


LIBRARY

OF THE

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY



Digitized by the Internet Archive

in 2011 with funding from

Boston Library Consortium IVIember Libraries

http://www.archive.org/details/inconsistencyofdOOengl



.mMmn-.

working paper

department

of economics

Ihe Inconsistency of Distributed Lag Estimators

Due to Misspecification by Time Aggregation

Robert F. Engle

Massachusetts Institute of Technology

Number 63 October 1970

massachusetts

institute of

technology

50 memorial drive

Cambridge, mass. 02139



Ihe Inconsistency of Distributed Lag Estirrators

Due to Misspecificaticn by Time Aggregation

Robert F, Engle

iMassachusetts Institute of Technology

l^umber 63 October 1970



As exinornetricians find themselves capable of obtaining and handling

data which is disaggregated over titns, it becores necessary to conpare

the specificaticn of ncdels v^ich are fornulated and estimated in different

unit time periods. For static ncdels, time aggregation is not a prdDlem

as the model can be aggregated by successively lagging and then summing

the equations, Nerlove [14], Ironmonger [9]/ and Mundlank [13] early

explored the problem in dynamic models ard shc"«Jed that it is a conplicated

process. Sims [16] has analyzed the bast fit of a discrete lag distribution

to a continuous time underlying model but with little regard for the

estimation pK±>lems. Itelser [17] on the other hand derived an estimator

for the true underlying coefficients in terms of the aggregated data

by extracting the missing infoniHtion from the process of the aggregated

residual. His procedure is hcwever only asyitptotically unique and not

very robust, and consequentlv is not a practical estimation procedure.

This paper will shew, for a series of tinderlying model specifications,

v*iat the asyitptotic values of ordinary least squares or tx^ stage least

squares estimates of the parameters in the aggregated inodel will be.

The purpose is therefore to enable an e5<perimenter to cotpare different

levels of aggregation or to anticipate the biases from failing to use

sufficiently disaggregated data, lb check the validiir/ of the approximaticais

made in the analysis, seven of Liu's [ll]monthly model equations are

aggregated to quarterly and annual forms and reestimated.

I. tfethodoloqy

Two distributed lag models \>^ich are formulated in different unit

periods can be coipared only if unit invarient statistics of the twD

distributions can be found , Two such statistic^ recommended by Griliches [6

]
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are the long rijn propensity and the average lag. Never can the lag

distributions be exactly the same, but if these two simple parainaters

are the same, we might be sanguine about our estimates. The procedure

will therefore be to employ Iheil's theory of specification analysis

to discover what variations in these tvio parameters miciit be expected

to result from time aggregation of a distributed lag model.

Defining the disaggregated time unit as a month and using L as

the lag operator, the underlying true model is in general given by

1) a(L)y = B(L)x + y(L)e

\A*iere e is independent of x; a (L) , 6 (L) and y (L) are all rational

polynomials in L; and x and y are msasured as deviations from sanple

means. Aggregated data, vitdch will always be capitalized, is obtained

from the monthly data by arplying an aggregation operator R(L) as follows

2) y^ = R(L)y.

t = n, 2n, 3n, ...

X^ = R(L)x^,

vAiere R{L) =— (1 + L+L +...+L~) ifx and y are flow variables

expressed in annioal rates, or vAierQ R(L) = 1 if x and y are stock variables

defined at the end of the period. Notice that for standard annual data

Y , X are only defined for t = 12, 24, 36, ... since t counts in months.

Clearly the stock variable case is easier but it is in general not as

Inportant for econotetric applications. The aggregate model v^iich has

been most carefully analyzed in this paper is the Koyck-Nerlove model

3) Y^ = AY^_^ + BX^ + W^ t = 2n, 3n, . .

.

which is almost the simplest lag model and is certainly one of the most

important. In principle, hon«;ever, any model could have been used but

the ccttputations would have been more involved.
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By writing plim j^ x'y = (x,y) v« can conveniently write the probability

limit of the estimated paraineters as

(^-n'^-n) (Y-n'^) "'III
4) vim.

" (Y_^/X) (X,X)

v-^ere t has been suppressed. Assuming tliat the processes are covcuriance

stationary this beccnies .

(X,X) (Y,Y_^) - (Y_^,X) (Y,X) \

(Y,Y) (X,X) - (Y^^,X)^

(Y,Y) (Y,X) - (Y_^rX) Oi_^,Y)

(Y,Y) (X,X) - (Y_^/X)' J
There are only five incnients in (5) ; once these are computed the probability

nA
limits of the a^regated coefficients are; known and the Av. Lag. = j^

TO

and the long run itarginal propensity y^ are easily calculated. The

difficulty is in conputing these mcments under the assumoticn that (1)

and (2) provide the true stochastic specification of the variables.

