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ABSTRACT

Weighted average derivatives are useful parameters for semiparametric index models,

including limited dependent variables, and in nonparametric demand estimation.

Efficiency of weighted average derivative estimators is a concern, because the weight may

affect efficiency and the presence of a nonparametric function estimator might lead to

low efficiency. This purpose of this paper is to give efficiency results for -average

derivative estimators, including formulating estimators that have high efficiency.

Our efficiency analysis proceeds by deriving the semiparametric efficiency bounds

for average derivative and index models, and then formulating average derivative

estimators with high efficiency. We first derive the bound for weighted average

derivatives of conditional location functionals, such as the conditional mean and median.

This bound gives the asymptotic distribution of any sufficient well-behaved weighted

average derivative estimator. We compare efficiency for different location measures,

e.g. mean versus median, finding that the comparison is similar to the location model.

Many semiparametric limited dependent variable and regression models take the form

of index models, where the location measure (e.g. conditional mean) depends only on

linear combinations of the regressors, i.e. on "indices." We derive the semiparametric

efficiency bound for these index models. We then compare the bound with the asymptotic

variance of weighted average derivative estimators of the index coefficients. We derive

the form of an efficient weight function when the distribution of the regressors is

elliptically symmetric and discuss existence of optimal weights. We discuss combining

different weights to achieve efficiency, in the process deriving a general condition for

approximate efficiency of a pooled minimum chi-square estimator in a semiparametric

model. Also, we discuss ways the type and number of weights could be selected to achieve

high efficiency in practice.

Keywords: average derivative, index model, efficiency bound, optimal weights, minimum

chi-square, spanning condition.



1. Introduction

Average derivatives are useful parameters in a number of semiparametric models. As

discussed in Stoker (1986), they can be used in estimation of index models, including

limited dependent variable models and partially linear regression models. Also, they are

used in nonparametric demand estimation, as in Hardle, Hildenbrand, and Jerison (1991).

Efficiency of average derivative estimators is a concern, because there are several types

that have been proposed. Also, the presence of a nonparametric function estimator might

lead to low efficiency. This purpose of this paper is to give efficiency results for

average derivative estimators, including formulating estimators that have high

efficiency.

Our efficiency analysis proceeds by deriving the semiparametric efficiency bounds

for average derivative and index models, and then formulating average derivative

estimators with high efficiency. We first derive the bound for weighted average

derivatives of conditional location functionals, such as the conditional mean and median.

For the conditional mean the previously suggested estimators of Hardle and Stoker (1989)

and Stoker (1991a) attain this bound. This result is what one would anticipate, because

this bound places no restrictions on the data distribution, and in such cases any

estimator that is asymptotically equivalent to a sample average and sufficiently regular

will be efficient (e.g. see Newey, 1990a). We also give the bound for other location

functionals such as the median. We find that when the efficiency of average derivative

estimators for different location functionals can be compared, the comparison is similar

to that for location models, e.g. with the average derivative conditional median being

more efficient that the conditional mean for "fat-tailed" distributions.

Many semiparametric limited dependent variable and regression models take the form

of index models, where the location measure (e.g. conditional mean) depends only on

linear combinations of the regressors, i.e. on "indices." We derive the semiparametric

efficiency bound for these index models. We then compare the bound with the asymptotic
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variance of weighted average derivative estimators of the index coefficients.

In an index model, consistent estimators arise from the use of different weighting

functions, so an important efficiency question is the choice of weights. We derive the

form of an efficient weight function when the distribution of the regressors is

elliptically symmetric. It is also shown that linearity of certain conditional

expectations is necessary for existence of an efficient weight. We discuss the

possibility of combining different weights to achieve efficiency, showing that it is

possible to obtain an approximately efficient estimator by pooling using minimum

chi-square. We give general results on when such pooling will lead to efficiency in

semiparametric models and on how the number of estimators to combine can be chosen from

the data. These results are specialized to derive conditions for achieving approximate

efficiency from combining many weighted average derivative estimators. Also, we suggest

ways of combining a few weighted average derivative estimators so as to achieve high

efficiency.

Other papers give some efficiency results on average derivatives or index models.

Chamberlain (1987) previously derived the semiparametric efficiency bound for conditional

mean, single index models. Following our initial work Samarov (1990) gave the

efficiency bound for the (unweighted) average derivative of the conditional means. Newey

(1991a) gives efficiency bounds for linear functionals of mean-square projections (that

includes average derivatives of conditional means as a special case). None of these

2
papers gives regularity conditions for the bounds. Recently Hall and Ichimura (1991)

derived some efficiency results for index estimators when there is a residual that is

independent of the regressors.

We cite the working paper Chamberlain (1987) because the index model bound does not

appear in the published version.

To be precise, they do not exhibit a sequence of regular parametric submodels for which

the Cramer-Rao for the submodel approximates the candidates for the bound they suggest.
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2. Weighted Average Derivatives and Partial Index Models

Let y denote a dependent variable, x a k x 1 vector of regressors, pic) a

loss function of a real-valued variable, and

(2.1) g(x) = argmin E[p(y - g)|x].

Here g(x) is a conditional location function. Examples include the conditional

2
mean for pic) = c , the conditional median for pie) = |e|, as well as other more

exotic location functionals such as quantiles or expectiles. Our interest is in

properties of estimators of weighted average derivatives of g(x). Partition x as x =

T T T
(x ,x„) , suppose x is continuously distributed, and for a function a(x) let a' (x)

= 5a(x)/5x . A weighted average derivative of g(x) is

(2.2) 5 = E[w(x)g'(x)],

where w(x) is a scalar function. For the average derivative to be well defined, x

must be continuously distributed, but x„ can be discrete.

A primary motivation for weighted average derivatives is a partial index model, with

(2.3) g(x) = G(x]0,x ).

T T
Under this model, 5 = E[w(x)3G(x (3,x„)/3(x ./3)]*/3, so that the weighted average

derivative is proportional to j3, and hence can be used to estimate |3 up to scale.

Rodriguez and Stoker (1992) have recently used this model in specification analysis for

estimation of conditional means.

The motivation for the index model where g(x) is the conditional mean and x is

not present is well known (e.g. see Stoker, 1986). Other cases can be motivated by a

variety of semiparametric regression models. In particular, suppose that
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(2.4) y|x = y|(x^,x
2

),

a conditional distribution index model that is analyzed in Newey (1990b). This model

allows for y to have a conditional mean and variance (and other moments) that depend on

x in an arbitrary way. It is implied by many interesting more restrictive models. For

T
instance, it is implied by y = t(x 8 + ^ix ) + cr(x )v), where v is independent of x

and x is a transformation that can be either known or unknown. The transformation

x(r) could be x(r) = l(r > 0), corresponding to a binary choice model that allows for

heteroskedasticity to depend on x in an arbitrary way, or it could be x(r) = £ (r),

T
corresponding to a model £(y) = x 6 + 7) that is important for duration data. It then

implies that equation (2.3) is satisfied, so that partial index models are implied by

transformed, semiparametric regression models that allow heteroskedasticity to depend

nonparametrically on some regressors.

For the semiparametric model in equation (2.4), the choice of loss function pic)

can be motivated by efficiency considerations similar to those for the linear model,

namely that if the distribution of y is fat-tailed, then a more efficient estimator

might be obtained by working with pic) that gives less weight to large values of pic).

This feature will become apparent from the semiparametric efficiency bounds derived

below. Also, comparison of parameters from different choices of pic) may allow one to

test restrictions on the conditional distribution of y given x, similarly to Koenker

and Bassett (1982).

In some cases it is possible to weaken equation (2.4) so that essentially only one

choice of pic) will produce a partial index model. An important such case is where

(2.5) y = x(x^/3 + u(x ) + v, x^, x(r, x^ is monotonic in r, median(v|x) = 0.

Because the median of a monotonic transformation is the transformation of the median, this

will be a partial index model for the conditional median, where pic) = |e|, but not for

other conditional location measures. This model is a generalization of one considered by
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Powell (1991). For the case where x is not present, Doksum and Samarov (1992) have

suggested using average derivative estimators to estimate t(v) and its inverse when

t(v) is monotonic.

The primary purpose of this paper is to develop the efficiency properties of weighted

average derivative and partial index estimators, and discuss how and when different

weighted average derivative estimators can be combined into an approximately efficient

estimator of a partial index model. It is beyond the scope of this paper to discuss the

properties of particular estimators, although the results here have implications for the

asymptotic properties of average derivative estimators. As discussed in Newey (1991a),

the semiparametric efficiency bound for an unrestricted functional, such as an average

derivative, is the asymptotic variance of any sufficiently regular estimator. Thus, one

would expect that asymptotic variance of average derivative estimators to have the form

given below.

