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Abstract

We exhibit a parallel constructive proof technique for three founda-

tional folk theorems without requiring a full-dimensional payoff space.

Instead, we show that a less stringent and more natural projection con-

dition suffices. Along the wa}', we substitute a strengthened folk theorem

for finitely-repeated games.

'The current version reflects helpful comments from two referees. Financicd assistance from the

Socicd Sciences and Humanities Research Council of Canada, the Jacob K. Javits Fellowship Fund,

and the Searle Foundation is gratefully acknowledged.



1. INTRODUCTION

The problem of multiplicity of equilibria in repeated games is by now well-

known. Indeed, the popular moniker 'folk theorem' has been effectively hijacked

by game theorists to mean that any individually rational payoff of a stage game

can be attained on average in an equilibrium of the corresponding repeated game.

Constructing n-player folk theorems for various conceivable economic contexts has

developed into a veritable cottage industry. Most recent efforts can trace their lin-

eage to the perfect folk theorem in Rubinstein (1979), which considered supergames

without discounting. When players do discount the future, Rubinstein's recourse

to infinitely-bootstrapped punishment hierarchies is no longer an option. It was a

technique first pioneered by Fudenberg and Maskin (1986) (henceforth simply F-M)

for infinite horizon games that sparked the latest flurry in this arena. The require-

ment in F-M that the feasible payoff space have full dimension — i.e. a non-empty

interior — found immediate application in the folk theorem (without discounting)

for finitely repeated games in Benoit and Krishna (1985) (hereafter denoted B-K).

Smith (1990) later exploited the full-dimensionality condition to establish a uniform

folk theorem for overlapping generations games.

Exactly why a full-dimensional payoff space was deemed necessary is best ex-

plained by means of an example game Gi found in B-K:

3, 3,3 0,0,0 1,1,1 2,2,2

0, 1,1 0,0,0 0,1,1 0,0,0

0, 0, 0, 0, 0,1,1 0,1,1

Here, player 1 chooses rows, 2 chooses columns, and 3 chooses matrices. There

are two Nash equilibria: (3,3,3) and (2,2,2). Since each player's minimax level

is 0, a folk theorem would assert that any positive feasible payoflf vector should be

attainable (on average) in Gi(T), the T-fold repetition of Gi, for T sufficiently large.

Notice that the payoff space of Gi is two-dimensional, and thus is not of full-

dimension.^ But the choice of Gi was really rather clever! For consider the simple

proof in B-K that in no subgame perfect equilibrium of any Gi(T) does player 2 or

3 earn less than 1 on average. The result proceeds by (backward) induction. The

case T = 1 is obvious, so assume it holds up to some T > 1. Then the prescribed

outcome with T + I periods to go cannot be (0,0,0), for if so, either player 2 or

3 could gain at least 1 by deviating and then, by hypothesis, average at least 1 in

the following subgame. But if (0,0,0) is not prescribed, then players 2 and 3 each

receive at least 1, and the claim follows for Gi(r -I- 1), as required.

Unfortunately, this neat result relies crucially on the fact that players 2 and 3

receive positively linearly related payoffs. It turns out that such a non-genericity,

^Tlie example in F-M only has a 1-dimensional payoff space, and hence might not establish

that a 3-dimensional payoff space is needed.



which was conceded by B-K, is not without loss of generality. In the sequel, we

find that when this possibility is expressly eliminated, the folk theorems for n >
2 players in F-M, B-K, and Smith (1990) obtain with any payoff space that is

(at least) two-dimensional. This task actually proves rather unburdensome, as a

unified constructive treatment suffices for all three cases. We also take the liberty of

strengthening the folk theorem of B-K, by admitting the possibility that one player

might not have distinct Nash payofi"s in the stage game.

2. PUNISHMENT OUTCOMES IN 2-SPACE

The set-up is standard, and is taken from Smith (1990), which we summarize

here. Throughout, G is an n-person normal form game, and the (compact and

convex) strategy spaces {Ai, . . . ,An} consist of mixed strategies. Each player f's

payoff" function f/,- : U^^^Aj —
> 7Z is continuous. Define U = n"_iC/,-. Elements

a*6 A are referred to as outcomes of G. Liberal use is made of correlated strategies,

allowing players to condition their actions on the outcome of a public randomizing

device. This renders the feasible payoff" space V the convex hull in 7^" of the set of

pure strategy payoff vectors.

Let M' be a minimax strategy against player i in the game G. Since M' could be

a mixed strategy, we assume that deviations from mixed strategies are observable.^

We may also assume WLOG that C/,(M') = for all z G N = {1, 2, . .
.

