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Abstract

Under the assumption that individuals know the conditional distributions of signals

given the payoff-relevant parameters, existing results conclude that, as individuals ob-

serve infinitely many signals, their beliefs about the parameters will eventually merge.

We first show that these results are fragile when individuals are uncertain about the

signal distributions: given any such model, a vanishingly small individual uncertainty

about the signal distributions can lead to a substantial (non-vanishing) amount of differ-

ences between the asymptotic beliefs. We then characterize the conditions under which

a small amount of uncertainty leads only to a small amount of asymptotic disagreement.

According to our characterization, this is the case if the uncertainty about the signal

distributions is generated by a family with "rapidly-varying tails" (such as the normal

or the exponential distributions). However, when this famity has "regularly-varying

tails" (such as the Pareto, the log-normal, and the t-distributions), a small amount of

uncertainty leads to a substantial amount of asymptotic disagreement.
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1 Introduction

The common prior assumption is one of the cornerstones of modern economic analy-

sis. Most models postulate that the players in a game have the "same model of the

world," or more precisely, that they have a common prior about the game form and

payoff distributions—for example, they all agree that some state (payoff-relevant para-

meter vector) 9 is drawn from a known distribution G, even though each may also have

additional information about some components of 9. The typical justification for the

common prior assumption comes from learning; individuals, through their own experi-

ences and the communication of others, will have access to a history of events informative

about the state 6*, and this process will lead to "agreement" among individuals about the

distribution of 9. A strong version of this view is expressed in Savage (1954, p. 48) as

the statement that a Bayesian individual, who does not assign zero probability to "the

truth," will learn it eventually as long as the signals are informative about the truth.

An immediate implication of this result is that two individuals who observe the same

sequence of signals ^^^ll ultimately agree, even if they start with very different priors.

Despite this powerful intuition, disagreement is the rule rather than the exception in

practice. For example, there is typically considerable disagreement even among econo-

mists working on a certain topic. Similarly, there are deep divides about rehgious beliefs

within populations with shared experiences. In most cases, the source of disagreement

does not seem to be differences in observations or experiences. Instead, individuals ap-

pear to interpret the available data differently. For example, an estimate showing that

subsidies increase investment is interpreted very differently by two economists starting

with different priors. An economist beheving that subsidies have no effect on invest-

ment appears more hkely to judge the data or the methods leading to this estimate to

be unreliable and thus to attach less importance to this evidence.

In this paper, we investigate the outcome of learning about an uiiderlying state by

two Bayesian individuals wth different priors when they are possibly unceHain about

the conditional distributions (or interpretations) of signals. This leads to a potential

identification problem, as the same long-run frequency of sigiials may result from differ-

ent combinations of payoff-relevant variables and different interpretations of the signals.

Hence, even though the individuals will learn the asymptotic frequency of signals, they

may not always be able to infer the state 9, and initial differences in their beliefs may

translate into differences in asymptotic beliefs. When the amount of uncertainty is small.



the identification problem is also small in the sense that each individual finds it highly

likely that he \vill eventually assign high probability to the true state. One may then

expect that the asymptotic beliefs of the two individuals about the underlying states

should be close as well. If so, the common prior assumption would be a good approxi-

mation when players have a long common experience and face only a small amount of

uncertainty about how the signals are related to the states.

Our focus in this paper is to investigate the validity of this line of argument. In par-

ticular, we study whether asymptotic agreement is continuous at certainty. Asymptotic

agreement is continuous at certainty if a small amount of uncertainty leads only to a

small amount of disagreement asymptotically. Our main result shows that asymptotic

agreement is discontinuous at certainty for every model: for every model there is a van-

ishingly small amount of uncertainty that is sufficient for each individual to assign nearly

probability 1 that they will asymptotically hold significantly different beliefs about the

underlying state. This result implies that learning foundations of common prior are not

as strong as one might have thought.

Before explaining our main result and its intuition, it is useful to provide some details

about the environment we study. Two individuals with given priors observe a sequence

of signals, {S(}"^q, and form their posteriors about the state 6. The only non-standard

feature of the environment is that these individuals may be uncertain about the distri-

bution of signals conditional on the underlying state. In the simplest ca,se where the

state and the signal are binary, e.g., 6 e {A,B}, and Sj G {a.b}, this imphes that

Pr [st = 9
\ 9) = po is not a known number, but individuals also have a prior over pg,

say given by a cumulative distribution function Fg for each agent i = 1,2. We refer to

Fg as individual's subjective probability distribution and to its density fg as subjective

(probability) density. This distribution, which can differ among individuals, is a nat-

ural measure of their uncertainty about the informativeness of signals. When subjective

probability distributions are non-degenerate, individuals will have some latitude in in-

terpreting the sequence of signals they observe. The presence of subjective probability

distributions over the interpretation of the signals introduces an identification problem

and implies that, in contrast to the standard learning environments, asymptotic learning

and asymptotic agreement are not guaranteed. In particular, when each Fq has a full

support for each 9, there will not be asymptotic learning or asymptotic agreement. Lack

of asymptotic agreement implies that two individuals with different priors observing the



same sequence of signals \vill reach different posterior beliefs even after observing infi-

nitely many signals. Moreover, individuals attach ex ante probability 1 that they will

disagree after observing the sequence of signals.

Now consider a family of subjective density functions, {/^m,}: becoming increasingly

concentrated around a single point—thus converging to certainty. When m is large (and

uncertainty is small), each individual is ahnost certain that he will assign nearly proba-

bility 1 to the true value of 9. Despite this approximate asymptotic learning, our main

result shows that asymptotic agreement may fail. In particular, for any (P4,Pb,P^,Pb),

we can construct sequences of fg .^ that become more and more concentrated around pg,

but with a significant amount of asymptotic disagreement at almost all sample paths

for all m. This establishes that asymptotic agreement is discontinuous at certainty for

every model.

Under additional continuity and uniform convergence assumptions on the family

{fg ^}, we characterize the faixiihes of subjective densities under which asymptotic agree-

ment is continuous at certainty. When /g„, and fg^ are concentrated around the same

p, these additional assumptions ensure that asymptotic agreement is continuous at cer-

tainty. Otherwise, continuity of asymptotic agreement depends on the tail properties of

the family of subjective density functions {fg .^„}. \'VT.ien this family has regularly-varying

tails (such as the Pareto or the log-normal distributions), even under the additional reg-

ularity conditions that ensure uniform convergence, there will be a substantial amount

of asymptotic disagreement. \Vhen {fg^} has rapidly-varying tails (such as the normal

distribution), asymptotic agreement will be continuous at certainty.

The intuition for this result is as follows. Wlien the amount of uncertainty is small,

each individual believes that he will learn the state 9, but he may still believe that the

other individual will fail to learn. Whether or not he believes this depends on how an

individual reacts when a frequency of signals different from the one he expects wth

"almost certainty" occurs. If this "surprise" event ensures that the individual learns 9

(as it does in the case of learning under certainty), then each individual will expect the

other to learn when the frequency of signals under their model of the world is realized and

thus attaches probability arbitrarily close to 1 that they will asymptotically agree. This

is what happens when the family {fg,,-,} has rapidly-varying tails. However, when the

family {/g^} has regularly-varying (thick) tails, an unexpected. frequencj' of signals will

prevent the individual fi-om learning (because he interprets this as a possibility likely even



near certainty due to the thick tails). In this case, each individual expects the limiting

frequencies to be consistent with his model and the other individual not to learn the

true state 9, and concludes that there will be significant asymptotic disagreement.

Lack of asymptotic agreement has important implications for a range of economic

situations. We illustrate some of these in a companion paper by studying a number of

simple environments where two individuals observe the same sequence of signals before

or while playing a game (Acemoglu, Chernozhukov and Yildiz, 2008).

Our results cast doubt on the idea that the common prior assumption may be justified

by learning. They imply that in many environments, even when there is little uncertainty

so that each individual believes that he will learn the true state, Bayesian learning

does not necessarily imply agreement about the relevant parameters. Consequently,

the strategic outcomes may be significantly different from those in the common-prior

environments.^ ^'Vhether this assumption is warranted therefore depends on the specific

setting and v\4iat type of information individuals are trying to glean from the data.

Relating our results to the famous Blackwell-Dubins (1962) theorem may help clarify

their essence. This theorem shows that when two agents agree on zero-probability events

(i.e., their priors are absolutely continuous with respect to each other), asymptotically,

they will make the same predictions about future frequencies of signals. Our results do

not contradict this theorem, since we impose absolute continuity. Instead, as pointed out

above, our results rely on the fact that agreeing about future frequencies is not the same

as agreeing about the underlying payoffs-relevant variables, because of the identification

problem that arises in the presence of uncertainty.^ This identification problem leads to

different possible interpretations of the same signal sequence by individuals with diff'erent

priors. In most economic situations, what is important is not future frequencies of signals

but some payoff-relevant parameter. For example, what is relevant for economists trying

to evaluate a policy is not the frequency of estimates on the effect of similar policies from

other researchers, but the impact of this specific policy when (and if) implemented.

Similarly, what may be relevant in trading assets is not the frequency of information

about the dividend process, but the actual dividend that the asset will pay. Thus,

^For previous arguments on whether game-theoretic models should be formulated with all individuals

having a common prior, see, for example, Aumann (1986, 1998) and Gul (1998). Gul (1998), for instance,

questions whether the common prior assumption makes sense when there is no ex ante stage.

^In this respect, our paper is also related to Kurz (1994, 1996), who considers a situation in which

agents agree about long-run frequencies, but their beliefs fail to merge because of the non-stationarity

of the world.



many situations in which individuals need to learn about a parameter or state that will

determine their ultimate payoff as a function of their action falls wthin the realm of

the analysis here. Our main result shows that even when this identification problem is

neghgible for individual learning, its imphcations to asymptotic agreement may be large.

In this respect, our work differs from papers, such as Rreedman (1963, 1965) and

Miller and Sanchirico (1999), that question the applicabihty of the absolute continuity

assumption in the Blackwell-Dubins theorem in statistical and economic settings (see

also Diaconis and Preedman, 1986, Stinchcombe, 2005). Similarly, a number of impor-

tant theorems in statistics, for example, Berk (1966), show that when individuals place

zero probability on the true data generating process, limiting posteriors will have their

support on the set of all identifiable values (though they may fail to converge to a limit-

ing distribution). Our results are different from those of Berk both because in our model

individuals always place positive probability on the truth and also because we provide a

tight characterization of the conditions for lack of asymptotic learning and agreement."^

In addition, neither Berk nor any other paper that we are aware of investigates whether

asymptotic agreement is continuous at certainty, which is the main focus of our paper.

