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INFERENCE ON QUANTILE REGRESSION PROCESS,
AN ALTERNATIVE

VICTOR CHERNOZHUKOV

Abstract. A very simple and practical resampling test is offered as an alternative to

inference based on Kmaladzation, as developed in in Koenker and Xiao (2002a). This

alternative has competitive or better power, accurate size, and does not require estimation

of non-parametric sparsity and score functions. It applies not only to iid but also time

series data. Computational experiments and an empirical example that re-examines the

effect of re-employment bonus on the unemployment duration support this approach.

Key Words: bootstrap, subsampling, quantile regression, quantile regression process,

Kolmogorov-Smirnov test, unemployment duration

1. Introduction

Inference in quantile regression models, pioneered by the classical work of Koenker and

Bassett (1978), is crucial to a wide range of economic analyses. For example, evaluation

of the distributional consequences of social programs requires inference concerning nature,

direction, and quantity of the impact throughout the entire outcomes distribution. See e.g.

Abadie (2002), Buchinsky (1994), Heckman and Smith (1997), Gutenbrunner and Jureckova

(1992), McFadden (1989), Koenker and Xiao (2002a), and Portnoy (2001). Just like in the

classical p-sample theory, e.g. Doksum (1974) and Shorack and Wellner (1986), this kind of

inference is based on the empirical quantile regression process. It differs however from the

early approaches by replacing the basic (indicator) regressors with general ones.

The main difficulty associated with such inference is the Durbin problem - the model's fea-

tures, estimated nuisance parameter, or non-i.i.d. data induce parameter-dependent asymp-

totics, jeopardizing distribution-free inference.
1 In a recent Econometrica paper Koenker

and Xiao (2001) proposed an ingenious and intricate theory, based on Khmaladze transfor-

mation, that purges the tests statistics from the non-distribution-free components, restoring
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2 VICTOR CHERNOZHUKOV

distribution-free inference. The approach uses recursive projections to annihilate the pre-

dictable component in the process, leaving a martingale that limits to a standard Brownian

motion, thus overcoming the Durbin problem.

Here we suggest a simple resampling alternative that (i) does not require the somewhat

complex Khmaladze transformation, (ii) does not require the estimation of the nonpara-

metric nuisance and score functions, (iii) has an accurate size and the optimal power (in

the sense that its has same power as the test with known critical value2 ), which makes it

very competitive with Khamaldzation, (iv) is robust to dependent data, and (v) is com-

putationally and practically attractive. Therefore, the approach is a useful complement to

Khmaladzation and is aimed at substantively expanding the scope of empirical inference.

The basic idea is extremely simple. The key statistic is based on the quantile regression

process. The statistic has a limit distribution, denoted H, under the null hypothesis. In

order to estimate H correctly, regardless of whether the null is true or not, we resampie

an appropriately re-centered quantile process. As a result, H as well as the entire null

law of the process are correctly estimated under local departures from the null. For re-

sampling purposes, we choose the subsample bootstrap, cf. Politis, Romano, and Wolf

(1999). which has computational, practical, and certain theoretical advantages over the

usual (unsmoothed) bootstrap for quantile regression, cf. Buchinsky (1995) and Sakov and

Bickel (2000). Horowitz (1992)'s smoothed bootstrap may also be an attractive resampling

mechanism for these tests.

The underlying principle differs from the conventional bootstrap tests for goodness of fit.

The conventional tests resampie from a probability model that is consistent with the null,

see e.g Romano (1988), Andrews (1997), and Abadie (2002). Although such approach is

potentially useful in quantile regression settings, its validity remains unknown, because the

quantile regression families estimated in emprical work are typically mis-specified and in-

complete probability models (regression quantile lines are not constrained to avoid crossing,

and the tail regression quantiles are not estimated).

In what follows, we use P* to denote (outer) probability, which possibly depends on n,

id => and—> to denote weak convergence in a space of boi

in distribution for random vectors, respectively, under P*.

and => and—> to denote weak convergence in a space of bounded functions and convergence

2. The Testing Problem

The questions posed in the fundamental econometric and statistical literature are whether

the treatment exhorts a pure location effect, a location-scale effect, or a general shape

effect, cf. Doksum (1974), Koenker and Machado (1999), Koenker and Xiao (2002a). or,

for example, a stochastic dominance effect, cf. Abadie (2002), Heckman and Smith (1997),

and McFadden (1989). Quantile regression is an important and practical tool for learning

about such distributional phenomena.

