problem

3.2 (by using the profile (1,0) and continuation payoffs w.. (0) - p-q,

w^(l) - p-q + A(l-5)/5, W2(0) - p, and w^d) - p - (X^/\^)Aa-S)/S) it
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*
is the maximxim score k (A) in these directions. A symmetric argument

*
shows that k (A) - A p + A„(p-q) in directions with A > > A„

.

The only remaining directions are those A with both A^ and A„

positive. Using Lemma 4.1, to find the highest score in the directions it

suffices to consider the pure action profiles; since (0,0) yields payoff

of only 0, and (0,1) and (1,0) are symmetric, it will suffice to

consider the profiles (1,1) and (1,0). Using our earlier observation

that player i prefers a. - 1 or a. - as w.(l) - w (0) > or

< A(l-5)/5, the program 3.2 for profile (1,1) simplifies to

max A'v s.t.
v,w

v^ - (l-5)[2p-q] + 5[2pw.(l) + (l-2p)w^(0)
]|

w^(l) - w^(0) > A(l-6)/5, J

i - 1,2

and

Aov > Aow(l)

.

Aov > Aow(O)

.

We claim that for any positive A- and A the solution to this

program is k - (A^+A2) [ (2p-q) - A(l-2p)].

We show first that this value is obtainable: Set

w (1) - w (1) - 2p-q-A(l-2p) , and set

w^(0) - W2(0) - 2p-q-A(l-2p) - A(l-5)/5, so that w^(l) - w^(0) - A(l-5)/5,

Then V. - (l-5)[2p-q] + 5 [ (2p-q)-A(l-2p)-(l-2p)A(l-5)/5] - 2p-q - A(l-2p)

,

so k - Aov - Aow(O) , and all of the constraints are satslfled.

Next we argue that no value above k is attainable. Assvime to the

contrary that the solution is some k' > k. For a fixed value of w. (1),

the program is maximized by setting



17

w^d) - (k'-A^w^(l))/A2,

w (0) - w (1) - A(l-5)/5, and

w^CO) - w^d) - A(l-5)/6 - (k'-A^w^(l))/A2 - A(l-5)/5.

Substituting for v. yields

k' < (l-6)(A^+A2)[2p-q] + 5A^(w^(l) - (l-2p)A(l-5)/6 ] +

5A2[(k'-Aj^w^(l))/A2 - (l-2p)A(l-5)/5 ] ,

which, after collecting terms, implies

k' < (A^+A2)[2p-q-(l-2p)A] - k.

Now we determine the highest score that can be attained using profile

a - (1,0). We claim that this score is at Aog(a) =- A^ (p-q) + A„p. From

Lemma 3.1 (iii), this will follow if a can be enforced with continuation

payoffs w on the hyperplane Aow = A., (p-q) + A p orthogonal to Ag(a) .

One specification of the continuation payoffs that does this is

w^(0) - p-q, w^(l) - p-q-A(l-5)/5.

w„(0) - p, w„(l) - p - (A./A„)A(l-5)/5 . A similar argument shows that the

highest score that can be obtained with profile (0,1) is A..p + A„(p-q).

The last step is to compare the scores to each action profile, and

determine the overall highest score in each direction. If

2p - q > 2[2p-q-(l-2p)A] . then for all A,

max{Ao(p,p-q) , Ao(q,q-p)} > Ao(2p-q-(l-2p)A, 2p-q-(l-2p)A) , and none of the

extremal equilibrium payoffs are generated by the profile (1,1). This is

because the cost of providing effort ((l-2p)A) is so large that when

incentive costs are considered it is more efficient to have only one player

work. This is the case depicted in Figure 4.2.



Figure 4.2
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Figure 4.3 depicts Che opposite case 2p - q < 2 [2p-q-(l-2p)A] . Here

the score (A..+A„) (2p-q-(l-2p)A) generated by (1,1) exceeds the scores to

(1,0) and (0,1) for intermediate values of X /\^.

5. Games With a Product Structure

As noted, in the investment game there is a separate public signal for

each long-run player which is independent of the signal for other long-run

players, and depends only on his own play and that of the short-run players.

We describe this by saying that (information in) the game has a product

structure. Such games have strong properties, which we apply to the

investment game in the next section.

Let a - (a ^ a ) be the vector of short run players play.

Formally, we say that a game has a product structure if y - (y^ , . .
. ,y )

(with probability one), and tt (a) - k (a.,,a ) . . . tt (a ,a ) where tt

y y^^ •' ^^
-^L ^i

is the marginal distribution on y. . In other words, each long-run player's

action influences only the distribution of his "own" outcome y. , and the

y. are statistically independent.

We now specialize to games with a product structure. A special case of

these games is the case in which actions are observable but mixed strategies

are not. In these games Fudenberg and Maskin [1986] show that the folk

theorem holds when there are no short—run players. With a single long-run

player, Fudenberg, Kreps and Maskin [1990] show that the folk theorem fails,

but are nevertheless able to characterize equilibrium payoffs. Using

Theorem 3.1, we can extend this latter characterization to encompass many

long-run and short-run players , and moral hazard as well

.

In a game with a product structure, the marginal distribution of long-

run player i's signal does not depend on the actions of other long-run

players, so it may be denoted by k (a.,a „). For i - 1,...,L we then
y^^

1 SR



(2|>q-(l-2p)d, 2p-q-(l+2p)d)

<p-qp)
(2p-q,2p-q)

(P'P-q)

Figure 4.3
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define the matrix n.(Q-_) with rows corresponding to a. 6 A. and columns

to y. e Y. , and with the (^^ . y.) component equal to tt (a.,a ).

Similarly, we may define g. (a .) to be the vector indexed by a., with

components equal to g.(a.,a .). We say that a game with a product struc-

ture satisfies the sufficient rank condition at a if every left null

vector of n.(a ) is orthogonal to the vector g.(a .)• This is certainly
i oR i —

i

true if the rank of n.(a__) is m. , the number of player i's actions,
1 SR 1

r J

so that it has full row rank. In this case the only left null vector is 0,

which is certainly orthogonal to g.(Q_.). In this case we say that the

full rank condition is satisfied.