Our paper is also related to recent independent work by Cripps, Ely, Mailath and

Samuelson (2006), who study the conditions under which there will be "common learn-

ing" by two agents observing correlated private signals. Cripps, et al. focus on a model in

which individuals start with common priors and then learn from private signals under

certainty (though they note that their results could be extended to the case of non-

common priors). They show that individual learning ensures "approximate common

knowledge" when the signal space is finite, but not necessarily when it is infinite. In

contrast, we focus on the case in which the agents start with heterogenous pri,ors and

learn from public signals under uncertxanty or under approximate certainty. Since all

signals are public in our model, there is no difficulty in achieving approximate common

knowledge.''

^In dynamic games, another source of non-learning (and tlius lack of convergence to common prior)

is that some subga.mcs arc never visited along the equilibrium path a.nd thus players do not observe

information that contradict tlieir beliefs about payoffs in these subgames (see, Fudenberg and Levine,

1993, Fudenberg and Kreps, 1995). Our results differ from those in this literature, since individuals fail

to learn or fail to reach agreement despite tlie fact that they receive signals about all payoff-relevant

variables.

''Put differently, we as whether a pla3rer thinks that the other player will learn, whereas Cripps et

al. ask whether a player i thinks tliat tlic other player j thinks that i thinks that j thinks that ... a

player will learn.



The rest of the paper is organized as follows. Section 2 provides a number of prelimi-

nary results focusing on the simple case of two states and two signals. Section 3 contain

our main results at characterizing the conditions under which agreement is continuous

at certainty. Section 4 provides generalizations of these results to an environment with

K states and L > K signals. Section 5 concludes, while the Appendix contains the

proofs omitted from the text.

2 The Two-State Model and Preliminary Results

2 . 1 Environment

We start wth a two-state model with binary signals. This model is sufficient to establish

all our main results in the simplest possible setting. These results are generalized to

arbitrary number of states and signal values in Section 4.

There are two individuals, denoted by i = 1 and i = 2, who observe a sequence

of signals {sf}"^Q where St G {a,b}. The underlying state is G {/I, 5}, and agent i

assigns ex ante probability n'^ G (0, 1) to 6* = y4. The individuals believe that, given

9, the signals are exchangeable, i.e., they are independently and identically distributed

with an unknown distribution.'"' That is, the probability of St = a given 9 = A is an

unknown number p.4; likewse, the probabihty of St = b given 9 = B is an unknowm

number pb—as shown in the following table:

A B
a Pa 1 -Pb
b 1 - Pa Pb

Our main departure from the standard models is that we allow the individuals to

be uncertain about p.4 and pe- We denote the cumulative distribution function of pg

according to individual i—namely, his subjective probability distribution—by Fg. In the

standard models, Fg is degenerate (Dirac) and puts probabihty 1 at somepg. In contrast,

for most of the analysis, we will impose the foUowng assumption:

^See, for example, Billingslcy (1995). If there were only one state, then our model would be iden-

tical to De Finetti's canonical model (see, for example, Savage, 1954). In the context of this model,

De Finetti's theorem provides a Bayesian foundation for classical probability theory by showing that

exchangeability (i.e., invariance under permutations of the order of signals) is equivalent to having an in-

dependent identical unknown distribution and implies that posteriors converge to long-run frequencies.

De Finetti's decomposition of probability distributions is extended by Jackson, Kalai and Smorodinsky

(1999) to cover cases without exchangeability.



Assumption 1 For each i and 9, Fg has a continuous, non-zero and finite density fl

over [0, 1].

The assumption implies that F^ has full support over [0, 1]. As discussed in Remark 2,

Assumption 1 is stronger than necessar)' for our results, but simplifies the exposition. In

addition, throughout we assume that 7r\ n"^ , Fg and Fg are known to both individuals.^

We consider infinite sequences s = {sfj^'^j of signals and v.Tite S for the set of all

such sequences. The posterior belief of individual i about 9 after observing the first n

signals {5t}";^i is

<t/„is)^F,^{9 = A\{s,}l,),

where Pr' (^ = .4
|

{.S/}"^j) denotes the posterior probability that 9 = A given a sequence

of signals {5(}"^j under prior tt' and subjective probability distribution Fg. Since the

sequence of signals, s, is generated by an exchangeable process, the order of the signals

does not matter for the posterior. It only depends on

rnis) = #{t< n\st = a]
,

the number of times St = a out of first n signals.
'^ By the strong law of large numbers,

Tn{s) /n converges to some p{s) G [0,1] almost surely according to both individuals.

Defining the set

S = {s ^ S : lim„^oo 'Tn {s) /n exists}
, (1)

this observation implies that Pr' (5 G 5) = 1 for z = 1, 2. We will often state our results

for all sample paths s in 5, which equivalently implies that these statements are true

almost surely or with probability 1. Now, a straightforward apphcation of the Bayes

rule gives
to-'

^Since our purpose is to understand whether learning justifies the common prior assumption, we do

not assume a common prior, allowing agents to have differing beliefs even when the beliefs are commonly
known.

''Given the definition of r„ (s), the probability distribution Pr' on {.4, 1?} x 5 is

Pr' (S-^-' ") = ^'^ /' p'"'^) (1 - p)"- ^"(''
f], (p) dp, and

Pr' (£«'") = (l-TT') / (1-p)'-"^-''p"-'-"('VMp)^P
Jo

at each event £*•*" = {{9,s') \s[ = St for each i < n}, where s = {st}^-^ and s' = {s[]^i.



where Pr' {rn\9) is the probabihty of obsendng the signal St = a exactly r„ times out of

n signals with respect to the distribution Fg.

The followng lemma provides a useful formula for 0J^ (s) = lim„^oo 0Ji {s) for all

sample paths s in 5 and also introduces the concept of the asymptotic likelihood ra-

tio. Both the formula and the asymptotic Hkelihood ratio are crucial for our analyses

throughout the paper.

Lemma 1 Suppose Assumption 1 holds. Then for all s G S,

c^^ {p is)) ^ hm 0';,, is) = ^J (3)

where p {s) = lim„^oo r-n. {s) /n, and \/p G [0, 1],

is the asymptotic likelihood ratio.

Proof. See the Appendix.

In equation (4), R' (p) is the asymptotic likelihood ratio of observing frequency p of

a when the true state is B versus when it is A. Lenmia 1 states that, asymptotically,

individual i uses this hkelihood ratio and Bayes rule to compute his posterior beliefs

about 6.

In the statements about learning, without loss of generality, we suppose that in reahty

6 = A. The two questions of interest for us are:

1. Asymptotic learning: whether Pr' (limn.„>oo 0n (5') = Ij^* = .4) = 1 for i = 1,2.

2. Asymptotic agreement: whether Pr' (lim„._^oo \<pl (s) - (p^ (s)| = O) = 1 for i =

1,2.

Notice that both asymptotic learning and agreement are defined in terms of the

ex ante probability assessments of the two individuals. Therefore, asymptotic learning

implies that an individual beheves that he or she will ultimately learn the truth, while

asymptotic agreement imphes that both individuals believe that their assessments will

eventually converge.^

^We formulate asymptotic learning and agreement in terms of each individual's initial probability

measure so as not to take a position on what the "objective" for "true" probability measure is. Under

Assumption 1, asymptotic learning and agreement occur iff the corresponding limits hold for almost all

long run frequencies p [s] € [0, 1] under Lebesgue measure, which has also an "objective" meaning.

8



2.2 Asymptotic Learning and Agreement with Pull Identifica-

tion

In this subsection, we provide a number of preliminary results on the conditions under

which there will be asymptotic learning and agreement. These results mil be used

as the background for the investigation of the continuity of asymptotic agreement at

certainty in the next section. Throughout this subsection we focus on environments

where Assumption 1 does not hold.

The foUowng result generalizes Savage's (1954) well-known result on asymptotic

learning and agreement. Savage's Theorem, which is then stated as Corollary 1 below,

is the basis of the argument that Bayesian learning toII push individuals towards common

beliefs and priors. Let us denote the support of a distribution F by suppF and define

inf(suppF) to be the infiraum of the set suppf (i.e., the largest p such that F (p) = 0).

Also let us define the threshold value

log (pb/ (1 - j(?.4)) + log (p^/ (1 - Pb))

(For future reference, this is the unique solution to the equation p^(l— p^)
"'' =

p\-'{i-pbY-)

Theorem 1 (Generalized Asymptotic Learning and Agreement) Define p {pa,Pb)

as in (5). Assume that for each 6 and i, pg^,, — inf(suppFg) G (1/2, 1) and 1 - pB,i 7^

P i.PA,j,PB,j) + Pa,i for all i^ j. Then for all i^ j,

1. Pr'(lim„^^</);(.s) = l|6' = .4) = l,-

2. W (lim„_.^ \d>\ (.s) - 4)1 (s)| = O) = 1 1} and only if 1 -ps.i < P {pa,j,Pb,j) < PA,i-

Proof. Both parts of the theorem are a consequence of the following claim.

Claim 1 For any s E S,

lnn^,{s) = {' ^fP(^)>P(P-^^^-P^^^
(6)

- - "^ (0 if p{s) < p{pA,.,PBa),n—>oo

where p {s) = limr„ (5) /n.



(Proof of Claim) Let

" ^
'"'

Pr^ {rn\e = A) Jprn (1 _ p)"-" dFX
'

Take any p > p{pA/,,PB,i)- Since 1 -ps,,; < PA,i,

[l-PB,yp'Bf<fA,{l-PA,f-r (7)

The function pP {I — p)
~^

is continuous and concave in p, and reaches its maximum at

p — p. Then, (7) imphes that there exists e > and p > paj. such that for all p G

suppF^, p e \pA,t,p],rn/ri e (p-e^p + e),

(1 - p)-p— < (1 - pB,r" p^7" < f" (1 -pf-
'"" < p- (1 - p)"-^"

. (8)

The first inequality in (8) imphes that

j {i-pY-p^-^-dF^s < i^-PB,rp%:r- (q)

On the other hand, the last inequality in (8) implies that

ff-{i-pr-'^dF\> f f-{i-pr-'"dF\>F\{p)f^{i-pr'-, (lo)

where the first inequahty follows from non-negativity of p'"" (1 — p)"~'""
. By dividing the

left-hand side [right-hand side] of (9) by the left-hand side [right-hand side] of (10), we

therefore obtain

°-''"<'^"*-^T(?)U-/-(i-P)-'"'" j

• *'

Equation (6) follows from (11). By (8), when Vn/n G [p — e/2,p 4- e/2], the expression

in parenthesis in (11) is smaller than 1, so that the right-hand side converges to as

n —> oo and Tn/n -^ p. Therefore, /-^^ (r„) —
> 0, and thus (pni-s) —^ 1. The same

argument (switching A and B) imphes that (?!)';, (s) -^ when p < p{pA.i,PB,i.)- O

(Part 1) Since p^,, = inf(suppF0) e (1/2, 1), (6) implies that conditional on 9 = A,

agent i assigns probabihty 1 to the event that s G 5 and p (.s) > pA^ > p {pA:hPB,i), where

the last inequality follows from (5). This implies that Pr' (limn^oo ^n i^) = 1|^ = -4) = 1.