Khmaladze tests do not generally have this property, see Koenker and Xiao.
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Suppose Y is the outcome variable, and X are regressors. Let FYlx and Fy\X (r) denote

the conditional distribution function and the r-quantile of Y given X. The basic conditional

quantile model takes the linear in parameters form:

F- 1

A.(r)=X'/?n (r).

for all t 6 T, where 7 = [e, 1 — e] are quantiles of interest. This is a random coefficient

model Y — X'f3n (U), where U ~ f/(0, 1). The stated model allows regressors to affect the

entire shape of the conditional distribution and includes the classical linear location and

location-scale models as special cases. To facilitate the local power analysis, parameter

Pn(r) is made dependent on the sample size n.

As in Koenker and Xiao (2002a), we consider the following null hypothesis:

#(t)/3„(t)-7-(t) = *(t). reT, (1)

where R{t) denotes a q x p matrix, q < p = dim(/3), r£l', and \£(t) denotes a known

function ^ : T -» R9
. We assume that functions R{t), ^(t), t(t), and /?o(T ) = limn /?n (T)

are continuous in r.

The tests will be based on the Koenker-Bassett quantile regression process (3n (-):

n

pn {r) = arg min V pT (Y, - Xtf) , r € T,

(=1

where pT (u) = u(t — I(u < 0)). Other estimators, such as Chamberlain's minimum distance

or instrumental variable quantile regression estimators, can be considered as well, depending

on the problem. We will focus on the basic inference process:

«n(T)=(5(T)A,(T)-f(T)-*(T))
) (2)

and derived from it Kolmogorov-Smirnov and Smirnov statistics Sn = f{\Znvn (-)),

Sn = v/nsup||i;n (r)||v (T) , Sn = n / ||un (r)|||
(r)

dr, (3)
r€T J J

where ||a|| v = Va'Va, the symmetric V(r) —^ V(t) uniformly in r, and V(t) is a positive

definite symmetric matrix uniformly in r. The choice of V and V is discussed in section 3.

Example 1 (Location Hypothesis). An important hypothesis is that of the classical

location-shift regression

F x̂ (T)=X'a + 1 -F- i

{r), or Y = X'a + 7 • V,

where V is independent of X. In this case, R(t) = R = [0 : /p-i] and r(r) = r =
(a2, ...,ap )', which asserts that the quantile regression slopes are constant, independent of

t. The component r can be estimated by any method consistent with the null, for example

LAD, OLS, and others in Koenker and Xiao (2002a).
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Example 2 (Location-scale Hypothesis). The location-scale shift regression constraints

X to affect only the location and scale of Y, but not any other moments:

F-^{T) = X'a + X'j-F- l
(T), or Y = X'a + X'-y V,

where V is independent of X. In this case, r(r) = a + 7 • Fy (t), R = [0 : Ip-i], and

\I/(t) = 0. Estimates of a and 7 • F
v7

1
(t) can be obtained by using OLS projection of each

component of slopes vector /0_i(-) on the intercept /?i(-), see Koenker and Xiao (2002a).

Example 3 (Stochastic Dominance Hypothesis). Suppose D = 1 denotes receipt and

D = denotes non-receipt of a treatment. The test of stochastic dominance, or whether

the treatment is unambigiously beneficial, in the model

F^x (T) = D5(T) + X'd( T ),

involves the dominance null

5(t) > 0, for all t G 1

versus the non-dominance alternative

5(t) < 0, for some r € T.

In this case, the least favorable null involves t(t) = 0, R — —[1,0...], ^(r) = 0. and

P(t) = (5(t),0(t)')', and one may use the one one-sided Kolmogorov-Smirnov or Smirnov

statistics Sn = v
/ninfrST max( — 5n (r),0) and Sn = y/n J ||

max( — 5n (r), 0)\\y {r)
dr to test

the hypothesis.

We will maintain the following assumptions.

