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In this paper we derive a model of aggregate investment that builds from the lumpy

microeconomic behavior of firms facing stochastic fixed adjustment costs. Instead of the

standard (5, s) bands, firms' optimal adjustment policies are probabilistic, with a probability

of adjusting (adjustment hazard) that grows smoothly with firms' disequilibria. Depending

upon the specification of the distribution of fixed adjustment costs, the adjustment hazards

approach encompasses models ranging from the very non-linear (S,s) model to the linear

partial adjustment model. Except for the latter extreme, the processes for aggregate invest-

ment obtained from adding up the actions of firms subject to aggregate and idiosyncratic

shocks, is highly non-linear. Estimating the aggregate model by maximum likelihood, we

find clear evidence supporting non-linear models over linear ones for postwar sectoral U.S.

manufacturing equipment and structures investment. For a given sequence of aggregate

shocks, the nonlinear model estimated generates brisker expansions and — to a lesser extent

— sharper contractions than its linear counterpart. These features fit well the observed pos-

itive skewness and large kurtosis of U.S. manifacturing sectoral investment/capital ratios.
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1 Introduction

Characterizing the dynamic behavior of aggregate investment has not been easy. Vari-

ables that should be significant, such as cost of capital and q, seldom are; variables that

should not appear in investment equations, such as cash flows and income, often do. More-

over, estimates are typically unstable, differing across samples, estimation procedures, and

researchers. 2 Not everything is so dismal, however, for recent work has improved the state

of affairs, mainly by refining the measurement and instrumenting of cost of capital,3 and

by incorporating credit constraints into the analysis.
4

Common to the new and old literatures is a limited treatment of dynamics. This is

somewhat surprising, for there seems to be consensus on adjustment costs playing an im-

portant role in determining aggregate investment dynamics. Indeed, investment functions

— rather than stock demands — are interesting and well defined objects only if frictions in

stock adjustments are significant. In spite of this consensus, adjustment costs and invest-

ment dynamics have been mostly treated as a nuisance to deal with when trying to estimate

the effect of cost of capital (or other relevant variables) on capital accumulation. A clear

example of this tradition can be found in Hall and Jorgenson's (1967) seminal paper, where

an elegant frictionless demand for capital theory is transformed into an investment theory

by means of a few ad hoc lags, which then turn out to play a crucial role in estimation. The

same criticism applies to most q models. The elegance of q- theory derives from two fea-

tures: First, barring measurement issues, q is a sufficient statistic for all information about

future demand and productivity conditions affecting the firm. And second, the mapping

from q to investment depends exclusively on the adjustment cost function. Although the

first of these features is regularly stressed, the latter is often disregarded and researchers

limit their study to linear or log-linear relations between q and investment. Of course, by

now we know how to justify these specifications, both the lags and the linear g-models; the

empirical workhorse is the quadratic adjustment costs model which, besides "validating"

these specifications, delivers simple smooth and linear dynamics.5

Quadratic adjustment costs may be a useful approximation when investment is just a

2See Chirinko (1994) for a survey of the empirical investment literature. See Clark (1979), Bernanke

(1983), and Blanchard, Rhee, Summers (1993) for "horse races."
3See e.g. Auerbach and Hassett (1992), Clark (1993).
4 See e.g. Fazzari, Hubbard and Petersen (1988), Hubbard and Kashyap (1992), Bernanke, Gertler and

Gilchrist (1993).
s
See Rothschild (1971) for a compelling discussion of the relevance of more general adjustment costs, in

particular non-convexities, for investment dynamics.



part of a more general model, but they are difficult to justify when studying investment

in isolation. It is even more difficult to give any structural interpretation to the resulting

estimates, for their implications are at odds with the basic microeconomic investment facts.

At the plant level, leaving aside minor upgrades and repairs, investment is intermittent

and lumpy rather than smooth. This is starkly documented in Doms and Dunne (1993).

They use the Longitudinal Research Datafile to study the investment behavior of 12,000

continuing (and large) U.S. manufacturing establishments for the seventeen year period

from 1972-1988, and find -that (i) more then half of the establishments exhibit capital

growth between 40 and 60 percent in a single year, and (ii) between 25 and 40 percent of a

plant's gross investment over the seventeen year period is concentrated in a single year.
6

In this paper we focus our attention entirely on the dynamic aspects of aggregate in-

vestment. In doing so we impose the constraint that the theory must be consistent with

the basic lumpy and intermittent nature of microeconomic data. These constraints yield

several methodological advantages. Among these, they facilitate a meaningful structural

interpretation of our findings, therefore inheriting the standard advantages of structural

parameters. 7 The results in this paper, however, go beyond methodological considerations

and show that modeling inaction at the microeconomic level makes a difference at the ag-

gregate level. We characterize the aggregate nonlinearities implied by the model and study

their role in shaping aggregate investment dynamics.

At the microeconomic level, there has been extensive development of models of lumpy

and intermittent adjustment (the (5, s) literature).
8 Here we extend these models so the

adjustment trigger barriers vary randomly across firms and for a firm over time. This

modification is a first step toward introducing the realistic and empirically important fea-

ture that units do not always wait for the same stock disequilibrium to adjust, and that

adjustments are not always of the same size across firms and for the same firm over time.

Recently, there have also been developments of empirical models of aggregate dynamics

6Since plants entry is excluded from their sample, these statistics are likely to represent lower bounds on

the degree of lumpiness in plants' investment patterns.
7See Bertola and Caballero (1990) for a similar motivation. Another important advantage of paying

attention to microeconomic aspects of adjustment when modeling aggregate adjustment, is that this facili-

tates integrating microeconomic and macroeconomic data for aggregate purposes, see Caballero and Engel

(1993b), Caballero, Engel and Haltiwanger (1993), and Eberly (1994).
8
See Harrison, Sellke and Taylor (1983) for a technical discussion of impulse control problems. For a good

survey of the economics literature — although with an emphasis on models where investment is infrequent

but not lumpy — see Dixit and Pindyck (1994). A model more closely related to a special case of ours is

Grossman and Laroque's (1990) model of consumer durable purchases.



with heterogeneous microeconomic units adjusting intermittently.9 Econometric implemen-

tation of these models, however, has required observing (or estimating separately in a first

stage) a measure of the aggregate driving force. In the current context, this amounts to

constructing a cost of capital measure. But undoubtedly many of the problems of the

empirical investment literature are due to the difficulties of constructing a proper measure

of the cost of capital, a variable that despite the current efforts is likely to be plagued by

simultaneity and omitted variables problems. 10
In this paper we implement a nonlinear

time series procedure that- does not require the first stage; it only requires information

on the investment series itself and on the generating process of the driving force (but not

its realization). Somewhat analogously with the standard procedure of estimating convex

adjustment costs parameters from the first (or higher) order serial correlation of invest-

ment, we learn about more complex and realistic lumpy adjustment cost functions from the

structure of aggregate investment lags and their changes over time.

We estimate nonlinear dynamic panel data models for two-digit U.S. manufacturing

investment/capital ratios for the period 1948-1992. We find clear and widespread evidence

in favor of our generalized (5, s) model over simple linear models. Perhaps the most reveal-

ing result occurs when a generalized (S,s) model with parameters constrained to be equal

across all sectors (3 parameters), outperforms a linear model with unrestricted (across sec-

tors) AR(2) processes (42 parameters). Our structural interpretation of these non-linearities

indicates that the fraction of firms' capital subject to fixed costs is large, and that these

costs are also large. Although important for both, these features are more pronounced for

structures than equipment.