(Part 2: SufRciency) We prove that 1 — Pb,i. < p{Pa,j,Pb,j) < PA,i implies as-

ymptotic agreement. Suppose p{pa,j,Pbj) < PA,i- Then, conditional on 9 = A, (6)

10



implies that (jP^ (s) also converges to 1, and therefore \(t)\ (s) — 0^ (s)| —> 0. Next, when

p{Pa,j,Pbj) > 1 - PB/n conditional on 6i = B, (pi{s) -^ and 0^. (s) -^ 0. This

establishes that \(pl (s) — 4>l (s)| -^ and proves sufficiency.

(Part 2: Necessity) We prove that asymptotic agreement imphes the inequality

1 — PB,i < p{Paj,Pbj) < PA,i- Suppose the inequality does not hold, and consider the

case pA,i < p{pA,j,PB,j)- Then, i assigns strictly positive probability to the event that

rn{s)/n ^ p{s) e \pA,t,pipAj,PB,j))- But (6) implies (j)'^{s) -^ 1 and 0^ (s) -^ 0, so

that |(^^ (s) — 0^ (s)| ^ 1. Therefore, the beliefs diverge almost surely. The argument

for the case where p {paj^Pbj) < 1 — PB,i is analogous and completes the proof of the

theorem.

Theorem 1 shows that under the "full identification assumption" that pe^i > 1/2 for

each 9 and i, asymptotic learning always obtains. Furthermore, asymptotic agreement

depends on the lowest value pe,, of pg to which individual i = 1,2 assigns positive

probability.

An immediate corollary is Savage's theorem.

Corollary 1 (Savage's Theorem) Assv,me that each Fg puis pivbability 1 on pg for

some pg > 1/2, i.e., Fg {pg) = 1 and Fg [p) = for each p < pg. Then, for each i = 1,2,

1. Pr'(lim„_.^<(s) = l|e = .4) = l.

2. Pr^ (lim„^oo
1 0n (5) - 0' (s)

I

= 0) = 1

.

It is useful to spell out the intuition for Theorem 1 and Corollary 1. Let us start

with the latter. Corollary 1 states that when the individuals know the conditional

distributions of the signals (and hence they agree what those distributions are), they

will learn the truth with experience (almost surely as n —
> oo) and two individuals

observing the same sequence will necessarily come to agree what the underlying state, 6,

is. A simple intuition for this result is that the underlying state 9 is fully identified from

the limiting frequencies, so that both individuals can infer the underlying state from the

observation of the limiting frequencies of signals.

However, there is more to this corollary than this simple intuition. Each individual

is sure that they will be confronted either with a limiting frequency of a signals equal

to Pa, in which case they will conclude that 9 = A, or they wall observe a hmiting

frequency of l—pB, and they will conclude that 9 = B; and they attach zero probabihty

11



to the events that they will observe a different asymptotic frequency. "What happens if

an individual observes a frequency p of signals diff'erent from pA and 1 - ps in a large

sample of size n? The answer to this question will provide the intuition for some of

the results that we will present in the next section. Observe that this event has zero

probabihty under the individual's beliefs at the limit n = cx5. However, for n < oo he will

assign a strictly positive (but small) probability to such a frequency of signals resulting

from sampling variation. Moreover, it is straightforward to see that there exists a unique

P {Pa,Pb) e (1 - Pb.Pa) given by (5) above such that when p > p {pa,Pb), the required

samphng variation that leads to p under 9 = B \s infinitely greater (as n —^ oo) than the

one under 6 = A. Consequently, when p > p (p.4,Pb), the individual will asymptotically

assign probabihty 1 to the event that = A. Conversely, when p < p{pa,Pb), he will

assign probability 1 to 9 = B.

The intuition for Theorem 1 is very similar to that of Corollary 1. The assumption

that inf (suppFj) e (1/2, 1) generalizes the assumption that pg > 1/2 in Corohary 1, and

is sufficient to ensure that asymptotically each individual Avill learn the payoff-relevant

state 9, and also expects both himself and the other player to do so before observing

the sequence of signals. In particular, similar to the intuition for Corollary 1, when

individual i observes a frequency p E {I — pB,i.PA,i)-, he presumes that this has resulted

from sampling variation, and decides whether frequency p is more likely under 9 = A

or under 9 = B. In particular, for each 9, the lowest sampling variation that leads

to p is attained at pg^j, and the asymptotic beliefs depend only on how large these

variations are. When p > p iPA.i^PB,i) (and as n —> oo) the necessary sampling variation

is infinitely smaller under 9 = A than under 9 ~ B. Consequently, the individual

beheves with probabihty 1 that 9 — A. Conversely, when p < p{pA,i^PB,i), he beheves

with probability 1 that 9 — B. Wlrether there will be asymptotic agreement then purely

depends on whether and how diff'erent the cutoff values p {pa,i,Pb,i) and p (p.4,2,Pb,2) are.

Wlien they are close, both individuals mil interpret the limiting frequency of signals, p,

similarly, even when this is a frequency to which they initially assigned zero probability,

and wiU reach asymptotic agreement.^

The next corollary highlights a range of conditions other than those in Corollary 1

that, according to part 2 of Theorem 1, are sufficient for asymptotic agreement.

^In contrast, if these cutoff values were far apart, so that p{pA,i,PB.j) ^ (1 ~ Pb,i^Pa,i), both players

would assign positive probability to the event that their beliefs would diverge to the extremes and we
would thus have lirn,,, -oo |</'„ {^) — 4>n (*')| "= ^-
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Corollary 2 (Sufficient Conditions for Asymptotic Agreement) Suppose that

Pe^i = inf(suppFg) e (1/2, 1). Then, there is asymptotic agreement whenever any one of

the following conditions hold:

1. certainty (with symmetry): each Fg puts probability 1 on some p" > 1/2;

2. symmetric support: suppF4 = suppFg for each i;

3. common support: suppFg = suppF| for each 6.

Proof. Part 1 of the corollary is a special case of part 2. Under s}'iiimetric support

assumption, we have p [pa;i~Pb,i) = 1/2 for each j, so that part 2 of the corollary follows

from part 2 of Theorem 1. Finally, part 3 of the corollary follows from the fact that

under the common support assumption pIpaj^Pb.j) = pipA^i.PB,,) € (1 — PB,i,PA,i)-

Corollary 2 shows that various reasonable conditions ensure asymptotic agreement.

Asymptotic agreement is implied, for example, by certainty, symmetric support or com-

mon support assumptions. In particular, certainty (with symmetry), which corresponds

to both individuals believing that hmiting frequencies have to be p' or 1 — p' (but with

P^ ¥" P^) is sufficient for asymptotic agreement. In tliis case, each individual is certain

about what the limiting frequency will l^e and therefore believes that the frequency ex-

pected by the other individual will not be reahzed (creating a discrepancy between that

individual's initial belief and observation). Nevertheless, with the same reasoning as in

the discussion followng Corollary 1, each individual also believes that the other individ-

ual will ascribe this discrepancy to sampling variation and reach the same conclusion as

himself. This is sufficient for asymptotic agreement.

Theorem 1 and Corollary 2 therefore show that results on asymptotic learning and

agreement are substantially more general than Savage's original theorem. Nevertheless,

these results do rely on the feature that F^J (1/2) = for each i = 1,2 and each 9

(thus implicitly imposing that Assumption 1 does not hold). This feature implies that

both individuals attach zero probability to a range of possible models of the world—i.e.,

they are certain that pe cannot be less than 1/2. There are two reasons for considering

situations in which this is not the case. First, the preceding discussion illustrates why

assigning zero probability to certain models of the world is important; it enables individ-

uals to ascribe any frequency of signals that are unlikely under these models to sampling

variabiUty. This kind of inference may be viewed as somewhat unreasonable, since indi-

viduals are reaching very strong conclusions based on events that have vanishingly small
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probabilities (since sampling variability vanishes as n ^ cxd). Second, our motivation of

investigating learning under uncertainty suggests that individuals may attach positive

(albeit small) probabilities to all possible values of pe. This latter feature is the essence

of Assumption 1 (the "full support" requirement).

2.3 Failure of Asymptotic Learning and Agreement with Full

Support

We next impose Assumption 1 and show that under the more general circumstances

where Fg has full support, there will be neither asymptotic learning nor asymptotic

agreement.

Theorem 2 (Lack of Asymptotic Learning and Agreement) Under Assumption

1. Pr' (lim„_^ (/>; [s) ^ 1|^ = .4) = 1 for i = 1,2;

2. Pr* (lim„_oo \<PI,.
(-s) ~ 0n {s)\ t^ O) = 1 whenever n'^ ^ tt^ and Fg = Fg for each

ee {A,B}.

Proof. Since f's{l-p{s)) > and fA{p{s)) is finite, R'{p{s)) > 0. Hence, by

Lemma 1, (p]^ [p (s)) ^ 1 for each s, establishing the first part. To see the second part,

note that, by Lemma 1, for any s E S,

<Pl (pis)) = <iL iPis)) if and only if ^^R' ip{s)) = ^^^' (p(*0) (12)

Since vr^ 7^ tt^ and Fg = Fg, this implies that for each s G S, (f)]^ (s) 7^ 0^ (s), and thus

Pr' {\(t>l (s) -<pI{s)\ ^0) = 1 for i = 1,2. m

Remark 1 The assumption that Fg — Fg in this theorem is adopted for simplicity.

We can see from (12) that even in the absence of this condition, there mil typically be

no asjTuptotic agreement. Theorem 6 in Section 4 states a more general version of this

result for the case of multidimensional state and signals, and shows how the assumption

that Fg = Fg can be relaxed sigTiificantly.

Remark 2 Assumption 1 is considerably stronger than the necessary conditions for

Theorem 2. It is adopted only for simplicity. It can be verified that for lack of as-

ymptotic learning it is sufficient (but not necessary) that the measures generated by
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the distribution functions F\ {p) and F^ (1 -p) be absolutely continuous with respect

to each other. Similarly, for lack of asymptotic agreement, it is sufficient (but not nec-

essary) that the measures generated by F\ {p), F^ (1 -p), Fj (p) and F^ (1 - p) be

absolutely continuous with respect each other. For example, if both individuals believe

that Pa is either 0.3 or 0.7 (with the latter receiving greater probabihty) and that ps is

also either 0.3 or 0.7 (with the former receiving greater probabihty), then there wll be

neither asymptotic learning nor asymptotic agreement. Throughout we use Assumption

1 both because it simplifies the notation and because it is a natural assumption when

we turn to the anal5^sis of asymptotic agreement as the amount of uncertainty vanishes.