For instance, consider the following kernel estimator that is well-defined even when

p(e) is not smooth (e.g. for p(e) = |e|). Let f(x) be the density of x. By

integration by parts

(2.6) a = E[£(x)g(x)], £(x) = -w'(x) - w(x)f ' (x)/f(x)

For a kernel K(v) let K, (x) = h"
k
X(x/h), let f(x) = T^K. (x-x.)/n be a kernel

h ^i=l h i

density estimator and let g(x) = argminT.
=1
K,(x-x.)p(y.-g)/n be the kernel estimator

of Tsybakov (1982). Then an estimator of 5 corresponding to equation (2.6) is

(2-7) S = (E."
1
w(x.)/n)"

1

[5:
i

y(x
i

)x
i
/n]"

1

j:
i
y(x.)i(x.)/n,

2(x.) = -w'(x.) - w(x.)f'(x.)/f(x.).
i i ill

2
For w(x) = 1 and pic) = e , this estimator similar to those analyzed in Stoker

(1991a).
3

3
The two leading terms form a nonparametric estimator of the identity matrix, and so do



An alternative approach is to use a series estimator with smooth approximating

functions. Let P (x) be a K x 1 vector of differentiate functions. Suppose that

linear combinations of this vector can approximate functions and their derivatives.

Consider the estimator

(2.8) d = E.J^wtx.Jg' (x.)/n, g(x) = n
T
P
K
(x), n = argmin£." p(y. - tt

T
P
K
(x.)).

This estimator is based on differentiating the series estimator g(x) of g(x). For the

conditional mean case this estimator is analyzed in Newey (1991a).

Regularity conditions for asymptotic normality of these estimators are beyond the

scope of this paper. Nevertheless, the results of this paper do provide a formula for

the asymptotic variance of these estimators. As discussed in Section 3, the

semiparametric bound we derive will be the asymptotic variance of any estimator that is

asymptotically equivalent to a sample average and sufficiently regular.

3. Efficiency for Weighted Average Derivative Estimation

In this Section we derive the semiparametric efficiency bound for weighted average

derivative estimators. The average derivative is an unrestricted parameter, in that its

definition places no substantive restrictions on the data distribution. The efficiency

bound for estimators of such unrestricted parameters can be calculated as the variance of

the pathwise derivative of the parameter with respect to the distribution of the data, as

shown in Pfanzagl and Wefelmeyer (1982).

To discuss the pathwise derivative it is useful to introduce more terminology. Let

z = (y,x
T

) denote a single observation and f(z) the true density of z (with respect

to some dominating measure). A "parametric submodel" or "path" is a parametric family of

not contribute to the asymptotic variance, but they lead to reduction in a severe finite

sample bias in the estimator, as discussed in Stoker (1991b).
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densities f(z|0) (with respect to some dominating measure) that pass through the truth,

i.e. such that f(z|6 ) = f(z) for some parameter value 9 . Let 5(9) denote the

value of the average derivative in equation (2.2) when z is distributed as f(z|9),

and let S (z) denote the score of f(z|9) at 9 = 9A , where typically S (z) =

31nf(z|9)/d9l Q but SQ (z) is precisely defined, e.g., in Newey (1990a). The
—

T
pathwise derivative is a function 0(z) with finite mean-square (i.e. E[i//(z) i//(z)] < oo)

such that E[ip(z)] = and for any sufficiently regular submodel,

(3.1) as(e)/ae\ a n
= e[^(z)sq (z)

t
].

o

When the distribution of z is unrestricted, as it is here, it is typically possible to

show that a parametric submodel can be chosen so that the score S (z) approximates any

function of z with mean zero and finite mean-square. In that case, a lower bound on the

asymptotic variance of semiparametric estimators of 8 is

(3.2) V = E[0(z)0(z)
T

].

Briefly, the idea behind this formula is that by the reasoning of Stein (1956), V

should be the supremum of Cramer-Rao bounds over all parametric submodels. The

Cramer-Rao bound for a submodel is Ed/»(z)SQ (z)
T
](E[SQ(z)SQ (z)

T
])

_1
E[SQ (z)i//(z)

T
] by

G 9 9

equation (3.1) and the "delta-method." This matrix is bounded above by V and it is

approximately equal to V when S (z) is approximately equal to i//(z).

Another interpretation of ^(z) is as the influence function of an efficient

estimator 8, satisfying

(3.3) VK(8 - 8) = y.
n
,iMz.Wn + o (1).

^i=r i p

The "influence function" terminology, which originated in the robust estimation

literature, is motivated by the fact that in large samples i/»(z) approximately gives the

effect of a single observation on 8. It is a convenient way to think about the

- 7



asymptotic properties of Vn-consistent estimators, because most will satisfy equation

(3.3) for some influence function (e.g. mean average derivative estimators, as shown in

Stoker, 1991a). By the central limit theorem the asymptotic variance of S will by

T
E[0(z)i/»(z) ], equal to the bound when the influence function equals the pathwise

derivative in equation (3.2).

In general, any influence function will be a pathwise derivative, i.e. if an

estimator satisfies equation (3.3) for some 0(z), and certain regularity conditions

hold, then its influence function satisfies equation (3.1) (e.g. see Newey, 1990a). When

the model imposes no substantive restrictions on the data distribution, the set of scores

is unrestricted (except for having mean zero), as it is in this Section. Therefore,

4
there can be at most one pathwise derivative, and hence at most one influence function.

As discussed in Newey (1991a), this fact can be used to find the influence function of

any estimator, by calculating the pathwise derivative of the parameter that is estimated

under unrestricted distributions. In particular, the influence function of an average

derivative estimator will be equal to the pathwise derivative derived below, because we

impose no substantive restrictions on the data distribution. Thus, we are justified in

interpreting V not only as the variance bound for average derivative estimators but

also as the asymptotic variance of any (regular) average derivative estimator satisfying

equation (3.3). For instance, the bound derived below will be the asymptotic variance of

the kernel and series estimators suggested at the end of Section 2, under the plausible

assumptions that they satisfy equation (3.3) and are regular.

Because the form of the pathwise derivative is the main result of this Section, we

will first give this form and discuss it, postponing the regularity conditions until the

end of the Section. Let e = y - g(x) and

For two different influence functions 0(z) and $(z), choosing SQ (z)

(approximately) equal to 0(z)-i/»(z) and differencing equation (3.1) implies =

E[<$(z)-i//(z)>
T
SJz)] = E[$(z)-ipU)>

T
<4i(z)-tl>(z)}].
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(3.4) u = -v(x) m(c), m(e) = dp(e)/de, v(x) = dE[m(y-g) |x]/dg|
(x)

-

Theorem 3.1 below shows that the pathwise derivative is

(3.5) i//(z) = w(x)g'(x)-5 + «x)u = w(x)g'(x)-5 - £(x)p(x)
_1
m(y-g(x)),

where £(x) is given in equation (2.6). The semiparametric variance bound is then

E[.//(zWz)
T

].

Two interesting special cases are the conditional mean and median. For the mean,

u = e, so that

(3.6) i//(z) = w(x)g'(x) - 5 + £(x)[y - g(x)].

For the median, u = [2f(0|x)] sgn(e), where f(0|x) is the conditional density of e

given x at e = and sgn(e) = Kg > 0) - l(e < 0), so that

(3.7) </»(z) = w(x)g'(x) - 5 + £(x)[2f(0|x)]
_1
sgn(y - g(x)).

In general, the variance bound can be decomposed into two terms. By E[u|x] = 0,

(3.8) EMzWz)T ] = Var(w(x)g'(x)) + E[u
2
£(xWx)

T
].

The first term is the asymptotic variance bound when g(x) is known, being the

asymptotic variance of £. w(x.)g'(x.)/n. The second piece is the bound when f(x) is

known, by the following argument: i/»(z) still satisfies equation (3.1) for more

restrictive parametric submodels where the distribution of x is known, scores satisfy

E[S (z)|x] = because 8 parameterizes the conditional distribution of y given x,

T T
so that E[i/»(z)S (z) ] = E[£(x)uS (z) ]. Also, SAz) can approximate any conditional

mean zero function, and hence can approximate £(x)u. Thus, the argument for equation

We thank Gary Chamberlain for suggesting the following interpretation.
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(3.2) also applies here.

2 T _ 2 T
The magnitude of second piece E[u Ux)Ux) ] = E[E[u \x]l{x)l{x) ] corresponding to

unknown g, depends on p(e) similarly to the way the asymptotic variance of location

estimators depends on the loss function. In particular, Ux) does not depend on the

2 -2 2
form of pic), while E[u |x] = v(x) E[m(e) |x] is equal to the bound for estimation of

the location parameter argmin E[p(e-fi)] if e. were i.i.d. with density f(e.|x),

where m(e) and v(x) are given in equation (3.4). Thus, when averages derivatives for

different p(e) functions are equal, so that the corresponding bounds can be compared,

the comparisons can be carried out in a way similar to that for estimation of location

parameters. For example, when the conditional density of e given x has "thick tails"

for most values of x, the second piece of the bound will tend to be smaller for the

conditional median than for the conditional mean.

