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Abstract

The Fudenberg and Maskin (1986) folk theorem for discounted re-

peated games assumes that the set of feasible payoffs is full dimensional.

We obtain the same conclusion using a weaker condition. This condi-

tion is that no pair of players has equivalent von Neumann-Morgenstern

utilities over outcomes. We term this condition NEU "non-equivalent

utilities". The condition is weak, easily interpreted, and also almost nec-

essary for the result.

Key Words: repeated game, folk theorem, necessary and sufficient condition, non-

equivalent utilities

'This paper combines "The Folk Theorem for Discounted Repeated Games: A New Condition"

by Abreu and Dutta and "Folk Theorems: Two-Dimensionality is (Almost) Enough" by Smith,

which was the third chapter of his 1991 PhD dissertation at the University of Chicago. The pair

of papers independently introduced two equivalent conditions, here replaced by a third equivalent

condition which is perhaps the most transparent. Abreu and Dutta covered mixed strategies and

established the necessity of their condition. Smith confined attention to pure strategies and extended

his analysis to finitely repeated games and overlapping generation games; Smith ( 1993a) and ( 1993b)

pursue the latter extensions. The present paper follows Abreu and Dutta (1991) closely. We would

like to thank David Pearce, Ennio Stacchetti, Martin Hellwig, and two anonymous referees for

their comments. Smith is grateful for financial assistance from the Social Sciences and Humanities

Research Council of Canada.
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1. INTRODUCTION

We are concerned here with perfect "folk theorems" for infinitely repeated games
with complete information. Folk theorems assert that any feasible and individually

rational payoff vector of the stage game is a (subgame perfect) equilibrium payoff in

the associated infinitely repeated game with little or no discounting (where payoff

streams are evaluated as average discounted or average values respectively). It is

obvious that feasibility and individual rationality are necessary conditions for a payoff

vector to be an equilibrium payoff. The surprising content of the folk theorems is

that these conditions are also (almost) sufficient.

Perhaps the first folk theorem type result is due to Friedman (1971) who showed

that any feasible payoff which Pareto dominates a Nash equilibrium payoff of the

stage game will be an equilibrium payoff in the associated repeated game with suf-

ficiently patient players. This kind of result is sometimes termed a "Nash threats"

folk theorem, a reference to its method of proof. For the more permissive kinds of

folk theorems considered here the seminal results are those of Aumann and Shapley

(1976) and Rubinstein (1977, 1979). These authors assume that payoff streams are

undiscounted. 1

Fudenberg and Maskin (1986) establish an analogous result for discounted re-

peated games as the discount factor goes to 1. Their result uses techniques of proof

rather different from those used by Aumann-Shapley and Rubinstein, respectively.

See their paper for an insightful discussion of this point, and quite generally for

more by way of background. It is a key reference for subsequent work in this area,

including our own.

For the two-player case, the result of Fudenberg and Maskin (1986) is a complete

if and only if characterization (modulo the requirement of strict rather than weak

individual rationality, which we retain in this note) and does not employ additional

conditions. For three or more players Fudenberg and Maskin introduced a full di-

mensionality condition: The convex hull F, of the set of feasible payoff vectors of

the stage game must have dimension n (where n is the number of players) , or equiv-

alently a non-empty interior. This condition has been widely adopted in proving

folk theorems for related environments such as finitely repeated games (Benoit and

Krishna (1985)), and overlapping generations games (Kandori (1992), Smith (1992)).

Full dimensionality is a sufficient condition. Fudenberg and Maskin present an

example of a three-player stage game in which the conclusion of the folk theorem is

false. In this example all players receive the same payoffs in all contingencies; the

(convex hull of the) set of feasible payoffs is one-dimensional. This example violates

full dimensionality in a rather extreme way. Less extreme violations may also lead to

difficulties as an example by Benoit and Krishna (1985) shows.2
In their three-player

example two of the players receive identical payoffs.

'Aumann and Shapley (1976) employ the limit of means criterion and Rubinstein (1977) con-

siders both the limit of means and the overtaking criterion.