, n}. The
feasible and strictly individually rational payoff set is therefore the positive orthant

V* of V.

The example game Gi was atypical in the following sense: Even though the

whole payoff space was two-dimensional, its projection onto the plane of payoffs

for players 2 and 3 was only an (upward-sloping) line. It was thus impossible to

decouple the payoffs of 2 and 3. We claim that so long as we avoid such a non-

genericity for n-player games, we can construct n personalized one-shot (correlated)

punishment outcomes Pi*,P2*, ,Pn*- That is, (?) pk* is a strictly individually

rational outcome, (n) providing k a lower payoff than the equilibrium outcome a*,

and (Hi) a strictly lower payoff than any other p,*,i ^ k. Observe that because we

do not have a full-dimensional payoff space, other players j ^ k may suffer from

Pk*; however, every j ^ k still prefers pk* to pj*.

For the sake of definiteness, we shall (locally) parameterize V* assuming it is at

most two-dimensional. The extension to higher dimensions should be obvious. Let

the payoff of each player i E N be 7r,(5, t) = ai + PiS + 'jit. All subsequent analysis

rests on the following crucial assumption which will supplant full-dimensionality:

(P) The projection Vij of V* onto the coordinate space of any two players j and

k is either two-dimensional, so that Pjfk ^ Pklj for all j 7^ /:, or a line with

negative slope, i.e. (3j = OjkPk and fj = ^jjt7it for some 6jk < 0.

For example, with n = 3 players, (P) implies that if the payoff space is perpendic-

ular to the coordinate plane of any two players, then it intersects that plane in a

'Abreu-Dutta (1991) modify the argument of F-M to handle unobservable mixed strategies.



negatively sloped line.

Now suppose that we want to support the strictly individually rational out-

come a*, as parameterized by (5*, t*). Under (P), we can exhibit coordinates

(51, fi), . .
. ,

(s„,i„) for pi*,p2*, • • • >Pn* satisfying conditions (i), (ii), and {iii).^ Let

ti = f - liSl^JW+^j

for i G N. Then {si,ti) is also strictly individually rational for small enough e > 0.

Moreover, if j 7^ k, then in the two-dimensional case,

= TTj
(^
Sj ,tj),

where the inequality is due to Cauchy-Schwartz, and is strict by (P). Alternatively,

in the negatively-sloped one-dimensional case,

> 7rj{s',t')-e^l3j + jj

— TTj
^^
Sj ,tj ),

since 9jk < by (P). Finally, in the process it was established that 'Kj{sj,tj) <
7r_,(5",t*), as required. Illustrated below is the parameterization of the case of n = 4

players, with V24 a- negatively-sloped line, and all other Vjj two-dimensional.

774 > 7r4(54, ^4)

TTS > 7r3(s3,i3)

{S3,t3)

TTi > 7ri(5i,ii)

* s

K2 > T^2{S2M)

^This is nearly the converse of the first lemma in Abreu-Dutta (1991), who show that condition

{Hi) implies (P).



3. THE FOLK THEOREMS

We now turn to the folk theorems. That is, we show that any u E V* can be

(approximately) attained as a subgame perfect discounted average payoff vector in

each of three distinctly different repeated contexts. Throughout, a* is a correlated

outcome yielding the desired payoff vector u.

Case A: Infinitely Repeated Games

Let G(<5) denote the infinitely-repeated game with stage game G and discount

factor 6. Below is a modification of Theorem 2 in F-M, substituting (P) for full-

dimensionality. The constructed equilibrium also differs from F-M in another sense,

as it is resilient: After any finite sequence of deviations, play always returns to the

equilibrium path within finitely-many periods.

3.1 INFINITE-HORIZON n-PLAYER FOLK THEOREM
Let u = (ui,...,u„) G V*. Suppose that (P) holds. Then 36q < 1 so that 6 G

[(5o, 1] ==> G((5) has a subgame perfect discounted average payoff u.

Proof:

Along the equilibrium path, a* is played. But if someone deviates then punish-

ment interlude follows, consisting of a minimax phase and then a 'recovery' phase.

Thus, the equilibrium strategies are:
'^

1. Play a*. [If player j deviates, start 2.]

2. Play M-' for Q periods. [If player k ^ j deviates, start 3.] Then set k <— j.

3. Play pI for R periods. [If any player j deviates, restart 2.] Return to step 1.

We next select Q and R so that this is a subgame perfect equilibrium. Let P and

uj be the best and worst payoffs for any player in G, and first suppose that S — 1.

For each step, we consider the 'worst-case scenario', where the incentive to deviate

is greatest.