One of the main mechanisms by which aggregate dynamics generated by (S,s) type

models differs from their linear counterpart, is that the number of active firms changes

9
Blinder (1981), Bar-Ilan and Blinder (1992) and Lam (1992) look at data on inventories (the first

one) and consumer durables (the other two) under the organizing principles of (S, s) models. Bertola and

Caballero (1990) and Caballero (1993) provide a structural empirical framework and estimate (S,s) models

for consumer durable goods. Bertola and Caballero (1994) implement empirically an irreversible investment

model where microeconomic investment is intermittent but not lumpy. Caballero and Engel (1992a, 1993b,

1993c) estimate aggregate models of employment and price adjustments when microeconomic units follow

more general (probabilistic) microeconomic adjustment rules but, contrary to the current paper, they do

not derive these rules from a microeconomic optimization problem.
10
For a discussion of some of these biases see Shapiro (1986) and Blanchard's (1986) comment on that

paper. Also see Cummins, Bassett and Bubbard (1994) for an argument relying on measurement error

and noise to focus estimation on periods where shocks are known to be large. They find that estimated

adjustment costs are much smaller in these periods than in non-tax credit reform periods. Part of their

finding may be due to the nonlinearities we describe in this paper.



over the cycle — a point emphasized by Bar-Ilan and Blinder (1992). Doms and Dunne's

(1993) confirm the importance of this mechanism; they show that the number of plants going

through their primary investment spikes, rather than the average size of these spikes, tracks

closely aggregate manufacturing investment over time. For a given sequence of aggregate

shocks, the nonlinear model estimated in this paper generates brisker expansions and — to

a lesser extent — sharper contractions than its linear counterpart. These features fit well

the observed positive skewness and large kurtosis of U.S. sectoral investment/capital ratios.

The next section presents the basic model. Section 3 describes the econometric method.

Our main empirical results are presented and discussed in section 4. Section 5 extends the

basic model to allow for flexible as well as fixed capital. Conclusions are presented in

Section 6.

2 The Basic Model

2.1 Overview

We model a sector composed of a large but fixed number of monopollstically competitive

firms. Each firm faces an isoelastic demand for its differentiated product, which is produced

with a Cobb-Douglas constant returns technology on labor and capital. Both demand and

technology are affected by multiplicative shocks described by a joint geometric random

walk process. These shocks have firm specific and sectoral (aggregate) components which

we specify later. We work in discrete time.

The sector faces infinitely elastic supplies of labor and capital. We choose the price of

the latter as numeraire and let the wage (in terms of capital) follow a geometric random

walk process, possibly correlated with demand and technology shocks. Firms can adjust

their labor input at will but suffer a loss when resizing their stock of capital. We assume

that this loss is an increasing function of the firm's scale of operation;
11

it can be interpreted

either as an index of the degree of specificity of firms' capital, or as a secondary market

imperfection if machines or structures are replaced, or as a reorganization cost associated

with putting new capital to work.

For a given scale of operation, the extent of the loss due to adjustment varies over time

as firms may, for example, find better or worse matches or uses for their old machines, or

11 The precise meaning of "scale of operation" depends on the specific interpretation of the adjustment

cost.



may face reorganizations of different degree of difficulty. For simplicity, but at the cost

of realism, we model the proportional loss factor as a random variable independent across

firms and time, and we assume its realization is known by the firm when it decides whether

or not to resize its current stock of capital.

As in standard (S, s) models, the resulting microeconomic policy is one of inaction

interspersed with periods of large investment or disinvestment. As in standard search

models, at each point in time the firm decides whether to "accept" the currently offered

adjustment cost (proportional loss factor) or to postpone adjustment and draw a new

adjustment cost next period. The interaction between these two mechanisms implies that,

more realistically than in standard (S, s) models, the size of adjustments varies both across

firms and over time for the same firm. During a given time period, firms with identical

shortages or excesses of capital act differently; over time, the same firm reacts differently

to similar disequilibria in its stock of capital.

Intuitively, the largest adjustment cost for which a firm does not adjust its stock of

capital decreases with the extent of its capital stock imbalance. If the distribution of

adjustment costs is non-degenerate, this implies that the probability that a firm adjusts

given the firm's disequilibrium — a concept we describe as the firm's adjustment hazard—
increases smoothly and monotonically with the firm's disequilibrium in its stock of capital.

12

Since the adjustment cost factors are independent across firms, and we assume that the

number of firms is large, the adjustment hazard described above characterizes the sectoral

investment at each point in time. Given firms' capital imbalances at the beginning of a

period, the fraction of units resizing their stock of capital is determined by the adjustment

hazard. Sectoral investment is the sum of the products of the adjustment hazard and the

size of the investment undertaken by those firms that decide to adjust. Equivalently, it is

the sum of the expected investment by firms, conditional on their capital stock imbalances.

Except for the degenerate case where the adjustment hazard is constant (partial ad-

justment model), sectoral investment depends critically on the number of firms at each

position in the space of capital imbalances, thereby motivating our focus on the cross sec-

tional density of disequilibria. The dynamics of sectoral investment are then determined

12This should be contrasted with standard (S, s) models, where the probability of a firm adjusting jumps

from zero to one at the trigger points, and also with standard linear partial adjustment models, where

this probability is independent of the size of the firm's disequilibrium. Later we argue that these polar

extremes correspond to two degenerate cases: the standard (5, s) model to the case where the distribution

of adjustment costs collapses to a mass point, the partial adjustment model to the case where the distribution

of adjustment costs degenerates in the opposite direction (infinite variance keeping the location parameter

fixed).



by the evolution of the cross sectional density of disequilibria. The path of this density

is driven by the interaction of sectoral, firm specific, and adjustment cost shocks with the

history of shocks and actions contained in previous cross sectional densities of disequilibria.

2.2 The firm

When the firm is not investing, its flow of profits is:

(1) - U(K,O) = K O-(r + 6)K,

where K is the firm's stock of capital; 9 is a shock to the profit function which combines

demand, productivity and wage shocks; 13 r and 6 are the discount and depreciation rates;

and /? = (a(77— 1))/(1 +a(r)— 1)) with a the elasticity of production with respect to capital

and T) the elasticity of demand faced by the monopolist. As is standard, n > 1 for the

monopolist solution to be interior; which implies that (3 < 1, since we assume that a < 1.

It is useful to replace 9 in the profit function by a variable with more economic content.

We do this by defining the frictionless stock of capital of the firm, K*, as the solution of

the maximization of (1) with respect to capital, so that:

9 = tir^-v,

where £ = (r + 6)/P- Substituting this expression into (1), and defining the disequilibrium

variable

z = In K/K*,

allows us to rewrite the profit function as:

(2) U(z, A") = tt(z)K' = f {f
z - (Se

z
) K\

Figure 1 illustrates, and equation (2) implicitly defines, profits per unit of frictionless cap-

ital, tt(z).

At times of adjustment, the firm incurs in an adjustment cost proportional to foregone

profits due to reorganization.14 Assuming this cost corresponds to the opportunity cost

13 For convenience, we have written the profit function net of flow payment on capital, (r+6)K. Since there

are neither borrowing constraints nor bankruptcy options, the solution to the firm's problem is unchanged

by replacing flow payments for a lump sum payment at the time of purchase.
14 See e.g. Cooper and Haltiwanger (1993).
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of installed capital during reorganization, a derivation similar to the one that led to (2)

implies that:

Adjustment Cost = K 6 = u£e0z~K',

where u is the realization of a positive random variable and z~ denotes the capital imbalance

immediately before adjustment. 15 Realizations of u; are generated by a common distribution

function, G(ui), and are independent across firms and over time. 16

Given the increasing returns nature of the adjustment cost technology, the optimal

policy is obviously not one of continuous and small investments but rather one of periods

of inaction followed by occasional lumpy investment. Therefore, the firm's problem can

be characterized in terms of two regimes: action and inaction. Finding a solution to the

firm's problem means finding the function separating these two regions in (w,z)-space, and

characterizing the actions taken by the firm when crossing from the inactive to the active

region. We turn to this next.