A.l (Yt ,Xt ,t < n) is stationary and strongly mixing on probability space (fi.3", Pn )-

A.2 Law of (Yt,Xt,t < n), P [™\ is contigious to some P'"l, 3 and either

(a) for a fixed continuous function p(r) : 7 —> W and for each n

R(t)Pu(t) - r(r) = *(t) + g(r), g(r) = p(r)/y/n, or.

(b) for a fixed continuous function g(r) : 7 —> Rq and for each n

R(r)p(T)-r(r) = ^(T)+g(T).

A.3 (a) Under any local alternative, A2(a), y/n (J3n {-) - Pn {-)) => &(•)• \/"(-R(') _

R(.)) => p(.), v/n(f(-) -r(-)) => -?(•)> jointly in ^(T), where (6,p,?) are jointly

zero mean Gaussian functions with nondegenerate covariance kernel,

(b) Under the global alternative, A2(b), the same holds, except that the limit (b, p, <;)

needs not have the same distribution as in A3 (a).

As defined e.g. on p. 87 in van der Vaart (1998)
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A.l allows a wide variety of data processes: iid, time series, and panels. Mixing is

sufficient but is not necessary for consistency of subsampling. Stationarity can be replaced

by more general stability conditions, see ch. 4 in Politis, Romano, and Wolf (1999). A. 2(a)

and A. 2(b) formulate a local and a global alternative. A. 3 is very general condition, that

is implied by a wide variety of conditions in the literature, most remarkable and general of

which are given in Portnoy (1991), who allows shape heteroscedasticity and dependent data.

Thus A. 3. substantively generalizes Koenker and Xiao's (2001) or Koenker and Machado's

(1999) conditions (local-to-location-scale assumption and iid sampling) which elegantly suit

the hypotheses in Examples 1 and 2, but are restrictive and not necessary in Example 3.

Proposition 1. 1. Under conditions Al, A2a, A3, in £°°(7)

Vnvn {-) =>«() =u(-) + d{-)+p(-),

MO

where u(t) = i?(r)'6(r) and d(r) = {Po{T)p{ T ) + ?( r )) • Under the null, p = 0,

sn =» s = /M-)).

2. Under Al, A2b, A3, y/n(vn {-) - g{-)) => v(-) = u(-) + d(-). where u{r) = Z?(t)'6(t) and

d{T) = {(3o{t)p{t) + <f(r)). And Sn —^ oo if /(%/"<?(•) + Op {\)) —^ oo (which is true for

statistics in (3) once g ^ 0/

The limit consists of three components that illustrate the Durbin problem:

1. The usual component u is typically a Gaussian process with non-standard covariance

kernel, so its distribution can not be feasibly simulated. This problem may be assumed

away by imposing iid conditions. However, the problem does not go away, once the data is

a time series or a panel. In such setting, Koenker and Xiao's method unfortunately does

not apply in its present form.

2. Component d is the Durbin component that is present because R and r are estimated.

Koenker and Xiao isolate d as a chief problem that makes the entire term v to have a

nonstandard covariance kernel. They use Khmaladzation to annihilate this component.

3. Component p, which describes deviations from the null, determines the test's power.

As Koenker and Xiao show, the Khmaladzation inadvertently removes some portion of this

component as well. In fact they gave examples where p is removed completely, such as piece-

wise linear densities. Such densities are not commonplace, yet they can easily approximate

a well behaved density. Nevertheless, Koenker and Xiao show that Khmaladzation has

respectable power in most practical cases.

Khmaladzation requires estimation of several nonparametric nuisance functions - the

sparsity functions and various score functions, see Koenker and Xiao for details. The

feasibility of this may depend on the underlying model. Under a location-scale shift model,

the procedure is not laborious. Otherwise, for instance in Example 3, estimation of score

functions is more difficult and has not been implemented nor had its theory been established.
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In the next section, we describe a simple approach that is very useful in practice, does

not erase components of p under any circumstances, and does not require nuisance function

estimation. From a constructive point of view, the approach is not intended to be a critique

of the Koenker and Xiao methods, which are brilliant and useful in many conceivable cases.

Rather, the approach is meant to be a useful complement, aimed at substantively expanding

the scope of empirical inference.