Much of the analysis can in principle be performed either with the

conventional nethods of difference equations or in tine spectral represen-

tation. As the latter is far more versatile and cottputationally siitipler

it will be used ejclusively in this paper. For a sinple exaitple of

the difference equation methodology see Engle and Liu [3] or Engle [2] ,

If we let the power spectrum of x be f (9) and the jxmbt spectniu

2
of e be flat with height o which means that e is v^ite noise, then using

* **
spectral transfer functions , v^ can express the desired moments as integrals.

*For exairples of this see Nerlove [15] or Hovrey [8] .

**In addition we nust assume that the monents are consistent estimates of
covariances vM.ch will be true if we assume that hi^er order monents are
finite, Goldberger [4] , or that the process is Gaussion, Doob [1] , or in
general that the process exhibits asyrtptotic independence.



>4-

For ejQirple, the variance of x is

6) (x,x) = f (0) do
X

and so

since

7) (X,X) = -i_ / |r {J-^)\ 2 f^(e) d9

8) fj^(9) = |R(e-"^^)
I

2 f^(9) *

R(e ) in (7) is that of a spectral transfer function.

Using the saite arguments ws can write the following series of relations

using (1) and (2)

9)

f (6) =
y , ie,

a(e )

f^(9) . Y(e )

a(e )

2

V^Q) = £<£i!i f^(6)

fyO) =

a(e )

6(ei^)

a(e^^)

ie, I 2
f^(e) + JR(e^®)

j

f^(9) = iRCe"-^)
I

2 3(e"^^) f^{Q)

a(e )

Y(e )

a(e )

2 2

*f (9) is actually tlie power spectrum of X only if it is observed
moithly.'' If instead X can only be observed for example annually, then
the higher frequency corrpottents cannot be separated frcm sorre of the
low frequencies. In fact, the power spectrum is only defined for -it/12<9<ti-/12

and all 9*s outside this interval are "folded" into this interval. Ho^fjever,

the integral in (7) should in fact only cover the interval ~'n/12<Q<-n/12

and the result is identical, Ihis result is sinply that a consistmt estimate
of the annual variance is obtained either by using every monthly observation
of the annual average of just every twelfth one.
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and frcm (9) we can varite the e:xpressions far the required rnomsnts directly.

10)

(y,Y) =5^
f

|R(e^')
ie. 2

'-tr

(Y.^,Y) =
27r

(Y,X) =

,TT

-TT

A. r
l-n I

J -IT

" 27r

-IT

6(eiQ) '

2

a(e )

f (0) de
X

-^-TT

2 'R(e") I

2
- ie.

Y(e )

-ine
R(e^®)

, ie,
a(e )

a(e )

de

f (0) de
X

•'^/:
-ine

a^ |R(e^^)
ie. 2 Y(e )

a(e )

de

ie,
I
2 6(2"^^) f (6) de

' a(e )

-in6
j „ , ie . j 2 „ , -i0

,

R(e ) Bje) ^^
'

a(e-^Q) ^

Ihus by clTOosing a (L) , 6 (L) , y (D / f (e ) and a we can obtain the

probability limit of tl:ie coefficients of any level of aggregaticn just

by evaluating these integrals.

Unfortunately, as the reader might susoect, this is not a trivial

step. In practice, the simplest method for performing this integration

is to use Cauchy's Integral Theoran ^/*iich is explained and eimloyed in

the appendix. With this tool the biases are now conputable.

II. i^joalytic Results

The specific underlying model exartuLned is

11) (l-oL) y = Bx + SlzBL e

(1-YL)

\iiaere e is vAiite noise with variance a , Special cases of this model
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oover iTDst of the contrcfversies ever the estimation procedure for

Koyck-flerlove adjustment models; that is 6 = y is the serially uncorrelated

disturbance which allows direct estirtation of the model; 6 = suggests

a simple autoregressive transformation for estirtiaticn; 6 = a, y = is

the moving average disturbance which occurs when the ijncorrelated

disturbance is introduced before the Koyck transformation; and 5 = a,

Y 7^ is the exanple vAiere both moving average and autoregressive Drocesses

exist in the disturbance.

Within the structure of this racdel, a poi'^r spectrum for x mtost

be assumed. Two candidates have been considered. One is that x is

a first order autoregressive process with parameter p; utiile the

other is that x is a purely datemunistic oscillating process with

frequency w. Ihe former assurrotion has been analyzed in Engle [2] and

proves to give more carplicated results than the latter; but under

the approxinaticn that p is close to unity (that the variable does

not vary much from one month to another) the conclusions are identical

with the 0) = approxination discussed below.

The assunpticn of a deterministic process v/ith frequence/ to

turns out to be a finiitful approach for eccncsnpic time series. It is

equivalent to assijming that the spectrum is zero everyv^:iere but has

2
a spike at + w with height a . Clearly, this makes many of the integrals

sirrpler and in particular, t±ie case vAiere w = is a reasonable

approximatiai to many eccnanic time series x^^ch have iitportant trends.