The value of a firm with disequilibrium 2, frictionless stock of capital K m
, and (current)

adjustment cost parameter u>, V'(z, K*,u), is the maximum of the value of the firm if it

does not adjust, V(z,K*), and the value if it does adjust, V(c, K*) — u^e^'K*; where c is

the optimally determined return point (see below). In short:

(3) V'{z
t,ICt ,u t ) = max{V(z t , K't ) , V{c,K'

t )
- utie^K't }.

The evolution of the value of a firm that does not adjust in the current period is described

by:

(4) V(zt,K;) = z(zt)K; + (1 + r)-
1 Et[V(zt+1 ,AT+1 ,u;t+i)].

Since the profit and adjustment costs functions are homogeneous of degree one with respect

to K*, given 2, so are the value functions V(z,K*) and V*(z, K*,u). This allows us to

reduce the number of state variables by restating the problem in terms of the value per unit

of frictionless capital. Let v(z) = V(z,K*)/Km and v*(z,u) = V'(z,K*,oj)/K\ Dividing

15Of course many other specifications of lumpy adjustment costs are possible. For example, these could

be proportional to the frictionless or new capital rather than the old one. The former specification would

simplify the problem since it would make the upgrading and downgrading decisions symmetric; the latter

specification, on the other hand, would complicate the problem somewhat since the return points from

upgrading and downgrading would be different. None of these modifications would change anything funda-

mental in what follows, however.
16We take this as a first step toward a more realistic formulation where at the individual level adjustment

costs exhibit some persistence and, at any point in time, the distribution of adjustment costs depends on

aggregate conditions.



both sides of equations (3) and (4) by K* and noting that

k:

K'
t

ti = (l-*)e-A*-H,
l t+i

yields

(5) v'(zt ,ut) = majt{«(2t),r(c)-^ete },

(6) v(zt ) = w(zt ) + Tl>E t [v'(zt+uut+1 )e-*
z
'+>],

with i/} = (1 — S)/(\ + r). Before going further, we use figure 2 to illustrate the basic setup

developed up to now. This figure shows how v(z), v(c) — w£e^z
, and v*(z,u) determine

the trigger points, given a particular realization of the adjustment cost. The solid line

illustrates the value of a firm that does not adjust in the current period. The concave

dashed line represents the value of a firm that decides to adjust, given a realization of u.

The maximum between both lines describes u*(z,w), and the inaction range — for a given

ijj — corresponds to the interval between the intersection of the two lines.

It follows directly from maximization of the value of a firm that decides to adjust,

v(c) — u>£e@z , with respect to the return point c, that the maximum of v(z) and v*(z,u) is

obtained at z = c and that this return point is independent of the initial disequilibrium.

We let il(z) denote the largest adjustment cost factor for which the firm finds it ad-

vantageous to adjust given a capital imbalance z. From the value matching condition that

equates the two terms on the right hand side of equation (5), it follows that:

(7) Q(z) = r l e-p*(v(c) - v(z)).

It should be apparent from the formulae and figure 2 that once v(z) is known, the

solution to the firm's problem is easily obtained. The Bellman equation for this function

can be obtained by substituting equation (5) into (6):

(8) v(zt ) = ir(zt ) + VEt [e-
Ai'+' max{t;(zt+1 ) , v(c) - ut+l^z

^}} ,

where E t denotes the expectation, based on information available at time t, with respect to

Azt+i and u>t+i- Using the definition of Q.(z) and calculating the expectation with respect
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to ut+i leads to:

(9) v(z) = *{z) + V'E e"A *

{

rQ(z+Az) "I

v(z + Az) +^(2+Az)
/ G(w) dw

!

where G(w) denotes the cumulative distribution function of the adjustment cost factor, and

the expectation is taken over Az. The first term inside the expectation can be interpreted

as tomorrow's value of the firm for those realizations of the adjustment cost factor and

shocks to z that lead to no investment, weighted by the probability of no adjustment for

the corresponding Az; the second term corresponds to the probability weighted value of

those situations where the firm adjusts its stock of capital.

The value function when not adjusting, v(z), can be found by solving the functional

equation that results from replacing Q(z) from (7) in (9), and using the first order condition

v'(c) = 0. Alternatively, we can replace v(z) and v(c) from (9) in (7), in order to directly

find a functional equation for the policy function fl(z). After a few algebraic steps, the

latter strategy yields:

ft(z) = if>E e
-(l-0)AzUQ(z+Az) ril(c+Az)

]

+

The optimal policy ft(z) is the solution to this functional equation subject to the first order

condition with respect to c:

fi'(c) = 0,

which is obtained from differentiating (7) with respect to z, evaluating the resulting ex-

pression at z = c, using the fact that fi(c) = 0, and imposing the first order condition

v'(c) = 0.

Figure 3a illustrates the function fi(z) for an example where the distribution of adjust-

ment costs is exponential: dG(u>) = (l/\)e~u/x dw. As follows from equation (7), if the

firm's disequilibrium is close enough to z = c, it will adjust for arbitrarily small adjustment

costs. From then on, fi(z) increases with respect to \z — c\, more sharply to the left (capital

shortages) than to the right (excess of capital). This asymmetry has several sources: First,

since depreciation is strictly positive (and possibly net productivity and demand growth

is on average positive), shortages are less likely to reverse by themselves than excesses,

thus there is less value in delaying upgrading than downgrading. Second, by making the
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adjustment cost an increasing function of old capital (for a given disequilibrium) we have

made the total adjustment cost asymmetric: for given K* and u, it is more costly to adjust

from the right than from the left of c because old capital is larger in the former than in the

latter case.
17 Third, the profit function is asymmetric; it decreases faster to the right of

z = c than to the left of its maximum (see figure 1). In our example, the first two sources

of asymmetry outweigh the last one.

Figure 3b depicts the inverse of the function il(z). We label the segments of the curve be-

low and above c, L(u>) and U(u), respectively. These functions correspond to the maximum

shortage and excess of capital tolerated by the firm for any given realization of the adjust-

ment cost factor u>. That is, for any fixed w, they describe a standard (L,c,U) policy.
18

The area enclosed by the two curves corresponds to the combinations of disequilibria and

adjustment cost factors for which the firm chooses not to adjust.

The shape and location of the function fi(z) and its inverse, (L(u),c, U(uj)), depend

on the entire distribution of adjustment cost factors, G(u>). A given realization of the

adjustment cost factor will not generate the same inaction range for different distribution

functions G(uj). In particular, a low value of u> is more likely to lead to action when it

comes from a distribution of adjustment cost factors with a high rather than a low average

value. We discuss the relation between G(u) and microeconomic adjustment in more detail

in the next section, when we characterize aggregate investment and its connection with the

underlying distribution of adjustment cost factors.

2.3 Sectoral investment

2.3.1 The adjustment hazard and cross sectional distribution

Let x = z — c denote a firm's imbalance with respect to its target point rather than its

frictionless stock of capital. Also let Kf, //*, Kt(x) and It(x) denote the aggregate (sectoral)

stock of capital and gross investment, and the stock of capital and gross investment held

by firms with disequilibrium x at time t (before adjustment).

Those firms with deviation x whose current adjustment cost is small enough to make

adjusting profitable (i.e. for which u < fi(x + c)) adjust. Since adjustment costs are i.i.d.

17This "irreversible investment" feature of the adjustment cost function seems realistic, lending further

support to our choice of adjustment cost specification.
18An (L, c, U) policy corresponds to a two-sided (5, s) model. The notation L, U and c stands for lower

bound, upper bound, and "center," respectively. See Harrison et al. (1983).

10



and the number of firms is large, the fraction of firms with deviation x that adjusts is

approximately equal to:

(10) A(x) = G(Sl(x + c)),

where G(u>) denotes the cumulative distribution function for the adjustment cost factor

u. For example, if G(uj) is a Gamma distribution with mean p<f> and variance p</>
2

, the

adjustment hazard is:

1 fO(x+c)
A(x) = —L— / uf-^e-^+du.