3. Resampling Test and Its Implementation

3.1. The Test. The approach is based on the mimicking process v and statistic Sn :

vn {r) = vn {r) -g{r), Sn = f{vn (-)).

Proposition 2. 1. Given A.l, A2a, A. 3 vn {-) => v (-), §n => S. 2. Given A.l, A2b,

A. 3 vn (T)^v(-)=u(-)+d(-), Sn =^S = /(«(•))

Under local alternatives, the statistic Sn correctly mimics the null behavior of Sn , even

when the null is false. This does not happen under global alternatives, but this is not

important.

In what follows we use vn (r) itself to estimate g(r), and use the subsample bootstrap to

consistently estimate the distribution of S, which equals that of S under the null hypothesis.

The usual bootsrap will also work, but subsampling is preferable on both computational

grounds explained in Buchinsky (1995) and theoretical reasons given in Sakov and Bickel

(2000).
4

The basic idea of the subsample bootstrap, introduced by Politis, Romano, and Wolf

(1999), is to approximate the sampling distribution of a statistic based on the values of this

statistic computed over smaller subsets of data. The resampling tests based on subsampling

are done in three steps.

Step 1. For cases when Wt = (Yt,Xt ) is iid, construct all subsets of size 6. The number of

such subsets Bn is "n choose 6." For cases when {Wt } is a time series, construct Bn = n— 6+1
subsets of size b of the form {Wi, ..., Wi+b-i}- Compute the inference process v^n ,i(')^ f°r

each i-th subset, i < Bn .

5

Denote by vn the inference process computed over the entire sample; and by i>f>in> i
the

inference process computed over the i-th subset of data:

Another attractive alternative is the smoothed bootstrap as in Horowitz (2001). Subsampling is used for

pragmatic, computational reasons. In addition, Sakov and Bickel (2000) show that subsampling, combined

with interpolation, yields the same minimax order of occupancy as smoothing once subsample size b oc n
-2' 5

.

A smaller number Bn of randomly chosen subsets can also be used, if Bn —> oo as n —> oo, cf. Section

2.5 in Politis, Romano, and Wolf (1999).



INFERENCE ON QUANTILE REGRESSION PROCESS 7

and define §nj6
7
, = f{vb[vt,,n ,i{') — ^n( -

)])< f°r instance

S„
i6i2

= supv^lK^r) - un (r)||v(r) or Snbi =b \\vn b,i{j) - un (r)|||,,dT,

for cases when Sn is Kolomogorov-Smirnov or Smirnov statistics, respectively. Define

G{x) = Pr{S<x} and H{x) = Pr{S < x}.

As 6/n -> and b -> oo, V^ll^nO) -
ff(-)ll = v^ x Op (l/y/n)

-^4 0, including when

ff(r)=p(r)/ >
/fi. Therefore y/b\\vn

,bii {-) - <?() + (g(-) - vn (-))\\ = Vb\\vnAi {-) - g(-) + op (l)\\,

uniformly in i. Therefore, the distribution of §„,{,,, (r, g) can consistently estimate G, which

coincides with H under local alternatives. Thus, the following steps are clear.

Step 2. Estimate G[x) by

B„

Gn
,
b (x) = S- 1 ^l{Sn

,(M (r)<x}.

!=I

Step 3. The critical value is obtained as the 1 — a-th quantile of G n<b (-):
6

cnJb{l-a) = G-^(l-a).

The size a test rejects the null hypothesis when Sn > cn>(,(l — a).

Theorem 1. Given A.l - A. 3 as b/n —> 0, b —> oo,n —» oo, Bn —> oo,

(i) When the null is true, p = 0. if H is continuous at i/
_1

(l — a):

c„,6 (l - a) -^ //"'(I - a), Pn (5n > cn
,
6 (l - a)) -> a.

(ii) Under local alternative A2a, p ^ 0, (f // is continuous at H~ l

(l — a):

c„,6 (l -a) -^> //"'(l - a), Pn (Sn > c i6
(l - a)) -+ /?,

where (3 = Pr{f{v {-) + p{-)) > //"'(I -a)),

(iii) Under global alternative A2b, if G is continuous at G _1
(l — a), and Sn —^ oo:

c„, 6 (l - a) -^ G- a
(l - a), Pn (Sn > c„,6 (l - a)) -* 1.