Lemma 5.1 : In a game with a product structure, if a satisfies the

sufficient rank condition, then for all players i, payoffs v. and

discount factors 5 > there exist w. : Y. - R such that
1 1

(5.1) V. - (l-5)g.(a.,a .) + 5 Y w (a. ,a^„)w. (y. ) for all a. 6 A..

Remark : The condition (4.3) asserts that the incentive constraints (3.1)

may be satisfied with exact equality using continuation payoffs w. that

depend only on player i's outcome, and not those of other, long-run

players

.

Proof : Let e be the vector that consists entirely of ones. Writing out

(3.3) in matrix form and rearranging terms, we see that we must find w.

(which may view viewed as a vector with components corresponding to rows of

n.) to solve
1

^"i^^SR^
• w^ - v^ . e - (1-5) g^(a_^)

This is possible if and only if every null vector on the left is orthogonal

to the vector on the right. Since n.(a _) is a stochastic matrix, every
i SR
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left null vector is orthogonal to e, and by the assumption of sufficient

rank, every such null vector is orthogonal to g. (q_ )

.

If the sufficient rank (or full rank) condition is satified for every

a e graph(B) , we say that the game satisfies the sufficient rank (or full

2
rank) condition. Notice that these conditions generalize the idea of a

game with observable actions . Observable actions means that y is

isomorphic to a , so that H, is the identity matrix.

Let e be the unit vector in the direction of the i coordinate

*
axis, and recall that k (e.) corresponds to maximizing player i's payoff

* L
and k (-e.) to minimizing it. Recall that V is the subset of S

generated as convex combinations of payoffs to long—run players

(g^ (a) g (a)), where a e graph(B) , and that this set is closed. Our

goal is to prove:

Theorem 5.1 : In a game with a product structure satisfying the sufficient

rank condition, Q is the intersection of V with the 2L constraints

if *
k (-e.) < V. < k (e.)

.

1 1 1

If, following Fudenberg and Maskin [1986], we assume that Q has dimension

L, it follows from Theorem 3.1 that Q is the limit of E(5) as 5 -» 1.

Although this gives a characterization of limit payoffs as S -* 1, it

*
is not interpretable as a folk theorem, as in general k (e.) is not the

best payoff for player 1 in the graph(B)

.

In proving Theorem 5.1 there are two cases: directions A that are

parallel to a coordinate axis, and those that are not. We refer to the

2
Fudenberg, Levine and Maskin [1990] distinguish the full rank

condition as the "individual full rank" condition to distinguish it from a

stronger condition called "pairwise full rank".
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former as coordinate directions, the latter as non—coordinate directions.

*
From the definitions of Q and k

, Q must satisfy the constraint

* it

k (-e.) < V. < k (e.). To prove Theorem 6.1 it therefore suffices to show
1 1 1 "^

*
that for non-coordinate directions A we can obtain scores k (A) on the

boundary of V.

Lemma 5.2 : In a game with a product structure satisfying the sufficient

*
rank condition, if A is a non-coordinate direction, then k (A) - A • v,

where veV and V c H(A,k*(A) )

.

Proof : By Lemma 3.1(iii), it suffices to show that for some v € V and k'

such that h(A,k') is tangent to V at v, that there is an a with

(g^ (a) g (a)) - V that may be enforced on h(A,k'). By the definition

of V we may find a e graph (B) and a k' such that

(g^ (a) , . . . , g (a) ) - V and h(A,k') is tangent to V at v. Consequently,

we need only construct w satisfying A • w(y) - k' , and such that the

incentive constraints (4.1) are satisfied. Since y - (y^,...,y ), we

initially restrict attention to continuation payoffs that depend only on

each player's own outcome, that is, w. (y) - w (y ) , and such that the

incentive constraints all hold with exact equality. They may be written as

(5.2) V. - (l-5)g.(a.,a .) + ST ^ n (a. ,a-_)w. (y. )

.

1 °i 1 -1 '^.ey. y. 1 SR 1-^1

By Lemma 5.1 there exists a solution w.(y.).

Since A is non-coordinate, X. ^ for at least two players, say

i - 1,2. Consequently, A • w(y) - k' provided that

L
Aiwi(y) + A2wi(y) = k' - V AiWi(yi) .

i=3

Clearly, setting w^((y) - Wj^(y^) + v^(y_^) , v^iy) - v^iy^) +w^(yj^), and

w. (y) - w.(y.) for i >* 1 , 2 preserves incentive compatibility for any
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functions w' of y_^ and w' of y . If we choose

w^(y^) - -(A^/A2)w^(y^), and w^(y_^) = (1/A^) (k'-X^_2 A^w^(y^) ) , the

resulting w(y) completes the proof.

It is worth noting that when the sufficient rank condition is satisfied,

the linear programming problem (3.2) for vectors X corresponding to

coordinate directions simplifies considerably. Since all components of X

are zero except the ith (say), v. is the only component of v to appear

in the objective. Moreover, the only constraints involving v., j »* i, are

those from (3.1). However, we already showed that if the full rank condition

is satisfied, we may choose w. to satisfy these constraints. The remaining

constraints do not involve player j at all, except that w. (y) may depend

on y . However, if w. (y) satisfy all the constraints, so does

w[(y) -
"i(yi)

^ E[w^(y)| y^^-a.^^]-

Consequently, the problem (4.2) is equivalent to the problem

max A.» V. subject to
V. ,w. 11-'
1 1

V - (l-5)g (a ,a .) + S I If (a ,a )w (y ) for a s.t. a (a ) >
,qo\-L J,i."~l. y . 1. OR. L L L J.J.

v^ > (l-5)g^(a^,a_j^) + S I n (aj^,asj^)w^(yj^) for a^^ s.t. a^(a^) -

^i
A. • v. > A. • w(y) for y € Y.
1 1 1 -^ '

In other words, the score in the direction of maximizing or minimizing

player i's payoff is determined as if he were the only long-lived player

in the game: the other long—lived players figure into this problem -only

through g^.