Theorem 2 contrasts with Theorem 1 and imphes that, with probabihty 1, each

individual will fail to learn the true state. The second part of the theorem states that

if the individuals' prior behefs about the state differ (but they interpret the signals in

the same way), then their posteriors will eventually disagree, and moreover, they will

both attach probabihty 1 to the event that their beliefs will eventually diverge. Put

differently, this implies that there is "agreement to eventually disagree" between the two

individuals, in the sense that they both believe ex ante that after observing the signals

they will fail to agree.

Intuitively, when Assumption 1 (in particular, the full support feature) holds, an

individual is never sure about the exact interpretation of the sequence of signals he

observes and will update his views about pg (the informativeness of the signals) as well

as his views about the underlying state. For example, even when signal a is more likely

in state A than in state B, a very high frequency of a will not necessarily convince him

that the true state is A, because he may infer that the signals are not as reliable as he

initially beheved, and they may instead be biased towards a. Therefore, the indi\'idual

never becomes certain about the state, which is captured by the fact that R {p) defined

in (4) never takes the value zero or infinity. Consequently, as shown in (3), his posterior

beliefs will be determined by his prior beliefs about the state and also by i?.', which tells

us how the individual updates his beliefs about the informativeness of the signals as he

observes the signals. When two individuals interpret the informativeness of the signals

in the same way (i.e., B} = B?), the differences in their priors will always be reflected

in their posteriors.

In contrast, if an individual were certain about the informativeness of the signals

(i.e., if i were sure that pg = p'g for some p'g > 1 12) as in Theorem 1 and Corollaiy 2,
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then he would neA^er question the inforraativeness of the signals, even when the limiting

frequency of a converges to a value different from p'^ or 1 - pg, and would interpret

such discrepancies as resulting from sampling variation. This would be sufficient for

asymptotic agreement when p\ = p)^. The full support assumption in Assumption 1

prevents this type of reasoning and ensures asymptotic disagreement.

3 Main Results

In this section, we present our main results concerning the potential discontinuity of

asymptotic agreement at certainty. More precisely, we investigate whether as the amount

of uncertainty about the interpretation of the signals disappears and we recover the

standard model of learning under certainty, the amount of asymptotic disagreement

vanishes continuously. We will show that this is not the case, so that one can perturb

the standard model of learning under certainty sightly and obtain a model in which

there is substantial asymptotic disagreement. We first show that asymptotic agreement

is discontinuous at certainty in every model, including the canonical model of learning

under certainty, where both individuals share the same beliefs regarding the conditional

signal distributions (Theorem 3). We then restrict our perturbations to a class that

embodies strong continuity and uniform convergence assumptions. Within this class of

perturbations, we characterize the conditions under which asymptotic agreement will be

continuous at certainty (Theorem 5).

For any p 6 [0, 1], write S.^ for the Dirac distribution that puts probability 1 on p = p;

i.e., 5p (p) = 1 if p > p and Sp (p) = otherwise.

Let {i^(jm}m6N,!:sA',ee0 {{Fg.,„} for short) denote an arbitrary sequence of subjective

probability distributions converging to a Dirac distribution 6^, for each (i, ^) as m —
> oo:

hm^l^e^miP) -
<^ ifp<2->^,.

(13)

(We will simply say that {Fg^} converges to Sp,J. Throughout it is impHcitly assumed

that there is asymptotic agreement under S^i (as in Corollaries 1 and 2). Therefore, as

m -^ cx), uncertainty about the interpretation of the signals disappears and we converge

to a world of asymptotic agreement. We wTite Pi'"' for the ex ante probabihty under

{F\ ^, Fg „) and 0j,o,n7 for the asymptotic posterior belief that 6 = A under iF\^^, -^e.m)-

Evidently, as {Fg„, } converges to S^,, , each individual becomes increasingly convinced
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that he will learn the true state, so that learning is continuous at certainty. More

formally, for all e > 0,

hm Pv''^{4>'^^,,>l-e\e = A)=l.

This imphes that when a model of learning under certainty is perturbed, deviations

from full learning will be small and each individual will attach a probability arbitrarily

close to 1 that he will eventually learn the payoff-relevant state variable 6. We next

define the continuity of asymptotic agreement at certainty.

Definition 1 For any given family {F^^}, we sa,y that asymptotic agreement is

continuous at certainty under {Fg^^,}, if for all e > and for each z = 1,2,

limPr'>'"(|(/)^,,„.-0^,„,|<5) = l.

We say that asymptotic agreement is continuous at certainty at {Pa^Pb^P%P%)

if it is continuous at certainty under every family {-Pg^} converging to (5p.

.

Thus, continuity at certainty requires that as the family of subjective probabihty

distributions converge to a Dirac distribution (at which there is asymptotic agreement),

the ex ante probability that both individuals assign to the event that they will agree

asymptotically becomes arbitrarily close to 1. Hence, asymptotic agreement is discon-

tinuous at certainty at {Pa^Pb>p'a-p'b) i^ there exists a family {Fg^} converging to 5pi

and e > such that

hm Pr'>"(|0L,..-<*L,^,|>£)>O
771.—'CxD

for i = 1, 2. We wll next define a stronger notion of discontinuity.

Definition 2 We say that asymptotic agreement is strongly discontinuous at

certainty under {Fg^} if there exists £ > such thai

lim Pr'-"'(|0^,,„,-0^,„|>e)=l

for i = 1,2. We say that asymptotic agreement is strongly discontinuous at

certainty at (p^ , pg , p^^ , p|) if it is strongly discontinuous at certainty under some

family {F^^} converging to 6.^^

Strong discontinuity requires that even as we approach the world of learning un-

der certainty, asymptotic agreement will fail with probability approximately equal to 1

according to both individuals.
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3.1 Discontinuity of Asymptotic Agreement

The next theorem estabUshes the strong discontinuity of asymptotic agreement at cer-

tainty.

Theorem 3 (Strong Discontinuity of Asymptotic Agreement) Asymptotic agree-

ment is strongly discontinuous at every {Pa^P^b^ Palp's) '^''i'ih p'g e (1/2,1) for all {d,i).

Moreover, if tt^ ^ tt' , then there exist {Fg} converging to 5^1 and Z > such that

\<plc,m [P ('S)) - <^L,m (P (^0)1 > Z for allmGN and s E S.

The proof of this theorem is provided below. Note that when pi = pj — pe for

each 9, the hmiting world is the canonical learning model (under certainty) described

in Savage's Theorem (Corollary 1): both individuals are certain that the probability

of observing signal s = a is p^ > 1/2 if the state is 9 = A and I — ps if the state is

9 = B (i.e., each Fg puts probabihty 1 on pg). Therefore, this theorem establishes strong

discontinuity at certainty for the canonical learning model; even when we are arbitrarily

close to this world of certainty, the asymptotic gap in beliefs is bounded away from zero.

The condition p^ G (1/2, 1) is not needed (see Theorem 7 below). The proof is based on

the following example.

Excunple 1 For some small e, A G (0, 1), each individual i thinks that with probability

1 — e, Pe is in a A-neighborhood of some pl > (1 + A) /2, but with probabihty e, the

signals are not informative. More precisely, for pg > (1 + A) /2 and A < iPl—pj], we

have

f f^) ^ / f + (1 - e) /^ 'fP e (Pe - V2,P^ + A/2)
'^^^ ^ \ e otherwise ^ '

for each 6 and i. Now, by (4), the asymptotic likelihood ratio is

^ ifp{s)ED\^{p\-X/2^p\+\/2)

^'^^^'^^^^ —
' z/>(.) G Z?i, ^ (1 -p'i, -A/2,1- Pi, + A/2)

otherwise.

This and other relevant functions are plotted in Figure 1 for e —
> 0, A ^ 0. The

likelihood ratio /?' {[> (.s)) is 1 wlien p (s) is small, takes a very high value at 1 — Pg, goes

down to 1 afterwards, becomes nearly zero around p'_^, and then jumps back to 1. By

Lemma 1, ^^ (s) will also be non-monotone: when p[s) is small, the signals are not
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Figure 1: The three panels show, respectively, the approximate values of /?,' (p), (j!)^,

\4L - 0LI as e ^ 0, for f)\ = p^ = p'\

and

informative, thus
(/)J^

(s) is the same as the prior, tt'. In contrast, around 1 — p^, the

signals become very informative suggesting that the state is B, thus 0'J^ (s) = 0. After

this point, the signals become uninformative again and 0!^ (s) goes back to tt*. Around

p^, the signals are again informative, but this time favoring state A, so (p^ (s) = 1.

Finally, signals again become uninformative and 0'^^ (s) falls back to tt''. Intuitively,

when p(5) is around 1 — pg or p'4, the individual assigns very high probabiUty to the

true state, but outside of this region, he sticks to his prior, concluding that the signals

are not informative.

The first important observation is that even though 0^ is equal to the prior for a large

range of limiting frequencies, as f -^ and A —> each individual attaches probability

1 to the event that he will learn 6. This is because as illustrated by the discussion after

Theorem 1, as e -^ and A —^ 0, each individual becomes convinced that the Umiting

frequencies will be either 1 — pg or p\.

However, asymptotic learning is considerably weaker than as3aTiptotic agreement.

Each individual also understands that since A < |pj
—

Pq|, when the long-run frequency

is in a region where he learns that 9 = A, the other individual will conclude that the

signals are uninformative and adhere to his prior belief. Consequently, he expects the

posterior beliefs of the other individual to be always far from his. Put differently, as

e -^ and A -^ 0, each individual beheves that he will learn the value of 9 himself but

that the other individual will fail to learn, thus attaches probability 1 to the event that

they disagree. This can be seen from the third panel of Figure 1; at each sample path
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in S, at least one of the individuals will fail to learn, and the difference between their

limiting posteriors will be uniformly higher than the following "objective" bound

z = min {7r\ tt^, 1 — 7r\ 1 — tt^, \Tr'^ — 7r"|} .

When TT^ = 1/3 and tt^ = 2/3, this bound is equal to 1/3. In fact, the belief of

each individual regarding potential disagreement can be greater than this; each indi-

vidual beMeves that he will learn but the other individual will fail to do so. Conse-

quently, for each -i, Pr' (|(^^ (s) - qr^ {s)\ > Z) > 1 - e, where as e —» 0, Z —> z =

min{7r\7r^, 1 — 7r\ 1 - tt^}. This "subjective" bound can be as high as 1/2.