Turning now to the statement of regularity conditions, we first give an assumption

that is essential to the result.

Assumption 3.1: w(x)f(x) is zero on the boundary of the support of x.

This condition allows us to ignore boundary terms in the derivation of the bounds.

Without this assumption, E[w(x)g'(x)] may include boundary terms that depend on g(x)

evaluated at particular points. For continuously distributed regressors, the value of a

conditional expectation at a point has an infinite variance bound, so that average

derivative will not be Vn-consistently estimable. For a simple example, suppose that

x is a scalar that is uniformly distributed on [0,1], g(x) is the conditional mean,

and w(x) = 1. Then

(3.9) 5 = E[g'(x)] = [ g'(x)dx = g(l) - g(0).

It is easy to show that the semiparametric variance bound is infinite in this case, which

is consistent with the well known fact that value of a conditional expectation at a

particular point is not v
/
n-consistently estimable.
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One way to guarantee that this assumption holds in index models, is to choose w(x)

to be zero outside the interior of the support of x. Of course, such a choice might be

in conflict with the efficient choice of weights discussed in Section 5.

Additional regularity conditions are useful for deriving the result.

Assumption 3.2: The support X of x is convex and compact, there is compact ?:R

containing the closure of g(X) in its interior such that E[m(y-g)|x] = has a unique

solution at g(x) for g e W, and Prob(i>(x) * 0) = 1. Also, E[llf ' (x)/f(x)ll
2

] < «,

T
E[i//(z)i//(z) ] exists and is nonsingular, w(x) and w' (x) are bounded on X, the

conditional distribution of y given x has conditional density f(y|x) such that

1/2
f(y|x) is mean-square continuously differentiate in x on X, and for any C(y> x '

that is bounded and continuously differentiable in x with bounded derivatives,

E[<(y,x)|x] is continuously differentiable in x on X, and E[m(y-g)<(y,x) |x] is

continuously differentiable in x and g on Xx^.

The last smoothness condition does not seem very primitive, but it is straightforward

to give sufficient conditions for particular m(y-g). For example, for m(e) = c it

2
will follow from the other assumptions and continuity of Ely |x], and for m(e) =

1/2
sgn(e) it will be implied by f(y|x) being absolutely continuous with f(y+a|x)

mean-square continuously differentiable in the scalar a and x . This assumption will

not be satisfied if y is discrete and m(e) is not continuous, over the range of

y-g(x), because (for C(y> x )
= D E[m(y-g)|x] will not be continuous in g. In

particular, it does not hold if y is binary and m(e) = sgn(c).

As is well known, the class of estimators must be restricted to obtain an efficiency

bound result. We do this by restricting attention to estimators 5 that are regular,

meaning that for a class of regular parametric submodels the limiting distribution of

/n(5-5(8 )) does not depend on {9 > when Vn(d -9„) is bounded and the data has
n n n

Assumption 3.2 follows in these cases by Lemmas C.2 and C.3 of Newey (1991b) and by

E[m(y-g)<;(y,x) |x] = J"m(c)C(u+g,x)f(u+g|x)du when y is continuously distributed.
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distribution f(z|9 ) for each sample size n.
n

TTheorem 3.1: If Assumptions 2.1 and 2.2 are satisfied, and V = E[\p(z)\p(z) ] is

nonsingular for ip(z) in equation (3.5), then V is the supremum of Cramer-Rao bounds of

T
all regular parametric models such that dd(Q)/de\ = E[ip(z)SJz) ] and any estimator0—0 Q

o

8 of 8 that is regular satisfies Vn(8 - 8
Q
) —> Z + U where Z is distributed as

N(0,V) and U is independent of Z . Furthermore, if v7T(<5 - 8 ) = ^"iKzJ/Vn +

o (1), where E[ip(z.)] = and E[ij)(z.) [p(z.)] < oo, and 8 is regular then \p(z.) =
£J tit L

ip(zj.

In the environment considered here, where data distribution is not restricted, the

assumption that the pathwise derivative formula hold for a parametric submodel is just a

convenient regularity condition. It is verified in the proof of the theorem that there

exists a class of regular parametric models where the pathwise derivative formula is

satisfied, with score that can be chosen to approximate any mean square random vector.

The last conclusion of this theorem shows that any influence function must equal

that given in equation (3.5). In particular, the series and kernel estimators described

in equations (2.7) and (2.8) will have \jj(z) as their influence function, and hence

T
asymptotic variance E[<//(z)i//(z) ], as long as they satisfy equation (3.3) (for some

\p(z)) and are sufficiently regular.

4. Efficiency Bounds for Multiple Index Models

In this Section we derive the variance bound for the parameters of multiple index

models, where the function g(x) described earlier is restricted to depend on a function

of x and parameters. Let v(x,0) be a vector of functions of x and a q x 1
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parameter vector 0. A multiple index model is one where there is a function G(v) such

that

(4.1) g(x) = G(v(x,£ )).

An important example is the partial index model discussed in Section 2, where v(x,0) =

T T T
(x 0,x ) . The pathwise derivative can be used to calculate the efficiency bound for

estimators of 0, although this approach must be modified to account for the

restrictions imposed by equation (4.1). We now carry out this calculation, using tangent

set and projection methods.

Because is now an implicit parameter rather than an explicit functional, a more

specific parameterization of the problem is useful. Consider parameterizing the

T T T
submodels by 9 = (0 ,T) ) , where tj is a nuisance parameter vector for any feature of

the distribution of z other than 0. Let S„ and S denote the respective scores,
7)

where for notational convenience we have suppressed the z argument. Then equation

(3.1) for a pathwise derivative reduces to

(4.2) E[0(z)sL = I, E[0(z)S
T

] = 0.

By the same reasoning following equation (3.2), the efficiency bound will be the variance

of i//(z) such that this equation is satisfied and t/»(z) can be approximated by a linear

combination of S . This \p{z) can be found by a projection calculation. Let J be

the mean-square closure of the union of all q x 1 linear combinations of all possible

2
nuisance scores, i.e. J = U(z) : 3 e > 0, constant matrix C, S with E[llt-CS II ] <

c>, referred to as the tangent set. Assuming that 3" is a linear set, let t be the

mean square projection of S on 1, that is characterized by the two conditions t s 3"

- T -
and E[(S -t) t] = for all t e 3", and let S = S-t. The random vector S is

T -1
referred to as the efficient score. Then 0(z) = (E[SS ]) S will satisfy equation

(3.1) and can approximated by a linear combination of scores, so that the semiparametric

variance bound for will be (E[SS ])" . Begun, Hall, Huang, and Wellner (1983) and
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Bickel, Klaasen, Ritov, and Wellner (1992) developed this projection form of the bound.

The form of the efficient score is the main result of this Section, so we first

present and discuss it, and then give regularity conditions. Let v = v(x,/3 ) and v =

T
3v(x,)3 )/3£ 3G(v)/3v, where by convention each component of 3G(v)/3v is set equal to

zero if the corresponding component of v(x,/3) does not depend on ft. Theorem 4.1

shows that the efficient score is

(4.3) S = cr~
2
(x)u<v - E[cr~

2
(x)v |v]/E[<r~

2
(x)|v]>, o-

2
(x) = E[u

2
|x] = i>(x)"

2
E[m(e)

2
|x].

Thus, the semiparametric variance bound is

(4.4) V = (E[SS
T

])

_1
= (E[<r"

2
(x)v vj - E[<r~

2
(x)v | v]E[cr~

2
(x)vL v]/E[cT

2
(x) | v]]f\

Although the bound is complicated, it has a straightforward interpretation in terms

of an optimally weighted m-estimator where the regression function G(v) has been

-2 2
"concentrated out." Assuming that v(x) > 0, let w(x) = Wx)/(r (x) = l/Mx)E[u |x]},

and

G(v(x,j3),|3) = argmin
, ,

..E[u(x)p(y - g)] = argmin E[u(x)p(y - g)|v(x,/3)].
g(V(X,p)) gtIK

Thus, this function minimizes the population value of a weighted m-estimation criterion.

Consider the estimator of 8 that minimizes the sample counterpart to this criteria,

with G(v(x,8),8) substituted for g,

(4.5) 8 = argminj]."
1
w(x.)p(y. - G(v(x.,/3),|3)).

This is an estimator where the unknown function G(v) has been replaced by the function

that minimizes the population counterpart, i.e. where G(v) has been "concentrated out"

in the population. By the usual formula for a parametric m-estimator, /3 will have

asymptotic variance (E[o-"
2
(x)G

p
(x)G

p
(x)

T
])

_1
for G^x) = 3G(v(x,p),p))/S/3 |

p=/3
.