6. Moral Hazard Mixing Games

* *
Now we show how to determine the constraints k (e.) and k (-e.) in

1 1

a broad class of games with a product structure. Following Fudenberg, Kreps
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and Maskin [1990], we define two bounds on the payoffs of the long—run

player i - 1,...,L. First,

V. - min max g.(at,a_i)"1 aegraph(B) a^eAi ^^' ^' /'

is the mininax, incorporating the constraint that short-run players must play

best responses to some play of the long—run players. Lemma 3.1 shows that

every long-run player's payoff is at least v. in every perfect public

equilibrium. The second bound is

*
V. max min gi(ai,a-i),
1 Qegraph(B) aiesupport(ai)

which is the most player i can get if he cannot be trusted not to maximize

within the support of a mixed strategy. Let q_. be the strategies for

*i
i's opponents that lead to v , and let a be strategies for all

*
players that solve the problem defining v.

.

Fudenberg, Kreps and Maskin show that for games with observed actions

and a single long-run player the limit set of perfect equilibrium payoffs is

*
the interval [v- ,v- ] . Fudenberg, Levine and Maskin [1991] consider games

with unobserved actions where all players are long-run. In these games all

*
strategy profiles are in graph (B) , so v. - max g.(a), and any strategy

profile a. that gives player i payoff v. necessarily has a. a

*i
static best response to a_ . This means that player i can be induced not

*i
to deviate from a. with continuation payoffs that are orthogonal to

player i's coordinate axis, so that k (e.) - max g.(a). When some

*i *i
players are short run, a. need not be a static best response to «» j .

which is why k (e.) can be less than max g.(Q).
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An important class of games with a product structure that do not have

perfect observability are moral hazard mixing games . These are games for

which TT (a.,a„„) is strictly positive for all a. € A.
, y. e Y.

,

y. 1 SR ' '^ 1 1 -'i 1
1

n
i - 1, . . .

,L, and a e x
SR

. ^ , A. so there is genuine moral hazard. In
j-L+1 J

*
addition we require that if a G graph(B) and g. (a) - v. then a. is not

a best response to a_. . This will imply that the incentive constraint due

to moral hazard binds on player i at his optimal equilibrium.

* *
Theorem 6.1 : (i) In games with a product structure k (e.) < v. and

k (-e^) < -v^.

* *
(ii) In games with observable actions k (e.) - v. and

k*(-e.) - - V. .

1 —L
* *

(iii) In moral hazard mixing games k (e.) < v..

*
Proof : We calculate for each a e graph ( B) , the scores k (a.e.) and

k (-a,-e.). In the e. case, X. - +1 and in the -e. case A. - -1. In
1 11 11

either case, the score is determined by solving the linear programming

problem (3.2)

.

it ic it

Proof of (i) : Suppose k (e.) > v.. Then, since k is independent of 5,

for each S e [0,1] there exists e > and a e graph(B) such that

* -k -k *
k (Q,e.) > V. + [5/(1-5) ]£ and k (q, e. ) - k (e. ) - « . It follows that

for all a. with a(a.) >
i 1

k (a,e ) - (l-5)g (a ,a ) +5 £ % fa a )''i^yi^1 111
YieYi ^i^^i'^SR^ ^ ^

with w.(y.) < k(e.,a) + e. Let a. be such that a. (a.) > and
1 -'i 1 1 i i

g.(a.,a .) < g.(a' a .) for all a(a'. ) > 0. By the definition of
"i 1 -1 °i i -1 1

'

* *
v^, g^(a^,a_^) < v^. Consequently,
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k*(a,e^) < (l-5)v* + 5(k(e^,a)+0

* *
or k (a,e.) < v. + [5/(1-5) ]«. This contradicts the assumption that

k*(Q,e.) > V* + [5/(l-5)]£, so k (e.) < v..

*
Next, suppose k (-e.) > -v.. As above, there is an a G graph(B)

k ie i(

such that k (a,-e.) > - v. + [5/(1-5) ]£ and k (a,-e.) - k (-e.) - e. It

follows that for all a. e A.
1 1

-k*(-e a) > (l-5)g (a .a ) + Yl % (a a )w (v )^ 111
y^^Yi ^i^^i'^SR^^'i^yi^

with w.(y.) > k(e.,Q) - e. Let a. be such that g. (a. ,a .) > E.(a' a .)

for all a. e A. . By the definition of v., g.(a.,a .) > v. . Consequently11"' -1 ^1 L -1 -1 ~i J

-k*(-e.,a) > (1-5) + 5(-k(e^,a)-6),

*
or k (e.,a) < -v. + [5/(1-5) Je. Again, this is a contradiction.

Proof of (ii) : Under perfect observability, the constraints (4.4) simplify

to

v^ - (l-5)g^(a^.a_j^) + 5w^(a^) a(a^) >

(6.1) v^ > (l-5)g.(a^,Q_^) + 5w^(a^) a(a^) -

A.v. > A.w. (y.)

.

11 1 1 '^i

For X. - 1, set v. - min , .^„ g.(a.,a .), and
1 1 a.(a.)>0 °i 1 -1

1 1

w.(a.) - [v -(l-5)g.(a. ,a.)]/5 for a. with a. (a.) > 0;

w.(a.) - min . g.(a) for a, with a. (a.) - 0. Since these continuation
1 1 aGA. °L^ ' 1 1^ 1

1

payoffs satisfy constraints (8.1), we conclude that

k*(a,e ) > '°^"^, ^ 84(^4 •" <)•
1 aiesupport(ai) i i -i

* .
*

and k (e.) - max k *(qi, ei) > max min gi(ai,a_t) =v . Combiningla a aiesupport(oi) °^ ^ ^ ^

* *
this inequality with that of part (i) we have k (e.) - v..
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For X, - -1 , set v. - max e.(a. ,m .), where m is the minmax
i L a. °i i -1

1

profile against player i, and set w.(a.) - [v.-(l-5)g, (a. ,m_. ) ) ]/5 for

all a.. Once again these continuation payoffs satisfy (6.1), and hold

*
player i's payoff to v. regardless of how he plays. Thus k (-e ) < v.,

*
and so combining with part (i) yields k (-e.) -v..

Proof of (iii) : We turn finally to moral hazard mixing games and A. — 1.

Let 2t- ~ ™^'^v '" (^- '^od) ^ ^ from the assumption that all
"1 a ieAi.yieYi.asR y^ i' SR

outcomes have positive probability under all profiles.