2Their analysis was for the finitely repeated case, but the example works equally well in the

infinitely repeated setting.



The reason why these examples work is that the folk theorem argument entails

non-deviating players punishing a deviant player, and furthermore, since we require

perfection, also entails threatening a player involved in punishing a deviant with a

lower payoff stream for deviating from his/her role in the initial deviant's punish-

ment. This logic obviously breaks down when a pair of players have identical payoffs.3

The most optimistic conjecture then is that, except in the special case in which a

pair of players have identical payoffs, the conclusion of the folk theorem is true. But

this guess cannot possibly be exactly right since positive affine transformations of a

player's payoffs do not alter the strategic structure of a game. We must at the very

least exclude equivalent von Neumann-Morgenstern utility functions over outcomes

that is, those which yield identical orderings of lotteries over outcomes. Players i

and j have equivalent payoffs if by changing the origin and scale of player i's util-

ity function it may be made identical to player j's; viewed geometrically, equivalent

payoffs lie on a straight line with positive slope.

In this form the conjecture is in fact correct; the simple condition that no pair

of players have equivalent utility functions is sufficient. We term this requirement

non-equivalent utilities (NEU). This condition is easy to understand, and, of course,

weaker than full dimensionality. Furthermore, it is a "tight" condition in the sense

that it is also often necessary. While one can imagine contexts in which full dimen-

sionality is violated but NEU not, the primary advantage of NEU is conceptual: the

condition is simple, minimal and clarifies the essential elements of the folk theorem

proof.

This paper is organized as follows. Section 2 presents some notation and prelimi-

nary results about normal form (stage) games. Section 3 contains the main theorems

for infinitely repeated games, and section 4 concludes.

2. PRELIMINARIES

2.1 The Stage Game

We consider a finite n-player game in normal form G = (.4,, 7T,;? = l,...,n)

where A,- is player i's finite set of actions, and A = x"=1 Ai. Player i's payoff function

is 7T,- : A —> R. The game G satisfies NEU if for i and j, there do not exist scalars

c, d where d > such that 717(a) = c + dnj(a) for all a G A.

Let Mi be the set of player i's mixed strategies, and let M = x"=1 M,. Abus-

ing notation, we write 7r,(/x) for i's expected payoff under the mixed strategy /j, =
(jii,...,Hn) £ M. For any n-element vector v = (ui,...,v„), the corresponding

(n — l)-element vector with element v
{ missing is denoted v_;. Let 7r* (//_,) =

max,,; 7T;(a;,/x_,-) be player i's best response payoff against the mixed profile /i_,.

Denote by m 1 = (m\, . . . ,m'n ) e M a mixed strategy profile which satisfies m'_
t
€

argmin
/J_ j

7r*(^_,) and m\ e argmax^.Tr^/i^mL,). In words, ml,- is an (n — l)-profile

3In the context of Nash equilibrium and its refinements, only single person deviations need be
deterred. Hence, the focus on pairs (an original deviant and a single subsequent deviant) of players

as opposed to coalitions of players.



of mixed strategies which minimax player i, and m\ is a best response for i when
being minimaxed. We have adopted the normalization 7T,(m') = for all i. Let F
= co{7r(//) : fi e M}, so that the set of feasible and (strictly) individually rational

payoffs is F* = {w 6 F : w{ > for all i}.

2.2 An Equivalence Result

NEU has two quite powerful and equivalent representations that are developed in

the lemmas below. For j ^ i, let F,j, denote the projection of F on the i-j coordinate

plane and dimF.j the dimension of Fij.

Definition The set F satisfies the projection condition if for all players i, either

(a) dimF.-fc = 2 for all k ^ i, or (b) dimF,j = 1 for some j ^ i and dimF^ = 2 for

all k ^ i,j. Furthermore, in the latter case, F^ is a line with negative slope.

Lemma 1 Suppose that NEU holds and that no player is indifferent over all action

profiles. Then F satisfies the projection condition.