(iv) //(x) and G(x) are absolutely continuous at x > wften i/ie covariance function of

v and v is nondegenerate.

Thus the resampling test is asymptotically unbiased and has the same power as the

corresponding test that uses a known critical value. Furthermore if as p(r) —
> oo or — oo,

f(vo(') +p()) —* °°- the power j3 goes to one. Under global alternatives, the estimated

critical values are Op {\) and Sn —^ oo for Kolmogorov-Smirnov and Smirnov statistics.

In practice it may be useful to account for an error in G~\(l — a) caused by Bn being "small". In

simulations, we added 1.69 times an estimate of standard error to G~\(l — a), to make the test more

conservative when B„ is small.
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3.2. Approximations. It may be sometime more practical to use a grid 7n in place of 7
with the largest cell size 5n —> as n —> oo.

Corollary 1. Propositions 1 and 2 and Theorems 1 and 2 are valid for piece-wise constant

approximations of the finite-sample processes, given that 5n — as n —» oo.

3.3. Estimation of V(r). In order to increase the test's power we could set

V(t) =V*{t) =Var[u(r)]
_1

,

which is a (generalized) Andersen-Darling weight. In iid samples, there are many methods

for estimating V*(r), uniformly consistently in t. We are not aware of any results for more

general cases. Note that we would need a Newey and West (1987) type estimator that is

consistent uniformly in t.

Subsampling itself can be used to estimate V(t), even without assuming asymptotic

integrability conditions. This is possible by using a percentile method in conjunction with

asymptotic normality.

Consider the truncated variance

Vk(t ) = Var[wK (r)]
_1

, where vk {t) = v{t) x Ikm (v{t)),

K(t) = *-
p
1= i[Lj(t),Uj(t)] is a large compact set. E.g., L

3
= a-quantile of vj(t), and

Uj = 1 — a-quantile of Vj(t). We can estimate V^(r) using Theorem 2 stated below.

Note that having estimated the truncated variance, we may stop there since for a large K,

V£(r) « V*(t), and Theorem 1 applies to any positive definite symmetric V(t).

Second, using that v(t) = N(0, V*(r)), we can use the percentile method to obtain an

estimate of diagonal elements of V*(r) based on V^-(t). Using symmetrically trimmed

correlations, we can then estimate off-diagonal elements. In simulations we simply used

un-truncated variances.

Theorem 2 provides the uniformly consistent in t estimates of any truncated moments of

the process vn (r), including the trimmed correlations. This theorem is a direct consequence

of the ingenious results of Politis, Romano, and Wolf (1999).

Let r i—> v(t) be an element of £°°(T), equipped with the sup norm, and L(c, k) be a class

of measurable Lipshitz functions <p : £°°(T) —> M.
K that satisfy:

\\<p(v) - <p(v')\\ < c • sup ||i,(t) - v'(t)1 \\ip(v)\\ < k,

T

where c and k are suitably chosen positive constants. For probability laws Q and Q', define

the bounded Lipshitz metric (which metrizes weak convergence) as

Pbl{Q,Q') = sup\\EQif- EQnp\\.

Useful examples of ip include (p(v) = w(t) to
/a-('D(t)), where (v\, ...,vp )

m = v™ 1 x ... x

vp
p and we replace the indicator 1 K{t) (v(t)) by a smooth approximation /A(-)(u(t)) which
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vanishes outside compact set K, for all r. This defines all kinds of truncated moments and

correlations. For example, if v(t) is a scalar (for clarity sake), then

Vax[vK (r)] = ELnb [v{r)
2
fK:

(v(t))} = B~ l ^[(^(t) - vn (r))
2
fK (vnAl (r) - vn (r))]

.

2= 1

where Ln^ denotes the subsampling (outer) law of vn^j;(•) — vn {-) in £°°(7).

Theorem 2. Under assumption A.1-A.3, letting L and Lq denote the laws ofv(-) and vq(-)

in £
oc

(7), respectively,

p~

pBL{Ln,b'L) -2» 0,

and L equals Lq under local alternatives. In particular, for functions (v >-> v(T)mfK{r) (v(T)),

t £ 7) within Ti(c,k),

sup
7£T

EL^[v(r)
m
fKav(r))} - EL [v(r)

m
fK{r) (v{r))]

The last statement remains true even when /K (r) (-) is replaced by l/r(T)(

^0.