Granger [5] argues that typical eoononic variables have most of their

power in very low frequencies and Hannan and Terrell [7] use the same

approximaticai. Furthermore, since many time series have a series of peaks

corresponding to seciscnal harmonics, a superpositicn of these deterministic
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coitpGnents each weighted by a reasonable variance, would give a good

representation of a tine series with strong seasonality.

The probability limit of the estimate of the paraineter A in the

aggregated model (3) when x is deterministic is given by the following

unpleasant expressicn:

"TO
N(a) a(l-a6) (a-6) (l-y ) -N(y) yd-Yg) (Y-<S) (1-a )

(1-a ) (1-Y^ (a-Y) (l-ay)

12)

plim A =

+ cos nu - (1-acosoj) (cosnoo - acos(n"l)a)

G(a))

NG(a)) Q(a) (l-a6) (a-6) (l-y^) - Q(y) (1-y5) (Y-6) (l-^x^)
4-

T(a)) (l-a^) (1-Y^) (a-Y) d-aY)

v*iere

+ 1 - OPS mo - acos(n-l)ai

G(a))

N(a) = ij
[ 1 + 2a + 3a^ + ... + na^"""- + (n-l)a^ + ... + a^^""-^^

n

Q(a) = ij. [n + 2(n-l)a + 2(n-2)a^ + ... + 2a"~-^]"2
G(w) = 1 + a - 2acos w

1T
n

T(a)) = i>5» [n + 2(n-l) cosw + 2(n-2) cos 2a) + ... + 2 cos(n-l) u ]

M
2 2 2

e ' X

Note that for a >_ 0, N(a) < Q(a) <_ 1 with equality for a = 1, (1-a) <_ G(a)) <_

2
(1+a) , and -1 <_ T(a)) < 1. The terms in square brackets ccaie directly

from the process of the disturbance v*iile the other four terms result from

the process of the exogenous variable.

There are two iitportant cases in v*iich vre will find the disturbance tems

2 2
most iitpartant. First, if M (vdiich is 1-R / R of the monthly model) is large.
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then the other terms v»^ch are all less than one will be unimportant.

Secondly if tlie frequency of the e>Dogenous varialale is approxiirvately

zero, then only the disturbance terms will he left. Since all terms

are cosines, tlie derivative with respect to w is zero at w = and so

there is no abrupt change in the validity of the approximation if oj

is merely close to zero. In addition, suppose there were a second

2
peak in the spectrum at a frequency w, different from zero with a Variance a,

2
somevtet less than a- which corresponds to w = 0, 11-ien there WDuld be

three more terms in the numerator and denominator of (12) v^ere each of

the new disturbance terms would be weighted by a,' T (w, ) , and the other

4 _2 2
new terms by a, TT (w,

)

a T (0)

Oq 'r^(O)

Since T(a)) is a maximum of 1 and this occurs v;hen w = 0, the new terms

voiild find their contribution receiving little veight. Ito/rever, it is

of course true that tlie terms themselves might be very large and thus

overcome the effect of small weights. Rarely does a -pcx-ier spectrum exhibit

a peak higher than that at u = 0, especially if it has not been carefully

detrended,

iMs argument suggests that a careful examination of (12) when w =

would often give approximation to much of econonic reality. The result is

13) pliiti A = N(a)a(l-a6) (a-5) (l-y^) - N(y)Y(l-y6) (y-fi) (1-a^)

Q(a) (l-a6)(a-6)(l-Y^) - Q(Y) (l-y6) (y-6) (1-a^)

The simplest model is of course obtained v^en 6 = y = 0, irplying that

. the true model is

14) y = ay_, + gx + e

vdiere the disturbance has a white noise process. In this case (13) becanes:

15) plim A = aN(a)
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which is al\^ays less than or equal to x and greater than or equal to a^.

However, n pliin A _ a does not have a unique sign. Generally, it

1-plim A 1-a

rises far n < 4 ard then falls beccming negative. Ihat is, v^hile a quarterly

nodel might overestimate the average lag, an amnual model would underestimate it.

l^Jhen 6 = a and y = 0/ the true monthly model is:

16) y = cy 1 + Bx + e - ae_,

with a moving average disturbance vAiich results from an atuoregressive

transformation of a model with v*iite noise disturbances. Ihe expression

for the estimator is

17) pliin£= ^.
^

Thus the observed lag stnxiture has nothing to do with the true x, only

with the original serial correlation. The estimated average lag will

hov^ever rise and tlien fall with aggregation just as in (14) . Ihe reason

for the starkness of this result, is that our assurtption about the process

of the exogenous variable emasculates the lag distribution x-ihen it is

expressed as an infinite moving average '.>n.th geometrically declining weights.

Nevertheless, (17) provides an important ccaitribution to the estimate of A

and the directicn arnd origin of this bias shaild be clear.

Perhaps the most important case is vihen the disturbance has a first

order markov process and the original model is

18) y = ay ^ + gx + £ .