Proof: Since no player is indifferent over all possible action profiles, it follows that

diva F^ > 1 for all i ^ j. Now suppose the dimF.y = dimi*
1

,* = 1 for some j ^ k.

NEU applied to the payoffs of players i and j (and similarly players i and k) implies

that the payoffs are perfectly negatively correlated. This in turn implies that the

payoffs of players j and k are perfectly positively correlated. That is, players j and

k have equivalent payoffs, in violation of NEU. <0

Definition The vectors {v 1
, . . . ,v

n
} satisfy payoff asymmetry if v\ < v\ Vi,j,i ^ j.

Lemma 2 Suppose that F satisfies the projection condition. Then there exist feasi-

ble payoff vectors which satisfy payoff asymmetry.

Proof: By Lemma 1, for each pair of players j and k, there exist some feasible payoff

vectors v^
k and v^ such that vj > Vj

3 and vk
3 > v]. . For each player i, order the

n(n — 1) payoff vectors v]k (Vj ^ k) in increasing size (break ties arbitrarily) from

the point of view of player i, and assign these ordered vectors strictly decreasing

weights 6h,h = 1,2, .. . ,n(n — 1), summing to one. Let v' be the resulting convex

combination of the payoff vectors vjk . Note that in defining the u"s we use the same

weights 6h for all i. Then by construction, v\ < vj for all i ^ j, establishing payoff

asymmetry. ^
Finally, it is straightforward to see that the existence of asymmetric payoffs im-

plies NEU (and rules out universal indifference for any player). In other words, NEU,
the projection condition, and the existence of asymmetric payoffs are equivalent as-

sumptions (absent universal indifference).



3. THE MAIN THEOREMS

We will analyze the infinitely repeated game with discounting that is associated

with the stage game G. We assume perfect monitoring; that is each player can

condition his action in period t on the past actions of all players. In addition, we

permit public randomization. That is, in every period players publicly observe the

realization of an exogenous continuous random variable and can condition on its

outcome. This assumption can be made without loss of generality in the infinitely

repeated game; a result due to Fudenberg and Maskin (1991) shows explicitly how

public randomization can be replaced by "time-averaging" (see also, Sorin (1986)).

Denote by o, = (a,i, . . . ,a«, . . .) a (behavior) strategy for player i and by 7r,«(a) his

expected payoff in period t given the strategy profile a. Each player i's objective

function is his infinite-horizon average expected discounted payoff (1 — 5) £2° ^t7r
«t(a )

under the (common) discount factor 5. Let V(5) denote the set of subgame perfect

equilibrium payoffs.

3.1 Sufficient Conditions for a Folk Theorem

We will establish here that NEU is sufficient for the folk theorem, and later on

that for a wide class of games, it is also a necessary condition for the folk theorem

to hold.

Theorem 1 Under NEU, any (strictly) individually rational payoff in the stage

game is a subgame perfect equilibrium payoff of the infinitely repeated game when

players are sufficiently patient. That is Vu G F*,

3<5 < 1 so that S <E [6 , 1) =* u € V(S).

Proof: For expositional simplicity, we will first prove the theorem under the as-

sumption that mixed strategies are observable; the argument is then extended to the

unobservable mixed strategy case.

Step 1: Observable Mixed Strategies

If F* = 0, then the theorem is trivially true. Now suppose F* ^ 0. This

implies that each player has distinct payoffs. Hence, by NEU and Lemma 2, there

exist payoff vectors u 1
, . .

.
, v

n which satisfy payoff asymmetry. Fix u 6 F*. We will

show that in fact there exist vectors re
1

, . . . ,xn such that Vz,

(1)

(2)

x' »0 strict individual rationality

x\ < Ui target payoff domination

and Vt',j,i# J,

x\ < x\ payoff asymmetry (3)



To see this,
4

let w* denote a feasible payoff vector which yields player i his lowest

payoff in the game: w\ = min{t;, : (u_;,u,) G F}. Now define

x* = /W + fov* + P3u

where (5\ = e(l — r?),/?2 = V£ , and /?3 = (1
— £) are convexifying weights which are

independent of i. By the definition of w* and v\ it follows that if /?2 is strictly positive

(i.e., e, J] > 0), then x • < xf for all i ^ j (payoff asymmetry). For small enough e > 0,

we must have x- > since itj > (strict individual rationality). Finally, for small

enough 77 > 0, we must have x\ < u,-, even if v\ > u,-.
5 '6

Strategies

Let a (respectively, a') denote the publicly randomized action vector whose stage

game payoff is u (respectively, x %

). Further, let v' be the payoff vector associated

with m', i.e. minimaxing player i, and recall from section 2.1 that u) = 0.