This
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7
asymptotic variance is the semiparametric bound, because

(4.6) G_(x) = v - E[o-"
2
(x)vJv]/E[(r"

2
(x)|v].

ft ft P

This interpretation suggests an approach to efficient estimation, that proceeds by

replacing u(x) and G(v(x,p*),|3) in equation (4.6) by nonparametric estimators. In

the single index, conditional mean case, Ichimura's (1991) weighted kernel estimator that

uses known u(x) can be interpreted as an estimator of G when u(x) = Var(c|x) is

known. In general, the estimation of G and w(x) will not affect the asymptotic

variance, so that this estimator will be efficient. In particular it follows by

Proposition 2 of Newey (1991a) that the replacement of G by a nonparametric estimator

will not affect the asymptotic variance, essentially because G has been "concentrated

out." Also, as usual in m-estimation, estimation of w(x) will not affect the

asymptotic distribution under appropriate regularity conditions.

The first assumption gives regularity conditions for the distribution of the data as

a function of ft. Let G(w(x,ft),ft) denote the location functional when ft is the true

parameter and e(/3) = y - G(v(x,ft),ft). The way that G can depend on ft directly will

be left unspecified, because it does not affect the form of the bound. Let E [ • ] and

E [ •
] denote expectations for a parametric submodel when tj = -q and ft

=
ft ,

respectively, of ft. Let X denote the support of x.

Assumption 4.1: i) The marginal distribution of x does not depend on /3; ii) ft € 2

for an open set ft such that on X x S, v(x,|3) is bounded and continuously

differentiate in ft with bounded derivative, G{v,ft) is bounded and continuously

differentiate in ft and v with bounded derivatives, the conditional distribution of

7
The moment restriction E[m(e)|x] = implies that 3E[cj(x)m(e)

I v{x,ft)]/dft =

dEMx)E[m(e)Jx]|v(x,£)]/d/3 = 0. Then differentiation of the first order conditions
E[w(x)rn(y - G(v{x,ft),ft)) \

v(x,|3)] = with respect to ft gives 8G(w,ft)/dft =
-2 -2

-E[cr (x)v |v]/E[cr (x)|v], so that differentiation separately with respect to the

two ft arguments in G(v(x,ft),ft) gives equation (4.6).
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y given x at 3 has density f(y|x,/3) that is regular in /3 with probability one

9
with (conditional) information matrix that is nonsingular and bounded, E [m(e(/3)) |x] is

bounded and bounded away from zero; iii) there is a compact set "S containing in its

interior the closure of G(v(X,S),B) such that on 1 x S x &, E [m(y - g)|x] is

continuously differentiate with bounded derivative; iv) 3EJm(y-g) |x]/Sg| „, , „, „,
p* & g=G(v(x,|3),/3)

> and is bounded away from zero, G(v(x,/3),/3) solves E_[m(y-g)|x] = 0, and
P

9E [m(e)|x]/30 = E[m(e)S |x].

This Assumption consists of more or less standard regularity conditions. The next

hypothesis imposes additional smoothness conditions.

Assumption 4.2: For any function £(y,x,3) that is bounded, continuously differentiable

in y and p\ and has bounded derivative, the integral E[m(y-g)<(y,x,|3) |x,/3] is

continuously differentiable in /3 and g with bounded derivative. Also, there exists a

bounded, continuously differentiable function m(e) with bounded derivatives such that

E_[m(e(j3))m(eO)) |x] is bounded away from zero uniformly in x, /3.

P

The first hypothesis is similar to the last part of Assumption 3.2, so that

primitive conditions for this condition can be specified as in Section 3. Also, it is

straightforward to formulate more primitive conditions for the second hypothesis with

2
particular m(e). By E [m(e(/3)) |x] bounded and bounded away from zero it suffices to

P
2

find m(e) such that EoKm(e(p))-m(e(0))> |x] is small uniformly in x and 13. For
P

example, in the conditional mean case, with m(e) = e, if EgNe| |x] is bounded on

X x B, then choosing m(e) so that |m(e)| * |e| and m(e) = e except when |e| is

big enough will satisfy this assumption. Also, in the conditional median case with c =

sgn(e) with e continuously distributed given x with bounded conditional density

f(e|x), choosing |m(e)| * 1 and m(e) =? sgn(e) except in a small enough neighborhood

of zero will satisfy this assumption.
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T
Theorem 4.1: If Assumptions 4.1 to 4.3 are satisfied and E[SS ] is nonsingular for S

from equation 4.3, then for the class of parametric submodels such that G(v,t)) solves

E [m(y-g)\x] = 0, E [m(y - g)\x] is continuously differentiable in a neighborhood of

(G(v,n ),-n ), and 8E [m(c)\x]/di) = E[m(c)S \x], it follows that V = (ElSS
7])' 1

is

the supremum of Cramer-Rao bounds and any estimator 3 of j3_ that is regular satisfies

Vn(fi - fi ) —» Z + U where Z is distributed as N(0,V) and U is independent of

#
Z .

Of particular interest for studying weighted average derivatives is the case where

T T T
v(x,£) = (x |3,x ) , corresponding to a partial index model. Here /3 is only identified

up to scale, so we normalize the first coefficient to be one, with v(x,/3) =

T T T
(x +x /3,x„) . In this case, for G (v) = dG(*s,x„)/3*s| _ T , the efficient score

11 1Z Z 1 Z ^J—X-.+X. _p-.

is

(4.7) S = cr"
2
(x)u. G^vHXg - E[cr~

2
(x)x

2
l
v]/E[<r"

2
(x) I

v]>.

5. Efficiency of Weighted Average Derivative Estimators of Index Coefficients

As we discussed in Section 2, average derivatives estimate the parameters of partial

index models up to scale. In this Section we consider the efficiency of average

derivative estimators of index model coefficients. We adopt the same normalization as

T
before, where the first coefficient equals one. For g(x) = G(x +x „p,x ), let <5 =

E[w(x)ag(x)/Sx ] and 5 = E[w(x)Sg(x)/5x .„]. Assuming that w(x) obeys the

identification condition 8 * 0, it will be the case that 5„/5 = /3, so that £ =

5„/5 will be consistent for (3. The asymptotic efficiency of is analyzed in this

Section.

- 17



To evaluate the efficiency of this estimator we will assume that 5 satisfies

equation (3.3), having influence function given in equation (3.5). This assumption is

justified because the influence function of any (regular) average derivative estimator

satisfies equation (3.5), by Theorem 3.1. We also assume that equation (4.2) is

satisfied, a standard regularity condition that is known to be a consequence of

regularity of the estimator (e.g. see Newey, 1990a).

5.1 The Asymptotic Variance of Relative Average Derivative Estimators

Given that 5 has influence function in equation (3.5), the influence function of

|§ (and hence its asymptotic variance) can be derived by the delta method. Let « =

T
x +x „/3 and note that for any function a(x) = a(x ,x ,x„)

(5.1) [-0,11a' (x) = SaU» - xJp.x^.x^/Sx^,

i.e. [-/3,I]a'(x) is the partial derivative of a(x) with respect to x , holding v

constant. Recalling that x„ is included in v, [-/3,I]g'(x) = since g(x) depends

only on v. Also, 5(5 /5 )/S5 = § [-3,1], so that by the delta method the influence

function of will equal

(5.2) «/»(z) = S^[-0,lKw(x)g'(x)-5 - <w'(x) + w(x)f ' (x)/f(x)>u

= £(x)u, £(x) = -5^[-/3,lKw' (x) + w(x)f'(x)/f(x)>.

For notational convenience we use the same i/»(z) and £(x) notation here as in Sections

2 and 3, even though the expressions are not the same. The asymptotic variance of

is then E[i/»(z)i/i(z)
T

].

It is interesting to note that the term Var(w(x)g' (x)) in the average derivative

bound has dropped out of the asymptotic variance of the index estimator. This result is

consistent with the interpretation of this term as the one that accounts for the density

of x being unknown. Since (3 is a feature of the conditional distribution of y
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given x, the distribution of x is ancillary for estimation of /3, and knowledge of

this distribution should not affect the efficiency of estimators for £.

5.2 Efficient Weighting

We next consider the efficiency of as an estimator in the partial index model

of Sections 2 and 4, where p(e) is given. In this model the efficiency of j§ depends

on the weight function w(x), and it would be useful to know whether a weight function

can be chosen so that /3 is efficient, with asymptotic variance equal to the bound of

Section 4. In this subsection we consider existence and the form of such an efficient

weight.

Our first result is that an efficient weight function will exist when x has an

2
elliptically symmetric distribution and <r (x) depends only on v, as described in the

following result.

Theorem 5.1: Suppose that i) x has an elliptically symmetric distribution, with

T
nonsingular variance and density %((x-\i) \(x-u)) for a differentiable £('), constant

2 2 2
vector u and positive definite matrix A; ii) cr (x) = E[u \v] = cr (v) > and G (v)

is nonzero with probability one. Then an efficient weight function is

(5.5) w(x) = <r~
2
(v)G

l
(v)/h{(x-iL)

T
h(x-\i)), /i(q) = l(q)/S

q
J(r)dr.

