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Introduction

A dependent variable which is a discrete response causes the estimated coefficients to be

inconsistent in a probit or logit model when misclassification is present. By 'misciassification'

we mean that the response is reported or recorded in the wrong category; for example, a

variable is recorded as a one when it should have the value zero. This mistake might easily

happen in an interview setting where the respondent misunderstands the question or the

interviewer simply checks the wrong box. Other data sources where the researcher suspects

measurement error, such as historical data, certainly exist as well. We show that when a

dependent variable is misclassified in a probit or logit setting, the resulting coefficients are

biased and inconsistent. However, the researcher can correct the problem by employing the

likelihood function we derive below, and can explicidy estimate the extent of misclassification

in the data. We also discuss a semi-parametric method of estimating both the probability of

misclassification and the unknown slope coefficients which does not depend on an assumed error

distribution and is also robust to misclassification of the dependent variable. Each of these

departures from the usual qualitative response model specifications creates inconsistent estimates.

We apply our methodology to a commonly used data set, the Current Population Survey,

where we consider the probability of individuals changing jobs. This type of question is well-

known for its potential misclassification. Both our parametric and semiparametric estimates

demonstrate conclusively that significant misclassification exists in the sample. Furthermore,

the probability of misclassification is not the same across observed response classes. A much

higher probability exists for misclassification of reported individual job changes than the

probability of misclassification of individuals who are reported not to have changed jobs.

I. Qualitative Response Model with Mlsclassiflcation

We use the usual latent variable specification of the qualitative choice model; for the

present we consider the binomial response model, c.f. Greene (1990) or MacFadden (1984).

Let y . be the latent variable:

y." = X,/3 + e, (1)



The observed data correspond to:

yi=l ifX,/3 + ei>0 (2)

Yi
= if Xi/8 + 6; <

For now, let x be the probability of correct classification. Assume that t is independent of X

and constant in the sample for both types of responses. The model specification follows from

the assumption that e, is distributed as N(0,1), the usual probit assumption:

pr(yi=l!X) = T.pr(y,*>0) + (l-x).pr(y;<0)

= x.*(Xi^) + (l-x).(l-'i'(Xi^)) (3)

where $(.) is the standard normal cumulative function. We then calculate the expectation of y/.

E(yi|X) = 1-T + (2t-1)-*(X,/3)

This equation can be estimated consistently in the form,

y, =a + (l-2a).<i.(X,^) +7,, (4)

where q; = 1-t.

Alternatively, we could approach the problem using the other response,

pr(yi=0|X) = T.pr(y;<0) + (l-T).pr(yi->0) (5)

= T-(2x-l).4.(X./3)

In terms of a:

= (l-a)-(l-2a)-$(Xi/3)

Note that as above we find:



E(yi|X) = l-{x + (1-2t).<|.(X,^)} (6)

If one estimates a probit specification as if there were no measurement error when in fact

misclassification is present, the estimates will be biased and inconsistent. This result is in

contrast to a linear regression where classical measurement error in the dependent variable leaves

the coefficient estimates consistent, but leads to reduced precision in coefficient estimates.

The log likelihood for the probit specification with misclassification is as follows:

L = 2i {yi-ln[a+(l-2a)-4»(Xi^)] + (l-yi)-ln[(l-a)+ (2a-l)-#(X/?)]} (7)

In the case of a=0 there is no classification error and the log likelihood will collapse to the

usual case. In order for the equation to be estimated, a must be less than one half.^ Pratt

(1981) shows that if a=0 this log likelihood is everywhere concave, being the sum of two

concave functions. Unfortunately, the result does not hold for our log likelihood for either the

logit or probit functional forms. The appendix gives details of the conditions for concavity. We

also demonstrate in the appendix that the expected Fisher information matrix is not block

diagonal in the parameters (a,/3).^

Notice that the linear probability model does not allow separate identification of the

coefficients and x. Instead the estimated coefficients are linear combinations of x and /3.

pr(yi= l|X) = x.pr(y,->0) + (l-x).pr(y;<0) (8)

= x-X^ + (l-x).(l-Xi/3)

^ In the case of Qf> .5, the data are so misleading that the researcher might want to abandon the

project.

^ Thus, previous papers which assume they know a from exogenous sources, e.g., Poterba and

Summers (1993) suffer from two defects. Their estimates are likely to be inconsistent unless their

assumed a is correct. But even with a correct a the standard errors of their coefficient estimates are

inconsistent. In certain special cases of multiple interviews, Chua and Fuller (1987) demonstrate that

identification of misclassification probabilities is possible, given a sufficient number of interviews.

However, generally they must make special assumptions on the form of misclassification to achieve

identification.



ECyJX) = [1-T + (2ir-l)./3o] + (2t-1).(X,^,)

This example show that identification of the true coefficients in probit and logit comes from their

non-linearity. To address this concern, we shall introduce a semiparametric approach so other

results do not depend on distribution assumptions.