The strategy vector that will generate the target payoff u as an equilibrium payoff

(for appropriate choice of parameters) can be defined in Markov strategy terminology

as follows:

1. When in "state" u, play a. If the observed (mixed) action vector a' satisfies

a'
{
7^ a,- and a'_

:
- = a_;, go to "state" v'. Else, stay in "state" u.

2. When in "state" v', play m'. If the observed action vector a' satisfies a' ^ m'

and a'_j = m]_j, go to "state" v*. Else, with probability q stay in "state" v\

while with probability (1 — q) proceed to "state" x'.

3. When in state x :

,
play a'. If the observed action vector a' satisfies a'j 7^ a'j but

a'_j = a'_j, go to "state" y?. Else, stay in "state" x'.

In words, the strategy says: Start with a and continue to play this action till

the first single-player deviation (say by player i). Then, minimax player i for one

period (with probability one) and (in the event of no observed deviation) continue

the minimaxing with probability q. With the remaining probability, terminate the

minimaxing and play a' until further deviations. Treat players symmetrically and

subject every single player deviation to this (stochastic) punishment schedule.

4This construction together with Lemma 2 has a nice geometric intuition. Consider u as a point

in F* C K". Then a simple choice of x' is the point in F* with the smallest i coordinate on the

e-sphere Be (u) about u, for small enough e > 0. Indeed, Lemma 1 implies that the projection of

B£ {u) n F* onto any two players' coordinate plane is either an ellipse or a line with negative slope.

In the first case, x* and x k
lie at different locations on the ellipse, while in the second they reside

at opposite ends of a line segment.
5A referee's comments helped clarify the specification of the /?,'s above.
6We remark in passing that there is a minor error in the construction of the vectors x ,

.

.
. , x"

in Fudenberg and Maskin (1986): They implicitly assume (as pointed out to us by Peter Sorensen

of MIT) that because u £ F*, it does not lie on the lower boundary of F. This is false. One way

to patch up their construction is suggested by a closer reading of footnote 4.



Choice of Parameter
The only parameter in the above strategy is the probability q. Let 6, be the best

feasible payoff for player i. Choose q to satisfy:

bi < l^-x\ (4)\-q

Since rrj > by equation (1), we can find such q € (0, 1).

Verification of Equilibrium

We show that no one-shot deviation by any player from any state is profitable.

Hence the strategy proposed is unimprovable and consequently a subgame perfect

equilibrium.

State v*: Player i's "lifetime" (discounted average) payoff in state v\ denoted

Li(v'), satisfies

Litf) = S (qLiivj) + (1 - q)x])

so that

Ate') = f^*- > 0. (5)

Note that L)(v') —> x\, as 6 f 1- Player i will not deviate in state v' since the

maximal payoff to one-shot deviation is SLi(v
l

). Player j ^ i will not deviate for

high 5, since his maximal payoffs are bounded by (1 — S)bj + 8Lj(y?), which is less

than x^, by equation (3).

State x 1
'. From the definitions it is clear that the difference in the lifetime payoffs

to one-shot deviation and conformity is bounded above by

[{I - 5)bi + SL^))- x\ = {I - 5) (
l + 5-6q\

(6)

where we have substituted from (5). An immediate implication of inequality (4)

defining q is that (6) is strictly negative for all 5 close to 1. Since x x
- > x-j, j ^ i, it

is immediate that players j ^ i do not have a profitable one-shot deviation either.

