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Exact expressions for structure selection in cluster expansions
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The cluster expansion has proven to be a valuable tool in materials science to predict properties of configu-
rationally ordered and disordered structures but the generation of cluster expansions can be computationally
expensive. In recent years there have been efforts to make the generation of cluster expansions more efficient
by selecting training structures in a way that minimizes approximate expressions for the variance of the
predicted property values. We demonstrate that in many cases, these approximations are not necessary and
exact expressions for the variance of the predicted property values may be derived. To illustrate this result, we
present examples based on common applications of the cluster expansion such as bulk binary alloys. In
addition we extend these structure selection techniques to Bayesian cluster expansions. These results should
enable researchers to better analyze the quality of existing training sets and to select training structures that
yield cluster expansions with lower prediction error.

DOI: 10.1103/PhysRevB.82.184107 PACS number�s�: 61.50.Ah

In materials science, generalized Ising models1 known as
cluster expansions are widely used to study structure-
property relationships among structures that share a similar
underlying lattice.2–12 Cluster expansions predict the value of
a material property for a given structure very quickly and
accurately, making it computationally feasible to search for
structures that have optimal property values or perform sta-
tistical sampling to arrive at thermodynamic averages. How-
ever for each property and each material, a new cluster ex-
pansion must be created by fitting a parametrized function to
a set of training data. Generating the training data can be
computationally expensive, and in most cases the computa-
tional cost of generating a cluster expansion is essentially the
cost of generating the training data. To reduce the expense of
generating cluster expansions, methods have been developed
to select structures for the training set in a way that reduces
the amount of training data required to generate cluster ex-
pansions with acceptable prediction error.13–15 Van de Walle
and Ceder derived an approximate expression for the vari-
ance of the predicted property values and suggested selecting
training structures in a way that minimizes this value.14 More
recently, Seko et al.15 have proposed a similar approach in
which random sampling is used to estimate the variance. In
this paper we demonstrate that these approximate methods
may not be necessary, and in many cases it is possible to
generate a simple, exact expression for variance of the pre-
dicted property values. This result should enable researchers
to more quickly and accurately evaluate the quality of cluster
expansion training data and select new structures to add to
the training set.

We start with an overview of the cluster expansion to
introduce basic terms and concepts based primarily on the
work of Sanchez et al.16 In a cluster expansion the structure
of the material is represented by variables assigned to spe-
cific sites, which we refer to as “site variables.” For example,
site variables are commonly used to specify which element
occupies each site, in which case the cluster expansion is
used to predict property values for a group of structures with
the same underlying topology. For each site variable, a
single-site basis is defined. In general an orthonormal single-
site basis is used, such that

�
sj=1

Nj

�b�sj��b��sj�

Nj
= �bb�, �1�

where sj is the site variable for the jth site,17 Nj represents
the number of values this variable may take, �b�sj� is the bth
basis function for the jth site, and �bb� is the Kronecker delta.
For example, for a binary cluster expansion in which each
site variable may take on the values of 1 or 2, the following
commonly used basis meets the above orthogonality condi-
tion,

�0�sj� = 1,

�1�sj� = cos��sj� = � 1. �2�

The tensor product of all single-site basis functions produces
a basis of “cluster functions.” Each cluster function can be
defined by a single vector b,

�b�s� = �
j

�bj
�sj� , �3�

where s is the set of all site variables and bj and sj are the jth
elements of b and s respectively. In general, �0 is always
“1,” and the cluster function only depends on the cluster of
sites for which bj�0. It can be shown that if the single-site
basis functions are orthonormal, then the cluster functions
must also be orthonormal,16

�
i=1

Ns

�b�si��b��si�

Ns
= �bb�, �4�

where si is the ith set of possible values for the site variables
and the sum is over all Ns such sets.