Now for each a consider the problem (?.2). At the solution to this

*
program, v^ - k (a,e^) > w^(y^), so that

ETT (a. ,Q-_)w.(y.) < k (a,e.) + n. "lin w.(y.).
yeY- ^i

^ 1 1 yieYi i -^i

Choose a. so that a. (a.) > 0. Then
1 1 1

k (a,e.) < (l-5)g.(a.,a .) + 5v. + Sn . min w.(y.),
L °L L -1 1 -1 y.^y^ 1-^1

or

w^(y^) > 7r]^^[(l-5)/5] [k*(a,e^)-max g^] .

*
Since we know from above that k (a,e.) satisfies

1

max g. > max v. > min g. , we may add this constraint to the LP problem and

find also

max g^ > ^^(y^) ^ S.^ [(l-7)/5] [min g^^-max g^] .

Consequently the relevant constraint set of continuation payoffs is bounded

independent of a, and it follows that there exists o with

* *
k (e.,a) - k (e ) ; that is, the supremum over a is attained.

Suppose then that k (a,e,) -v.. For some a. with a (a.) > 0,

if it

R.(a.,at .) < v., by the definition of v.. Since a. (a.) >
^1 1 -1 1 -^ 11 1
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V - (l-5)g (a Qt ) + S Y, '^yi(ai,asRWi(yi)-
yi^Yi

* * *
Since e.(a.,Q .) < v . and w.(y.) < v. , it follows that e. (a. ,a .) -v.,

°L 1 -1 1 1-^1 1 °i 1 -L i'

*
and since k (a.) > for all v., w. (y. ) - v. for all y. e Y. . But we

y. 1 "^1 1 -^ i i ^i i

then have

v^ * > (l-5)g.(a!,a .) + 5v*

for all a', e A., with exact equality if and only if a (a ) > 0. In other

*
words, a. is a best response to a . yielding the payoff v., and

contradicting the definition of a moral hazard mixing game.

Remark : One interpretation of part (iii) of the theorem is that player i's

moral hazard reduces his best equilibrium payoff relative to the case of

*
observed actions unless the best observed action payoff v. can be attained

in the stage game with a profile where player i does not have an incentive

to deviate. It is intuitive that moral hazard should not be costly in this

case, as there is no need to "keep track" of player i's action. The

theorem shows that this is the only case where moral hazard has no

additional cost.

Ue now give an example of a moral hazard mixing game.

L M R

U
"

D
,

FIGURE 6.1

4,0 0,1 1,-100

2,2 1,1 0,3

The payoff matrix in Figure 6.1 gives the expected payoffs as a function of

the actions. Player 1 is a long-run player facing a sequence of short-run

player 2's. If player I's actions are observable, but not his mixed strat-

egy, then by Theorem 5.1, his maximum equilibrium payoff is v. - 2, which
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corresponds to player 1 playing D with probability p e [1/2,100/101].

Now imagine that there are two outcomes y^ and y- , and that

n
,
(U) - n „(D) - 1 - £. It is clear that we may define payoffs r. (y^ ,a„)

that give rise to the normal form in Figure 1, for example

r^(y^,L) - 4-6£/(l-2£)

rj^(y^,L) - 2-6e/(l-2e).

This class of games obviously has a product structure and for e f* 1/2

satisfies the full-rank condition.

These games also satisfy the pairwise full rank condition described in

Fudenberg, Levine and Maskin [1990]. According to that paper, if player 2

were a long-run player the limit set of equilibria would be the same as that

with observable actions. However, with a short run player, the limit set is

strictly smaller when e > 0. This follows from the fact that the game is a

moral hazard mixing game:

Ty,(U) n^„(\J) l-e,

l-£

is strictly positive, and the most player 1 can get from a pure strategy

*
is < v^ - 2 , while if player 1 is indifferent between up and down, he

must clearly get no more than one.

it ie

Note that it can be shown that as e - 0, k (e.) converges v - 2.

This is quite generally true: if we fix a payoff matrix and consider a

sequence of corresponding information structures that converge to perfect

*
observability, the maximum payoffs converge to v .

7. An Investment Game

We now consider an extended example of a product structure game. The
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long-run players are identical capitalists. The short-run players are

investors who live two rounds. At the beginning of the stage game, all

investors are young, and during the second round they are all old. In other

words, in the repeated version of the game, the generations of investors do

not overlap. Later we will discuss the consequences of overlapping

generations of investors. It is convenient to assume that there are X''

identical investors in each stage game, so that n - L + x»/.

Each investor is endowed with one indivisible unit of investment input

when young. He has no endowment when old, and consumes only then. Capital-

ists have no endowment. Investment and the single consumption good are

perfect substitutes in consumption for investors, while capitalists get no

utility from the investment good. Consumption is completely perishable.

All agents are risk neutral.

The production technology is available to all agents. It converts

X > X units of investment input in the first round into consumption

available during the second round. There are two possible levels of output,

low output of and high output equal to xf/p, where f > and

< p < 1 is the probability of high output. Notice that there are

constant returns to scale (above the threshold level of x) , and that the

expected amount of output per unit of input remains equal to f as p

changes. We will assume that f > 1 so that the expected output is greater

than the Investment input. Since all agents are risk neutral, efficiency

therefore requires that no investment be consumed directly.

We assume that if several different agents are producing, the outcome

of their production processes are independent of each other. This assump-

tion is important because it means that adding producers does not improve

the ability to monitor production. If, for example, output were perfectly
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correlated among producers, it would be possible to design incentive schemes

by comparing the output of different producers, and punishing those that

claimed to have less output. On the other hand, independence means that

while mean output is not changed by spreading inputs among more producers,

the variance of output is reduced. Consequently, it is important that we

have assumed that all agents are risk neutral: the reduced variance has no

social value, and is irrelevant to the analysis.

An important aspect of this technology is that it involves an

indivisibility: less than x units of investment produce no output at all.

If X - 1, investors can carry out production using their own investment,

and this will clearly be the unique equilibrium. We wish to focus on the

case where production must be centralized due to economies of scale, so we

always assume x > 1. For convenience we have assumed that there are xu

investors, so that at most u different producers may operate, and all

investors may contribute equally to production.

It is evident that old investors will consume any of the consumption good

they have Consequently, only capitalists can purchase the investment input,

for only they have an incentive to pay back investors. Indeed, since

capitalists are the only agents who can be trusted to repay, they will be the

only producers even if the investors have access to a superior technology.