The optimal weight depends on the density of the regressors through the inverse of the

hazard /i(q). It does not effect the weight if and only if /i(q) is constant,

corresponding to exponential £(q) and hence normally distributed x. In cases where

£(q) is "thicker tailed" than normal (e.g. f(q) proportional to l/(l+q
a

), a > 1),

T
l//i(q) will tend to give more weight to larger values of (x-ji) A(x-fi), while if £(q)

is "thinner tailed" than normal (e.g. £(q) proportional to exp(-t
a

), a > 1) it will
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g
tend to give less weight.

Some properties of elliptically symmetric distributions are essential to existence

of an efficient weight, because of implicit constraints on £(x). Let x = (x T,v )

and x, denote the vector of all elements of x other than the k . Then £(x) is

constrained in the following way.

Lemma 5.2: E[l (x)\x ] = 0, k * q - 1.

This result can be interpreted in terms of the amount of information used by a single

average derivative ratio. Each C.(x) is the term multiplying u in the influence

function of j§, . Also, each |3, uses only the restriction that the index is of the form

x +<c, (3, , and allows for g(x) to depend on x. in an arbitrary way. In other

words, £, is consistent for the coefficient in a partial index model with index

x +ai8, . Lemma 5.2 is a consequence. It is exactly the condition that makes the

influence function uncorrelated with nuisance parameter scores in such a partial index

model, as required by consistency of |3, , as in equation (4.2). In contrast, the

elements of £*(x) = G (v)<r~
2
(x){x

12
-E[(r~

2
(x)x

12
l
v]/E[(t~

2
(x) | v]> from the efficient

score only have conditional expectation zero given v. This results from the index model

imposing more restrictions than any individual average derivative ratio, leading to more

information (variance) in the efficient score.

Theorem 5.2 shows that it is sometimes possible to combine the information from the

individual derivative ratios to obtain efficiency. Intuitively, although the individual

terms have less information than the efficient score, together they can have as much,

because the index interpretation of the vector of derivative ratios comes from the index

model. However, the requirement that a single average derivative vector all the

information is quite restrictive, relying on linearity of certain conditional

The declining weight implicit in the density weighted estimator of Powell, Stock, and

Stoker (1989) would tend to have high efficiency when the x distribution has thinner

tails than normal, although it is difficult to find an example where l/h{q) behaves

exactly like £(q).
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expectations as a necessary condition.

2
Theorem. 5.3: Suppose that <r (x) > depends only on v, Prob(u = 0) = 0, G (v) is

nonzero with probability one, and E[SS' ] is nonsingular. If an efficient weight

function exists then for each k £ q - 1 there is a vector c such that

E[(C
k
\x_

k
] = E[x

k
\v] + c

T
k
(<c_

k
- E[<c_

k
\v]}.

Thus, linearity of E[x,\x_] in <c_. for each k is necessary for existence of an

2
efficient weight, when cr (x) depends only on v. We could also derive a result for the

2
case where cr (x) depends on x in a more general way, but for simplicity we have not

allowed for this generality here.

Although x having nonlinear conditional expectations will rule out the existence

of an efficient weight, approximate efficiency can still be achieved by combining

influence functions from many derivative estimators. Intuitively, combining average

derivatives from different ratios imposes the index model information, that can lead to

efficiency if results from different weighting functions are used. Unfortunately, the

efficient combination will not generally exist in closed form, and hence is difficult to

describe.

We use certain Hilbert space results to argue that average derivatives can be

combined to achieve approximate efficiency, but not in closed form. The basic result

that is useful here is that the closure of the direct sum of closed linear subspaces is

equal to the orthogonal complement of the intersection of orthogonal complements of the

subspaces. Take the Hilbert space to be the usual one of functions of x with finite

mean square. Take the subspaces to be the set of functions of x satisfying Lemma 5.2

for each k. These have orthogonal complement equal to the set of functions of &_, .

The intersection (over k ^ q-1) of this set is the set of functions of v. This

intersection has orthogonal complement equal to the set of functions that have

conditional mean zero given v. Then, it follows by E[£ (x)|v] = that each element
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of I (x) is in the closure of <l
]
ix)+»"+l (x) : E[lAx)\x ] = Oh Thus, the terms

that depend on x in the efficient score, can be approximated by the terms in the

average derivative that depend on x, which will lead to approximate efficiency.

However, it is impossible to give an explicit form for this additive decomposition,

because a direct sum of subspaces need not be closed. Also, even when it is closed the

decomposition into the sum does not generally have an explicit form, except when the

subspaces are orthogonal or finite dimensional. Here the subspaces

{£,(x) : E[L (x)\x, ] = 0} are never orthogonal, and many finite dimensional cases are

covered by Theorem 5.1. Thus, in general an explicit form for the optimal combination of

different weighted average derivative estimators cannot be found.

5.3 Pooling Weighted Average Derivatives Via Minimum Chi-Square

Combining different weighted average derivative estimators provides a way to achieve

approximate efficiency. Also, when an efficient weight exists, it may have components

that are unknown, and pooling estimators with known weights is an approach to feasible

efficient estimation. An optimal way to pool different estimators so as to improve

efficiency is by minimum chi-square estimation, that can be described as follows. Let J

£ 2 linearly independent weighting functions w.(x), (j = 1 J), be specified,

let 5. denote the weighted average derivative estimator using w.(x), and let |3. =

5 .„/5 •, be the associated ratio estimator. Stack the separate estimators into a vector
J2 Jl

7 = (£,...,£) and let H = [I I] = e ®I, where e. is the J vector of ones

and I is the identity matrix with dimension equal to the number of elements of (3. Let

0.(z) denote the influence function of (3. (satisfying equation (5.2) for w(x) =
j j

T T T
w.(x)) and let *(z) = d/».(z) ^,(z) ) . The asymptotic variance of y is then Q

J 1 J

= E[*(z)*(z) ]. Let Q be a consistent estimator of fi, such as Q = £._.*(z.)*(z.) /n

for *(z) = ($» (z) ^,(z) ) , with $.(z) obtained by replacing all the unknown

components in equation (5.2) by nonparametric estimators. The pooled estimator is
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(5.6) = argmin (r - K0)
T

ft

_1
(y - K0) = (H

T
ft

l
H)

lHTQ
l
y.

P

It follows from standard minimum chi-square theory that is Vn-consistent and

T -1 -1
asymptotically normal with asymptotic variance (H ft H) that is no larger than the

asymptotic variance of any linear combination of the 0., (j = 1 J). Also, a

T^— 1 —1
consistent estimator of the asymptotic variance will be (H ft H) .

The minimum-chi square estimator will be efficient if the efficient score is a

linear combination of the influence functions. Also, it will be approximately efficient

for large J if a linear combination of the influence functions can approximate the

efficient score in mean-square. We state these results in the following theorem, also

giving an interpretation of the difference of the efficient information matrix and the

the minimum chi-square precision matrix.

Theorem 5.4: v'
1

- H'Q~
2H = min^[{S-TM(z)}{S-TN(z)}

T
], so that if there exists II

such that S = IIS then is efficient. Furthermore, if for each J there exists IT

such that lim T E[\\S-Tl ^W
2
] = then Urn T (H'Q^H)'

1
= V.

The second condition, on existence of a mean-square approximation of the scores by the

influence function, is a "spanning condition" for efficiency. It is the (minimum

chi-square) analog of the generalized method of moments spanning condition given in Newey

(1990b).

To achieve approximate efficiency by combining weighted average derivative

estimators, the weights will have to satisfy a spanning condition corresponding to that

of Theorem 5.4. This spanning condition is quite complicated, because the influence

functions depend on both the weight and its derivative. For this reason, we do not try

and give as general a spanning condition as possible, instead focusing on conditions that

are relatively easy to verify. The first of these conditions involves the data

distribution. Let f(x) denote the density of x and let X, denote the random

variable with realization cc, .
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2
Assumption 5.1: x has compact support, o- (x) is bounded and bounded away from zero,

2
E[llf'(x)/f(x)ll ] < oo, for kiq-1 and any positive integer r, df{x \x J/dx and

-2 r
fix, \x , ) df{x,\x_,)/dx,Cov(l{X,£x,),X,\x_.) are continuous on the support of x.

The last part of this condition does not seem primitive, but it is straightforward to

check for particular distributions. In particular, as long as fix. \x, ) > on the

interior of the support, the last expression will be continuous on the interior, so that

it suffices to show continuity on the boundary. For example, suppose T{x,\x_,) is a

a b
beta density, proportional to x, (l-x, ) for coefficients a, b that are continuous in

x_ , , bounded, positive, and bounded away from one, where dependence of a and b on

x, is suppressed for notational convenience. Then

f(x
k

| x_
k
)~2dT{x

k
| a;_

k
)/ax

k
Cov(l(X

k
sa;

k
),X^ | x_

k
)

= [a - (a+b)a^]|
lc

(t
r
-[a/(a+b)]

r
)t
a
(l-t)

b
dt/[a^

+1
(l-a^)

b+1
]

This function will be continuous at any X where < x, < 1 (by dominated

convergence). Also, if a sequence is such that X, converges to zero or one, then

continuity follows by L'Hopital's rule, with the limit of this expression equal to

-a[a/(a+b)]
r
/(a+l) at and -bU-[a/(a+b)]

r
}/(l-b) at 1 for a and b evaluated

at the limiting value of x , .