3.4. Choice of Block Size. In Sakov and Bickel (1999) and in Politis, Romano, and Wolf

(1999) various rules are suggested for choosing appropriate subsample size. Politis, Romano,

and Wolf (1999) focus on the calibration and minimum volatility methods. The calibration

method involves picking the optimal block size and appropriate critical values on the basis of

simulation experiments conducted with a model that approximates a situation at hand. The

minimum volatility method involves picking (or combining) among the block sizes that yield

more stable critical values. More detailed suggestions emerge from Sakov and Bickel (1999)

and Buchinsky (1995). Sakov and Bickel (2000) suggest that choosing b = hi2
'
5 yields

7

the optimal minimax accuracy (in conjunction with extrapolation). Our own experiments

indicated that the constant k between 3 and 10 are attractive both computationally and

qualitatively, which well accorded with the results of Sakov and Bickel (1999) for the sample

median.

4. A Computational Example

The computational experiment that we consider is that of Koenker and Xiao (2002a).

This allows us to compare the performance of the resampling test vs. Khamaladzation

without prejudicing against the latter. Consider the location-shift hypothesis as in Example

Their result is for the subsample bootstrap with replacement However, the replacement and non-

replacement versions are asymptotically equivalent once b
2 /n —> 0. See e.g. Politis, Romano, and Wolf

(1999).
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1. The data is generated from the model:

Yi
= OL + pXi + cT{Xi

)-eu

o{Xi) =70+7! X{,

d ~N{Q,1), Xi ~iV(0,l),

a = 0,0 = l,7o = l-

Under the null hypothesis 71 = 0. We examine the empirical rejection probabilities for the

test for different choices of sample sizes and heteroscedasticity parameter 71 . In constructing

the test, we used the OLS estimate of /3 and 7 = [.05, .95]. When 71 = the model is a

location-shift model, and the rejection rates yield the empirical sizes. When 71 7^ the

model is a heteroscedastic model, and the rejection rates give the empirical powers. Table

1 reports the results and compares them with Khmaladzation. Other details of the set up

are as those reported in Koenker and Xiao (2002b).

Table 2 speaks for itself. The resampling test is powerful and accurate even in small sam-

ples. From these results, it is fair to say that the resampling test emerges as a respectable,

serious complement to the Khamaladzation method. The method is also quite robust to

variation of subsample size - a wide variety of subsample sizes performs very well (including

when the resampling mechanism is the n out of n bootstrap), suggesting that even fairly

small sub-samples (6 = 5n 2
'
5

) are both computationally and qualitatively attractive.

5. An Empirical Application

To illustrate the present approach, we will re-analyze and expand on the main empirical

question considered in Koenker and Xiao (2002a). The question concerns the Pennsylvania

re-employment bonus experiment conducted by the U.S. Department of Labor, 8 which was

conducted in the 1980's in order to test the incentive effects of an alternative compensation

scheme for unemployment insurance (UI). In these controlled experiments, UI claimants

were randomly offered a cash bonus if they found a job within some prespecified of time

and if the job was retained for a specified duration. The goal was to evaluate the impact of

such a scheme on the unemployment duration.

As in Koenker and Xiao (2002a) we focus on the compensation schedule that includes a

lump-sum payment of six times the weekly unemployment benefit for claimants establishing

the reemployment within 12 weeks (in addition to the usual weekly benefits). The definition

of unemployment spell includes one waiting week, with the maximum of uninterrupted full

weekly benefits of 27.

The model under consideration is the linear conditional quantile model for the logarithm

of duration:

QW)(T\X) = a(r) + 5(t) D + X'P(r),

There is a significant empirical literature focusing on the analysis of this and other similar experiments,

see e.g. Meyer (1995)'s review.



INFERENCE ON QUANTILE REGRESSION PROCESS
1 I

where T is the duration of unemployment, D is the indicator of the bonus offer, and X
is a set of socio-demographic characteristics (age, gender, number of dependents, location

within the state, existence of recall expectations, and type of occupation). Further details

are given in Koenker and Bilias (2001). The estimate of <5(-) is plotted in Figure 1.