State u: Since, by target payoff domination (2), u, > x\, the arguments above also

imply that (1 — <5)6, + 8Li{xf) < Ui, for high 5, and hence the action at state u is

unimprovable as well.

In sum, for high <5, the posited strategy is unimprovable after all histories, and

hence is a subgame perfect equilibrium.

Step 2: Unobservable Mixed Strategies

If the minimax strategy m' requires that some punishers play nontrivial mixed

strategies, then it is necessary to induce minimaxing players j ^ i to play pure

strategies in the support of their mixed strategies raj with the appropriate probabil-

ities. (Deviations outside the support of m} are easily deterred by directly punishing



player j.) As noted by Fudenberg and Maskin (1986), the only way to do so is to

make them indifferent over the pure strategies in the support.

If it is the case that dim(F.fc) = 1 for some k ^ i, then by Lemma 1, dim(F.j) = 2,

for j 7^ i, k. Furthermore, F,/. is a straight line with negative slope. So m* induces

a constant-sum game between i and k, and player fc's mixed strategy m\. is best

response to m'_k . We thus need only worry about deviations by players j ^ i, k.

Such players will be made indifferent across the pure strategies that constitute m'

by modifying the strategy when it "escapes" the minimax state v*; the modification is

to make subsequent play appropriately sensitive to player j's observed action choice

in state v'.

Let c'J be a stage game payoff (with associated action vector a li) such that c'f ^ x'-

but c\
3 = x\. Further, c- > rrj. (Note that one such vector is specified for every

player j ^ i for whom dimF,j = 2; indeed for that reason such a vector exists). For

simplicity, from now on u
j ^ i" will refer to all players j ^ i such that dim Fij = 2.

Modified Strategies

The play in states u and x* remain unchanged. Part 2 of the old definition is

replaced by 2' and we have a new part 4:

2'. When in "state" v', play m'. If the observed action vector is a', then with

probability p,J (a'), play goes to state cx\j ^ i; with probability q it stays in

state v', and with remaining probability, 1 — q — £,y,p'^(a;), play proceeds to

state x x

. (Notice that the probability p^(a'j) only depends on player j's action.

Furthermore, if there is a player k such that dimi7^ = 1, he plays m'k .)

4. When in "state" ctJ
,
play a,J

. If the observed action vector a' satisfies a'j ^ a,

but a'_j = a_j, then go to state yj. Else, go back to state c,J
.

Choice of Parameters

The probabilities p
lj
{aj) satisfy, for all aj,a'j in the support of mj,

(1 - S^jiaj, ml,.) - ^(aj, ml,-)] = 5^ [a]) - p'^^Wf - x)} (7)

where 7Tj(aj,m t

_j) is the expected payoff of player j when he plays a, and the other

players' mixed action choice is m\'
-. Since c

l

j ^ xj, (7) evidently has a solution

whenever 5 is high. The solution is not unique; if, say, cj > x*j, one solution is to

set p^ia'j) = for a"! G &vgmaxaj Trj(aj,m'_j) and then define

ij(
v

(
l ~ s \ /

,

7rj( flj.
m-j)- 7rj(aJ' m -j)

Verification of Equilibrium

State v': Since c
1

/ = x\, for all j ^ i, it is easy to see from (5) that player Vs lifetime

payoffs are completely unchanged. Likewise, he has no profitable deviation. The



same is true for any player k ^ i for whom dim Fik = 1 and who consequently plays

a best response in playing m'k .

For players j ^ i, the lifetime payoff to any action a,j is

(l-6)TT
j
(a

j
,mi_

j
)+6\qL

J
(v

i)+ £ 5>*(at)mi(a fc
)e? + p

ij
(a

j)c
i

f
I kjiij a k

+ 1-9- E &*(«*)«*(«*) -py («j) X
J (

g)

Everything in (8), except the first term and the two others involving p
,J'(aj), is

independent of the choice ay. Hence, the difference in lifetime payoffs, from the

choices ay and a'-, is zero iff equation (7) is satisfied. In that event, player j is

indifferent between his action choices. In particular, a best response is to play the

minimaxing strategy ml-

.