This model is in a form suitable for various estimation techniques and

the questicn of estimation with serially cojrrelated disturbances is

generally posed within the context of (18) . The moving average disturbance

is more difficult to handle and ustially is just approximated by a rapidly

decaying autoregressive process. The estimator of A resulting from (18) is
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19) pli^;= i,(a) g^d-y^) _,,(,) ^2(1^2^ .

Q(a) a (l-Y^) - Q(t) y d-^ )

It) see tlie biases in the average lag as estimated with (19) a plot of

the average lag for y= •S, 0, -.5 is plotted against tlie nuntoer of periods

of aggregation for a= .55 and .9 in figures 1 and 2. In addition, these

curves are replotted for oj = .05 and ,1 vath M = .5 in each case to ejomine

the effect on the estirrates of small deviations from o) = 0. These oj's

correspond to oscillations of 125 and 63 periods respectively.

Several iirportant facts can be seen by studying these two figures.

First, the effect of serial correlation is strongest in relatively

disaggregated models and l^ds to an overall increase or decrease in

the estimated average lag depending on whetlier the serial correlation

is negative or positive respectively. Second, in ttie more highly

aggregated models, the size of the serial correlation coefficient seems

less important than the deviation of u fron zero in explaining the

size of the estimate of the average lag. In particular the larger is to

the larger will be the aggregated average lag. If o) gets even larger,

other calculations show that the average lag goes to infinity and then

becomes negative and large. This results from the fact that the denominator

of (12) goes throui^i zero as cd increases, but it seems unlikely that this

effect will be of practical importance.

"ihe third inportant cfcservation is that the consequences on the

estimated average lag of having o) ji^ seen to be much stronger vAien a

is close to one. In a monthly model one would ejqxxrt. the true a to

be very large and thus deviations from ca = to have a strong effect.

It trust be remei±iered, however, that all these calculations \\?ere made

under the assunption that M = .5 and therefore ciny coitpcirision betw^aen
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the strength of the disturbance tenns and the systematic terms in the

expression (12) cam be altered if M is different from .5.

In summary, there are three basic characteristics of the behavior

of this model as it is aggregated over time. First, the average lag

will increase or decrease if the serial correlation is respectively

negative or positive. Second/ when w j?^ the estimate of the lag

will be greater, especially in highly aggregated rnodels. And third,

if a is close to one, the size of w will be more inportant in detemnining

the average lag in aggregated models.

Wfe agreed in this study to conpare tiie values of two parameters

of the lag distribution, the average lag and the long run propensity.

Fortunately, it is possible to show that if the approximaticn w =

is valid, that the long run propensity should be unaffected by time

aggregation. Recalling that the long run prc^sensity is B/l-A

and substituting for (5) vre obtain

20) long Run Propensity = (Y,y) (y,X) - {Y_j^/X) (Y_ ,y)

(Y ,y) (x,x) - (Y_^#x) ^- (x,x) (Y__^,y)+ (y,x) (y.^/^)

Using the formulas, in (L)) and observing that vAien f (9) is a spike at the

origin, (Y__/X) = (Y,X) ; (20) becomas sianply

21) Long Run Propensity = -^^^ = ^
(X,X) ^

1

where 3- and a. are the coefficients of the rational polynonials in (1),

Since (21) is true for all n and since this is also the Long Run Propensity

for the true model (1) , time aggregation leaves the estimates of long run

propensities consistent as long as the exogenous variables are primarily trend.

Thus the long rvtn properties of a model should not be affected by tims

aggregation, only the short run properties are altered.
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A sinple generalizaticn of the preccdina set of results to

Liu's [11] "inverted v" model is easily obtained. This lag distribution

is obtained by replacing the ejcogenous variable by its <ym moving

average of several periods with the consequence that the peak effect

is felt not in the first period, but several periods later. Ihe Icnger

the moving average, the later the peak will occur. Such a model is

very appealing frati an ecanoretric point of view, especially for models

using short tirte periods.

In terms of the analysis in this paper, tliis cliange merely implies

changing S(L) and B(L ) to the appropriate length moving average

assumed by the true model and the estimated model.

Letting R (L) = i
[ 1 + L + L^ + . . . + L^"-^] and }? a R (l") , (3) becoires

r ^^ r

22) Y = AY + BX + W
-n

and (5) is merely to be rewritten wj.th '^ over all X's. Similarly, in

eauations (10) the only change is the presence of R (e ) in the last

two integrals, and (X,X) becomes

i

23) (X% =^ r |R^(ei^')
TT , . n I 2 .„ . 2

R (e^®) I f (9) d9.
n X

Because of the myriad TX)Sslble combinations of true mcnthly moving

average and aggregate moving average, only the anproximaticn to =

will be presented. Prom tiie manner in which the B(L) and B(L ) have

been introduced into (5) , it is clear that cnly the terms vdth f (9)

are altered, and that when 9=0, they remain identical to the strict

Koyck-Nerlove model. There is a difference, haA/ever, in that the average

lag implied by any estimate of A depends on the length of the moving

average on X. If X is subjected to a moving average of r periods, then
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the average lag is given bv

24) AV lag = n
|
-A_ + £Z.^

1 1-A 2

Ihus, in order to analyze such a rrtxiel when aggregated over time, we

merely subtract n(r-l) frcm each estimate and canpare the results in

terms of the theory expounded above. Ihat is, the theory should apply

to the average lags computed without regard for lags in the exogenous

variables

.