If a property of the material can be expressed as a func-
tion of the site variables, F�s�, then it can be expanded ex-
actly as a linear combination of cluster functions,
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F�s� = �
b

Vb�b�s� , �5�

where Vb are unknown coefficients called effective cluster
interactions �ECIs� and the sum is over all cluster functions.
Symmetry may be used to reduce the cluster expansion fur-
ther, resulting in the general expression,

F�s� = �
�

V� �
b��

�b�s� , �6�

where � represents an orbit of symmetrically equivalent
cluster functions. Because cluster expansions are often ap-
plied to infinite crystals, it is common to normalize all values
per unit cell. Equation �6� can then be written as

f�s� = �
�

V�m����s� , �7�

where f�s� is the property value per unit cell, m� is the num-
ber of cluster functions in � per unit cell, and ���s�, some-
times referred to as a correlation function, is the average
value of all cluster functions in �,

���s� =

�
b��

�b�s�

N�

. �8�

Typically a cluster expansion is truncated so that there are a
finite number unknown ECI corresponding to cluster func-
tions that are dependent on a finite number of sites. Values
for these ECI may be determined using a set of training data.
The training data can be represented by a matrix X in which

Xi� = ���si� , �9�

where si is the set of site variables for the ith element of the
training set. The ECI may then be estimated using a least-
squares fit,

v̂ = �XTX�−1XTy , �10�

where v̂ is a column vector in which the �th element is the
predicted value for m�V�, and y is a column vector in which
yi is the value for the property of interest for the ith element
of the training set.

Van de Walle and Ceder proposed selecting training struc-
tures by using the fact that the variance of the prediction
error for a structure with site variables s is given by14

xMxT, �11�

where M is the covariance matrix of the predicted ECI and x
is a row vector with elements

x� = ���s� . �12�

A standard model for linear regression is that the observed
property values, y, are related to the training data by

y = Xv + ẽ , �13�

where v is a column vector of the true ECI and ẽ is a vector
of randomly distributed noise. In a cluster expansion, the
noise is generally due to the truncation of the cluster expan-
sion and, in some cases, the use of nondeterministic algo-

rithms such as Monte Carlo simulations to calculate property
values. If the elements ẽi are drawn from independent distri-
butions with a mean of zero and variance �2, it can be shown
that18

M = �XTX�−1�2. �14�

Although �2 can be estimated statistically, for the purposes
of this paper it is safe to treat it as an unknown constant.
Because of the matrix inversion in Eq. �14�, the covariance
matrix can only be calculated if X contains at least as many
columns �structures in the training set� as rows �symmetri-
cally distinct cluster functions included in the fit�. When gen-
erating initial structures for the training set, this means that
some cluster functions that might be significant are ignored.
Alternatively, in a Bayesian cluster expansion,19 the pre-
dicted ECI are given by

v = �XTX + ��−1XTy , �15�

where �−1�2 is the covariance matrix for a multivariate
Gaussian prior distribution for ECI values. Bayesian cluster
expansions generally have lower prediction error than stan-
dard cluster expansions, in part because an arbitrarily large
number of distinct cluster functions may be included, regard-
less of training set size.19 It can be shown that the covariance
matrix for the predicted ECI for a Bayesian cluster expansion
is20

M = �XTX + ��−1�2. �16�

For either least-squares or Bayesian regression, the expected
variance for the predicted property values for a given popu-
lation of structures is

�xMxT�pop = M:�xTx�pop, �17�

where � �pop indicates the average value over all structures in
the population and the : symbol represents the Frobenius
inner product, defined as

A:B = �
i

�
j

AijBij . �18�

We will call the matrix �xTx�pop the domain matrix and rep-
resent it with the symbol D. As long as the domain matrix is
known, the dimensionless quantity

M:D

�2 �19�

can be calculated exactly. The numerator of Eq. �19� is the
expected variance of the predicted property values and the
denominator represents the contribution to the prediction er-
ror from factors that have nothing to do with structure selec-
tion. The ratio is therefore a measure of how well a given set
of training structures reduces prediction error. Seko et al.
used the symbol 	 to represent the expression in Eq. �19�,15

but to avoid confusion with the symbols used in the formal-
ism of the Bayesian cluster expansion, we will use the sym-
bol 
. For a least-squares fit,


 = �XTX�−1:D �20�

and for a Bayesian cluster expansion,
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 = �XTX + ��−1:D , �21�

where once again the symbol : represents the Frobenius inner
product. Attempts to find good training sets have focused on
minimizing 
, using either approximate methods14 or statis-
tical sampling15 to calculate D. Here we demonstrate that in
many common cases, the domain matrix may be calculated
exactly.