Quantile Treatment Effect for Unemployment Duration

0.4

Quantile Index

Figure 1

The three basic hypotheses described in table 3 include:

• treatment effect is constant across most of the distribution ( T = [.15, .85]),

• treatment affects only the location and scale of the outcome log(T),

• treatment effect is unambiguously beneficial: 5(t) < for all r G 1.

These hypotheses specialize Examples 1-3 to the present case. The resampling test is

implemented following section 3, and the results are given in Table 3. The tests were

implemented for subsample size of 3000. We could not consider subsamples of smaller sizes

because they often yielded singular designs (many components of X are dummy variables

taking on positive value with probability 2 — 10%). Thus, we dealt with effectively a small

sample despite that n = 6384 (see Goldberger (1991) on characterizing close-to-singular

designs as, effectively, the small-sample designs).

The first two hypotheses are decisively rejected, strongly supporting the conclusion of

Koenker and Xiao (2002a). This is notable given that the resampling tests provide accurate

and powerful inferences even in effectively small samples, as we saw in Table 2. The rejec-

tion of these hypotheses is an additional strong evidence in favor of the quantile inference
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paradigm of Lehmann-Doskum, which emphasizes ubiquity of quantile shift effects and the

general impossibility of describing such treatment effects as merely shifting the location and

scale.

The hypothesis of stochastic dominance, the third one, is decisively supported. The test

statistic is 0, while for rejection it is necessary that it exceeds the value of 2.6. This

additional result complements the set of inferences given in Koenker and Xiao (2002a).

Thus the bonus offer creates a first order stochastic dominance effect on the unemployment

duration, supporting the efficacy of the program.

6. Conclusion

A simple and practical resampling test is offered as an alternative to the Khmaladzation

technique, suggested in Koenker and Xiao (2002a). This alternative has optimal power

(same power as the test with known critical value) and does not require estimation of non-

parametric nuisance functions. It applies both to iid and time series data. Finite-sample

experiments provide a strong evidence in favor of this technique and an empirical illustration

illustrates its utility.

Appendix A

Proof of Proposition 1 and 2 The result is immediate from A.2-A.3.

Proof of Theorem 1 Part II of the proof follows standard arguments for subsampling consistency, as

in Politis, Romano, and Wolf (1999). There are few details that we have to fill out before then. We
give the proof for the Kolmogorov-Smirnov statistic. Extensions to other statistics defined in the text are

straightforward.

I.To prove (i)- (iii), define Gn ,b(x) and write out Gn ,b(x)

GnAx) = B~ l

J^ 1 [sup
I
V 1/2

(t) (V6K,6,i(r) - g(r)) + -fb(g(r) - vn (r)))
|
< «],

Gn , b (x) = B- 1

l[ ]T sup|v 1/2
(r)(\/fc(^, b.,(r)-s(r)))|<

EGnAx ) = Pn(Sb < x). For iid case: by G„AX ) being a U-statistic of degree b; and otherwise: by LLN

in Politis, Romano, and Wolf (1999), Theorem 3.2.1, combined with contiguity, conclude Gn ,b(x) —^ G(x).

Next collect two facts: fact 1, uniformly in i

V l ' 2 (r) (Vb(vn ,bAr) - g(r)) + Vb(g(r) - v„(r)))

K - |vi/*(t) (Vb(vn ,bAr) - g(r)) + y/b(g(r) - «„(r)))

< n/aT,

The paradigm is formulated in a series of works by Lehmann (1974), Doksum (1974), Koenker and

Machado (1999), and Koenker and Bilias (2001).
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where An = sup, maxeig (v'- 1/2 (r)i>(r)y- 1/2 (r)V and A„ = supr maxeig (v'" 1/2 (r)V(r)V>
- 1/2

(r)) by

eq-ty 10 on p.460 in Amemiya (1985).
10 Fact 2 follows from Fact 1 and by ||A||-|NI < ||A+ -uj[| < ||.4|| + |MI>

l[Ai < (x/un - Wn )] < l[A, < x] < l[Ai < {l/ln + UI„)]

where l n = v/l/An and un = v A„, and wn is defined below.