A firm with capital stock x has a probability A(i) of adjusting its stock of capital and, if it

does so, its contribution to aggregate investment is equal to (e~x — \)Kt {x). Thus aggregate

investment is given by:

l* =
J(

e~* _ l)A(x)K t(x)r(x,t)dx,

where Kt{x) denotes the average stock of capital of firms with imbalance x and f(x,i) the

cross sectional density of disequilibria just before adjustments take place.

Assuming that the average capital stock of firms with disequilibrium x is approximately

independent of x, we have that:
19

(11) ±t = J(e-*-l)\(x)f(x,t)dx.

Equation (11) is the fundamental aggregate investment/capital ratio expression; it shows

how, conditional on the cross-section of disequilibria, current investment is determined

by the adjustment hazard function. Figure 4a shows the adjustment hazard function for

the three different gamma distributions of adjustment cost factors depicted in figure 4b.

These distributions have the same median but different variances: the solid line corresponds

to p = 1 (exponential distribution) and
<f>
= 0.1, the long dashes correspond to a high

variance distribution, while the short dashes describes a low variance distribution. Figure

4a shows that as the variance increases the hazard shifts from an (5, s) policy, to a smoothly

increasing hazard, and eventually approaches a constant probability of adjustment/partial

adjustment model.20 The connection between these results and the height of the density of

19This independence assumption can be motivated by the fact that I is a stationary variable while K
is not (because K' is not). Provided firms have been in the industry for a long time, knowing a firm's x

conveys no information about its level of capital.
20

Strictly speaking, we obtain the partial adjustment model only if c~* — 1 ss —x for most relevant i's.

11



Figure 4a: Adjustment hazards
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the adjustment cost around zero is apparent. If the density around zero is small, there is

a range where the firm almost never adjusts since adjustment costs are almost never small

enough to justify it; the standard (S,s) — or (L,c,U) — case is an extreme version of

this. Conversely, when the density around zero is large — as is frequently the case when

the variance grows keeping the median constant — the decision of adjustment is largely

motivated by the adjustment cost draw rather than by the firm's disequilibrium. The limit

of this, when adjustment becomes independent of the disequilibrium, corresponds to the

partial adjustment model.—

2.3.2 Sectoral equilibrium and cross sectional dynamics

Shocks to wages, demand, and productivity drive the dynamics of frictionless capital. We

decompose these shocks into sectoral shocks, vt , and firm specific (idiosyncratic) shocks, ( t :

which implies that when the firm does not adjust, the disequilibrium measure x evolves

according to:

Ai| = -vt + In (1 - 6) - e t
as -(6 + vt )

- e t .

We assume that these shocks are exogenous to the firm and the sector.
21

Between two consecutive periods, the cross section distribution of disequilibria changes

as a result of firms' adjustments, depreciation, sectoral shocks, and idiosyncratic shocks.

Since we are working in discrete time, it is important to describe the timing of events within

each period. We denote the cross section density at the end of period t — 1 by f{x,t — 1).

Depreciation and the aggregate shock corresponding to period t follow, resulting in the

density f(x,t). Adjustments, as determined by the hazard function A(x) come next, and

period t concludes with the idiosyncratic shocks. The final density is f(x,t), and the cycle

starts again. Recalling that a positive shock leads to a decrease in x, we can summarize

21 The former assumption needs no explanation while the latter requires additional restrictions in the

underlying monopolistic competitive model in order to eliminate the sectoral price from the demand curve

faced by the firm. This requires precise offsetting of the income and substitution effects induced by sectoral

price changes. An example of such a model can be found in Caballero and Engel (1993a). In any event, we

view the lack of a full (or more general) equilibrium setup as a limitation of the current approach.
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this chain of events as follows:

(12) f(x,t) = f{x + 6 + vu t-l),

(13) f(x,t) =
[J

A(y)f(y,t)dy\ gi (-x) + J(l-A(x + ())f(x + e,t)gc(-()dt,

where gt (e) is the probability density for the idiosyncratic shocks. The integro-difference

equation describing the evolution of the cross sectional distribution from one period to the

next follows directly from equations (12) and (13):

(14) /(*,*) = [jA(y)f(y + S + vt,t-l)dy gc(-x)

+
J(\

- A(x + e))f(x + e + 6 + v t,t- l)5c(-0 de.

Combining equations (11), (12) and (14) we can fully characterize aggregate investment, for

any given sequence of aggregate shocks {vt } and initial cross section distribution /(i,0).

We turn to estimation issues next.

3 Econometrics

3.1 Overview

The econometric problem consists of estimating the parameters of: (a) firms' profit func-

tions, (b) the initial distribution of disequilibria, (c) the distribution of adjustment costs,

(d) the distribution of idiosyncratic shocks, and (e) the process generating aggregate shocks.

The data available are sectoral (aggregate) investment data.

We assume that the stochastic nature of the problem (the "error term") is due to

aggregate shocks. If these shocks were known exactly, the fit for the "true" parameters

would be perfect.22 The aggregate shocks may either be totally unobserved, in which

case we have to posit some underlying time series process captured by a subvector of 0, the

vector of all parameters in the model; or they may be related to observables via an auxiliary

economic model or long run relation (both of which include residual error terms). Even

though the approach we describe next can be generalized in a straightforward manner, and

we do so later in the paper, to simplify the exposition here we consider the case where the

"Conditional on also knowing the initial cross sectional distribution. We assume there is no measurement

error in yt, which was the only source of error allowed for in previous analyses (see footnote 9). Unfortunately,

integrating both approaches is computationally too burdensome.
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aggregate shock is unobserved and i.i.d.

The observed investment data may now be viewed as a highly nonlinear transformation

of the unobserved aggregate shocks. Denoting if/Kf by yt , we have that:

(15) yt = yt(v1 ,...,vt;Q); t = l,...,T,

where T denotes the number of time periods considered.

Whatever estimation criterion we use,
23

it will require that, for a given set of parameters,

we compute the set of aggregate shocks that correspond to the observed sectoral investment

data (and some functions of these shocks). This amounts to finding the inverse functions

of those described in (15):
24

(16) vt = vt(v1 ,...,vt-i,yt ;0); t = l,...,T.

The effect of previous shocks on vt is summarized in the cross-section density after adjust-

ment in period t - 1 takes place, so that:

(17) vt = vt(f(;t - l),yt ); t=l,...,T.

The recursive nature of this problem is clear. The aggregate shock at time t cannot be

calculated without knowing all the preceding shocks. Yet the effect of preceding shocks is

summarized in the cross sectional density of firms' deviations before the current shock, as

can be seen from replacing f(x,t) by f(x,t — 1) in (11) and using (12):

(18) yt
= J(e~

x+S+V
' - l)A(i - 6 - vt )f(x,t - l)dx.

It follows that the computational problem of calculating the vt defined in (16) corresponds

to the following recursive problem:25

• Find v\ by solving (18) with f(x,t - 1) replaced by the initial density (determined

23Without loss of generality as far as the methodology we descibe next is concerned, we consider maximum
likelihood estimation.

24 And making sure that this inverse is uniquely determined, which we do shortly.
2sTo ensure uniqueness when solving (18), we show that the right hand side of this equation is an increasing

function of v for any density f(x,t — 1). This is equivalent to showing that 4>(u)A(—u) is increasing in u,

where in our case <j>(it) — e
u — 1, but more generally, 4>(u) could be any increasing function with 0(0) = 0.

A straightforward calculation shows that a sufficient condition for <j>(u)A(—u) to be increasing in u is that

A(u) be decreasing (A'(u) < 0) for negative values of u and increasing (A'(ti) > 0) for positive values of a.

All the adjustment hazards used in the estimation section satisfy this condition.
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by the subvector of that characterizes this distribution).

• Determine f(x, 1) by using equation (14).

• Find V2 by solving (18) with f(x,t - 1) replaced by /(i,l).

• Determine /(x,2) by using equation (14).

• Find U3 by solving (18) with f(x,2) in the place of f(x,t — 1).