It is perfectly clear that again, our aoproxinnation has taken

much of the impact out of the exogenous variables taut a careful study

of the consequences for each parr of true and estimated moving average

models uould be very time consuming. For an analysis of the case v^ere

only the disaggregated model lias a moving average see Engla [2] .

III. EMPIRICAL RESULTS

In carder to ascertain v^ether the analytical results v\^re

reasonable and v^iether the approximatiois employed ^/jere helpful, seven

equations from Liu's [11] monthly econometric model of the U.S. were

reestimated in quarterly and cinnual fonrB using exactly tlie same

data. The model ^^?hich most closely approx-tmated tlie form of the

*
nonthly model was estimated in each case using ordinary/ least squares,

tavD-stage least squares, and an estiirator which consistently estiitates

a Ko^/ck-Nerlove model in the presence of first or second order serial

This means that the total time covered h^/ moving averages have been
kept the same and that one month lags in monthly exogenous variables have
became simultaneous observations in the quarterly and annual case, v^ile one
month lags in t!ie deper*ient variable have beccane one period lags in the
aggregated version. It is possible that in sane cases, a different form
might give more reliable estimates but this paper will shed no li<^t on.

this question.
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correlation. The program, vAiich will be called autoreqressive least

sqiiares or ALS, vas voritten by l^^rtin [12] ; it perfonrs an autcregressive

transfomation and then estimates the ncdel with non-linear constraints en

the parameters. If indeed, the biases resulting from the introduction of

serial correlation into the disturbance during aggregation are greater than

siraaltaneous equation bias, then this estimator might prove better than

the TSLS estimator in apprccciinating the dynamic structure of the underlying

model. Ihe analytical theory hcwever should best describe TSIfl estimators

since it assumes that the esoogenous variables cire independent of the

disturbance.

The seven equations which are all taken directly from the Liu [11]

model are Consumer Nondurables (CN) , Ccnsumer Services (CS) , Business

Construction (BC) , Equipient (Q) , Dividends (DIV) , Corporate Profits (CP)

,

and Corporate Profits after Depreciation (CPDC) , These are the only

equations vAiich are estimated in the Kpyck form; the corrplete listing of the

regression results is in the appendix. Here we shall merely display the

relevant statistics en the average lag and long run propensity, each

confuted with respect to the leading WP variable.

In figure 3, the average lags for each equation are plotted

against the level of aggregation. The values are the OLS monthly

estimate and the TSLS quarterly and annual estinrates each of v^Mch is

adjusted for the inverted v fontulaticn of the model. The horizontal line

is the "true" value as given by Liu using a presumably consistent estimating

technique. Finally, on each diagram, the MLS estimates are plotted with

a star. The order of the diagram is that the highest serial correlation is

plotted first.

The curves are in fact very mudi like those of figures 1 and 2, For

positive serial correlation the average lag falls and for small aixJ negative
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serial correlation, it rises and then falls again. Hox^iever, one equation,

CS, does not have the proper shape. In theory one would expect the

monthly estimate to be belcw the quarterly but this is not the case.

In general the results are quite good arxi give strong corrdboraticn

to the approximations inherent in the theory. The ALS estimates are

however not markedly better than the TSLS, As is shown in Engle and

Liu [11] , they are in fact nuch vxarse in terras of system response,

Ihe reasons for this may be t\:rofold. First, sirauXtaneais equation

bias may dominate the biases due to serial correlation; but second

and perhaps more ittportant, the processes of the disturbances are

cccnplicated stochastic processes v^ich cannot be represented by sirtple

first and second order autoregressive models. TlTfirefore, the assunption

of this specification nay in fact not inprove the estimator at all

for sane, stochastic disturbances and couM have unforeseen deleterious

effects.

Ihe long run propensities ate given in Table 1 and, althou^

they are not the saire with aggregation, the differences are not large.

Almost ncMherre are these different b^' more than a factor of 2 and this

difference, in view of the standard errors is not significant.

Table I

Long Run Propensities

I'fonthly Quarterly Anniial

.093 .155 .099
.097 .095
.201 .195

.430 .450 .480

.442 .480

.445 .500

Equation Ser. Corr.