When young, each investor must decide to whom (including himself) to

give his indivisible investment input. Since investors cannot be trusted to

repay loans, we simplify the analysis by assuming the feasible actions A.

for each investor j - l,2,...,xi/ are the L+1 points corresponding to

either consuming the investment input, or giving it to one of the L capit-

alists. In the second round, capitalist i must decide what to do with his

output. (Old investors need not decide how to dispose of their output:
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they never have any.) We make several assumptions that substantially

simplify the analysis, although it can be shown that they do not change our

conclusions. First, we assume there is limited anonymity. A capitalist can

tell if someone invested with him last period, but no further identification

is possible. Let J. be the realized number of investors providing

investment to capitalist i. If output is zero, no decision is involved.

If output is high the capitalist consumes a fraction (1-^) of it, with the

remainder being equally divided as dividends among his investors. Because

of limited anonymity, it is not possible to pay them different amounts. In

principle, the choice of <^ can depend on the total number of investors

J., although not on who they are. However, we assume that the capitalist

must decide on the compensation scheme before observing the outcome of the

investors' decisions.

Since the high level of output is J.f/p, for a given choice of i^

,

the capitalist gets (l-i^)J.f/p units to consume, and his investors get

each get (pf/p. To keep the game finite, we assume that (^ lies in $ a

finite subset of the unit interval. We also assume that e $, so that

the capitalist always has the option of paying no dividends. The action set

for the capitalist is therefore simply A. - *.

Notice that we have assiomed that the capitalist cannot pay either

investors who do not invest with him, or other capitalists. We discuss this

assumption further below.

All players observe to and by whom Investment is made, and the amount

of payment made (if any). However, the level of output and the amount

consumed by each capitalist his his private information. While the natural

definition of the public outcome y. corresponding to capitalist i is his

total dividend payment D. , we will find it convenient to define
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y. - D./(-J-f/p). so that y. lies in the set $ of capitalists' actions.

In this way the distribution on outcomes induced by a given long-run

player's action is independent of J., provided J. > x. Of course, if

there is no output, or too few investors (J. < x) , then y. - regard-

less of a. , as the investors do not observe the amount the capitalist

would have paid if output had been high.

For the short-run investor j , the observed outcome y. is simply his

chosen action a, e A.

.

J J

In addition to the public signal y - (Xi > •••.y ). ^ capitalist also

receives the private signal z. e * corresponding to his chosen action.

The probability distribution n (a) places probability one on z. - a.

for i e LR, and y. - a. for j G SR, and the signals y. are

independent of one another for i 6 LR. The random variable y. takes on

the values a. with probability p, and with probability 1-p. Note

that the distribution of public signals corresponding to capitalist i is

independent of the signals corresponding to other capitalists, and depends

only on his own action and the actions of the short run players.

Remark : Because there are indivisibilities, lotteries may be welfare

improving in this economy, as pointed out by Prescott and Townsend [1984]

.

Indeed, the type of indivisibility assumed here has been modelled using

lotteries by Rogerson [1985], and in the work on real business cycles by

Hansen [1985]. Lotteries may be represented in this game by introducing a

public randomization device at the beginning of each period. In the case of

primary interest, when the discount factor of the capitalists is close to

one, our results do not depend on whether or not there are lotteries: as

Sorin [1986] and Fudenberg and Maskin [1991] point out, deterministic

alternation between different allocations can serve as well. However,
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public randomization does strengthen and simplify the analysis for discount

factors that are not near one, and when we consider non—asymptotic results

for the one capitalist case, we will assume that that there is a public

randomization device.

8. Analysis of the Investment Game

We will now show that the investment game satisfies the sufficient rank

condition, so we apply Theorem 5.1. We can then solve the LP problem (5.3)

to find the limit set Q. Since this has dimension L, we have an explicit

computation of the limit equilibrium payoffs. In the case of a single

capitalist we also explicitly calculate an equilibrium giving the capitalist

the greatest possible rent, and determine the range of discount factors for

which this is a solution. We also consider the economic interpretation of

the results.

To see that the game satisfies the sufficient rank condition, fix a

strategy profile a for the investors, and define P. to be the

probability that J. > x, that is, capitalist i has enough investors to

produce. Then the corresponding matrix 11. (a ) is
1. OI\

1.

1.

0, 0.

0, 0.

1-P^ + P^(l-p), P^p, 0.

For p »* 0, this matrix has full row rank.

Second, note that the unique equilibrium of the stage game is for the

capitalists not to pay anything and for the investors not to make any loans.

In this case the capitalists all get 0, and this is also their individual-
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ly rational payoff level, since they can guarantee themselves by never

*
paying. It is clear therefore that k (-e.) - 0.

*
To find the capitalist i's maximum equilibrium payoff, k (e.), we

*
write out the LP problem (5.3) that determines k (a,e.). Corresponding to

P. , which is the probability of sufficient investors investing given the

strategies of the short run players, define J. to be the expectation

conditional on q of the random variable that is if fewer than x

investors invest with capitalist i, and the number of investors who invest

with him otherwise. The linear programming problem (5.3) may be written as

(8.1) max V. subject to

(8.2) v^ - (l-5)(l-a^)J^f + 5[(l-P^+P^(l-p))w^(0) + ?rp^i^(a^)]

if a. (a.) > 0, then
1 i

V. > (l-fi)(l-a^)J.f + 5 [(l-P.+P^(l-p))w.(0) + P.pw.(a^)]

(8.3) v^ > w^(aj^).

*
The solution defines k (a.e.).

L

*
Recall that to find k (e.), we will maximize over q e graph (B)

.

Examining (8.2) and (8.3), we see that the constraints are homogeneous in

J., w. and v.. Consequently, if we begin with a feasible solution,

increasing J. by a factor of X leads to a new feasible solution in which

w. and V are also scaled up by X. Moreover, if J. > is a best

response for the investors, then so is J. - xi/. Consequently, either

* —
k (e.) is zero, or we may assume J. - xi/ and P. - 1. We proceed to

solve (8.1) to (8.3) in the latter case, in which case (8.2) simplifies to

V - (l-S)(l-a )xuf + 5[(l-p)w (0) + pw (a )] if a (a ) > 0.