This problem entails a highly nonlinear but structured relation between the data and

aggregate shocks. At each point in time, given the distribution of disequilibria, there is a

nonlinear relation between the current aggregate shock, vt , and the observation, y t . The

current shock also enters nonlinearly in the equation determining the cross sectional distri-

bution of disequilibria relevant for next period's investment decisions; thus, establishing a

nonlinear relation between observations and lagged aggregate shocks.

For given parameters, the sequence of aggregate shocks and the derivatives of aggregate

investment with respect to these shocks (the inverse Jacobian), which are the inputs to

the likelihood function, can in principle be obtained from the combination of a routine

to solve the nonlinear static equation relating current shocks to current observations, and

a stochastic Markov chain designed to track down the evolution of the cross sectional

distribution. In practice, however, this approach is computationally burdensome for any

Markov chain grid fine enough to prevent a host of numerical problems from arising.

Obviously, computational considerations are particularly important when the time series

considered are long or when multiple time series are analyzed simultaneously, as we do later

in the paper. In order to cope with this problem, in the estimation section we first consider

a family of hazard functions which is general enough to test the basic implications of our

model and, at the same time, simple enough so that an accurate approximation method

that reduces the estimation time by several orders of magnitude can be designed. Next we

consider a more general family of hazard functions, which provides good approximations

for adjustment hazards obtained via value iteration for a wide range of parameter values.

This family is used to estimate structural parameters.
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3.2 A simple family of hazards

Estimating a structural model is computationaly burdensome. Thus, it seems sensible to

start by estimating faster approximations which may shed light on the potential success of

the proper structural model.

The algorithm for computing the aggregate shocks described above is considerably faster

if we work with a (sufficiently rich) family of adjustment hazards, characterized by a small

number of parameters, for which the cross-section densities remain within the family. What

makes finding such a family of densities difficult is that the cross section distributions

undergo three very different transformations from one period to the next, two of which

are non-trivial. At the beginning of the new period, the aggregate shock shifts the cross

section; this is followed by firms' adjustments (the hazard shock); and the period concludes

with the convolution of the distribution resulting from the previous transformations with

the distribution of idiosyncratic shocks.

The family of cross sectional densities we use is the family of mixture of normal densities.

It is easy to see that this family is closed under aggregate shocks and idiosyncratic shocks,

as long as we assume that the latter are also normal. To ensure that the cross section

remains within this family after the hazard shock, we assume that the adjustment hazard

is an inverted normal:

(19) A(x) = \-e- x°- X2X
\

where A > and A2 > 0.
26

We will show that tracking the evolution of the cross sectional distribution reduces to

keeping track of the mean, variance, and weights of a finite number of Normals. These

parameters can be obtained from a simple recursive structure. Furthermore, the static

nonlinear equation relating the contemporaneous aggregate shock to the current observation

and cross sectional density is also much easier to solve, since evaluating the right hand side

of (18) for different values of vt is considerably faster.

In what follows we describe the basic issues and procedure with a simple univariate ex-

ample. We focus on a maximum likelihood procedure and assume that the aggregate shock

is unobservable and distributed Normal with mean fiv and standard deviation er„. None

of these assumptions is important for the substantive issues discussed below. With minor

modifications, the procedure can be adapted to more robust (but less efficient) estimation

'It is straightforward to add a linear term, —X\x, to the exponent.
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procedures (e.g. GMM), to other distributional assumptions about aggregate shocks, to

partial observability of the aggregate shock, and to a multivariate context (which we do

later). We assume that idiosyncratic shocks are normal with zero mean and variance a\

and, for simplicity, proceed conditionally on the initial cross section density; at the end of

this section we discuss how we deal with initial conditions.

The basic algorithm is conceptually simple. A change of variable calculation relating

(v\ , . .
.

, vt) to (j/i , ... , yx) shows that minus the log-likelihood is equal to:

(20) -/(0| yi ,..., yT )
= const + £lngi + *]*fc<*Z]£) t

dvt
t

which is to be minimized over 0, with yt and v t defined in (15) and (16). The first term

captures the rich dynamics of the model under consideration. Conditional on the cross

section density before the aggregate shock, current investment is a non-linear, increasing

function of the current aggregate shock. The exact shape of this non-linearity depends on

the cross sectional density at the time of the shock. Thus dyt/dvt not only varies with

vt , but also over time. This should be contrasted with a partial adjustment model or an

ARIMA model, where dyt/dv t does not depend on the current shock and remains constant

over time.

Next we show that assuming that the cross section density is a convex combination

of normal densities, and the hazard an inverted normal, simplifies the calculation of the

likelihood.

Let us begin by considering the simplest possible case, where the cross section den-

sity at time t is normal with mean \i and variance a2
. A simple but tedious calculation,

based upon (18), shows that finding the current shock (for the parameter vector under

consideration) is equivalent to solving for v
t in:

(21) yt
= e

c^ - 1 - l e
-d{x" )+£ c(v

'\

where

(22)

2

1 + 2X2a2 '

(23) c(v) = v-» + ±a\

r2

(24) d(v) = Xo+.-Xiiv-nf
a*
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The corresponding derivative needed in the first term of the log-likelihood is equal to:

pi = e*») + 4 e_d(U,) " 2A^ ~ M)4
[

eC(V,) " * ~ l

Once vt is found by solving (21), equation (14) can be used to show that the cross section

density after the f-th period's aggregate, hazard and idiosyncratic shocks will be a convex

combination of two normal densities, one of them with mean 77 = (/z — vt )/(l + 2A2<72 ) and

variance r2
-f of , and the other with zero mean and variance a\. The former corresponds

to those firms that did not adjust, the latter to those that adjusted their capital stock. The

fraction of firms in the group that does not adjust is equal to:

5-
In the more general case, where f(x,t) = J2k akfk(x ,t) is a convex combination of

normal densities, vt is obtained by solving an equation analogous to (21) with a linear

combination of terms like the one on the right hand side of that equation:

Vt = ^2 ak l(S + vt
- x)A(x - 6 - v t )fk (x, t)dx.

The evolution of the cross- section density can be tracked by considering a linear combination

of expressions like those considered above. For example, in the case where f(x,t) is equal

to the convex combination of Nt normal densities and A(x) is given by (19), f(x,t + 1) is

a convex combination of Nt + 1 normal densities. Each of these corresponds to a specific

cohort, grouped according to the last time they adjusted. The "older" distributions are

more spread out than the "younger" ones and have lost mass monotonically due to the

adjustment of their members. In order to keep the number of normal densities considered

manageable, we reduce the number of densities tracked down at each point in time by one,

by merging the two older cohorts.

Finally, we need to determine the initial cross sectional density. The ergodic density

is, in a precise sense, the best guess for this density (see Caballero and Engel, 1992b). We

disregard the first To observations when calculating the likelihood, thus allowing for the

possible distortions introduced by this approximation to wash away.

We approximate the ergodic density by a convex combination of normal densities as
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follows. Let /o denote the density of idiosyncratic shocks,27 and ff the density that results

from those firms that do not adjust after /g is subject to one set of aggregate, hazard, and

idiosyncratic shocks.28 Let /| denote the density that results after applying an aggregate,

hazard, and idiosyncratic shock to /f, and so on. Standard Markov chain arguments show

that the ergodic density has the form:

where the <^t's correspond to the stationary distribution of the Markov chain describing the

number of periods since a firm last adjusted. Since the </>jt's decrease at a geometric rate,

a relatively small number of densities usually provides a good approximation. Figure 5

depicts the corresponding weighted densities and the resulting ergodic density. The largest

density corresponds to the density of idiosyncratic shocks, the density that follows to the

left is the density of those that do not adjust after a sequence of aggregate, idiosyncratic

and hazard shocks, and so on.