First note that given continuity of discounted sums in 6, if each deterrent is strict

by some positive margin, say 1, they will remain strict for any level of discounting

6 G [(('o, 1], for some 6o < 1. Now choose Q so that^

u + QU,{p-) > 13 + I (1)

for all j G N. Since < Uj{pj*) < Uj by conditions (z) and (u'), (2) simultaneously

renders the punishment interlude a strict deterrent to deviations from steps 1 and

*Throughout the paper, j, k, and / denote arbitrary players. Moreover, for clarity, we use

the simple computer science k *— j to mean "assign k the value j." Also, program steps always

follow sequentially, unless otherwise indicated. Conditional interrupts within square brackets are

executed immediately.

*The inequality (1) — in particular, why the left-hand side is not (Q-t- l)Uj{pj) — reflects the

fact that obeying the random correlated outcome pj* might sometimes require j to play his worst

possible outcome.



3, for any R. Next, step 3 deters deviations by the punishers from step 2 if 7? is

large enough that

Qu + RUkip-) >P + RUkipl) + (Q - ^>k + 1 (2)

for all 7, ^' G N with j ^ k. By condition (n'z), such an R indeed exists. QED^

Case B: Finitely Repeated Games

In this section, we let G((5, T) denote the T-fold repetition of G with the discount

factor 6 < \. What follows is a strengthening of Theorem 3.7 of B-K,^ on several

fronts. First, we admit payoff discounting.^ Second, we substitute (P) for full-

dimensionality. Finally, we weaken the condition that all players must have distinct

Nash payoffs, to all hut one — provided his Nash payoff is strictly positive. However,

unlike B-K's (more intuitive) use of long deterministic cycles, we simply rely upon

correlated outcomes. This is done to underscore the essential similarity among all

three folk theorems. In fact, with finite-lived players, we essentially only need adjust

the strategies of Case A to avoid the axe of backward induction. Finally, we remark

that correlation also has the useful biproduct of permitting an exact (rather than

approximate) folk theorem.

Let the Nash outcome e,* yield player i G N the highest among all Nash payoffs

of G, and /,* the lowest, for all € N.

3.2 EXACT UNIFORM n-PLAYER FINITE-HORIZON FOLK THEOREM
Let u = (ui,...,u„) 6 V*. Suppose that (P) holds, and that either (a) Ukie].) >

Ukifk) VA; G N, or (b) Ukiel) > (7,(A!) VA; ^ 1, but Ui{el) = U,{f^) > 0. Then

3To < oo and Sq < I so that T > Tq and <5 G {5o, 1] => G((5, T) has a subgame

perfect discounted average payoff u.

Proof:

Let e* be a correlated equilibrium according equal weight 1/n to each of the

preferred Nash outcomes e,*. The typical T-period equilibrium outcome sequence is

a, . .
.

, 5; e', . .
.

, e*, where e* lasts S periods, and U{a) G V* will be seen to satisfy

the required target payoff equation

{T-S)U{a) + SU{e') = TU{a') (3a)

if (5 = 1, or

(1 - 6^-^)U{a) + .5^-^(1 - 6^)U{e') = (1 - 6'^)U{a') (3b)

if (5 < 1. For ease of exposition, late deviations are those occurring during the final

Q + R + S periods of the repeated game; all others are called early deviations.

^.A.breu-Dutta (1991) prove that (P) is also necessary for the infinite-horizon result.

'A much better and constructive demonstration is found in Krishna (1989): B-K requires a

messy iterative approximation process.

^In so doing, we can establish a uniform folk theorem, meaning that the discount factor and

horizon length can vary independently over the relevant range.



1. Play a until period T— S. [Ifplayer j deviates early, start 2; ifplayer I deviates

late, start 4.] Then play e* until the end.

2. Play M-' for Q periods. [If player k ^ j deviates, start 3.] Then set k <— j.

3. Play pfc* for R periods. [If some player j deviates early, restart 2; if player

I 7^ 1 deviates late, start 4. If 1 deviates late, start 5.] Then return to step 1.

4. Play //* until the end.

5. Play M^ until period T - S + [v^J- [If player I 7^ 1 deviates, start 4.[ Then

play e* until the end.

We proceed recursively. First choose Q, R, and S to ensure subgame perfection.

'Early' deviations are handled exactly as in the infinite horizon case. Thus (1)

determines Q, while (2) must be modified because a ^ a' (unless perchance a* = e*).