CN
0I£ -.18
TSLS
ALS

CS
OLS -.25
TSLS
ALS
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Equation Ser. Ccorr. Monti-ily Quarterly Annual

BC
OLS .32 .480 .486 .281
TSLS .350 . .465 .283
ALS .312

Q -.09 .331 .712 .674
OLS .735 .684
TSLS .634
ALS

DIV
OLS .66 .242 .223 .210
TSI£ .213 .221 .209
ALS .216 .208

CP
OLS .56 .269 .211 .167
TSLS .194 .204 .167
AT.S

CPDC
OLS .69 .178 .136 .080
TSLS .088 .139 .080
AI£ .094

•I5TUS in cxmiclusion, the data in Liu's model provides reasonable

corroboration of the theoretical predictions for the biases to be

expected fron aggregation over time of Koyck-Nerlove type distributed

lag models. The eoonometriciar! can, from this result, infer the

plausible size of the bias viiich ndc^t be inherent in an aggregated

itodel. The analysis shows the sensitivity of even a well specified

distributed lag model to changes in the unit time period and casts

imcertainty on the dynamic properties of models with improper time

units.
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i\PPEMDIX A

In practice, the sirttplest method fcor evaluating the oonplicated integrals

in (10) , is to use Cauchy's integral theorem and consider the integral of

6 frcm -IT to ir as a line integral around a unit circle in the conplex

plane. Ihe value of any closed line integral is zero if the surface inside

the path is everywhere analytic (inost functions are analytic with aS notable

exceptions points of non-differentiability where the ftmction becones

infinite) . This observation corresponds to the fact that amy round trip

hike on a frictionless trail theoretically involves no net vTork, If however,

there are singularities within tiie path, the integral will have a value

v^ich is easily conraated. The Vcilue is given by Cauchy's theorem to be

2TTi times the residue of the singularity' ^;here the residue is the coefficient

of the singular factor. For example, ^ y has a singularity at X = 3 with

a residue of 6X or 18,

This theorem is easily used to evaluate the integrals of (10)

,

For exarrple, ibo evaluate

Al)

J _^ (l-ae ^^)

, ^ +i9
let e = z giving

A2)
1 (f^ dz

|zl=
1^"^)

|z|= 1

Now, if la
j
< 1, there is a singularity at z = a with value a vAxich is

within the unit cijrcle and (A2) can easily be evaluated as

A3) = a .

2iTi
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Integrals of the form of (Al) arise whenever norents are confuted

bet^^en tx^x) variables v^ich are lagged functions of a ^vhite noise

process. Siippose x = g(L)e and y = h(L)e, then

(x,y) = (g(L)e, h(L)e)= 5^ z^"" a^ g(e"^^) h{e'^^^) dG,

-> -IT

and ma]<;ing tlie substitutions fron above, hut writing L instead of Z,

A4) (x,y) =0^ S g(L~-'-)h(L)L"-'- .

residue in
unit circle

However (x,y) = (y,x) so

A5) (x,y) = a^ E g(L)h(L"-'-)L"-'-

residue in
vinit circle

and therefore in general

A6) L f(L) = E fa"-*-) l"^
residue in residue in
unit circle imit circle

Eguations (A4) , (M) and (A6) provide the tools necessar\' to evaluate

the integrals v\fliich have continuous spectral density functions since

these can be expressed in teniis of a rational polimonial of the lag

operator on a lA^iite noise Drocess, It is apparent that if two

singularities occur at the sane point, the above fconulas will not

work. For the generalization to this case, see any advanced calculus

book such as Kaplan [10]

.

As an exairple of the use of (A4) and (A6) let us evaluate the following

integral frcm (10)

.

,Tr .„ , 2

A7)
1 /

I „, ie,
I

de

-^-TT
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= I r(l)r(l"-'-) ^-1
residue

^^_^^^ ^^
_ a^

^^^^j ^^
_ a^

= Z it l+]>L^+...+L^~^ ] [ 1+ i+ 1-.+ ... + L_^
]

residue j)~ ^ L L

(1-aL) (Ir-ot) (I-yD (Ir-Y)

residue 2 L L
n

(1-aL) (I/-a) (1-YL) (]>Y)

lliis cxjitplicated function has singularities atL = a, L = y, L=Oall

of which are by assurrpticn within the unit circle. Unfortunately, the

singularity at L = is a multiple root and therefore the recoimiarided

procedijre is to evaluate part of this sum in this form and then apply

(A6) in order to calculate the rest. Taking all the terras in the numerator

with positive ej^xaients first, tlie integral becones

A9) ^ I g [n Hh (n-1) a + ... + a""^] ^ Y [n + (n-1) Y + ... + Y^"^]

"
' (1-a^) (1-Ya) (oi-Y) d-ay) (Y-a) dV)

[<n-l,i.....l^,]

residue n"
(1-aL) (I/-a) (1-yL) (L-y)

Applying (A6) to the last terra gives

, , (n-1) L + ... + l""-*- iy
last term = E -sr- 7-

~ a. ,1 7~Z y. ,1 !! L
• r, ^ L (1 -—)(—- a) (1 - 7-) (— - Y)residue n L L L L '

r L. L [ (n-1) L + . . . + l""-*-]
-

^J^^^ ^2 (L-a) (1-aL) (L^) (I-yD

vrfiich is evaluated directly just as in (A9) to obtain as the full integral

of (A7)

_ aQ(a) + yQ(Y)
2

(l-a ) (1-Ya) (a-Y)

using the definition of Q(a) following (12).