When Assumption 5.1 is satisfied there are simple conditions on the weight functions

for the spanning condition to be satisfied. Let xAt,x) denote the vector with t in

the k position and other components equal to the corresponding components of x_^.
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Assumption 5.2: w. (x) = w (v)p (a:) with 1/C < w (v) < C for some C > 0. Also, for

each k s q - 1, there is a set £ £ R, inf(B) = -co, such that for any e > 0,

continuous function a{x), and b e S, there is there is J and n .,..., n such

that sup
y;
\Y1 .i ]

n dp (x)/dx
k

- b(<c) | < e and £ 'it p (<c) =

Ej^jjj
k
3PjJ (a:

k
(t,a:))/a^dt for J > J.

This hypothesis says that the partial derivatives with respect to each x, can

approximate any continuous function, and that the linear combination £.,tc ..p.. (a:) is a

definite integral of the partial derivative. It is easy to check that this hypothesis is

satisfied for particular choices of p. .(a;). For example, suppose p. Ax) is a power

series with all terms of a given integer order (sum of exponents) and below included.

Then the hypotheses follow by the Weirstrass theorem and because derivatives and definite

integrals of power series are also power series. Also, for similar reasons, this

hypothesis will be satisfied for Gallant's (1981) flexible Fourier form.

An important assumption here is that w (v) is a function of v and p. Ax) is a

T
function of x, both of which depend on the unknown index x +x /3, so that these

weights are not feasible. They can be made feasible by replacing £ with an estimator.

Because the choice of weights does not affect the consistency of the estimators, under

appropriate regularity conditions the replacement of X with its corresponding estimated

value will have no effect on the limiting distribution of the minimum chi-square

estimator, and hence no effect on its efficiency.

The next result shows Assumptions 5.1 and 5.2 are sufficient for the spanning

condition for near efficiency of minimum chi-square.

Theorem 5.5: If Assumptions 5.1 and 5.2 are satisfied, then Urn r (H'Q H) = V.
J—Xd
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5.4 The Choice of Weights in Practice

We can combine the near efficiency of minimum chi-square with the form of the

optimal weights given for the elliptically symmetric case to suggest a sequence of

weights that should have high efficiency with just a few terms included. The basic idea

is to initialize the weight sequence at values that are close to efficient when the

regressors are normal, add first some terms to allow for nonnormal but elliptically

symmetric x's, and then include terms that would account for non elliptical

distributions. Let G (v) and cr (v) be obtained from a preliminary parametric

estimator of the index model. For example, if y is binomial, g(x) is the

T
conditional mean, and v = x + x „/3, then corresponding to a preliminary probit

estimator one might choose G (v) = 0(a + b«v) and a- (v) = $(a + b«v)[l-$(a + b«v)]

where a is the constant and b the coefficient of x from probit. Let n and Z

be the sample mean and variance of the regressors and u».(*) be functions of a

scalar argument, with m (•) = 1, and other m. allowing for elliptically symmetric

distributions other than normal, such as m.{q) = [q/(l+q)]
J

. Then a weight sequence

that is initialized at normal and elliptically symmetric regressors is as given in

Assumption 5.2 for

w (v) = &iv)/v
ZW, p. (a:) = uiMx-^t'hx-ii)), j s J,

where J is some (small) positive integer. Higher (than J) order terms might include

powers of oc. An noted above, estimation of the weights will not affect the asymptotic

distribution of relative average derivative estimators.

An important practical issue is the choice of number of weights in applications.

One way the number of weights might be chosen is by the minimum chi-square analog of the

GMM cross-validation criteria suggested in Newey (1990b). The basic idea is to use

equation (4.2) to construct a cross-validated estimator of the mean-square of the

difference between the efficient score and the influence function, which by Theorem 5.5
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is related to the difference of the efficient information and the minimum chi-square

precision. By equation (4.2), E[(S-lWz)MS-II*(z)>
T

] = E[SS
T

] - IIH - H
T

II
T

+

T T
IIE[*(z)¥(z) ]TI . The first term does not depend on J, so in comparing mean-squared

error for different J this term can be dropped. Let *(z) be an estimator, as

T
described above for the minimum chi-square estimator, Q . = Y. .*(z.)*(z.) /(n-1), and

-i J*i J J

fi . = (Q .)

_1
H = [Q' 1

+ n"
1
*(z.)(l-*(z.)

T
n"

1
*(z.))"

1
*(z.)

TQ~1
]H. Let r be a positive-1-1 1111

definite matrix. Then a cross-validated criteria for choosing J is

cv(j) = tracetr-y;"^ .h + H
T
n
T

. + ft .*(z.)*(z.)
T

ft
T
».

^i=l -l -l -111-1

T
This is an estimator of the scalar mean-square error criteria EHS-TI*(z)} r{S-IT*(z)>]

9
up to an additive constant.

5.5 Efficiency For Conditional Distribution Index Models

When the conditional index distribution model of equation (2.4) holds, relative

average derivatives will estimate the same coefficients for different p(e) functions,

so that their asymptotic efficiencies can be compared. The asymptotic variance is

2 T 2 -2 2 2
E[<r (x)£(x)£(x) ] for a- (x) = v(x) E[m(e) |x]. As discussed in Section 3, cr (x) is

the asymptotic variance for estimation of the location parameter /i(x) =

argmin E[p(y-u)|x], so that the asymptotic variance of relative average derivative

estimators depend on p(e) in a way that is analogous to the location parameter. Here

this dependence is even more direct, since the first term in the average derivative has

dropped out. For example, if the conditional distribution of y given x is

"fat-tailed" enough at each x so that the median has lower asymptotic variance than the

mean, then the asymptotic variance of a weighted average derivative estimator based on

the median will be smaller than that based on the mean.

9
In a Monte Carlo example for a different semiparametric estimation problem, given in

Newey (1990b), an analogous GMM criteria led to an estimator with dispersion that almost

as small as that of the best J.
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It is possible to approximately attain the semiparametric bound for the conditional

index model, that is given in Newey (1990b), by combining relative average derivative

estimators for different weights and p(e) functions. A sufficient spanning condition

is that the weighted average derivative estimators are calculated from all combinations

of a sequence of weights satisfying Assumptions 5.1 and 5.2 and a sequence of m(e)

functions for which linear combinations can, for the conditional distribution of e

given any x, approximate any function with finite mean square. For brevity, we have

omitted a full description and the proof of this result.
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Appendix: Proofs of Theorems

Throughout the appendix let C denote a generic matrix of positive constants that may be

different in different appearances.

Proof of Theorem 3.1: Let <(y,x) and r(x) be bounded and continuously

differentiate, let <(y,x) = <(y,x) - E[<|x], r(x) = r(x)-E[y(x)], and for the density

f(z) of z consider the parametric submodel

(A.l) f(z|6) = f(z)[l + e
T
<(y,x)][l + 9

T
y(x)].

Both C(y.x) and y(x) are bounded, so this is a density function for 9 close enough

to 9 = 0. Also,

(A.2) E_[a|x] = E[a|x] + 9
T
E[a<|x].

o

1/2
In addition, mean-square continuous differentiability of f(z|6) ' in a neighborhood B

of 8=0 follows by Lemma C.4 of Newey (1991b), with score

(A.3) S.(z) = C(y,x) + y(x).

By Assumption 3.2 and Lemma C.2 of Newey (1991b), E[^(y,x)|x] is continuously

differentiate in x with bounded derivatives, and hence so is ^(y,x), so that

E[m(y-g)|x] and E[m(y-g)<(y,x) |x] are continuously differentiable in (x ,g) on OCX'S,

and hence by eq. (A.2), E [m(y-g)|x] is continuously differentiable on Xx§"x0. In
o

particular, by continuity can be chosen small enough that for all 9 € J? there

exists a unique solution g(x,8) to E [m(y-g)|x] = for g € 5. By the implicit

function theorem, for each x, 9 in Xx0 there is a neighborhood such that 3g(x,9)/39

and g'(x,9) exist and are continuous on that neighborhood, so that by compactness of

X, can be chosen small enough that 9g(x,9)/S9 and g' (x,0) exist, are continuous

and bounded on Xx0, and
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(A.4) dg(x,e)/aei e=0
= -i>(x) WteXlx] = EtuClx].