We now require that

Qu + RUkip'j) >P + RUk{pl) + {Q- l)Ukia) + 1 (4)

for all k ^ j. Given that a is as yet unspecified, we shall instead insist that R satisfy

Qu + RUkip]) >P + RUkipl) + {Q- l)(2Ht - U,{pl)) + 1. (5)

This will turn out to imply (4). Morever, a will be chosen so that the personalized

punishment vector p^.* satisfies the analogue of condition (n) with respect to a, V/c G

N. Thus, just as in Case A, the punishment interlude, steps 2 and 3, will deter

deviations from step 1.

Next, step 4 will deter all 'late' deviations by players / 7^ 1 so long as 5 is large

enough that

iQ + R + y/S)iJ + (5 - VS)Ujie') >P + {Q + R + S- l)Uj{fJ) + 1 (6a)

for alH 7^ 1. This inequality obtains for all sufficiently large 5, because each plaj-er

/ 7^ 1 strictly prefers e* to //*, and since S grows faster than \fS. Similarly, step 5

is a deterrent to late deviations by player 1 provided

Qu + RUi{p\) + SUiie') > p + {S- VS)Ui{e') + 1 (6b)

and

SUi{e')>P + {S-y/S)Ui{e') + l. (6c)

Clearly, for large enough 5, inequalities (6a), (6b), and (6c) are valid.

Given Q, R, and S as defined above, the above program is feasible if To >

Q + R + S. Next, since a' G V*, there is some 77-neighbourhood around u entirely

contained within V*. Then let To be sufficiently large that

5
"u - U{e')\\ < min(77,min_,gNK- - Uj{p'j)]) (7a)

Tn-5



so that
1 -6^^'^~

\ _ ^T-s W"" - ^(^*)ll < min(r7,min,eNK- - Ujip])]) (7b)

for all (5 < 1 and T > Tq.

Finally, let T > Tq, and introduce discounting just as in Case A, so that each

deterrent remains strict for all 6 G [<5o,l], for some 6q < 1. Define a implicitly by

the target payoff equation (3a) or (3b). To verify that indeed U{a) G V*, (3a) and

(3b) can be rewritten as

f T^[u-U{e')] if 6 = 1

In light of (7a) and (7b), equation (8) both says that a 6 V* and also that

I

Uk{a) -Uk\< min^g n[wj - Uj{p'j)] (9)

for all k e N. By the triangle inequality, there are two immediate consequences of

(9). First, we may conclude that Uk{a) < 2uk — Uk{pl), so that (5) implies (4); and

second, that

Uk{a) - Uk{pl) = Uk - Uk{pl) + Uk{a) - Uk

> [uk-Uk{pl)]-\Uk{a)-Uk\>0,

both of which were asserted earlier. QED

Case C: Overlapping Generations Games

Smith (1990) considers a model of overlapping generations games 0LG(G;<5, T),

in which — in its most basic formulation — a player dies and is replaced every

T periods.^ Using the techniques developed for Case B, it is possible to render

that folk theorem exact too. Moreover, its full-dimensionality condition can also be

weakened to (P).

3.3 EXACT UNIFORM n-PLAYER OLG FOLK THEOREM
Let u = {ui, . . . ,Un) 6 V*. Suppose that (P) holds. Then 3To < oo and ^o < 1

so that T > To and 6 € [(5o, 1] => 0LG{G;6,T) has a subgame perfect discounted

average payoff u.

A parallel proof of this result is possible, but is omitted.

We remark that (P) is required here — as elsewhere — to payoff distinguish

between players at the stage game level: In Cases A and B, this was the only tool

at our disposal. But in overlapping generations games, because the players' tenures

in the game do not coincide, we may also distinguish between them intertemporally.

That is, we may await the death of specific players before rewarding or punishing

^Kandori (1990) describes a related model, but doesn't consider the uniform folk theorem

discussed below.



the others. ^° In the as yet unexplored arena of spatial games, one might distinguish

among the players it interspatially. This insight allows us to more generally think

of (P) as just one method of awarding players separable payoff streams.

4. CONCLUDING REMARKS

The requirement that games with n > 2 players have a full-dimensional payoff

space is unnecessarily harsh. Although it must be noted that full-dimensionality has

an obvious interpretation itself as an assumption of genericity, our new condition (P)

can be easily seen to hold generically for the smaller class of (stage) games for whose

payoff spaces have dimensions 2, 3, . .
.

, n — 1. Such a class might prove economically

relevant — for instance, when the payoffs of all players or even of several coalitions

has constant sum.

Not only is our condition (P) less stringent, but it is also more natural. For it

emphasizes the fundamental basis of all Nash strategies, that it is only necessary

to payoff distinguish any two players at once, and not all of them. Deviants can

be singled out one at a time, so that it is pure overkill to insist that all punishers

be rewarded in the stage game. Such a requirement ignores the wealth of available

dynamic strategies in a repeated game.
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