State c'-': The arguments that no one-shot deviation is profitable in state c'-
7 is

identical to the arguments that have established that no one-shot deviation is prof-

itable from state x'. (Note that these last arguments do not change at all since no

mixed strategies are played in state xf

). <0>

3.2 Necessary Conditions for the Folk Theorem

We turn now to the necessity of NEU. Let /,• = min{vi
|
v € F and Vj >

for all j} be player f's worst payoff in the set of weakly individually rational payoff

vectors. We will refer to /,• as player i's minimal attainable payoff.
7 The necessity

of payoff asymmetry is shown for games in which no two (maximizing) players can

be simultaneously held at or below their minimal attainable payoff. In stage games

where every player's minimal attainable payoff is indeed his minimax payoff (/, = 0),

the condition stated below (which uses the term minimuing) is equivalent to the

restriction that no pair of players can be simultaneously minimaxed.8

Say that a subset of players S C {1, . .
.

, n} can be simultaneously minimized if

there exists a strategy profile, fi such that 7r*(^,) < /,- for all i € S.

Definition G satisfies no simultaneous minimizing [NSM] if no two players of G
can be simultaneously minimized.

Under this assumption we obtain a complete characterization.

Theorem 2 Suppose NSM obtains. Then NEU is necessary for the conclusion of

the folk theorem.

7Note how /, differs from w\.
8A game in which the minimally attainable payoff is not the minimax payoff for every player is

the two-player game specified by the following payoffs: co[(0, -1), (1, 0), (2, 1)] with (0, —1) a payoff

at which player 1 is minimaxed and (1,0) a payoff where player 2 is minimaxed.



Proof: To establish necessity, we exhibit feasible payoff vectors x 1
, x2

, .

.

. , xn such

that for all i ^ j, x\ < xj, so that NEU is satisfied by our equivalence result.

Since the conclusion of the folk theorem is valid, V(S) ^ for sufficiently high

S. Denote by x* (5) an equilibrium payoff vector which yields player i his lowest

subgame perfect equilibrium payoff. By adapting the argument of Abreu, Pearce

and Stacchetti (1990), it can easily be shown that x l

(8) exists;
9 denote by a' an

equilibrium strategy profile that generates x'(S). By the folk theorem hypothesis,

x\(5) ->/,-, as 6 -> 1. By playing his myopic best response in period one and

conforming thereafter, i can get at least (1 — <5)tt*(71 ;(<$)) + 5x\(5), where 7' (5) is the

first period strategy vector in the play of a' . Hence, x\ (6) > (1— 5)
/K*(j i

_ i
(8))+8x i

i (5),

or equivalently x](8) > 7T*(7l,(<5)). It then follows that along any sequence 5'm t 1,

for which lim7l,-(5|n ) exists, 7r*(lim7l,(5|n )) < /,-.

By definition, xi
j {5)

< x)(5) for all i, j. Since x^S) > (1 - 5)^(^(6)) + Sxj
j {5),

\ix l

j(5) = xJ

j (5)
then Xj(S) > TTj(jlj{S)). We claim now that there is 6 < 1 such that

%j{§.) < x)(§.) for all j ^ i. A contradiction to this claim implies the existence of a

sequence 8m —> 1 and fixed indices j ^ i such that

zjft.) > **(Y-j(6m )) (9)

for all m. Assume WLOG that lim7l
i (5m ) and \imY_j(8m ) are well-defined (if nec-

essary, by taking {5'm } to be a subsequence of {Sm }). Then the left-hand side of the

inequality (9) goes to fj (by the folk theorem hypothesis), while the right-hand side

is strictly greater than fj, since 7r*(lim /yLi (<5))
< /j and simultaneous minimizing is

impossible (NSM). This yields the desired contradiction. Finally, x'(£) is a weighted

average of stage payoffs, and so x'(6) £ F. Now take x % = x'(5). $
Remarks:

1. When NSM is not satisfied, a weaker version of NEU is a necessary condition

for the folk theorem. From the proof of Theorem 2 it readily follows that for the folk

theorem to hold, the game must satisfy "weak NEU" : Namely, any subset of players

who cannot all be simultaneously minimized cannot all have equivalent utilities. In

other words, it must be possible to simultaneously minimize any subset of players

who have equivalent payoffs. Weak NEU can also be shown to be sufficient when

mixed strategies are observable (and hence for this specification, it provides an exact

characterization of the folk theorem). However, this condition may not be sufficient

when mixed strategies are unobservable. 10

9The available results on the existence of the worst equilibrium are for the case where mixed

strategies are observable; hence we cannot directly appeal to any of them. The result is however

certainly true and may be proved by, for instance, adapting the self-generation techniques of Abreu,

Pearce and Stachetti (1990) to the present context.
10Suppose that players in some subset S can be simultaneously minimized by the strategy profile

/i. With weak NEU and observable play in fi, the punishment regime for i € S entails playing /j

initially, with deviations by j € S punished by restarting /i. Indeed, the sufficiency of weak NEU
for the pure strategy case follows from Wen (1993). (See the conclusion and footnote 13.) However,

with \S\ > 2, players in S need not be best responding to /j; so if y. involves mixed play by i, then



2. One class of games in which NSM is violated is two-player games. Another

is the class of those symmetric games in which all players can be simultaneously

minimaxed. By the preceding remark, all players may have equivalent utilities in

such games, and the conclusion of the folk theorem may still go through. 11 ' 12 Indeed,

for these games it essentially follows from the two-player analysis of Fudenberg and

Maskin (1986) that the folk theorem holds without any conditions on the set of

feasible payoffs.

4. CONCLUDING REMARKS

We have established a folk theorem by assuming that players have non-equivalent

utilities. This condition is weaker than the full dimensionality condition introduced

by Fudenberg and Maskin (1986). Our condition is appealing in that it is simple and

easily interpreted (while full dimensionality is a natural geometric concept, it lacks

an immediate strategic interpretation) and also minimal in the sense of being almost

necessary. It focuses on the deterrence of individual deviations as required by Nash

equilibrium theory; full dimensionality permits the greater but unnecessary luxury

of providing individually calibrated punishments to all players simultaneously.

Dutta (1991) uses some of the ideas presented here in proving a folk theorem for

the more general class of stochastic games while Smith (1993a) and Smith (1993b)

pursue extensions to finitely repeated games and overlapping generation games. An
interesting question is whether our results can be extended to other environments,

such as imperfect monitoring, in which full dimensionality has been invoked (see

Fudenberg, Levine, and Maskin (1989)) to prove folk theorems.

Wen (1993) extends our results by considering repeated games which do not sat-

isfy the NEU condition. He first shows that all equilibrium payoffs of finitely or in-

finitely repeated games must dominate his newly defined effective minimax payoff.
13

He then proceeds to prove that when players are sufficiently patient and/or long

lived, any feasible payoff of the stage game can be supported in a subgame perfect

equilibrium if and only if it dominates the effective minimax payoff.
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Abstract

The Fudenberg and Maskin (1986) folk theorem for discounted re-

peated games assumes that the set of feasible payoffs is full dimensional.

We obtain the same conclusion using a weaker condition. This condi-

tion is that no pair of players has equivalent von Neumann-Morgenstern

utilities over outcomes. We term this condition NEU "non-equivalent

utilities" . The condition is weak, easily interpreted, and also almost nec-

essary for the result.
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"This paper combines "The Folk Theorem for Discounted Repeated Games: A New Condition"

by Abreu and Dutta and "Folk Theorems: Two-Dimensionality is (Almost) Enough" by Smith,

which was the third chapter of his 1991 PhD dissertation at the University of Chicago. The pair

of papers independently introduced two equivalent conditions, here replaced by a third equivalent

condition which is perhaps the most transparent. Abreu and Dutta covered mixed strategies and

established the necessity of their condition. Smith confined attention to pure strategies and extended

his analysis to finitely repeated games and overlapping generation games; Smith (1993a) and ( 1993b)
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