(8.2') ^
^

V > (l-5)(l-a )xi/f + 5[(l-p)w (0) + pw (a )].
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Let a be the largest element in the support of a, . For any a. in

the support of a., (8.2') shows that

w.(a.) - w.(i. ) - [(l-5)/5p] (a. -a.) xj/f.11 11 // r J V
j^ l'

-

Moreover, (8.2') requires that for any a.

w^(a^) < w^(4^) - [(105)/5p] (a.-a^) xuf.

From this, we see that if we solve the problem subject to the constraints

corresponding to a. ^a., in (8.2') and (8.3), then we may certainly

also find w.(a,) the remaining constraints in (8.2') and (8.3). Since

(8.2') has V. increasing in w.(a.) and w. (0) , (8.3) must hold with

exact equality for a., as must the incentive constraint for a. - 0. This

gives us three linear equations to solve for v., w.(a.), and w. (0) , and

we find

(8.4) w^(0) - [v^-(l-5)x./f]/5,

(8.5) V. - w^(k^) - xi/f[l-a^/p].

*
We now wish to maximize k (a,e ) over a that are incentive

compatible for investors. The incentive constraint for the investors

implies that the expected value of a. must be at least 1/f if P. > 0.

(Otherwise, v. - 0.) Since (8.4) is decreasing in a., the maximizing

strategy for the capitalist strategy should assign probability one to

(8.6) i_
m min {^ 6 *

| ^ > 1/f).

One consequence of this is that the capitalist need not use a mixed

strategy. The only potential gain from mixing is if ^ > 1/f, in which

case the capitalist might try to mix in order to hold the investors to their

reservation utilities. However , roughly speaking, mixing introduces a form

of moral hazard which keeps the capitalist from benefiting from the reduc-
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tion in payments. Indeed, in the case p-1, Fudenberg, Kreps and Maskin

[1990] show that the best the capitalist can do is to get the worst payoff

in the support of his mixed strategy. We have just showed that this result

holds true even with exogenous moral hazard.

Substituting (8.6) into (8.5), we conclude

Theorem 8.1 : k*(e.) - x»/ [(f-1) - d/p-l) - (f/p) (^-1/f ) ] .

One consequence is that if pf < 1 then no single capitalist can get

if

the first best payoff, v - xi'(f-l)- There are two reasons for this,

*
corresponding to the last two terms in the expression of k (e.). The first

term, xu(l/p-l) reflects the cost of providing the capitalist with

incentives under moral hazard; if p-1, this term is equal to 0. The

second term, x^(f/p) (^-1/f ) , is less interesting. It reflects the fact

that the capitalist cannot hold the investors to their reservation utility

using a pure strategy, and as we observed above, the capitalist cannot

improve his payoff by mixing. If we make the not unreasonable assumption

that 1/f e *, this term vanishes.

If p-1 and 1/f e $ , then neither moral hazard nor discreteness

poses a problem, and each capitalist can attain the first best. Conversely,

if these conditions fail, his equilibrium payoff remains bounded away from

the first best, as S -* 1.

Even though each individual capitalist's highest equilibrium profit is

no greater than if he were the only capitalist, the aggregate profit to all

capitalists can be greater than if there is a single capitalist. This

reflects the fact that investors can now "punish" each capitalist by

investing with a different one, rather than by shutting down the whole

economy. In fact, if there are enough capitalists, the limit set E will
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contain a point where the capitalists' profit is the first-best level

V - xi^(f-l) . In this case, we say that the first best is attainable. From

Theorem 8.1, we may calculate

Corollary 8.2 : The first best is attainable as 5 - 1 with one capitalist

if and only if 1/f e * and p - 1. With m > 1 capitalists, the first

best is also attainable if p ^ ^ and m > (f-l)/f (l-^/p) which is

necessary and sufficient.

This shows that the greater the number of capitalists , the broader the range

of parameters p and f for which the first best is attainable.

In the one capitalist case, we may explicitly find an equilibrium

*
yielding k (e.). Indeed, the fact that 5 is near one is used only in the

proof of Theorem 3.1, and there only to ensure that w.(a.) is in fact an

equilibrium payoff vector. However, in the one capitalist case, w.(a.)

can be realized as a public randomization between the best and worst

equilibrium, provided it lies in between them. Since (8.4) to (8.5) show

that w.(a.) is always less than or equal to the best equilibrium payoff,

it is sufficient that w.(a.) > 0. Only w.(0) is at issue, and it is

calculated from (8.4) and (8.5). Consequently, we see that an equilibrium

yielding the asymptotic rent is possible provided

(8.7) S > a^/p.

substituting in ^, we find

Corollary 8.3 : With one capitalist if

S > 1/pf + (l/p)(i-l/f)

then there is an equilibrium in which he gets k (e.).
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9. Extensions to the Investment Game

We now want to consider various extensions of the investment model.

Although the discussion is specific to this model, many of the same issues

are relevant in other economics settings.

Welfare of the Short-Run Players : Previously, we argued that the first

best is not attainable. This simply means that the capitalists can not get

as much rent as they could from precommitment. We now argue that the

terminology is not misleading: in fact with moral hazard and a single

capitalist, from the broader welfare point of view that includes the

investors, the first best is not attainable.

The first best from the joint perspective of investors and capitalists

requires full employment: that is, that all xi/ units of investment avail-

able to the economy be employed each period. If this is not the case there

is said to be unemployment. We now argue that in any equilibrium nt must

occur infinitely often, contradicting full efficiency.

Suppose in fact that full emplojrment always occurs in equilibrium. If

V. is an equilibrium present value when there is full employment, it must

not be optimal to pay zero. If w.(0) is the continuation present value

when no payment is made , this means that

(9.1) V. > (l-5)xfi/ + 5w.(0).

This may be rewritten as

(9.2) v^ > (l-5)xf»/ + 5(v^-[v^-w.(0)]).

Rearranging terms then yields the inequality

(9.3) v^ - w.(0) > ((l-5)/5) [xfi'-v.].

However we know that because investors are individually rational, in any

equilibrium, v. < xi/(f-l) . It follows from (9.3) that
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(9.4) v^ - w^(0) > ((l-6)/5) xi'.