The elements of the domain matrix may be written as

D�� = �x�x��pop = ����s����s��pop

=

�
b��

�
b���

��b�s��b��s��pop

N�N�

, �22�

where once again � �pop represents the average over a popu-
lation of structures, and N� and N� are the number of cluster
functions in orbits � and �, respectively. Equation �22� is
valid for any population of structures. For example, if the
population contains all possible structures, the orthonormal-
ity of the basis �Eq. �4�� yields

D�� =

�
b��

�
b���

�bb�

N�N�

=
���

N�

. �23�

In an infinite crystal, for each cluster function that depends
on a finite, positive number of sites, there are an infinite
number of distinct vectors b that represent symmetrically
equivalent cluster functions. For these cluster functions, N�

is infinite and D�� is therefore zero. The only cluster func-
tion typically included in the cluster expansion that does not
meet this criterion is the “empty” cluster function, repre-
sented by bj =0 for all j. There is only one vector b that
represents the empty cluster function, even in an infinite
crystal. For convenience the empty cluster function is as-
signed the index �=0, and for an infinite crystal D00 is typi-
cally the only nonzero element,

D = 	
1 0 ¯ 0

0 0 ¯ 0

¯ ¯ ¯ ¯

0 0 ¯ 0

 . �24�

Equations �17� and �24� yield the result that the average vari-
ance for the predicted property values over all structures is
simply M00.

It is possible to construct a more general expression for
situations in which not all structures are of equal interest.
Two cluster functions that are not dependent on any of the
same sites are independent of each other, meaning

��b�s��b��s��pop = ��b�s��pop��b��s��pop. �25�

If each cluster function is dependent on a finite number of
sites, the probability that they are independent of each other
in the limit of a crystal with an infinite number of sites is 1.
In other words, the number of pairs of clusters that overlap is
vanishingly small relative to the denominator N�N� in Eq.
�22�. Thus under the assumptions that all included cluster
functions are dependent on a finite number of sites and the

crystal has infinite periodicity, the elements of the domain
matrix are given by

D�� =

�
b��

�
b���

��b�s��pop��b��s��pop

N�N�

= �x��pop�x��pop

�26�

and the average variance of the predicted property values is
given by

�xMxT�pop = �x�popM�xT�pop. �27�

This general result greatly simplifies the problem of calcu-
lating the domain matrix. As long as it is possible to deter-
mine the expected value of each included cluster function
independently, the domain matrix may be calculated exactly.
It is trivial to reconstruct from Eq. �26� the special case of
Eq. �24�.

It is common for the cluster expansion to be used in bi-
nary alloy systems where the only allowed values for �1�sj�
are +1 and −1. If c is the concentration of the element as-
signed a value of +1, then the expected value of �1�sj� over
all structures with concentration c is �2c−1�. If a cluster
expansion is to be applied to the population of all structures
with concentration c, the elements of the domain matrix are

D�� = �2c − 1�n�+n�, �28�

where n� and n� represent the number of sites upon which
the cluster functions in orbits � and � are dependent. When
c=0.5, Eq. �24� is recovered because in an infinite crystal the
distribution of all possible structures is a delta function at c
=0.5. Thus the average over all possible structures is essen-
tially the same as the average over all structures with c
=0.5. For the more common situation in which all concen-
trations are considered equally important, a domain matrix
may be constructed by integrating �2c−1�n�+n� over all con-
centrations uniformly. This is equivalent to taking a weighted
average over all structures, where the weight for a structure
with composition c is proportional to the inverse multiplicity
of structures with composition c. The elements of the result-
ing domain matrix are

D�� = �
c=0

1

�2c − 1�n�+n�dc

= � 1

�n� + n� + 1�
�n� + n�� is even

0 �n� + n�� is odd.
 �29�

The domain matrix in Eq. �29� is appropriate for basic binary
cluster expansions in which all compositions are of equal
interest.