Proof of Theorem 3. We only consider the case p] > pj for 6 = A, B; the

other cases are identical. In Example 1, for each 7/7., take e = A = e/m,, p], = pi + A,

and Pg = pI ~ )^ where e is such that 1 — (^^ (s) < (1 — 7r-')/2 for p{s) e D\ and

0^ (s) < 1x^/2 for p{s) E I?e whenever e = A < e. Such e exists (by asymptotic

learning of i). By construction, each Fq'^' converges to 5p. , and \p]j
—

p1\ > A for each

6. To complete the proof, pick Z = z/2 > 0. By choice of e, |0^,„ (s) — ^L.m i-^)\ > ^

whenever p (s) G D\ U D'g. But Pr''-'" {p (s) £ D\ U D'^) = e (1 - A), which goes to 1 as

m -^ 00. Therefore,

hm Pr^''"{Ul^„,-ct>lJ>Z) = l. (15)
TD—>00

To prove the last statement in the theorem, pick Z — z/2, which is positive when

In the example (and thus in the proof of Theorem 3), the likelihood ratio /?' (p(s))

and the asymptotic beliefs (j!)'^ (s) are non-monotone in the frequency p{s). This is a

natural outcome of uncertainty on conditional signal distributions (see the discussion at

the end of Section 2 and Figure 2 below). When R is monotone and the amount of

uncertainty is small, at each state one of the individuals assigns high probability that

both of them will learn the true state and consequently asymptotic disagreement will be

small. Nevertheless, asymptotic agreement is still discontinuous at uncertainty when we

impose the monotone likelihood ratio property. This is sho^vn in the next theorem.

Theorem 4 (Discontinuity of Asymptotic Agreement under Monotonicity)

For any p\,p''g > 1/2, i G {1,2}, mid 7r\ tt'^ G (0,1). there exist a family {Fg^^} and

Z > such that:
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1. for each 9 G {A, B} and i = 1,2, Fg^ converges to S^i
;

2. the likelihood ratio R^ {p) is nonincreasing in p for each i and rn, and

3. for each i,

lim Pr'^''"(kU-Cn.|>^)>0. (16)

Proof. See the Appendix.

The monotonicity of the hkehhood ratio has weakened the conclusion of Theorem

3, so that the hmit in (16) is no longer equal to 1, so that asymptotic agreement is

discontinuous at certainty, but not strongty so.

Note that in Theorems 3 and 4 the famihes {F^^,} leading to the discontinuity of

asymptotic agreement induce discontinuous likehhood ratios. This is not crucial for the

results, however, since smooth approximations to Fg^ would ensure continuity of the

likelihood ratios as well. What is important is that the likelihood ratios under families

{^9m} ^^^'^ ^'^^ converge uniformly (instead, convergence is pointwise). We next impose

a uniform convergence assumption (as well as additional strong continuity assumptions)

and characterize the conditions for discontinuity of asymptotic agreement at certainty.

3.2 Agreement and Disagreement with Uniform Convergence

In this subsection, we consider a class of famihes [Fg-^] converging uniformly to the

Dirac distribution 5pr for some p' G (1/2, 1) and show that whether there is discontinuity

of asymptotic agreement at certainty depends on the tail properties of {Fg^}.

We start our analysis by defining the family {Fg.^}, with a corresponding family

of subjective probabihty density functions [fl^,]- The family is parameterized by a

determining density function /. We impose the following conditions on /:

(i) / is strictly positive and symmetric around zero;

(ii) there exists x < oo such that / (.x) is decreasing for all x > x\

(iii)

^,(x,y)= lim 4^4 (17)
m^oo / [my)

exists in [0, oo] at ah {x.y) G M+.
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Conditions (i) and (ii) are natural and serve to simplify the notation. Condition (iii)

introduces the function R{i:,y), which will arise naturally in the study of asymptotic

agreement and has a natural meaning in asymptotic statistics (see Definitions 1 and 2

below).

In order to vary the amount of uncertainty, we consider mappings of the form x i-^-

[x — y) /m, which scale down the real line around y by the factor 1/m. The family of

subjective densities for individuals' beliefs about pa and pe, {flm}^ ^^'^^^ be determined

by / and the transformation x ^-^ [x — p') /m.'" In particular, we consider the following

family of densities

fl,^,{:p) = e{m)f[m{p-p^)) (18)

for each 6 and i where d (m) = 1/ J^
/' [m {p — p')) dp is a correction factor to ensure

that /g^ is a proper probability density function on [0, 1] for each m. In this family of

subjective densities, the uncertainty about pa is scaled down by l/'m, and fg ^ converges

to the Dirac distribution dpi as rn ^ oo, so that individual i becomes sure about the

informativeness of the signals in the limit.

The next theorem characterizes the class of determining functions / for which the

resulting family of the subjective densities {J} ,^„} leads to approximate asymptotic agree-

ment as the amount of uncertainty vanishes.

Theorem 5 (Characterization) Consider the family {F^.m} defined in (18) for some

p" > 1/2 and f, satisfying conditions (i)-(m) above. Assume that f{mx)/f{my) uni-

formly converges to R{x,y) over a neighborhood of {p^ -|-p^ — 1, \p^ — ]5^|).

1. If R{p^ + p^ — l,\p^ ~
p'^l)

= 0; ihen agreement is continuous at certainty under

. in,J-

2. If R{p^ + p'^ — l,\p^ — p'^l) 7^ 0, then agreement is strongly discontinuous at cer-

tainty under {Fg.^}.

Proof. Both parts of the theorem are proved using the following claim.

Claim 2 Iim.^,_oo (0^.,™ if) " ^o..n,. (p')) = if and only if R {f + p^ - h\p' - p^\) =

(where (p'oom i'P') denotes beliefs evaluated under sample paths with p = f ).

^"This formulation assumes that p'^ a.ncl Pg arc cqu.il. Wc can easily assume these to be different, but

do not introduce this generality here to simplify the exposition. Theorem 8 allows for such differences

in the context of the more general model with multiple states and multiple signals.
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(Proof of Claim) Let i?^, (p) be the asymptotic likelihood ratio as defined in (4)

associated with subjective density /g^. One can easily check that limm^oo Rm (p') = 0.

Hence, by (12), lim,„._>oo (0^,m iP') - (P^ocm iP')) = if and only if hm„,^«,i?4 (p^) = 0.

By definition,

hm Rl„ [p )
= hm —-—— ——

-

m^oo m-»c» j['ni[p —p))
= R{l~p'-^f.,f-f)

where the last equality follows by condition (i), the symmetry of the function /. This

establishes that hm^^^oo Rm (p') = (and thus hm„j_oo {4>'oo,m. (p') - 4>io,m (p')) = 0) if

and only if R (p^ + p^ - 1, \p^ -p^\) =0. D

(Proof of Part 1) Talce any e > and (5 > 0, and assume that ^ (p^ + p^ — 1, |p^ — p^|) =

0. We will show that there exists rfi. G N such that

Pr'
f
hm \<P' is) - 4>lm {s)\>e) <6 (Vm >m,i = 1, 2).

By Lemma 1, there exists e' > such that 0^ .„ {p (s)) > 1 — f whenever i?' (p (s)) < e'.

There also exists xq such that

Pr^ (p (s) G {f - Xo/m.,p' + xo/m) \0 = A) = f
°

f (x) dx > 1 - 5. (19)
J ~X0

Let K = min-cg[_.CQ^,;(,] / (x) > 0. Since / monotonically decreases to zero in the tails

(see (ii) above), there exists Xi such that / (x) < e'n whenever |x| > \xi\. Let mi =

(xo + xi) I (2p' — 1) > 0. Then, for any m > mi and p (s) G (p' — xq/tii.p' + Xo/m), we

have |p(5) — 1 +p'| > Xi/rn, and hence

/(m(p(5)-p')) K

Therefore, for all ni > mi and p (s) G (p' — Xo/m^p'' + Xo/m.), we have that

Again, by Lemma 1, there exists e" > such that <J^m, (p(s)) > 1 — e whenever

i?4 (p (s)) < e". Now, for each p (,s),

hm /?4(p(,)) = ^(p(,s)+p'-l,|p(5)-]y|). (21)
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Moreover, by the uniform convergence assumption, there exists r/ > such that i?^ (p (s))

uniformly converges to ^ (/o(s) +it>' — 1, |p(s) — p' I) on (p' — ry,p' + r/) and

R{p{s)+p=-l,\p{s)-^y\) <e'72

for each p{s) in (p' — T],p'^ + ri). Moreover, uniform convergence also implies that R
is continuous at (p^ +p^ — 1, [p^ — p^\) (and in this part of the proof, by hj^pothesis,

it takes the value 0). Hence, there exists m2 < oo such that for aU m- > m2 and

p(s) e (p'-r/,p' +77),

i?4,(p(.s)) <R{p{s)+fP - l^\p{s)-jV\)+e"/2 < e".

Therefore, for all m > 7712 and p {s) £ [ff — i],p' + 7/), we have

C,,Jp(s))>l-e. (22)

Set m = ma.x{mi,m.2,ri/xo}. Then, by (20) and (22), for any 777. > fh and p{s) e

{p'-Xo/m,f + Xo/Tn), we have
\4'';^jn (P (s)) - (tL.rn {p (s))\ < e. Then, (19) implies

that Pr^ (|(/.j,„,„ (p(5)) - <^i,,„ (p(s))| < eie- = /I) > 1 - <5. By the symmetry of A and

B, this establishes that Pr'' (10'^^ (p (s)) - (^ „ (p (s))
|

< e) > 1 - 5 for m > tti.

(Proof of Part 2) We will find f > such that for each 5 > 0, there exists fh eN
such that

Pr' ( lim |(^,;,,,„ (.s) - 0^ (s)
I

> e) > 1 - J (V7T7 > 777,, ^ = 1, 2).

Since lim^^o, i?^,, {f) = R{p^+p^~ 1, \f -
f~\) > 0, linv^.^ ,^^_„ (f) < 1. We set

e = (1 — hmm,--^oo 0io m (P')) /-^ ^'^^ ^^"^ similar arguments to those in the proof of Part

1 to obtain the desired conclusion.

The main assumption in Theorem 5 is that the likelihood ratios /?'„ [pis)) converge

uniformly to a Hmiting likehhood ratio, given by R}^ In what follows, we say that

"noise vanishes uniformly" as a shorthand for the statement that the hkehhood ratio

/?^(p(s)) converges uniformly to the limiting likelihood ratio. Theorem 5 provides a

complete characterization of the conditions for the continuity of asymptotic agreement at

certainty under this uniform convergence assumption. In particular, this theorem shows

that even when the likelihood ratios converge uniformly, asymptotic agreement may fail.

^^Note that the limiting hkclihood ratio ft is not related to the likelihood ratio that applies in the

( "limiting" ) model without uncertainty.
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In contrast Corollary 2 shows that that there will always be asymptotic agreement in

the limit.

The theorem provides a simple condition on the tail of the distribution / that de-

termines whether the asymptotic difference between the posteriors will be small as the

amount of uncertainty concerning the conditional distribution of signals vanishes "uni-

formly". This condition can be expressed as:

R{x,y)= lim (^ = (23)
m.^oo f [my]

where x = p^ + p'^ - 1 > |p^ — p^| = y. The theorem shows that if this condition is

satisfied, then as uncertainty about the informativeness of the signals disappears the

difference between the posteriors of the two individuals will become neghgible. Notice

that condition (23) is symmetric and does not depend on i.