Next, the marginal density of x in the parametric submodel f(z|e) is f(x|8) =

f(x)[l+9y(x)], so that by integration by parts,

(A.5) 5(9) = E
Q
[w(x)g'(x,9)] = E[w(x)g' (x,9)] + 9

T
E[w(x)y(x)g' (x,9)]

= E[£(x)g(x,9)] - 9
T
E[f(x)

-1
[w(x)r(x)f(x)]'g(x,9)].

By g(x,9) differentiable in 9 with bounded derivative, 5(9) is differentiate in

9, and by eq. (A.4) and another integration by parts,

(A.6) 35(9)/39|
0=o

= E[£(x)ag(x,9)/d8
T

| e=0
] - Elftxr^wtxlytxlftxll'gtxll

= E[£(x)u<
T

] + E[w(x)g'(x)r(x)] = E[^(z)SQ (z)
T

].

Thus, i//(z) is the pathwise derivative for all parametric submodels as specified above.

Next, it follows, e.g. by Lemma C.7 of Newey (1991b), that for any s(z) with

finite mean-square and E[s(z)] = 0, and for any e > 0, there are <(y,x) and y(x)

2
satisfying the above boundedness and smoothness hypotheses with E[lls(z)-£(y,x)ll ] < e

and EUlEtslxl-rtx)!!
2

] < e, so that

(A.7) E[lls(z)-SQ (z)ll
2

] = E[lls(z)-E[s|x] + E[s|x] - C - r"
2

]

^ 2E[lls(z)-E[s|x] - C»
2

] + 2E[IIE[s|x] - E[s] - rll
2

] * 4e,

where the last inequality follows by the Cauchy-Schwartz inequality. The first

conclusion then follows by Bickel, Klaasen, Ritov, and Wellner (1992, Chapter 3, Theorem

2).

2
To obtain the second conclusion, note that Ea [\\\p(z)\\ ] is continuous in 9. Then

T
by regularity and Theorem 2.2 of Newey (1990a), aS(e)/d9\ Q=Q

= E[i//(z)S
e
(z) ], so by eq.

(A.6), E[($(z)-|//(z))S (z) ]
= 0. The second conclusion then follows because S

Q
(z)

T

- 30 -



can approximate any mean zero vector function in mean square, and hence can approximate

0(z)-i//(z), so that E[ll0(z)-i//(z)ll
2

] = 0. QED.

We prove Theorem 4.1 using two Lemmas. The first gives the form of the tangent set and

the second the projection on the tangent set.

Lemma A.l: If Assumptions 4.1 are satisfied then the tangent set, for all parametric

submodels satisfying the hypotheses of Theorem 4.1, is

ST = (tCz) : E[t(z)
2
] < 0, E[t(z)] = 0, E[tu\x] = E[tu\v]}.

Proof: We prove this result by showing that any nuisance score must lie in J and

exhibiting a class of parametric submodels that can approximate anything in J in mean

square. Consider first any nuisance score for a submodel satisfying the hypotheses of

Theorem 4.1. By the implicit function theorem G(v,T)) is differentiate at tj and

3G(v,7))/aT) = -v(x) 3E [m(c)|x] = E[uS |x]. Thus, E[uS |x] is a function of v and so
Tl T) V

S lies in 9".

To construct a regular parametric submodel with score that can approximate anything

in 3", let D denote the statement "the function is bounded, continuously

differentiate in y and 3, and has bounded derivatives." Let <(y,x) satisfy D.

Then by Assumption 4.1 and Lemma C.2 of Newey (1991b), E [^(y,x)|x] is continuously
P

differentiable in (3, with derivative E [C(y,x)S (y|x) |x], where S (y|x) is the
P P P

(conditional) score for f(y|x,/3). This matrix is bounded by C bounded and boundedness

T —
of the conditional information E [S (y|x)S (y|x) |x]. Thus, <(y,x,3) = 0y. x )

~

E [<[(y,x)|x] satisfies D. Also, let m(e) be as specified in Assumption 4.2. Then

m(cO)) = m(e(/3))-E [m(e(£))|x] satisfies T> by Assumption 4.1 and Lemma C.2 of Newey

(1991b), so that by Assumptions 4.1 and 4.2 E [m(e(|3))m(e(3)) |x] and
P

EJ<;(y,x,3)m(e(/3)) |x] satisfy 25. For a function a(v) that is continuously

differentiable with bounded derivative, let
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C(y.x,/3) = <(y,x,0) - m(e(0))(E
/3

[m(e(0))m(e(0))|x]) *<E [<(y,x,0)m(e(0))|x] - a(v(x,0))h

Then this function satisfies 2) and E [C(y,x,0)|x] = by construction. Therefore,

for any function <(x) with mean zero, A(z,9) = (1 + 7)

T
<(y,x,0)(l + T)

T
<(x)) is

continuously differentiable in 9 = (0,tj) with bounded derivative and is bounded away

from zero and one for 7) is a small enough neighborhood of zero, and E [A(z,0)] = 0,
.

so that by Lemma C.4 of Newey (1991b), f(z|9) = f(z|/3)A(z,9) is a density with

mean-square continuously differentiable square root, with

(A.8) S^ = <(z) - m(e)(E[m'(e)m(e)|x]f
1
<E[<(z)m(e)|x] - a(v)>.

Thus, f(z|9) is smooth. To show that it is a parametric submodel, note that

(A.9) E
Q
[m(e)|x] = 7)

T
a(v(x,0)).

Tby Assumption 4.1, E
Q
[m(y-g)|x] = E [m(y-g)|x] + T) E [m(y-g)C(y,x,0)|x] is continuously

differentiable in g and by Assumption 4.1, there is e > such that for all tj

small enough 3E [m(y-g) |x]/9g is bounded away from zero on

[G(v(x,p),/3)-e,G(v(x,0),/3)+€], uniformly in x and 0. Therefore, by eq. (A.9), for

all tj small enough there is i>(v(x,0),7)) in a neighborhood of zero such that

(A.10) = EJm(e + Wv(x,0),7)) |x] = EQ[m(y - G(v(x,0),9)) |x],

G(v(x,0),9) = G(v(x,0),0) + Wv(x,0),T)).

This is a local minimum of E [p(y-g)|x] by continuous differentiability of E [m(y-g)[x]
y

and the derivative bounded away from zero, and a global minimum for small enough tj by

the theorem of the maximum and compactness of §'. Thus, f(z|0) satisfies the index

restriction, and hence is a smooth parametric submodel. Furthermore, the other

hypotheses in Theorem 4.1 for the parametric submodels are satisfied by construction.

To show that S can approximate anything in 'H , note that for t e J, by
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boundedness of E[m(e)
2
|x], E[IIE[m(e)i|v]ll

2
] = E[IIE[m(e)i|x]ll

2
] = E[E[m(e)

2
|x]E[llill

2
|x]]

7
^ CE[lltll ]. Then for any € > it follows by Lemma C.7 of Newey (1991b) that there

exists <;(y,x), a(v), and y(x) that are bounded and continuously differentiable with

bounded derivative such that E[lli-<ll
2

] < e, E[IIE[m(e)£| v] - a(v)ll
2

] < e, and

E[IIE[i|x]-r(x)ll
2

] < e. Also, E[llt-E[i|x]-<ll
2

] £ CE[lli-<ll
2

] + CE[IIEtt|x]-E[<; |x]ll
2

] s Ce.

Therefore,

(A.ll) E[llt-S II

2
] i C<E[llt-EU|xKll

2
] + E[IIEU|xK(x)ll

2
]

+ E[Var(m(e)|x)(E[m(e)m(e)|x]f
2
IIE[m(e)Clx] - a(v)ll

2
]>

£ Ce + CE[IIE[m(e)Clx] - E[m(e)t|x] + E[m(e)i|v] - a(v)ll
2

]

s Ce + CE[IIE[m(e)(C-t)|x]ll
2

] + CE[IIE[m(e)t| v] - a(v)ll
2

]

£ Ce + CE[E[m(e)
2
|x]E[ll<-ill

2
|x]] s Ce. QED.

2 -2
Lemma A.2: If E[u ] < oo and E[<r (x)] < co then the projection of a q x 1 random

vector s with finite mean-square on J is

s - E[s] - uR(x), R(x) = (T
2
(xKE[u«s|xl - E[<T

2
(x)u«s| v]/E[<r~

2
(x)|v]>.