3.3 A general family of hazards

Experimentation with a variety of distributions of adjustment costs shows that the family

of continuous, piecewise inverted normal hazards approximates well the hazard functions

obtained via value iteration. Three pieces suffice for most practical purposes, with the

middle piece corresponding to a hazard that is identically equal to zero. A representative

member of this four-parameter family of adjustment hazards is of the form:

(25) A(x) = i

l-e- A"(r-x r ifx< x -,

if x~ < x < x

! _ e
-A+ (*-*+)»

if x>1+

«,+

In this case we track the evolution of the cross section density and solve the non-linear

equations that provide the v^s by working with a flexible discretization in i-space. We

describe this discretization procedure next.

Assume the cross section at the beginning of period t — 1 is a collection of mass points:

(ii,Wi), i = l,...,n, where i,- denotes where the i-th mass point is located and u>, the

27 Here idiosyncratic shocks are as faced by an individual firm. Thus the corresponding variance is equal

to a\ + <t
2
v . See Caballero and Engel (1992b) for details.

28The size of the aggregate shock is equal to the mean of this process.
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corresponding weight (£j Wi = 1). The aggregate shock vt is obtained by solving the

discrete counterpart of equation (18). Having found vt, the evolution of the cross section

proceeds as follows: After the aggregate shock hits, the resulting collection of mass points

is characterized by (i, — vt ,Wi). Next follows the hazard shock, which increases the number

of mass points by one, since a mass point at zero arises. The idiosyncratic shock follows,

leading to a continuous distribution. This distribution is discretized by evaluating the cross

section density on a grid whose width and location are determined by the current mean

and variance.
29 The grid has n points so that the cycle described above begins again.

Even though this methodology is considerably slower than the one described in the

preceding subsection, it provides a practical way of approximating a rich family of hazard

functions, thereby making structural estimation possible. Given a distribution of adjust-

ment costs, the corresponding "exact" hazard is obtained via value iteration. We then

approximate this hazard by the "closest" hazard within the family described by (25). We

use this hazard in the iterative procedure described above, which calculates the sequence

of aggregate shocks corresponding to particular parameter values.

4 Empirical Evidence: U.S. Investment

4.1 Overview and Data

Our data are constructed from annual gross investment and capital series for 21 two-digit

manufacturing industries from 1947 to 1992.30 All series are in 1987 dollars, and the stock of

capital correspond to the series used by the Bureau of Labor Statistics for their productivity

studies.31 Since capital stocks are end-of-year, our measures of the investment/capital ratio

used in estimation start in 1948. We report separate results for equipment and structures

panels; each has 945 observations.

We begin this section by estimating simple adjustment hazard functions for sectoral

(aggregate) U.S. manufacturing equipment and structures investment, without imposing

the tight theoretical restrictions of the microeconomic model developed in section 2. From

this semi-structural approach, we learn that there is clear trace in aggregate data of microe-

conomic adjustment hazard functions that are increasing rather than constant with respect

In the estimation section we use 33 equally spaced points between fi — 4<r and ft + 4<r, where fi and a

denote the mean and standard deviation of the density being approximated.
30We have 21 rather than 20 sector because Motor Vehicles is separated from Transportation equipment.
31
This is one of the three capital stock series reported by the Bureau of Economic Activity.
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to firms' disequilibria. We then proceed to estimate structural models, and find that the

average adjustment cost (in terms of annual revenues) is about 16 percent for equipment

and 59 percent for structures, and that the standard deviation of these costs is 6 and 8

percent, respectively. Our estimate of the standard deviation of idiosyncratic (within each

sector) shocks ranges from 5 to 12 percent and is quite stable across investment categories

and estimation methods (structural and semi-structural).

4.2 Results: Semi-structural hazard

Using the panels described above, we estimate the following "inverted-normal" hazard:

(26) A(z) = l-e- A°- A2X
\

which has the potential to capture the increasing nature of the adjustment hazards depicted

in section 3, and converges to the partial adjustment model as A2 approaches zero (together

with the approximation (e~x — 1) a —x). We restrict the hazard to be the same across

sectors within each panel, but allow for different means, variances and first order correlations

of sectoral shocks. We also allow for a general variance-covariance matrix across sectors'

innovations.

For each category (equipment and structures), we solve at each point in time 21 static

nonlinear equations (one for each sector) to find the (sectoral) aggregate shocks; with these

on hand, we use 21 dynamic equations to generate new sectoral cross sectional distribu-

tions. After repeating these steps for all observations, we compute the serial correlation

coefficients, the corresponding sectoral innovations, the variance-covariance matrix of sec-

toral innovations, and the derivatives of aggregate investment with respect to the current

shock. Using these results, we maximize the multivariate likelihood over Ao, A2 and <r£ .

32

We constrain the initial distributions of disequilibria to be the sectoral ergodic distri-

butions corresponding to the parameters being estimated. In order to reduce the effect of

the approximation introduced by this criterion, we exclude the first 3 shocks of each sector

from the joint likelihood. Finally, at each point in time we keep track of 20 distributions

for each sector and merge the distributions of those that have spent more than 20 years

without adjusting.33

32
I.e., we concentrate out the variance-covariance matrix and serial correlation coefficients.

"Remember that each distribution represents a cohort of the firms that have not adjusted for the last 1,

2, 3,..., 20 (or more) periods.
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Table 1 displays the results. The two major subdivisions correspond to equipment

and structures. Within each of these, the first column shows the estimates for a partial

adjustment model, the second column reports the results for the inverted-normal hazard

in equation (26), and the third column shows the estimates obtained with unconstrained

(across sectors) second-order autoregressions for every series.
34

For equipment, the first column shows a coefficient Ao which is significantly different

from zero and implies a partial adjustment coefficient of 0.44.
35 '36 The mean first order

serial correlation of the seetoral shocks is 0.19, with a range between —0.03 and 0.47. The

second column contains the main results of this section. These clearly indicate the rele-

vance of considering non-constant hazards: The likelihood function exhibits a substantial

improvement when A2 is allowed to be positive,37 while the linear term, Ao, becomes indis-

tinguishable from zero (as implied by our model, see equations (7) and (10)).
38 At the same

time, the average serial correlation of sectoral shocks is (on average) reduced (it ranges from

—0.13 to 0.23). Comparing these results with those in the third column, reveals that the

likelihood obtained with unconstrained second-order autoregressions leads to a likelihood

that is substantially lower than that of the constrained (across sectors) non-linear model.

If we take the setup we used in the section describing the microeconomic model liter-

ally, then we should not allow for first order correlations in the increasing hazard model.

Interestingly, if we re-estimate the increasing hazard model setting the 21 first order se-

rial correlation coefficients to zero, the likelihood is still substantially better than in the

partial adjustment model with unconstrained serial correlation (2,438 versus 2,405) and in

the non-structural second order-autoregressions model (2,438 versus 2,434). Two nonlinear

parameter (A2 and er
t ), common across sectors, do better than 21 and 42 free sectoral serial

correlation coefficients.

34And contemporaneous correlation between innovations, as in the preceding columns.
3SThe partial adjustment coefficient is equal to 1 — e

-A°.

36The likelihood has a second maximum which is slightly better than the one reported here (likelihood

improvement of 2.7) but which corresponds to an implausible partial adjustment coefficient close to one and

very large unexplained serial correlation of aggregate shocks. Since the third column has a substantially

better likelihood than either one of these maxima, and the underlying model may be interpreted as that

of a partial adjustment with adjustment parameter equal to one and AR(2) innovations, we concentrate on

the structurally meaningful estimates in the case of the first column.