Once the domain matrix for a population of structures is
known, the quality of different training sets can be evaluated
by calculating 
. For example, consider a binary cluster ex-
pansion for an fcc alloy. In this example we include the
empty cluster function, the orbit of single-site cluster func-
tions, the orbit of two-site functions up to the fourth-nearest-
neighbor, the orbit of three-site functions up to the second-
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nearest-neighbor, and the orbit of four-site nearest-neighbor
functions. We do not need to assign ECI values to these
cluster functions, as the ECI are not needed to calculate 
.
We consider three training sets of increasing size and com-
putational cost: a 10-structure training set containing all
symmetrically distinct structures with up to three atoms per
unit cell, a 29-structure set containing all symmetrically dis-
tinct structures with up to four atoms per unit cell, and a
57-structure training set containing all symmetrically distinct
structures with up to five atoms per unit cell. For each of
these training sets, it is possible to use Eq. �28� to calculate
the value of 
 for the population of structures at a given
composition. The results of these calculations are given in
Fig. 1�a�. In general, 
 is lowest at the compositions at which
the density of structures in the training set is the highest, and

 is highest �i.e., the predictive power of the cluster expan-
sion is weakest� near c=0 and c=1. For this reason it might
make sense to include a higher density of structures near the
composition end points if all compositions are considered
equally important.

Although training sets typically consist of a set of sym-
metrically distinct structures, this is not a requirement of the
cluster expansion. It is instructive to consider the case in
which multiple symmetrically equivalent structures are al-
lowed in the training set as long as the vectors of the site
variables, s, that characterize the structures are different.
This is equivalent to weighting each structure in the training
set by the number of distinct vectors s that yield symmetri-
cally equivalent structures. As shown in Fig. 1�b�, the results

are similar to the case in which only symmetrically distinct
structures are included in the training set but the value of 
 is
significantly reduced. However because it is more common
to include only symmetrically distinct structures in the train-
ing set, we will only consider training sets consisting of sym-
metrically distinct structures for the remainder of this paper.

In addition to the methods presented here, two other
methods for generating the domain matrix have been pro-
posed. Using the simplifying assumption that the correlations
are distributed isotropically in a sphere, van de Walle and
Ceder arrived at a result that is equivalent to using an iden-
tity matrix as the domain matrix.14 Seko et al.15 estimate the
domain matrix by sampling 10 000 random structures from a
32-atom supercell. It is useful to compare the quality of the
training sets generated using these different methods. For the
binary fcc cluster expansion, we have used five different
methods to generate initial training sets containing ten struc-
tures each. As the baseline approach, we include all sym-
metrically distinct structures with up to three atoms per unit
cell. The remaining four methods are based on four different
ways to calculate the domain matrix:

�1� The method of van de Walle and Ceder, in which the
domain matrix is an identity matrix.

�2� The method of Seko et al. To eliminate any noise from
sampling we enumerate all possible structures in a 32-atom
2�2�2 supercell using an algorithm similar to the one pre-
sented by Hart and Forcade.20,21 An equivalent result can be
obtained by using Eq. �23�, where N� is the number of sym-
metrically distinct clusters in orbit � for a periodic 2�2
�2 supercell.

�3� Using Eq. �24�, which assumes the population con-
tains all possible structures equally weighted.

�4� Using Eq. �29�, in which the population is weighted
uniformly across compositions.

The four domain matrices for this example are shown in
Fig. 2. Using each of the above four domain matrices to
calculate 
, we use simulated annealing to find the set of ten
structures, each containing up to five atoms per unit cell, that

FIG. 1. �Color online� The value of 
 for populations of A-B
alloys with different concentrations of A. The three lines represent
training sets containing �a� all symmetrically distinct structures, �b�
all structures, with up to three atoms per unit cell, four atoms per
unit cell, and five atoms per unit cell.

FIG. 2. The four domain matrices generated for the binary fcc
cluster expansion used in the examples. The columns and rows are
sorted first by the number of sites in the clusters and then by the
maximum distance between sites. The matrices are generated by �a�
the method of van de Walle and Ceder, �b� the method of Seko et
al., �c� giving all structures the same weight �Eq. �24��, and �d�
weighting compositions uniformly �Eq. �29��.
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minimizes the value of 
. The resulting minimal values of 

for the four different domain matrices are 7.303, 0.274,
0.101, and 0.301, respectively. The high value for 
 using the
method of van de Walle and Ceder is due to the fact that this
method has much higher values for elements of the domain
matrix other than D00. This is likely an artifact of the ap-
proximations used to construct the domain matrix and it may
result in estimates of the variance that are an order of mag-
nitude too high.