(1-a^) (1-Ya) (a-Y) ' (1-aY) (Y-a) dV)
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+
Appendix B'

Corporate Profits after Depreciation

Monthly OLS Y = .560

CPCD = .955 CPCD , + .008 GNP , + .161 PW , -30.6

(.017)
'^

(.002) "-^
(.030)

"-^

AV IAg''"''(Mj)= 22.2 (21.2) LR Prop = .178 R^ = .975

Monthly First Iteration

CPCD = .909 CPCD
T
+ .008 GNP ^ + .041 PW , -1.97

(.034) "-^ (.003)
"-^ (.037)

AV lAG (Mj) = 11.0 (10.0) m Prop = .088 R^ = .883

Quarterly TSI£

CPCD* = .798 CPCD _ + .028 GNP + 5.04 PW -93.7
(.067) "-^ (.006) (1.19)

AV lAG (Adj) = 11.9 m Prop = .139 R^ = .863 (1.29)

Quarterly First Order y = .517 (.322)

CPCD = .629 CPCD*. + .035 GNP* + 3.37 PW -28.3

(.279) ""* (.019) (1.54)

AV LAG (Adj) = 5.1 LR Prop = .094 R^ = .889 (1.75)

Annual TSIS
^^ jf-fi if.f[ ifit

CPCD = .079 CPCD T, + .074 GNP + 7.40 PW -122.7

(.289)
"-^"^

(.021) (4.82)

AV LAG (Adj) =1.0 LR Prop = .080 R^ = .543 (2.08)

Dividends

Monthly Olg Y = .658

DIV = .942 DIV ^ + .014 CPCT*^ + .098

(.018)
'^

(.004)

AV lAG (Adj) = 18.3 (16.3) IR Prop = .242 R^ = .995

Monthly First Iteration

DIV = .906 DIV
T
+ .020 CPCT , + .085

(.032)
~^

(.007)
'^

AV lAG (Adj) = 11.7 (9.7) LR Prop = .213 R^ = .981

Quarterly TSLSf
DIV = .747 DIV . + .056 CPCT + .482

(.054) "-^
(.011)

AV LAG (Adj) =8.6 IR Prop = .?21 R^ = .981 (1.58)
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Quarterly First Order y = .267 (.148)%
DIV = .689 DIV - + .067 CPCT + .50

(.074)
'"^

(.014)

AV LAG (Mj) = 6.6 LR Prop = .216 R^ = .982 (2.03)

Annual TSIS
A* ** **

DIV = .119 DIV ^- + .184 CPCr + 2.02
(.173)

"^"^
(.033)

AV lAG (Adj) = 1.6 LR Prop = .209 R^ = .948 (2.49)

Annual First Qcder y = -.353 (.322)
itit ** **

DIV = .235 DIV ,, + .157 CPCT + 2.67
(.188) "-^"^ (.034)

AV lAG (Adj) = 3.7 LR Prop = .208 R^ = .962 (1.12)

Corparate Profits

Monthly 0I£ y = .560

CP = .948 CP , + .014 GNP , + .170 PW , -33.3
(.021)

"-^
(.004)

'^
(.032)

'-^

AV LAG (Adj) = 19.2 (18.2) IR Prop = .269 R^ = .993

Monthly First Iteraticn

CP = .897 CP , + .020 GNP , + .107 PW , -9.26

(.034)
~^

(.006)
~^

(.041)

AV lAG (Adj) = 9.7 (8.7) LR Prop = .194 R^ = .975

Quarterly TSIg

CP = .720 CP - + .058 GNP* + 5.18 PW* -100.8

(.076)
"-^

(.013) (1.18)

AV LAG (Adj) =7.7 IR Prop = .204 R^ = .966 (1.23)

Ann\3cil TSLS
it^ AA ** **

CP = -.200 CP T, + .200 GNP + 7.22 PW -139.2

(.233)
"-^

(.033) (3.84)

AV LAG (Adj) = -2.0 LR Prop = .167 R^ = .934 (1.90)

Business Constnjction

MCTithly 013 y = .324

BC = .975 BC , + .012 CPCT , -.101 R , + .28

(.014)
~^

(.004) "-^ (.042)
"-^

AV lAG (Adj) = 45.5 (39.0) LR Prop = .480 R^ = .990

Mcaithly First Iteration

BC = .958 BC , + .015 CPCT * -.097 R , + .27
(.020)

~^
(.006) '-^ (.059)

"-^

AV lAG (Adj) = 29.3 (22.8) LR Prop = .350 R^ = .980
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Quarterly TSIg

BC = .916 BC ^ + .039 CPCT** -.295 R* + .77

(.045)
"-^

(.013) (.143)

AV LAG (Mj) = 37.2 (32.7) m Prop = .465 R^ - .963 (1.41)

Quarterly First Order y = .365 (.161)

BC = .846 BC . + .048 CPCT -.231 R + .82

(.086)
""^

(.021) (.209)