Since <rt is not identified in column 1, we cannot formally use the standard \
2

test to assess the

improvement in the fit as we allow for A2 > 0. This is the "nuisance" parameter problem discussed in, e.g.,

Hansen (1993). This is a second order problem in our case, however, where the likelihood differences are

large.
38

Strictly speaking, calling Ao the "linear" term is appropriate only in conjunction with the approximation

(e~
x — 1) a —x in equation (11). Since our main conclusions do not depend on this caveat, we disregard it

in what follows.
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Table 1: Semi-structural results

Parameters Equipment Structures

P.A.M. Incr. Haz. AR(2) P.A.M. Incr. Haz. AR(2)

Ao 0.582* 0.000 0.501* 0.000

(0.125) (0.031) (0.098) (0.203)

A2
— 1.035

(0.318)

— — 0.644

(0.198)

—

0-£ — 0.116

(0.036)

— — 0.051

(0.019)

—

&! 0.19 0.04 0.75 0.07 -0.10 0.63

a2
— — -0.14 — — -0.07

Likelihood 2404.8 2444.2 2434.4 2551.7 2643.0 2588.6

Note: * stands for estimates obtained with the approximation € -(
x-v-s

) — \siv-\-S — xin

equation (11). The autoregressive model for the sectoral residuals is:

vu = const. + auvu-i + a2i"ti-2 + tit-
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The results for structures are qualitatively similar to those for equipment. The first

column shows a coefficient Ao which is significantly different from zero and implies a partial

adjustment coefficient of 0.39. The mean first order serial correlation coefficient is 0.07, with

a range between —0.12 and 0.27. The second column indicates the relevance of considering

non-constant hazards: The likelihood function exhibits a substantial improvement when

A2 is allowed to be positive, while the linear term, Ao, again becomes indistinguishable

from zero. The first order correlations of sectoral shocks remain on average close to zero

(they range from —0.30 to &07). Finally, the third column shows that unconstrained (across

sectors) second-order autoregressions lead to a worse fit than the simplest increasing hazard

model.39

4.3 Results: Structural estimation

Rather than estimating the adjustment hazard directly, in this section we estimate the

parameters of the adjustment costs function and obtain the hazard from the solution to the

dynamic optimization problem presented in section 2. We do not estimate all the structural

parameters, however. We assume an interest rate, share of capital, and markup of 6, 30

and 20 percent, respectively;40 as well as depreciation rates for equipment and structures

of 10 and 5 percent per year, respectively.

Adjustment costs are drawn from a Gamma distribution:

G<"> = *4)i>v "/*'""
*T(p)

which has mean \iw = pep and a coefficient of variation cvw = l/y/p. We estimate fiw , cv^,

and ct£ . As before, we allow for a general variance-covariance matrix for sectoral innovations,

and sectoral first order serial correlation coefficients. The initial cross section distribution

is taken to be the ergodic one but, as before, we exclude the first three observations of each

series in the likelihood in order to reduce any systematic effect of this approximation.41

The results are reported in Table 2. For equipment, adjustment costs are on average

39As before, even if the 21 first order serial correlation coefficients axe set to zero in the increasing hazard

model, the likelihood is substantially larger than in the partial adjustment model with unconstrained serial

correlation (2,634 versus 2,552), and in the non-structural second-order autoregressions model (2,634 versus

2,589). Once again, two nonlinear parameters, common across sectors, do better than 21 and 42 free sectoral

serial correlation coefficients.

*°These parameters imply /? = 0.6.
41 We approximate the ergodic density by the density that results after 30 iterations, beginning with a

point mass at zero.
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Table 2: Structural results

Parameters Equipment Structures

flu, 0.165 0.587

(0.016) (0.080)

cvw 0.342 0.143

(0.082) (0.027)

crc 0.108 0.074

(0.060) (0.013)

P\ 0.131 -0.005

<T
P1 (0.118) (0.095)

Likelihood 2446.6 2649.2

A" 3.68 4.525

A+ 12.64 20.96

x~ -0.472 -0.850

x+ 0.398 0.693

16.5 percent of annual revenues (net of labor payments) and their coefficient of variation is

0.34, which implies a standard deviation of 5.6 percent. Average serial correlation is small

and the likelihood is slightly larger than that obtained with the semi-structural inverted-

normal hazard of the previous section.
42 Indeed, our semi-structural representation of the

structural hazard takes the form given in equation (25). The rows of the lower panel in

Table 2 report the implicit value of the parameters of this representation.

For structures, adjustment costs are on average 58.7 percent of annual revenues (net

of labor payments) and their coefficient of variation is 0.143, which implies a standard

deviation of 8.4 percent. Average serial correlation is negligible, and the likelihood is larger

42
For consistency with the microeconomic model, it is important that the serial correlation coefficients be

reasonably close to zero.
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than that obtained with the semi-structural inverted normal distribution of the previous

section.
43 As with equipment, estimating the semi-structural hazard in (25) without the

constraints imposed by the microeconomic dynamic optimization problem does not raise

the likelihood significantly.

Figure 6 shows the implied adjustment hazards (panel a) for equipment (solid line) and

structures (dashed line), and the corresponding estimated distribution of adjustment costs

(panel b). The hazards, which are depicted in the space of percentage deviations from

the target levels, imply a substantial range where no adjustment occurs; they are sharply

increasing thereafter. Clearly, there is more inaction for structures than for equipment.

This difference is larger than can be inferred directly from the figure, since the depreciation

and idiosyncratic uncertainty are smaller for structures than for equipment, thereby making

large disequilibria less likely for structures than for equipment (for a given hazard). Our

model's explanation for this difference in inaction is found in the bottom panel, where the

distributions of adjustment costs are illustrated: adjustment costs are on average much

larger for structures than for equipment investment.

4.4 What is special of increasing hazard models?

Perhaps the main distinctive feature of the model we have estimated, compared with its

linear counterparts, is that not only average investment by those that are investing but

also the number of firms that choose to invest at any point in time fluctuates over the

business cycle. That this is realistic is confirmed by the evidence in Doms and Dunne

(1993), who use the Longitudinal Research Datafile to study the investment behavior of

12,000 continuing U.S. manufacturing establishments for the seventeen year period from

1972-1988. Among many interesting facts, they show that the number of plants going

through their primary investment spikes (i.e., the single year with the largest investment

for the establishment), rather than the average size of these spikes, tracks closely aggregate

manufacturing investment over time. In terms of our model, this flexibility in the number

of firms investing implies that, contrary to the case of the linear model, the extent of the

response of aggregate investment to aggregate shocks fluctuates over the business cycle.

Figure 7 depicts the paths of the derivatives of aggregate investment with respect to ag-

gregate shocks for equipment and structures, evaluated at Vt. It is apparent that this "index

"Therefore substantially larger than for the linear partial adjustment and second-oder autoregression

models.
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Figure 6a: Adjustment Hazards
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Figure ^a: Equipment-index of responsiveness

Figure fb: Structures-index of responsiveness



Table 3: Skewness and kurtosis for innovations*

Model Equipment Structures

Skewness Kurtosis Skewness Kurtosis

Part. Adj. 0.36 1.18 0.74 1.75

(< 0.01) (< 0.01) (<0.01) (< 0.01)

AR(2) 0.35 0.85 0.81 1.72

(< 0.01) (< 0.01) (<0.01) (< 0.01)

Structural -0.10 0.65 0.07 0.33

(> 0.20) (< 0.01) (> 0.20) (> 0.07)

* Shown in parenthesis: p-values obtained via bootstrap.

of responsiveness" fluctuates widely over the sample. Moreover, it is strongly procyclical:

Its correlation with aggregate shocks is 0.79 for equipment and 0.72 for structures.