For each of the five sets of training structures generated
using the above methods, we calculate 
 as a function of
composition using Eq. �28�. The results are shown in Fig.
3�a�. The training set that produces the lowest value of 

averaged across all compositions is, by definition, the one
generated using the domain matrix in Eq. �29�. The method
proposed by van de Walle and Ceder results in slightly
higher values of 
 for all compositions. Although the value of

 estimated by this method is much higher than the others, it
produces a reasonably good training set for the prediction of
property values across all compositions. The domain matrix
for a population containing all structures, equally weighted,
selects structures that have a composition near 0.5, resulting

in very high prediction errors for other compositions �up to

=12.6 for c=1�. This is due to the fact that the distribution
of all structures is a delta function at c=0.5. The distribution
of structures in a 32-atom unit cell is a binomial function of
composition with finite width, and for this reason the method
of Seko et al. does better with compositions near c=0 and
c=1. The latter two methods produce similar domain matri-
ces, as can be seen by comparing the domain matrices in
Figs. 2�b� and 2�c�. As the size of the supercell is increased,
the method of Seko et al. becomes equivalent to the method
of including all structures with equal weights.

In practice, Seko et al.15 manually construct an initial set
of training structures and then add structures that minimize 

to this set. This approach can significantly improve the per-
formance of their method. For example, if the pure elements
are manually included in the set of initial training structures
and the method of Seko et al. is used to find the remaining
eight structures, the average value of 
 across all composi-
tions is significantly reduced �Fig. 3�b��. Alternatively, the
method that weights all compositions equally can be used to
generate, with no manual intervention, an initial set of train-
ing structures that includes the pure elements.

In some cases, the magnitude of the ECI might not decay
with increasing cluster size, making it impossible to effec-
tively truncate the cluster expansion. It has recently been
demonstrated by Sanchez22 that this problem may be allevi-
ated by using a concentration-dependent basis such as the
one proposed by Asta et al.23 Here we demonstrate that
changing the basis does not affect the structure selection
method described in this paper. We first note that if an in-
cluded cluster function is dependent on a set of sites, it is
important to include all cluster functions that are dependent
on subsets of those sites.24 If all such cluster functions are
included, the transformation to a concentration-dependent
basis can be accomplished using a linear operator A,22

x� = xA ,

X� = XA , �30�

where x� and X� are, respectively, the representations of the
vector x and the matrix X in the concentration-dependent
basis. The variance of the predicted property values in the
concentration-dependent basis is proportional to


� = �x��X�TX��−1x�T�pop = �xA�ATXTXA�−1ATxT�pop

= �x�XTX�−1xT�pop = 
 . �31�

A similar result holds for Bayesian cluster expansions where
��=AT�A. Thus the value of 
 is independent of the choice
of basis. In general we find it most convenient to work with
an orthonormal basis as defined in Eq. �4�.

Although we have shown simple examples, the concepts
we present in this paper can be applied to construct analyti-
cal expressions for the domain matrices for a wide variety of
problems.14 More accurate domain matrices yield better es-
timates of the variance of predicted property values, enabling

FIG. 3. �Color online� The effect of initial training set selection
on the value of 
 for populations of A-B alloys as a function of the
concentration of A. The five lines represent training sets containing
ten structures generating using five different methods. The first is
the baseline method of including all structures with up to three
atoms per unit cell. The other four are based on four different ways
to generate the domain matrix: the method of van de Walle and
Ceder, the method of Seko et al., giving all structures the same
weight �Eq. �24��, and weighting compositions uniformly �Eq.
�29��. �a� The pure elements may be left out of the training set. �b�
The training set must include the pure elements.
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researchers to both better analyze the quality of existing
training data and to better select training structures that mini-
mize the computational cost of generating cluster expan-
sions. The cluster expansion has proven to be a valuable tool
in materials science and as the efficiency of generating clus-

ter expansions continues to improve it will become possible
to apply this tool to increasingly complex problems.

This work was supported by the U.S. Department of En-
ergy �DOE� under Contract No. DE-FG02-96ER45571.
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