Intuitively, condition (23) is related to the beliefs of one individual on whether the

other individual will learn. As the amount of uncertainty concerning the conditional

distributions vanishes, we always have that lim„,^oo /?.'„ (p') = 0, so that each agent

believes that he will learn the value of with probability 1. Asymptotic agreement (or

lack thereof) depends on whether he also believes the other individual mil learn the

value of 9. When R{x,y) = 0, an individual who expects a limiting frequency of p^ in

the asymptotic distribution will still learn the true state when the limiting frequency is

p^. Therefore, individual 1, who is almost certain that the limiting frequency will be

p^, still believes that individual 2 will reach the same inference as himself. In contrast,

when R{x,y) ^ 0, individual 1 is still certain that Umiting frequency of signals will be

p^ and thus expects to learn himself. However, he understands that, when R {x, y) ^ 0,

an individual who expects a limiting frequency of p^ will fail to learn the true state

when limiting frequency happens to be p^ . Since he is almost certain that the limiting

frequency wll be fy" (or 1 — p^), he expects the other agent not to learn the truth and

thus he expects the disagreement between them to persist asymptotically.

The theorem exploits this result and the continuity of R to show that the individuals

attach probability arbitrarily close to 1 to the event that the asymptotic difference

between their beliefs will disappear when (23) holds, and they attach probability 1

to asymptotic disagreement when (23) fails to hold. Thus the behavior of asj^mptotic

beliefs as uncertainty vanishes "uniformly" are completely determined by condition (23),

a condition on the tail of /.
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When y > (i.e., when p^ ^ p^), condition (23) is a familiar condition in statistics.

Whether it is satisfied depends on whether / has rapidly-varying (thin) or regiilarly-

varying (thick) tails:

Definition 3 A density function f has regularly-varying tails if it has unbounded sup-

port and satisfies

Hm 4r^ = ^(^) e K
m-too j (m)

for any x > 0.

The condition in Definition 3 that H (x) G M is relatively weak, but nevertheless

has important implications. In particular, it implies that H{x) = x~" for a € (0, oo).

This follows from the fact that in the limit, the function H {) must be a solution to

the functional equation H{x)H[y) = H{xy), which is only possible if H{x) = x~" for

a G (0, oo).^^ Moreover, Seneta (1976) shows that the convergence in Definition 3 holds

locally uniformly, i.e., uniformly for x in any compact subset of (0, oo). This imphes that

if a density / has regularly-varying tails, then the assumptions imposed in Theorem 5

(in particular, the uniform convergence assumption) are satisfied. In fact, in this case,

R defined in (17) is given by

R{x, y)
.y,

and is everywhere continuous. As this expression suggests, densities with regularly-

varying tails behave approximately like power functions in the tails; indeed a density

f (x) with regularly-varjing tails can be written as f{x) = C{x)x"°' for some slowly-

varying function £ (with \m\n^^, C{rnx) /C {in) — 1). Many common distributions,

including the Pareto, log-normal, and t-distributions, have regularly-varying densities.

When / has regularly varying tails, R{x,y) > 0, and condition (23) cannot be satisfied.

We also define:

Definition 4 A density function f has rapidly-varying tails if it satisfies

fimx) ( if x>l
hm ^ip^ = .x-°° = 1 ./ X = 1

"-^°° ^("^)
1 oo if x<l

^^To see this, note that since hm„i_oc if{'nix)/f{rn)) = H (x) e R, we have

ui \ r f f{^T^"''y)\ y f Krnxy) f{jny)\ \„/ ^H [xy) = hm ,. . = hm -— = H [x) H (y)

.

- -> / ?n J '"-=c= V ,/ my f{m)J-in— oc

See de Haan (1970) or Feller (1971).
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for any x > 0.

As in Definition 3, the above convergence holds locally uniformly (uniformly in x

over any compact subset that excludes 1). Examples of densities with rapidly-varying

tails include the exponential and the normal densities. When / has rapidly varying tails

R{x,y) = {x/y)~°° = 0, and condition (23) is satisfied.

The next proposition formally states that under the assumptions that noise vanishes

uniformly and set p^ 7^ p^, whether agreement is continuous depends on whether the

family of subjective densities converging to "certainty" has regularly or rapidly-varying

tails:

Proposition 1 (Tail Properties and Asymptotic Disagreement Under Uni-

form Convergence) Suppose that the conditions in Theorem 5 are satisfied and that

p^ ^f. Then,

1. If f has regularly-varying tails, then agreement is continuous at certainty under

2. If f has rapidly-varying tails, then agreement is strongly discontinuous at certainty

under [Fl^].

Proof. Wlien / has regularly or rapidly varying tails, uniform convergence assump-

tion is satisfied, and the proposition follows from Definitions 3 and 4 and from Theorem

5.

Returning to the intuition above, Proposition 1 and the previous definitions make

it clear that the failure of asymptotic agreement, under the assumption that i?.^ [p]

converges to R uniformly, is related to disagreement between the two individuals about

limiting frequencies, i.e., p^ ^ p^, together with sufficiently thick tails of the subjective

probability distribution so that an individual who expects p^ should have sufficient un-

certainty when confronted with a limiting frequency of p^ . Along the lines of the intuition

given there, this is sufficient for both individuals to believe that they will learn the true

value of 6 themselves, but that the other individual will fail to do so. Rapidly-varying

tails imply that individuals become relatively certain of their model of the world and

thus when individual i observes a limiting frequency p close to, but different from p', he

will interpret this as being driven by sampling variation and attach a high probability
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to 9 = A. This will guarantee asymptotic agreement between the two individuals. In

contrast, with regularly-varying tails, even under the uniform convergence assumptions,

limiting frequencies different from p' will be interpreted not as sampling variation, but as

potential evidence for 9 = B, preventing asymptotic agreement. The following example

provides a simple illustration of part 1 of Proposition 1.

Example 2 Let / be the Pareto distribution and n^ = tt'^ = 1/2. The likelihood ratio

is

and the asymptotic probability of 6* = y4 is

^i fnf.\\ ipis)-p'

for all 777.. (These expressions hold in the limit in —> cx) under any / with regularly-

varying tails.) As illustrated in Figure 2, in this case ^J^jm i^ ^'^^^ monotone. To see the

magnitude of asymptotic disagreement, consider p{s) = ff. In that case, ^J^sm (pi^))

is approximately 1, and (pio m iP i^)) ^^ approximately y~^/ (x'" + y^°). Hence, both

individuals believe that the difference between their asymptotic posteriors will be

This asymptotic difference is increasing with the difference y = \p^ — p~\, which corre-

sponds to the difference in the individuals' views on which frequencies of signals are most

likely. It is also clear from this expression that this asymptotic difference will converge

to zero as y ^ (i.e., as p^ -^
fp-).

The last statement in the example is in fact generally true when noise vanishes

uniformly and R is continuous. This is explored in the next proposition.

Proposition 2 (Limits to Asymptotic Disagreement) In Theorem 5, in addition,

assume that R is continuous on the set D — {{x,y)
|

— 1 < 2: < 1, |7/| < y} for some

y > 0. Then for every e > and S > 0, there exist A > and m G (0,oo) such that

whenever \p^ — P'\ < A.

Pr'
f
lim W „ - 0I „

I

> e) < f5 (Vm > 7T7,, 7 = 1,2).
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Figure 2: lini„_oo 0n (^') ^*^i" Pareto distribution as a function of p (s) [a >,p' 3/4.

Proof. To prove this proposition, we modify the proof of Part 1 of Theorem 5

and use the notation in that proof. Since R is continuous on the compact set D and

R[x,Qi) = for each .x, there exists A > such tliat R{f?- +fP' — \,\f?-—p^\) < e"/4

whenever |p^ — p^| < A. Fix any such p^ and p^. Tlren, by the uniform conver-

gence assumption, there exists 77 > sucli that Rl^{p{s)) uniformly converges to

R {p (s) + jfP
— 1, |p (5) — j^l) on (p'' — ?7,p' + Tj) and

R{p{s)+jP-l,\p{s)-f\)<e"/2

for each p (s) in (p' — ry,p'' + ?/). The rest of the proof is identical to the proof of Part 1

in Theorem 5.

This proposition implies that in the case where noise vanishes uniformly and the

individuals are almost certain about the informativeness of signals, any significant dif-

ference in their asymptotic beliefs must be due to differences in their subjective densities

regarding the signal distribution—that is, \p^ — p~\ cannot be too small. In particular,

when p^ = p"-, we must have R{x,y) = 0, and thus, from Theorem 5, there will be

convergence to asymptotic agreement. Notably, however, the requirement that p^ = p^

is rather strong. For example. Corollary 2 established that under certainty there is

asymptotic agreement for all p\p^ > 1/2.

In closing this section, let us reiterate that the key assumption in Proposition 2 is that

i?^ (p) uniformly converges to a continuous limiting likelihood ratio R. In contrast, recall

that Theorem 3 establishes that a slight uncertainty may lead to substantial asymptotic

disagreement with nearly probability 1 even when p^ = p^ The crucial difference is that
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in Theorem 3 the hkehhood ratios converge to a continuous hmiting hkehhood function

pointwise, but not umfoTinly.

4 Generalizations

The previous section provided our main results in an environment with two states and

two signals. In this section, we show that the results from the previous two sections

generalize to an environment with K > 2 states and L > K signals. All the proofs for

this section are contained in the Appendix and to economize on space, we do not provide

the analog of Theorem 1

.

Suppose G 9, where = {^i, ..., .4^-} is a set containing K > 2 distinct elements.

We refer to a generic element of the set by Ak- Similarty, let St E {cii, ...,ai}, with

L > K signal values. As before, define s = {sj^j, and for each / = 1, ..., L, let

rvj (s) = #{t < n\st = ai]

be the number of times the signal Sj = ai out of first n signals. Once again, the

strong law of large numbers implies that, according to both individuals, for each / =

1,...,L, rn,i{s)/n almost surely converges to some Pi{s) e [0,1] with Y^i^iPiis) =

1. Define p{.s) G A (L) as the vector p{s) = {pi{s) , ...,pj^{s)), where A (L) =

p = {pi,. . . ,pl) 6 [0,
1]^"'

: ^,^1 pi = 1 [, and let the set S be

S = {s £ S : lim„_^oo ^n,/ [s) /n exists for each / = 1, ..., L} . (24)

{

With analogy to the two-state-two-signal model in Section 2, let tt). > be the prior

probabihty individual i assigns to ^ = .4/^, tt' = {n\, ...,tt\^), and pej, be tlie frequency

of observing signal s = a; when the true state is 9. ^^''llen players are certain about pe/s

as in usual models, immediate generalizations of Theorems 1 and 1 apply. With analogy

to before, we define Fg as the joint subjective probability distribution of conditional

frequencies p0 = {pg^i, ,Pe,L) according to individual ?'. Since our focus is learning

under uncertainty, we impose an assumption similar to Assumption 1.