Our model implies a complex non-linear process for investment. To a first approxi-

mation, however, the contemporaneous response of investment to aggregate shocks can be

characterized in simpler terms. The procyclicality of the index of responsiveness described

above implies that for any given sequence of shocks, the increasing hazard model has sharper

(non-linear) cyclical features. In particular, it will generate fatter tails, especially so during

expansions (the asymmetry is due to the strong drift induced by depreciation). Figure 8

shows the mean difference (normalized by average I/K) between actual investment and

the predictions of the linear model; the latter supplied with the sequence of shocks inferred

from the non-linear model. The largest absolute values of this series occurs during periods

of large departure between investment and its mean.44

. An alternative way to reach a similar conclusion with respect to the role of nonlinearities,

is to look directly at the departures of I/K and shocks generated by each model from

normality. Figure 9 shows the histogram of standardized sectoral I/K.45
It is apparent

that I/K is not normal; its skewness and (excess) kurtosis coefficients are 0.61 and 0.74

for equipment and 0.76 and 0.87 for structures. Obviously, linear models with normal

44
If we normalize by actual rather than average I/K, the difference during recessions is accentuated.

ib Standardized within each sector.
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Figure ga: Equipment-mean-difference

Figure fib: Structures-mean-difference



Figured^: Histogram of Equipment l/K [standardized]

Figure Ob: Histogram of Structures l/K [standardized]



errors cannot account for these departures. The innovations generated by the best partial

adjustment model and best second-order autoregression models also depart from normal,

as can be seen in table 3: Their skewness and kurtosis coefficients are 0.36 and 1.18 for

equipment and 0.74 and 1.75 for structures in the partial adjustment case, and 0.35 and

0.85 for equipment, and 0.81 and 1.72 for structures in the AR(2) case. All these numbers

are significantly different from zero (the normal case) at the 0.01 level. The last two rows

show that the increasing hazard model generates innovations that are closer to normal than

its linear counterparts. The estimated skewness and kurtosis coefficients are considerably

smaller, and three out of four of the coefficients do not depart significantly (at the 0.05

level) from their values under the normality assumption. The non-linear model does not

need to introduce nearly as much skewness and kurtosis in aggregate shocks to account for

investment behavior.

5 Small Changes

The models estimated in the preceeding section (see Figure 6) imply that firms always

adjust their capital by large amounts (at least 30%). Strictly interpreted, this implication

is unrealistic at the microeconomic level, for in addition to large projects, plants often

experience small adjustments.46

In this section we extend the model developed earlier and incorporate the possibility

of small adjustments. We consider two kinds of capital, one which is costly to adjust and

another which can be adjusted costlessly. We estimate the extended model and conclude

that, even though now most adjustments at the firm level are small, the occasional lumpy

nature of adjustments continues playing a central role for understanding aggregate dynam-

ics. We conclude that it is not excluding the possibility of small adjustments, but allowing

for lumpy investment, that drives the results in the preceeding sections.

5.1 Model Extension

The model of Section 2 is extended to allow for two kinds of capital, one with adjustment

costs ("fixed") and the other without ("flexible").
47 The former is denoted by K and the

latter by k. Firms' technology is Cobb-Douglas with constant returns, now with three

inputs instead of two. The elasticity of production with respect to both kinds of capital is

46
Sec Doms and Dunne (1993).

4
Fixity and flexibility only refer to the presence or absence of adjustment costs.
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ar and q(1 — r), respectively, with < r < 1. Thus, the model of section 2 corresponds to

the particular case where r = 1.

It is easy to show that a firm with a stock of fixed capital equal to K and a deviation

from its frictionless optimal stock of fixed capital of z maximizes its profits by choosing:

(27) k = e-^-W'K,

with

(28) /?=
Ta^- 1]

1 + tq(i/ — 1)'

Thus, when the firm's desired stock of fixed capital increases (i.e., Az < 0) and the

current adjustment cost is too high to make adjustment profitable, the firm will adjust its

flexible capital, k, even if it does not adjust its fixed capital. In every period the firm adjusts

its flexible capital in the direction determined by the current change in desired frictionless

capital - the magnitude of this change is larger when fixed capital is also adjusted.

Expressing A; as a function of K, and using the expression for /3 in (28), equation (1) and

the arguments that follow in section 2.2 apply directly to the more general case considered

here. Thus the shape of the firm's optimal policy is the same as before: conditional on the

current draw of adjustment cost factor, the firm follows an (S, s) rule for adjusting its fixed

capital. Its flexible capital adjusts according to (27).

5.2 Sectoral Investment

Even though calculations are somewhat more cumbersome, aggregate equations are ob-

tained following analogous steps to those of section 2.3. The evolution of the cross-section

of firms' disequilibria is identical to what we saw in that section. The extension of the model

only requires modifying the expressions relating how a given cross-section of disequilibria

translates into aggregate investment. We sketch the steps required to do this next.

Let:
'"

,-(i-/9)<=v =
1 -r
T

with c denoting the disequilibrium immediately after firms adjust their stock of fixed capital.

Let if and J* denote aggregate investment during period t in fixed and flexible capital,

respectively, and let ij and Kj denote total investment and total capital stock, respectively.

Then:
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h - (ttxt)/^- 1 )A(x)f(x,t)dx,

W = (TT^)[(^-^-i) + ^/(e-I -l)A(x)/(x,Odx],

where:

(29) Jt
= uJe-^-^

x
f(x,t)dx,

with f(x,t) and f(x,t) defined in section 2.3.2.

Adding both expressions above we obtain yt = iJ/Kj. With this expression at hand,

the modifications needed in section 3 when deriving the non-linear equations that must be

solved to find the aggregate (sectoral) shocks, v t , are straightforward.

5.3 Results

We estimate structural models for equipment and structures separately, as in section

4 3 48,49 Table 4 presents tne results.
50

The parameter measuring the share of both kinds of capital, r, is significantly different

from 1 (the value implicit in section 4), but large enough so the fixed capital continues

playing a key role, especially so for structures. The remaining structural parameters (mean

and coefficient of variation of the Gamma distribution characterizing adjustment costs,

and the standard deviation of idiosyncratic shocks) take similar values to those obtained

earlier. The first order correlations are larger than in the preceeding section, specially for

equipments. This may be due to assuming that flexible capital involves no adjustment costs;

if the corresponding adjustment costs are smaller than for fixed capital, but non-negligible,

then a first order correlation term may be expected.

More than the structural interpretation, what is important to stress here is that even

though over 90 percent of yearly investment is smaller than 20 percent, the nonlinearities

at the microeconomic and aggregate level are fully accounted for by the large adjustments.

48Thus in each case there are two kinds of capital: with and without adjustment costs.

49The interest rate, (total) share of capital (or), and markup are fixed at the same values as before.
50We include an additive constant (common across sectors) which partly captures investment that is

totally unrelated to our model; the estimated values are 0.045 for equipment and 0.020 for structure. As

mentioned earlier, given the non-linear nature of the model, it is computationally infeasible to combine

unobserved, stochastic aggregate shocks with measurement error.
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Table 4: Extended model: results

Parameters Equipment Structures

tau 0.563 0.829

(0.103) (0.098)

Hw 0.184 0.522

(0.011) (0.099)

cvw 0.235 0.172

(0.029) (0.101)

Ol 0.038 0.055

(0.006) (0.010)

P\ 0.283 0.069

aP\ (0.111) (0.087)

Likelihood 2451.3 2660.4
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And these are the ones that explain the improved aggregate fit of the models presented in

this paper over standard linear ones.

6 Final Remarks

In this paper we derived and estimated a model of sectoral investment that builds from

the realistic observation that lumpy adjustments play an important role in firms' investment

behavior, but that allows for the empirically appealing feature that adjustments do not need

to be of the same size across adjusting firms and for a firm over time.

Using a non-linear time series procedure, we estimated the distributions of fixed ad-

justment costs faced by firms that maximizes the likelihood of aggregate (sectoral) data.

Restricting these distributions to the gamma-family, we found that their means and stan-

dard deviations are 16.5 and 5.6 percent of a years' revenue (net of labor payments) for

equipment, and 58.7 and 8.4 percent for structures. More importantly, the adjustment

hazards implied by these findings are clearly non-linear: they leave a significative range of

complete inaction, and increase sharply thereafter.

At the aggregate level, the estimated hazards imply brisk cyclical features. These non-

linearities noticeably improve the aggregate performance of investment equations.

The empirical methodology developed in this paper should serve as a useful comple-

ment to microeconomic studies of investment, as well as in many other applications where

intermittent microeconomic adjustment is suspected.
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