AV lAG (Adj) = 21.0 (18.0) LR Prop = .312 R^ = .967 (2.02)

Annual TSIfi
** it^ ** **

BC = .678 BC ^- + .091 CPCT -.396 R + 2.78
(.209)

'^"^
(.048) (.710)

AV lAG (Mj) = 25.2 LR Prop = .283 R^ = .828 (2.03)

Business Equiptent

Monthly OLS y = -.086
**

Q = .711 Q , + .110 CPCT
T

-1.58 R , + .026 t + 7.81
(.066)

"-^
(.064) "^ (.413)

""^
(.012)

AV LAG (Mj) = 9.06 (2.56) IR Prop = .381 R^ = .940

Quarterly TSLS
* * ** * *
Q = .593 Q ^ + .299 CPCT -1.36 R -.005 t + 3.34

(.095) "-^
(.078) (.564) (.036)

AV lAG (Adj) = 8.87 (4.37) LR Prop = .735 R^ = .929 (1.42)

Quarterly First Order y = .420 (.26)""^^^ * it itic * *
Q = .382 Q ^ + .391 CPCT -1.93 R + .015 t + 3.73

(.248)
"-^ (.154) (1.08) (.059)

AV LAG (Mj) = 6.35 (1.85) IR Prop = .634 R^ = .943 (1.73)

Annual TSLS
lilc iiii itit icit Itit

Q = .237 Q 1, + .522 CPCT -.914 R + .062 t + 2.98
(.231)

'^^
(.156) (1.68) (.120)

AV lAG (Mj) = 3.72 LR Prop = .684 R^ = .869 (1.92)

Consumsr Non-Durables

Monthly Olg y = -.18

CN = .550 CN , + .042 Y*, + .022 M + .282 t + 34.8
(.06)

~^
(.024)

'^
(.008) (.02)

AV LAG (Mj) = 3.2 (1.2) LR Prop = .093 R^ = .992

Quarterly TSLS

CN = .545 CN - + .044 Y* + .022 M* + .283 t* + 34.6
(.106)

"^
(.038) (.012) (.095)

AV lAG (Adj) = 3.6 LR Prop = .097 R^ = .994 (2.12)
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Quarterly Second Order yl = .63 (.186) y2 = -.51 (.139)

CN = .320 CN . + .137 Y + .009 M + .310 t + 20.9

(.237)
"-^

(.053) (.018) (.165)

AV LAG (Mj) = 1.4 UR Prop = .201 R^ = .995 (2.04)

Annual TSLS
ifk ** ** ** **

CN = -.082 CN ^- + .102 Y + .035 M + .703 t + 86.5

(.275)
'^"^

(.086) (.029) (.329)

AV lAG (Adj) = -.9 LR Prop = .095 R^ = .994 (1.95)

Ccnsumer Services

Monthly OLS y = -.248

CS = .972 CS + .012 Y*. + .004 M -1.19

(.017)
~^

(.007)
~^

(.002)

AV lAG (Adj) = 36.6 (34.6) LR Prop = .430 R^ = .999

Quarterly TSLS

CS = .896 CS ^ + .046 Y + .009 M
(.041) "-^ (.018) (.006)

-4.17

AV lAG (Adj) = 25.8 LR Prep = .442 R^ = .999(2.43)

Qt.Trirtprly First Order y - -.217 (.125)
—JT— "'" * * *
CS = .899 CS , + .045 Y + .009 M

(.032) ""^ (.014) (.005)

-4.9

AV lAG (Adj) = 26.6 LR Prop = .445 R^ = .999 (2.08)

Annual TSIS

CS = .696 CS -- + .146 Y + .016 M -13.3
(.067)

"-^
(.030) (.011)

AV LAG (Adj) = 27.5 LR Prop = .480 R^ = .999 (1.60)

Annxial First Order y = .293 (.274)
** ** ** **

CS = .653 CS ^_ + .174 Y + .008 M -11.3
(.082)

"-^
(.047) (.019)

AV LAG (Adj) = 22.6 LR Prop = .500 R^ = .999 (1.94)

The variables are defined exactly as in Liu [11] v^ere one star is
a three mcsnth moving average and two stars is a twelve month moving average.
Subscripts refer to months and the average lags are all cotputed in months.
The variables v^iich are not named by their equation are as follows:

WPi Gross national product.
PW: m = {P/Vf) / ((3^) P: GNP deflator, W: Salary and vage payments.

CPCT: Gross corporate profits and inventory valuation adjustments less corparate
profit tax liability.

R: Interest rate.
t: Tiite trend (initial quarter =1).
Y: Personal disposable income.

M: Personal liquid assets in billions of 1958 dollars.

1
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tt.
Ponnulas for conputing average lag

1-a

bi(l + L + L^+...+ L^"-^)

1 - aL

Av lag rw(L^7] = n Av Lag [w(L)J

Av Lag [_][/" w(L2j = Av Lag [w(L)] +

a , r-1
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