Assumption 2 For each i and 9, the distribution Fg over A(L) has a continuous, non-

zero and finite density fl over A(L).

This assumption can be weakened along the lines discussed in Remark 2 above.
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We also define 0^, „ {s) = Pr* {6 = Ak
\
{sJjLo) for each k = 1, ,.., /C as the posterior

probabihty that 9 = Ak after observing the sequence of signals {sJ"^q, and

n—»oo

Given this structure, it is straightforward to generalize the results in Section 2. Let us

now define the transformation T^ : M^' —> R^~\ such that

TUx)=(jj-;k'e{l,...,K}\k

Here T^ (x) is taken as a column vector. This transformation will play a useful role in the

theorems and the proofs. In particular, this transformation will be applied to the vector

TT* of priors to determine the ratio of priors assigned the different states by individual i.

Let us also define the norm ||.t|| = max; |.x-;| for x = (xi, . .
.

, xl) G M^.

The next lemma generalizes Lemma 1 (proof omitted).

Lemma 2 Suppose Assumption 2 holds. Then for all s E S,

1

'^U(p('^))-
1 +

Our first theorem in this section parallels Theorem 2 and shows that under Assump-

tion 2 there will be lack of asymptotic learning, and under a relatively weak additional

condition, there will also asymptotic disagreement.

Theorem 6 (Generalized Lack of Asymptotic Learning and Agreement) Sup-

pose Assumption 2 holds for i — 1,2, then for each k — I, ..., K , and for each i = 1,2,

2. W (K^ {p{s)) - ^l^ {p{s))\ 7^ 0) = 1 wheneverW({Tk {n'yn {n')m{f^{p{s))

0) = and F^ = F| for each (9 G 9.

The additional condition in part 2 of Theorem 6, that Pr'HTk {TT^)-Tk {n^)yTk{f'{p{s)) =

0) = 0, plays the role of differences in priors in Theorem 2 (here " ' " denotes the trans-

pose of the vector in ciuestion). In particular, if this condition did not hold, then at some

p{s), the relative asymptotic likehhood of some states could be the same according to

two individuals with different priors and they would interpret at least some sequences of
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signals in a similar manner and achieve asymptotic agreement. It is important to note

that the condition that Pr'((Tfc {n^) - Tk {ir'^))'Tk{.f"'{p{s)) = 0) = is relatively weak

and holds generically—i.e., if it did not hold, a small perturbation of tt^ or tt^ would

restore it.^"* The Part 2 of Theorem 6 therefore implies that asymptotic disagreement

occurs generically.

We next define continuity and discontinuity of asymptotic agreement at certainty in

this more general case. A family of subjective probability distributions is again denoted

by {Fg.^}. Throughout {Fg^} converge to a Dirac distribution 5p^, where p^ G A(L),

and 5j,i is such that there is asymptotic agreement (that is, there is asymptotic agreement

when learning is under uncertainty). The corresponding asymptotic beliefs are denoted

by 0fc,oo,m and (pl^^,^, for /c = 1, ..., K and m G N.

Definition 5 Asymptotic agreement is continuous at certainty under family {Fg^}

if for all e > 0, for each k — 1, ..., K and for each i = 1,2,

hm Pr''-^" (|0U,m. - 4,o.,m\ < e) = 1-

m~->oo Mil
1 1 1

Asymptotic agreement is continuous at certainty at {p^,p'^) G A(L)'^ if it is con-

tinuous at certainty under all families {Fq^} converging to 5^^

.

Definition 6 Asymptotic agreement is strongly discontinuous at certainty under

family {Fg.^} if there exists e > such that

hm Pr''"(Koo,m-<oo,.J>^) = l

for each k = 1, ..., K and each i = 1,2. Asymptotic agreement is strongly discontinu-

ous at certainty at (p^.p'^) G A (L) ^
// asymptotic agreement is strongly discontinu-

ous at certainty under some family {Fg^^} converging to 5.pi

.

The next result generalizes Theorem 3:

"More formally, the set of solutions 5 = {{k\ k'''
, p) G A(L)2 : (2^ (tt') - Tk {n-)YTk{f(p)) = 0}

has Lebesgue measure 0. This is a consequence of the Preimage Theorem and Sard's Theorem in

differential topology (see, for example, Guillemin and Pollack, 1974, pp. 21 and 39). The Preimage

Theorem implies that if j/ is a regular value of a map f : X ^ Y, then f"^ (y) is a submanifold of X
with dimension equal to dimX — dimF. In our context, this implies that if is a regular value of the

map {Tk (tt^) -Tk (7r"))'Tfc(/'(p)), then the set S is a two dimensional submanifold of A(L)^ and thus

has Lebesgue measure 0. Sard's theorem implies that is generically a regular value.
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Theorem 7 (Generalized Strong Discontinuity of Asymptotic Agreement) As-

ymptotic agreement is strongly discontinuous at each {p^ ,p^) € A [Lf^

.

Towards generalizing Theorem 5, we now formally present the appropriate families

of probabiHty densities and introduce the necessary notation;

Assumption 3 For each 9 & Q and m G N, let the subjective density fg^ be defined by

fi^,ip) = c{i,e,m) f {m{p - p{i.e)))

where c {i, 9, m) = 1/ /pg^(^) / {m [p - p (?:, 9))) dp, p (?, 9) G A (L) with p (z, 9) y^ p {i, 9')

whenever 9 ^ 9'
, and f :M.^ —^M. is a positive, continuous probability density function

that satisfies the following conditions:

(i) lim^_,oomax|^.||^||>,j} / (,r) = 0,

(u)

R{x,y)^ lim ^^ (25)
m^oo f {my)

exists at all x,y, and

(Hi) convergence in (25) holds uniformly over a neighborhood of each [p (?', 9) — p [j, 9') ,p{i,9) — p (j, 6)

Writing
(f)\ ^ ^ (p (s)) = lim„^oo cpl „_„ (s) for the asymptotic posterior of individual

i with subjective density fg ^ , we are now ready to state the generalization of Theorem

5.

Theorem 8 (Generalized Asymptotic Agreement and Disagreement Under

Uniform Convergence) Under Assumption 3, the following are true:

1. Suppose that R {p {i, 9) — p (j, 9') ,p{i,9) — p (j, ^)) = for each distinct 9 and 9'

.

Then, asymptotic agreement is continuous under {i^^„,}.

2. Suppose that R (p {i. 9) - p [j, 9')
, p {i, 9) ~ p {j, ^)) 7^ for each distinct 9 and 9'.

Then, asymptotic agreement is strongly discontinuous under {-F(J,„}.
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These theorems therefore show that the results about lack of asymptotic learning and

asymptotic agreement derived in the previous section do not depend on the assumption

that there are only two states and binary signals. It is also straightforward to generahze

Propositions 2 and 1 to the case with multiple states and signals; we omit this to avoid

repetition.

We assumed both the number of signal values and states are finite. This assumption

can be dropped in the expense of introducing technical issues that are not central to our

focus here.

5 Concluding Remarks

The standard approach in game theory and economic modehng assumes that individu-

als have a "common prior," meaning that they have beliefs consistent with each other

regarding the game forms, institutions, and possible distributions of payoff-relevant pa-

rameters. This presumption is often justified by the argimient that sufficient common

experiences and observations, either through individual observations or transmission of

information from others, will eliminate disagreements, taking agents towards common

priors. This presumption receives support from a number of well-known theorems in

statistics, such as Savage (1954) and Blackwell and Dubins (1962).

Nevertheless, existing theorems apply to environments in which learning occurs un-

der certainty, that is, individuals are certain about the meaning of different signals.

Certainty is sufficient to ensure that payoff-relevant variables can be identified from lim-

iting frequencies of signals. In many situations, individuals are not only learning about

a payoff-relevant parameter but also about the interpretation of different signals, i.e.,

learning takes place under uncertainty. For example, many signals favoring a particular

interpretation might make individuals suspicious that the signals come from a biased

source. This may prevent full identification (in the standard sense of the term in econo-

metrics and statistics). In such situations, information will be useful to individuals but

may not lead to full learning.

This paper investigates the conditions under which learning under uncertainty will

take individuals towards common priors and asymptotic agreement. We consider an

environnrent in which two individuals with different priors observe the same infinite

sequence of signals informative about some underlying parameter. Learning is under
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uncertainty, however, because each individual has a non-degenerate subjective probabil-

ity distribution over the hkehhood of different signals given the values of the parameter.

When subjective probabihty distributions of both individuals have full support, they

will never agree, even after observing the same infinite sequence of signals.

Our main results provide conditions under which asymptotic agreement is fragile

or discontinuous at certainty (meaning that as the amount of uncertainty in the envi-

ronment diminishes, we remain awaj' from asymptotic agreement). We first show that

asymptotic agreement is discontinuous at certainty for every model. In particular, a van-

ishingly small amount of uncertainty about the signal distribution can guarantee that

both individuals attach probability arbitrarily close to 1 that they will asymptotically

disagree. Under additional strong continuity and uniform convergence assumptions,

we also characterize the conditions under which asymptotic agreement is continuous at

certainty. Even under these assumptions, asymptotic disagreement may prevail as the

amount of uncertainty vanishes, provided that the family of subjective distributions has

regularly-varying tails (such as for the Pareto, the log-normal or the t-distributions). In

contrast, with rapidly-varying tails (such as the normal and the exponential distribu-

tions), convergence to certainty leads to asymptotic agreement.

Lack of common beliefs and common priors has important implications for economic

behavior in a range of circumstances. The type of learning outlined in this paper interacts

with economic behavior in various different situations. The companion paper, Acemoglu,

Chernozhukov and Yildiz (2008), ihustrates the influence of learning under uncertainty

and lack of asymptotic agreement on games of coordination, games of common interest,

bargaining, asset trading and games of communication.
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6 Appendix: Omitted Proofs

Proof of Lemma 1. Write

Pr'' {rn\9 = A)

jlv'"{\-pY-'-fB{i-v)dp

?)-"-'- fA{'p)dp

j„'p-"(l-p)"-'-"/B(l-p)rip

_ Jo'p'-"(l-p)"-'-"dp

~
Jo'p'"(l-p)"-^'"/4(p)rfp

Jo'p'''(l-p)"-'"rfp

E^ifBJl ~ p)\rn]

E^[fA{p)K]

Here, the first equality is obtained by dividing the numerator and the denominator by the

same term. The resulting expression on the numerator is the conditional expectation of

/b (1 — p) given r„ under the flat (Lebesgue) prior on p and the Bernoulli distribution on

{st}(Lo- Denoting this by E'^[/b(1 —p)\r„]: and the denominator, which is similarly defined as

the conditional expectation of Ja (p), by E'^[/.4(p)|r„], we obtain the last equality. By Doob's

consistency theorem for Bayesian posterior expectation of the parameter, as r„ —» p, we have

that E^[/s(l -p)|r„,] -^ /b(1 - p) and E'M/4(p)|r„] -- /^(p) (see, e.g., Doob, 1949, Ghosh

and Ramamoorthi, 2003, Theorem 1.3.2). This establishes

Pr'(r,,,| B)

Pr'- irn\0 = A)

as defined in (4). Equation (3) then follows from (2).