Proof: For notational simplicity let q = 1. By the Cauchy-Schwartz inequality,

E[<<r"
2
(x)uE[u's|x]>

2
] s E[E[<u/cr

2
(x)>

2
|x]E[u

2
|x]E[s

2
|x]] = E[s

2
] < a>, and

E[{o-"
2
(x)uE[o-"

2
(x)u.s|v]/E[<r"

2
(x)|v]>

2
] s E[cr"

2
(x)E[<r"

2
(x)

2
u
2
|v]E[s

2
| v]/E[(T

_2
(x) I

v]
2

]
=

E[(r"
2
(x)E[<r~

2
(x)

2
u
2
|v]E[s

2
|v]/E[o-"

2
(x)|v]

2
] = E[E[<r~

2
(x)

2
E[u

2
|x] | v]E[s

2
| v]/E[<r~

2
(x) | v]] =

2 -2 -2
E[s ], where all the expressions are finite by E[cr (x)] < m (implying E[cr (x)|v]

2
exists and Prob(c (x) = 0) = 0). Thus, for the expression t given in the statement of

-2 -2
the Lemma, E[t ] < oo. Also, note that E[R(x)|v] = E[E[<r (x)us|x]|v] -

E[(r"
2
(x)|v]E[(r~

2
(x)us|v]/E[o-"

2
(x)|v] = 0. Then E[tu|x] = E[su|x] - E[u

2
|x]R(x) =

-2 -2
E[o- (x)u«s| v]/E[cr (x)|v] is a function of v, so that t e 9". Also, for any t e J,

E[(s-t)t] = E[E[tu|x]R(x)] = E[EUu|v]R(x)] = E[E[tu| v]E[R(x) | v]] = 0. QED.
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Proof of Theorem 4.1: By Assumption 4.1 and the implicit function theorem, f(z|0) is

smooth with score SQ satisfying
p

(A. 12) E[uS |x] = v + dG(w,B)/dB.

This equation implies that

(A. 13) E[(r"
2
(x)uSQ |v] = E[o-~

2
(x)E[uSjx]|v] = E[cr~

2
(x)vJ v] + SG(v,p)/50E[a-"

2
(x) | v].

P P P

By Lemma 4.1 the tangent set is J, so by Lemma 4.2 and eq. (A. 13) the residual from the

projection of SQ on 9" is S. The conclusion now follows by Bickel, Klaasen, Ritov,
P

and Wellner (1992, Chapter 3, Theorem 2). QED.

There is a convenient characterization of efficiency that is useful for proving

Theorem 5.1.

Lemma A.3: A regular estimator with influence function \fi(z) is efficient if and only

if there is a constant matrix B such that </»(z) = BS.

Proof: By eq. (4.2) it follows that E[^(z)S
T

] = I, so that E[ip(z)\p(z)
T
]-(E[SS

T
]f

l =

E[0(z)^/(z)
T
]-E[i/»(z)S

T
](E[SS

T
])

_1
E[Si/»(z)

T
] = min

B
E[(^(z)-BSH^(z)-BS>

T
] = if and only

if there is a B such that i/»(z) = BS. QED.

Proof of Theorem 5.1: Let q(x) = (x-ji)' A(x-jli). Note that d/i(q) /dq +

h(q)~
l

l{q)~
l
dh{q)/dq = 1. Then by eq. (5.1),

(A.14) £(x) = o-'^vJG^vMx), F(x) = -[-pMH^.OlAtx-M),

where I is an identity matrix with dimension equal to the number of elements of x^.

T -2
Also, by eq. (4.2) Ellix) ut] = for all t e 1. Note that o- (x)ua(v) e J for any

_2
bounded function a(v), since it has finite mean-square (by E[<r (x)] finite) and

E[u<o-"
2
(x)}a(v)u|x] = a(v)a-"

2
(x)E[u

2
|x] = a(v). Thus, = E[£(x) u<a-~ (x)>a(v)u] =
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E[«x)
T
<x(v)] = E[E[£(x)|v]

T
a(v)] for any bounded <x(v), implying E[£(x)|v] = (by

choosing a(v) to approximate E[£(x)|v] in mean-square. Hence, = E[£(x)|v] =

-2 -2
-a- (v)G (v)E[F(x)|v], so that E[F(x)|v] = by -<r (v)G (v) * 0. In particular,

T
E[F(x)v ] = 0. Furthermore, [-0,1], [I..0], and A all having full row rank and

T T T
nonsingularity of Var(x) imply Var(F(x)) is nonsingular. Then since x = (x.„,v )

is a nonsingular linear combination of x, it follows that F(x) is a linear

combination of x-E[x] that is orthogonal to v with nonsingular variance. Standard

linear regression arguments then imply that there is a nonsingular matrix D such that

DF(x) is the residual vector from the population linear regression of x „ on v.

Linearity of conditional expectations for spherically symmetric distributions then gives

2 2
DF(x) = x „-E[x |v], so that by eq. (A. 14), a- (x) = <r (v), Lemma A.3 gives the

conclusion as a result of

D0(z) = D-B«x)u = ^(vJG^vJDFCxJu = er~
2
(v)G (vHx^-Elx^ | v]}u

= o-"
2
(v)G

1
(v){x

12
-E[<r"

2
(v)x

12
|v]/E[(r"

2
(v)|v]>u = S. QED.

Proof of Lemma 5.2: As noted in the text, 5,/S. is an estimator of in the

partial index model g(x) = G(x
11
+X

lk
^k 'x

12
x

l k-l
,X

l k+1 ^q' 3^' with

influence function L (x)u. Then by the argument following eq. (A. 14), the conditional

expectation of ^(x) given the arguments of G is zero. Furthermore, the arguments of

G are a nonsingular linear combination of X, ,
giving the conclusion. QED.

Proof of Theorem 5.3: Let w(x) equal the efficient weight, and without changing

2 -1
notation let w(x) = <r (v)G (v) w(x). Then by eq. (5.1) and Lemma A.3 there is a matrix

B such that S = B£(x)u, so by Prob(u*0) = 1,

(A.15) Ux) = B<x
12
-E[x

12
lv]>.

Let x. = (x._). and x . = (x,„) .. Equation (A.15) implies £. x) = bix.-Ex. v ) +
J 12 J "J 12 -J j J J J

T
b .(x .-E[x .|v]) for constant scalar b. and vector b .. Also, b. * 0, because
-J -J -J J -J J
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either b. or b . is not zero (because nonsingularity of B follows from

T T
nonsingularity of E[SS ]) and if b. = 0, nonzero c_.(x .-E[x_.|v]) (again implied

J J J J

by initeness of the variance bound for the index model) contradicts Lemma 5.1. Then,

dividing by b ., we obtain

E[x |v,x ] = E[x |v] + (-b_
T
/b.){x_.-E[x_.|v]>. QED.

J J J J J J J

Proof of Theorem 5.4: By equation (4.6), V
_1

- H'Q
-1
H = E[SS

T
]
-

E[S*(z)
T
](E[*(z)*(z)

T
])

_1
E[*(z)S

T
] = min^US-ITCHS-ITO)

1
"], and the other statements

follow as immediate consequences.

Proof of Theorem 5.5: It suffices to prove the result with w (v) = 1, since w (v)

2 * 2
factors out of each £.(x). By <r (x) bounded away from zero, E[ll£ (x)ll ] is finite.

2 2
Note first that for any vector b(x), E[llb(x)ull ] s CE[ llb(x) II ], so by Theorem 5.5 is

* J 2
suffices to show existence of square matrices IT., such that E[ll£ (x)-T. ,n..£.(x)ll ]

—» as J —> oo. Also, by the Hilbert space fact cited in the text, each element of

i (x) is in the closure of 2 ,©•••©£,, ,, for £„. = {I: E[i\x ,1 = 0, E[£
2

] < a.}.

21 2,q-l 2k -k

Thus, it suffices to show that for each k and a(x) e £„, there are n such that

(A. 16) E[\a(cc)-l
J
n i.,(x)|

2
] -* 0.

J
— 1 JJ JK

Also, by x bounded, polynomials in X are dense in £», while

E[{a(x)-{p(a:)-E[p(a;)|a:_.]»
2

] = E[Var(a(x)-p(<E)|a:_.)] s Var(a(x)-p(<c)) £ E[{a(x)-p(a;)>
2

],

J J

so that the set {p(x)-E[p(ffi) \x_.h p(x) is a polynomial) is dense in 1^. Therefore,

it suffices to show that eq. (A.16) is satisfied where a(x) = p(x)-E[p(x)
\
x_ ] for a

polynomial p(x). It follows by Assumption 5.1 that b(x) = a(x) -

x
f(x)~

2
df(x)/dxA

k
a(a:

k
(t,a;))f(a^(t,x))dt is continuous, for b e S such that x^ > b

^

-1 f*
on the support of x. Note that a(x) = b(x) + fix) df(x)/dxA b(a^(t,a;))dt, so that

b

for the 7T. of Assumption 5.2,
JJ
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lateJ-E.^ir.^MI * |b(<c) -
J].^

1
ir.

j
ap.

k
(<c)/a<c

k
l

+ |f(<c) W(xVda^
|

I

J
k
[b(a^(t,a;)) - ^it.jap (a^ft.a))^]^!

£ (1 + |f(x)"
1
3f(a:)/ax

k
|max

;r
|iE
k
-b|)e * C(l + |f(x)

_1
af(a:)/ax

k
l )e.

Therefore, by c arbitrarily small, it follows that eq. (A. 16) is satisfied. QED.
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