If p < 1, it then follows that every period in which there is full

employment, there is probability (1-p) that the continuation present value

drops by at least ( (l-5)/5)xi/. By assumption, the continuation equilibrium

with present value w.(0) also has full employment. This can occur only a

fixed number of times T (the number depending on the discount factor)

before the constraint w.(0) > is violated. Since the probability that

T
this happens is (1-p) , there is a positive probability that there is less

than full employment. We conclude that with moral hazard, unemployment must

occur infinitely often.

In this calculation, it is clear that as 5 -> 1 it is possible to

construct equilibria in which there is full employment for increasingly long

periods of time. It is tempting to argue that this means "approximate

efficiency" is attained as we approach the limit. However, as the period of

full employment grows longer, the capitalist's discount factor grows closer to

one at exactly the same rate , so if we use it to discount future unemployment

we see that the present value of future unemployment remains unchanged.

We should note that it is not true that in all equilibria investors get

their reservation utility. If * contains only two points, 0, ^ G $,

and ^ > 1/f , we know from our solution in the one capitalist case that if

S is close enough to one, there exists an equilibrium in which (^ is

played in the initial period. Moreover, as long as 4> s i, regardless of

how many points * has, this same equilibrium can be enforced for 5 near

enough one by punishing the capitalist with zero if he ever plays anything

other than ^ or 0.

We should also point out that the inefficiency conclusion derives from

the fact that the only methods of punishing a single capitalist is either to



40

stop providing him with inputs, which is inefficient, or to transfer output

to the investors, which is subject to moral hazard. If there were a method

of carrying out transfer payments that was perfectly observed, and so not

subject to moral hazard, it could be used as an alternative method of

punishing capitalists who default on loans, and the inefficiency would not

arise. (Although the upper bound on each individual capitalists' payoff

would not change.)

A simple, if artificial, way to modify the example to make this point

is to endow each capitalist with m > 2i^xt/f/p units of a pure consumption

good ("honey") valued only by the capitalists and some third group of play-

ers ("drones") who have no role in the game other than accepting honey from

the capitalists. (If the investors valued honey, then the capitalists could

pay them in honey, and this would circumvent the moral hazard problem.)

Capitalists make their transfers (if any) to the drones at the start of

each period before the investors make lending decisions, and these transfers

are observed by the investors.

Consider a strategy profile of the following form: along the

equilibriiim path all of the investors lend to the capitalist, and the capi-

talist always chooses a, - i. Any period in which the capitalist pays back

less then (^xi/f/p . he make a transfer of honey of size R (to be determin-

ed) to the drones. If he fails to do so, we revert to the no trade

equilibrium forever. We claim for S sufficiently large, we can find an R

so that these strategies are an equilibriiom.

The investors' behavior is clearly optimal given the strategy of the

capitalist. If we set R - ixuf/pS . which is less than the capitalist's

endowment whenever 6 > 1/2, then the capitalist does not have any incentive

to deviate from paying the investors. Can he gain by refusing to pay the
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honey to the drones? For S > 1/2 the fine paid the drones is less than

26xi/f/p . while the loss of profit from punishment is a fixed amount for-

ever. It follows that for S near enough one, the capitalist should pay

the drones

.

These strategies therefore form an equilibrium for S near enough to

one. Moreover, there is full employment on the equilibrium path, so this

equilibrium is efficient. The key here is that the transfers of honey are

an efficient way of punishing the capitalist, while the threat of shutting

down the economy to force the capitalist to accept his punishment does not

have to be executed, and so has no negative efficiency implications.

Lending Between Capitalists : Bulow and Rogoff [1989] argue that in the

case of sovereign debt, the ability of a borrower to make deposits in a bank

at the competitive interest rate means that reputation alone is not enough

to create a market for debt: there is always a point at which it would be

optimal for the borrower to renege on the debt and deposit the proceeds in a

bank. This might suggest that if we expand the model by allowing permit-

ting capitalists to freely transfer consumption to one another, and there

are two or more of them, the equilibrium set would collapse to the static

equilibrium, but this is not the case. Any equilibrium of the model without

transfers is also an equilibrium of the model with transfers, provided all

capitalists follow the strategy of never repaying any loans. This contrasts

with the Bulow-Rogoff assumption that banks must repay all depositors. In

our model, this amounts to picking one equilibrium from the equilibrium set.

Since many features of our model are unrealistic, we do not contend

that our conclusions are more plausible than theirs. However, since in our

model lending is enforced by the threat of exclusion from future borrowing

their assertion that "under fairly general conditions, lending ... cannot be
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supported by a country's reputation for repayment," is too strong.

Overlapping Generations : So far, we have assumed that investors live

in non-overlapping generations. Although not especially realistic, this has

the virtue that it makes the environment a repeated game. Moreover, it is

equivalent to an economy in which there are two—period lived overlapping

generations of investors and the completely perishable consumption good may

not be used as a substitute for investment in the production process. Since

investors wish to consume only when old, and the consumption good is perish-

able, there is no purpose in transferring the consumption good to young

investors. As a result, there is no possible trade between old and young

investors, and the economy is in effect one with non-overlapping generations

of investors.

If generations live more than two periods, however, additional

possibilities arise. With non-overlapping generations, extending the life of

investors does not lead to any great complication. However, in the over-

lapping generations case, capitalists are no longer necessary in order to

arrange production. Suppose that investors live three periods, have

endowment only when young and wish to consume only when old, but that they

are also middle aged in between. This has the implication that they can

engage in production when middle aged. Consider the following strategies:

Each period, a middle-aged Investor is picked at random from the pool of

"eligible" middle-aged investors, and all young investors give him their

investment input. The lucky designee then produces and consumes all the

output himself. Young investors agree to participate in this scheme because

if they do not they are not "eligible" when they become middle aged. Under

our extreme assumption of risk neutrality, this scheme actually implements

the first best.
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Once risk aversion is introduced a lottery scheme of this type becomes

less desireable. If the indivisibilities are large, the inefficiency is

large as well: Imagine compensating employees at General Motors by a small

chance at all of General Motors profits for a year. Consequently, while

capitalists are not necessary for production in this more general setup,

they will have a role to play if indivisibilities and risk aversion are

large compared to the losses caused by the capitalists' moral hazard.