R' (P)

Proof of Theorem 4. For each ?n S> 1, let

xe/\ ifpe [p',-A/2,p^ + A/2]

s^ if p < 1 - p^, - A/2,

e otherwise,

where 9' ^ 9, e = \ =^ 1/m, p\ = pa + A, p^ ^ Pb - A, p\ = pa - X, p% = Pb + A, and

xe = 1 — e [pg,
— A/2) - e^ (l - p^, - A/2) e (0, 1). Here, xg is close to 1 for large m. Then,

f
l/e2 ifp<l-p'g-A/2,

i?''™ (p) = <^

XBJe^

1

e^jXA

f 1-Pb-A/2<p<1-p's + A/2,

fl -
p'b + A/2 < p < p\ - A/2,

fp^4 - A/2 <p<p:4 + A/2,

if p > p:4 + A/2,

which is clearly decreasing when m is large. For e = 0, we have

oo if p < 1 - ?5)5 + A/2,

/?.'•'"
(p) - <( I ifl -

p'e + A/2 <p<p'4- A/2,

if p > p'4 - A/2,
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and hence
ifp<l-p'B + A/2,

0r(p)-<( ^'- ifi-p^B+V2<p<p:4-A/2,
1 if> > p\ - A/2.

Notice that when p G p2j - \l2,ii\ + A/2] , we have p <v\- A/2, so that (^^ [p) ^ 1 and

V^'" (P) - </'^"' (P)| = 1-vri. Similarly, when ^ £ [l - p^ - A/2,pij + A/2],

we have <p'^ {p) ^ and (/>^"' (/j) = tt^ so that
k;!'io"' (p) (p) = TT . In order to complete

the proof of theorem, we then pick Z = min {tt", 1 — tt^
} /2. In that case,

lim Pr^-- (10^- {p) - 0^'" {p)\ >Z)^ hm Pr^'™ (p e [l - p^j - A/2,p)j + A/2]) = I-tt^ > 0,
771—>00 ' 777—<0O ^ '" 'J/

and

lim Pr^.- (|<^Ji- (p) - </,^- (p)| > Z) = lim Pr^-- (p € [p?i
- A/2,p2 + A/2]) = tt^ > 0,

completing the proof.

Proof of Theorem 6.

(Proof of Parti) This part immediatel)^ follows from Lemma 2, as each fr^ifAy (p(s)) is

positive, and TT%fAk {p{s)) is finite.

(Proof of Pai't 2) Assmiie Fg = Fg for each 6' G 0. Then, bj' Lemma 2, 4>\ooip)
~~

4>k,ooiP) = if and only if (7^ (tt^) - Tk {n~))' Tk [{feiP))eeQ) "" ^- '^^^^ ^^^^^^ inequality has

probability under both probability measures Pr'^ and Pr" by hypothesis.

Proof of Theorem 7. Pick sequences jd^"' —> pg and e > such that

for all 9,9' (including 9 = 9'). For each {9,i), define

1,777 2,771.

'e - Pf,' > e/r

Dy" = {peA{L):3 P-Pe < e/m}
,

which will be the set of likely frequencies at state 6 according to i. Notice that Dl'^TiD^g,'^ ^
iff e = 61' andi = ?:'. Define

/ff.77,,(P)
4,777, ifpel)(,

1/m otherwise.

where x\ ^ is normalized so that /^ ^ is a probability density function. By construction of se-

quences /g ^ and Pg™', Fl ^^
—

> 5^. for each (6*, i). We will show that agreement is discontinuous

under {FlJ. Now

</'L.,0,m (P) ~

if p e Dg"'' for some 9 and ^J^j m. (p) — ^' otherwise. Note that
<i>^oo,e,m. (p) ^ 1 if P S Z?g"\

Moreover, since the sets D^'™' are disjoint (as we have seen above), 4>'oo,m.{p) — '"'"' when

p G Dg"*. Hence, there exist m such that for any m > m and any p G £?'"' = [jgDg"^,

||<?^'oo,777, (p)-'^io,m(p)|| >£
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where e = minj,^ [l - tt^J /2. But for each 6, Pr'-'" ip e Dg'"'|0j > 1 - 1/m, showing that

Pr'-"' (p G D''"') > 1 - 1/m. Therefore,

,hm Pr''"'(||(^'^,„,-C,,„,||>c) = l.

Proof of Theorem 8. Our proof utihzes the following two lemmas.

Lemma A.

lim
fc.OO.TTA (P)

1

l + E;e'^/c5^^(p-p(i,AfcO,p-p(i,A,))

Proof. By condition (i), Iimm.-,oo c {i, Ak, rn) — 1 for each i and k. Hence, for every distinct

k and k',

m^oo
p^^ [p) m->oo c (z, A;,, m) m-^oo / [m [p-p{l,Ak)))

Then, Lemma A follows from Lemma 2.

Lemma B. For any e > and h > 0, there exists m such that for each in > ifi, k < K,

and each p{s) with \\p{s) — p{i,Ai,)\\ < h/m,

< (26)

Proof. Since, by hypothesis, R. is continuous at each (p (z, 9) — p (j, 9') ,p (?', 9) — p {j, 9)),

by Lemma A, there exists h' > 0, such that

hm ^1,,^_,„ {p (s)) - lim (/>1,,^ ,„ {p (i, Afc)) < i/2 (27)
m.—>oo ' ' rn—too '

and by condition (iii), there exists m > h/h! such that

4,oo,m (P (*)) - lim 4,^,„, [p (s)) < £/2. (28)
' ' m—>oo

holds uniformly in \\p{s) — p{i,Ak)\\ < h' . The inequahties in (27) and (28) then imply (26).

Lemma C. Imw^oo (4,oo,m (P (i, -4fc)) - <^i_oo,m (?5 (^. ^fc))) = iff .R (p (i, A^) - p (j, ^/t') ,P (i, A^) - p {j

for each k' ^ k.

Proof. Proof. Since R{p[i,Ak) — p (i, ^4^/) ,0) = for each k' ^ k (by condition (i)).

Lemma A implies that limTO_,oo<)^fc,oo,-m(p(^'^fc)) = 1- Hence, linim^oo (?^fc,co,m (P(^^A-)) "
<?^fc,oo,m (P(^'^fc))

if and only if limm^oo <?^i,oo,m (p(i,^fc)) = L Since each ratio 7r|,,/7r'[ is positive, by Lemma
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A, the latter holds if only if R {p (z, Ak) - p {j, Ai-,) ,p{i, Ak) - p {j, Ak)) = for each k' y^ k.

m

(Proof of Part 1) Fix e > and S > 0. We will find m e N such that

Pr'' (||<^L,n,.(s) - cl>l,m (s)|| >e)<5 {^m>m,i = 1,2).

Fix any i and k. Since each 7r-^//7r;[ is finite, by Lemma 2, there exists e' > 0, such that

<Pk,oo,m (pis)) > 1 - e whenever f\^^ {p{s))/f\^ {p{s)) < e' holds for every k' 7^ k. Now, by

(i), there exists ho^k > 0, such that

Fv''i\\p{s)-p{i,Ak)\\<ho,k/m\9 = Ak)=
/ f (x) dx > {1 - S)

.

Let

Qk,rr,. = {peA(L): \\p - p (i, Ak)
II
< ho,k/m}

and K. = min||j,||</,g
^, f {x) > 0. By (i), there exists hijc > such that, whenever ||2;|| > hj^k,

f (x) < €'k/2. There exists a sufficiently large constant 7nifc such that for any m > mi^fc,

p{s) e Qk,m., and any k' 7^ k, we have ||p(s) — p{i,Ak')\\ > hi^k/m, and

f{m{p{s)-p{i,Ak,))) £Vc 1 ^ e^

/(777,(p(s)-p(J,yV))) 2 k,
2-

Moreover, since lim,„.->ooC (i, ^,777.) — 1 for each i and 6, there exists 7712, fc > 'irii^k such that

c(2, Afc/,77i) /c(i, Afc,7Ti) < 2 for every k' ^ k and m > 7772, fc- This implies

f\,{p{s))irA,{p{s))<e',

establishing that

^k^oo.m {p{s))>l-e. (29)

Now, for j 7^ 7, assume that ^ (p {i, 0) — p (j, 6*') ,p{i,0) — p (j, 9)) = for each distinct 9

and 9'. Then, by Lemma A, limm-*oo 0^ 00 m (p(^^fc)) = li and hence by Lemma B, there

exists m^^k > Tn2,k such that for each 771 > ma^/t, p [s) e Qkjn,

<oo,^,(/>(s))>l-e- (30)

Notice that when (29) and (30) hold, we have ||<;i'L,,n. (*') ~ '^L.jn, (-5)11 < £• Then, setting

771 — max/j77i4 fc, we obtain the desired inequality for each m > in:

Pr' (||</.^,^, is) - 0';,,,„ {s)\\ <e) = Yl P^-' (11'^-.- (^) - '^'So.n (s)|| < e|e - ^0 Pr'' (0 = A^)

k<K

> Yl p^''
(^ (^^) ^ ^'^.-1^ ^ ^^) p^"' (^ = ^^)

k<K

fc</C

= 1-6.
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(Proof of Part 2) Assume that R (p {i, 6) - p {j, 9') ,p{i, 6) - p {j, 9)) ^ for each dis-

tinct 9 and 9'
. We will find e > such that for each (5 > 0, there exists m G N such that

P^' {\\<t>L,mis) - <Plo.rr,.is)\\ > e) >l-S (Vm > 771, Z = 1, 2).

Now, since each 7rj,,/7r-^ is positive. Lemma A implies that hmm^oo
<?^fc ,30 m (^('^'^fc)) < ^ ^^^

each k. Let

Then, by Part 1, for each k, there exists 7712, /t
such that for every m > 77i2,fc and p{s) G Qk,m^

we have 0^00 iPi^)) > 1 — £ By Lemma B, there also exists 7715,/^ > 77T.2,fc such that for every

777 > 7775,^. and p (s) e Qfc.m,

-^ioo.m (P (5)) < J™, -^ioo.m (P ('. ^k)) + £ < 1 - 2e < 0-^,^ (p (s)) - e.

This implies that lle/i^.m ipi^)) " <^So,m (p('5'))|| > ^- Setting 771 = maxk'm^^k and changing

\\^lo,m (s) - (Plo,^ (5)11 < e at the end of the proof of Part 1 to ||0^_„. (s) - ^^^„ (s)|| > e, we

obtain the desired inequality.
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