By A2 and A3 and assumptions on V and V wn = sup_ y/b V
rl/2

(r)(un (r) — p(r)) = Op (\/b/\/T) -^

0, qn = max[|u„ — 1|, |/„ — 1|] —^ 0. Thus wp—> 1 l{En ) = 1, where E„ = {vn ,qn < S} for any 5 > 0.

II. Thus for small enough e > there is S > 0, so that by fact 2: G n ,b(x - e)l{En ) < Gn ,b{x)l{En ) <

Gn,b(x + e)l(En) so that with probability tending to one: Gn ,b(x — e) < Gn ,i,(x) < Gn ,b(x + e). Now pick

e > so that [x — e,x + e] are continuity points of G(x). For such small enough t , G n ,b(x + c) —^ G(x — c),

for c = e and c = —e, which implies G{x — e) — e < Gntb{x) < G(x + e) + e w.p. —> 1. Since e and <5(e)

can be set as small as we like, Gn,b{x) —^ G(x). Now note that x = G -1
(l — a) is a continuity point by

assumption. Convergence of quantiles is implied by the convergence of distribution functions at continuity

points.

III. (iv) follows from Lifshits (1982) or Davydov, Lifshits, and Smorodina (1998) by A3.

Proof of Theorem 2 I. The proof of the first statement is a direct corollary of Theorem 7.3.1 in Politis,

Romano, and Wolf (1999). II. The class of moment functions / defined prior to the proof is clearly Borel

measurable, since these functions are a measurable function of a random vector v„(r). The convergence of

subsampling truncated moments thus follows from the definition of pi,. III. Finally, because v(t) is non-

degenerate uniformly in r, it has continuous bounded density by Gaussianity, by A. 3, Ev(t)p 1k^^(v(t))

can be approximated arbitrarily well by Ev{r)p
fK (-)(v{r)) for some v >-> f(T)p/K(-) 6 L(c',k') for some c',

/.'
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Table 1. Empirical Rejection Results for 5% level Khmaladze Test

H= .5 Bofmger H=.6 Bofmger H= Bofmger

Size Power Size Power Size Power

7 = 7 = .2 7i = - 5 7 = 7 = .2 7i = -5 7 = 7=2 7i = -5

n= 100 0.101 0.264 0.898 0.035 0.211 0.755 0.016 0.126 0.641

n- 200 0.070 0.480 0.988 0.041 0.406 0.990 0.022 0.280 0.964

72 = 300 0.062 0.622 0.998 0.043 0.665 1.000 0.029 0.416 0.998

n = 400 0.043 0.809 1.000 0.043 0.809 1.000 0.035 0.632 1.000

Notes: All results are from Koenker and Xiao (2002b). Symbol H denotes different bandwidth choices

relative to the Bofmger rule.

TABLE 2. Empirical rejection results for 5% resampling test (Smirnov Statis-

tic), for various K, b = K x n2/5
, using 250 bootstrap draws and 500 Repe-

titions.

Subsampling
'

rest (K=5) Subsampling Test (K= 10) Boot strap Test (b=n)

Size Power Size Power Size Power

7 = 7=2 7i = -5 7 = 7=2 7i = -5 7 = 7 = .2 7i = .5

n = 100 0.014 0.348 0.980 0.026 0.350 0.954 0.022 0.316 0.968

n = 200 0.052 0.752 1.000 0.059 0.728 1.000 0.038 0.728 1.000

n = 300 0.058 0.910 1.000 0.058 0.924 1.000 0.074 0.918 1.000

n = 400 0.054 0.980 1.000 0.064 0.978 1.000 0.056 0.970 1.000

maximal

sim. s.e. 0.009 0.009 0.009

Notes: All results are reproducible and the programs are available from the author.

Table 3. The test results for the re-employment bonus treatment, using

b = 3000 ( subsampling with replacement
)

Hypothesis Null Alternative Smirnov Statistic 5% level critical value Decision

Location-shift

Location-scale shift

Dominance Effect

6(t) = S

S(t) = a + 7a(r)

6{t) <

S(T) ± 5

S(t)
-fi
a + 7q(t)

3t:5{t) >

2.46

2.47

0.00

1.31

1.30

4.59

Reject

Reject

Accept
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