The Role of Reputation : The analysis so far has been in terms of a

repeated game. The equilibrium involves "reputation" in the loose sense

that capitalists repay loans so that they will be allowed to borrow in the

future. However, reputation here is purely an equilibrium phenomenon, in

the sense that repayment of a loan need not necessarily signal a future

willingness to repay. Kreps and Wilson [1982] and Milgrom and Roberts

[1982] have introduced a more explicit sort of reputation. If the investors

a priori suspect that there is a possibility that the capitalists will

choose to repay regardless of future consequences, then capitalists can

maintain this belief by repaying. Fudenberg and Levine [1991b] have shown

that typically with a single patient capitalist, this type of explicit

reputation leads him to do as well as he could through precommitment, so

long as the stage game has simultaneous moves.

However, when the stage game has sequential moves, we obtain a lower

bound on the power of reputation effects that can be lower than the commit-

ment payoff. In examples with sequential moves but no moral hazard, we can

show that this lower bound is in fact tight by constructing equilibria that

hold the long-run player to the lower bound, but whether the lower bound is

tight in games with sequential moves and moral hazard is still an open

question.
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To see why, we construct an equilibrium in the investment game that

holds the capitalist to payoff zero even when explicit reputation is

considered, for the case where p - 1 so there is no moral hazard. The

best equilibrium payoff with reputation effects here is xi/[f-l], and this

can be obtained even without reputation with the investor strategies of

never investing with a capitalist who defaults. Now suppose that there is

another type of capitalist, the "strong" capitalist who always pays 1/f.

Consider the following strategy profile: the original capitalist does not

repay the first loan he receives, and no investor ever invests. If some

investor does invest and then regardless of what the capitalist does, switch

to the equilibrium in which the investors always invests and the capitalist

always repays. This means that there is no advantage in imitating the

strong capitalist.

This construction relies on the fact that without moral hazard the

commitment payoff is attainable as an equilibrium even without reputation,

so that we can construct an equilibrium in which an initial default has no

cost. When there is moral hazard, an initial default may have a cost

because it reveals that the capitalist is not "strong" therefore restricting

him to the most he can get without reputation. Exactly what the best and

worst equilibrium are in this model is as yet unknown.
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APPENDIX: Characterizing Equilibria with Halfspaces

Abreu, Pearce and Stachetti [1990] introduced the notion of a self-

generated set of payoffs for games with only long-run players, and showed

that a sufficient condition for a set of payoffs to be in E(5) is that it

be self-generated. Fudenberg, Levine and Maskin [1990] used a local version

of this result, and we prove Theorem 3.1 using a similar technique. The

proof makes use of two definitions.

Definition A.l : If for a given v, W, and 5 an a exists so that (a,v)

is enforceable with respect to W and 5 , we say that v is generated by

W. P(5,W) is the set of all points generated by W.

Definition A.

2

: A subset W c R is smooth if it is closed, has non-empty

L 2
interior with respect to R , and the boundary of W is C submanifold

of «\

Theorem 3.1 : (i) For all S, E(5) c Q.

(ii) If the dimensions of Q C R is L, then lim. - E(5) - Q.

*
Proof of (i) : We will show more strongly that E (5), the convex hull of

E(6), is contained in Q. If not, we may find a halfspace H(A,k) and a

point V e E(5) such that A • v - k > k*(A) and A • v < k for all

*
v' G E (5). Then v must be enforceable with continuation payoffs in

*
E(5) c H(A,k), contradicting the definition of k (A).

Proof of (ii) : Since any compact convex set with non-empty interior Q can

be approximated arbitrarily closely by smooth convex sets W C interior(Q)

,

this will follow provided that for any such set W there exists a 5 such

that E(6) 2 W. We claim in fact that it is enough that for each v e W
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there exists a 5 < 1 and an open set U containing v such that

U C P(5,W). If so, we may find an open cover (U) of W together with

5 < 1, such that U c P(5-.,W) . Since W is compact, choose a finite

subcover, and let 6 be the maximum of 5 over this subcover. Let

S' > S. Then S' ^ 5^^ for each U in the subcover. Since W is convex,

it may easily be shown that U c P(5',W). Since the U's cover W, this

implies W c P(5',W). Finally, since W is bounded, it is straightforward

to use the principle of optimality to conclude that since each point in W

can be enforced using continuation payoffs in W, that W c E(5).

To conclude the proof, we must show that for all v e W there is a

5 < 1 and an open neighborhood U of v with U c P(5,W). This is easy

to do for V € interior(W) . As in Fudenberg, Levine and Maskin [1990], let

a be a static Nash equilibrium. Fix a U containing v and with closure

in the interior of W. This implies each u G U can be expressed as

(l-5)g(a) + 5w, where w e W for some 5 < 1. Moreover, the continuation

payoffs w(y) - w clearly enforce (a,u) so U C P(5,W).

Next we consider points v on the boundary of W. Fix such a v, and

let X be normal to W at v. Let k - A • v, and let H - H(A,k) be

the unique halfspace in the direction X that contains W and whose

boundary h is tangent to W at v. Since W C interior(Q) , it follows

*
that H is a proper subset of the maximal halfspace H (A) . Let a be a

*
strategy that generates a boundary point of H (A) using continuation

*
payoffs in H (A). Since v is a boundary point of H, which is a proper

it

subset of H (A), for some 5' < 1 and e > 0, (a,v) can be enforced

with respect to H(A,k-£).

It may be shown directly from the incentive constraints that for

S" > 6'
, we may find w(y,5") that enforce (a,v) and a /c > such that
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w(y,5") G H(A,k-[5'(l-5")/5"(l-5')]£).

and |w(y,6")-v| < ;^(l-6").

Consider, then, the ball U(5") around v of radius 2k(105"). Since

W is smooth, for 5" sufficiently close to one there exists a k > the

- 2 2
difference between H and W in U(5) is at most /c(l-5") It follows

that there exists a 5 < 1 such that v can be enforced by continuation

payoffs w(y) e interior W. Since w(y) are interior they may be trans-

lated by a small constant independent of y generating incentive compatible

payoffs in a neighborhood U of v. I

2
This observation originates with Matsushima [1988]
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