An interesting feature of the misclassification problem is that inconsistency can be large

even for a small amount of misclassification. The usual probit first order condition is written

below. The first term is summed over observations where y = 1 , the second for those where

y=0,

y.^t^ - (.-„.E^ = (9)

where ^, = ^(Xj/J), and similarly for j. The intuitive reasoning for the inconsistency due to

misclassification is as follows. When misclassified observations are present, they are added into

the likelihood and the score through the incorrect term (because the dependent variable is

misclassified). The large inconsistency in the estimated parameters arises if probit (or logit) is

used because misclassified observations will predict the opposite result from that actually

observed. For example, an observation with a large index value will predict a one with

probability 4»(Xj/3) close to one. However, if that observation is misclassified, its observed y

value will be a zero. The observation will be included in the second term in equation (9); a

^(XJ3) close to one will cause the denominator to approach zero, so the whole term will

approach infinity. The same problem exists for observations with very low index values.

Therefore, the sum of first order conditions in the case of misclassification can become large,

and the estimated /3's can be strongly inconsistent as a result. It is somewhat ironic that the

inconsistency will increase as the model gets "better" because there will be more good fits that

are misclassified and therefore more large terms in the log likelihood.'*

Another way to think about the inconsistency caused by misclassification is to use the fact

that maximum likelihood sets the score equal to zero under the situation of no misclassification.

* See Table lb for a simulated demonstration of this property.

5



Taking expectations and using the probabilities *; and 1-$; in the case of the normal probit

causes the denominators to cancel and the expectation to equal zero. However, in the case of

misclassification, the probabilities change. The "ones term" is used for observations that have

y=l and are not misclassified and also for observations that have y=0 and are misclassified:

^ [(l-a)'l'+a(l-*)] - -^ [(l-a)(l-$)+a*] =0 (10)
$ l-4»

When no misclassification is present, a = and the expectation of the equation above collapses

to the usual probit case. If a ?i 0, then the expectation of the score is, in general, not equal

to zero.

We are particularly interested in the inconsistency in probit or logit coefficients when

only small amounts of misclassification are present, since this might be the most common case

facing a researcher. We can use the modified score above to evaluate the change in the

estimated coefficients with respect to the extent of misclassification at zero misclassification.

The full derivation is in the appendix. In the case of the probit, the derivative will equal:

d& 1 - 2^{Xfi)

Again, notice that in the case where an observation has ^(Xfi) close to either zero or one, then

(f)(Xfi) goes to zero also. Therefore, even a single observation can theoretically add

considerable inconsistency to the estimated jS's. In general, the amount of inconsistency in the

estimated /3's when misclassification is present will depend on the distribution of X's.^ Table

A reports the value of this derivative for the job change dataset used later in this paper. The

crucial feature of misclassification is immediately apparent. The "maximum derivative" row of

the table shows that the bias in /3 caused by a specific misclassified observation can be very

' Distributions such as the uniform lead the average derivative to be relatively small, whereas a

distribution with unbounded support will cause it to be larger.



large. Averaged across observations, the change in /3 is not nearly so large, indicating that

particular observations contribute heavily to the inconsistency of the estimated jS.

Table A:

Derivative of estimated jS with respect to the fraction of misclassification in the

dataset, evaluated at zero misclassification using Job change dataset from the CPS.*

N=5221 Married Grade Age Union Earnings West

Average

Derivative

519 65.5 19.5 535 0.961 839

Max
Derivative

179,666 27,640 7,486 179,666 360 359,332

Min
Derivative

-3.60 -0.200 -0.136 -3.60 -1.70 -3.48

n. Simulation

In order to assess the empirical importance of misclassifications, we create a sample

using random number generators. The first right hand side variable, X,, is drawn from a

lognormal distribution, the second, Xj, is a dummy variable that takes the value one with a one

third probability, and X3 is distributed uniformly, e is drawn from a normal (0,1) distribution.

y' and y; are defined to be:

y; =
/3o + X,^, + X,fi, + X3J83 + €i = X;0 + 6; (12)

yi= 1 if y; >
otherwise

Next we create a misclassified version of y; called y;. A proportion a of the sample (recall that

a = l-T ) is misclassified on a random basis.

* The dummy variables were rescaled to equal 1 and 2 and the regressions rerun in order to

compute the derivative.



Table I reports the Monte Carlo results. We create the sample and estimate the MLE

coefficients 146 times. For comparison, the first column reports the parameters that would be

estimated if ordinary probit were run on these misclassified data. The sample design used in

the first row has 5% misclassification; the second row has 20%. Even in the case of a small

amount of misclassification, ordinary probit can produce very inconsistent coefficients. The

problem is intensified as the amount of misclassification grows. As discussed above, this is

likely to be a more severe problem when the model fits well, as it does here. The likelihood

function we propose does very well at estimating the "true" coefficients and a. The variance

of the estimates rises as the extent of misclassification in the sample increases. Table 11 reports

estimates from one random sample generation only. It includes a column that estimates the /3

assuming a is already known. Again, MLE does well, and standard errors are lower than in

the case where a is estimated. However, if a is not truly known, but treated as if it is known,

e.g. Poterba and Summers (1993), these estimated standard errors will be downward biased.

In the fourth column are the MLE estimates of the misclassification error parameter, a, as well

as estimates of /3. Notice again that the estimates of /3 are closer to the true parameters than the

estimates obtained without correcting for likely misclassification error (column 2).

As previously noted, the standard errors in the probit specification using misclassified

data are relatively small. The researcher depending on the incorrectly estimated model will

think that the reported coefficients are precisely estimated, although misclassification is actually

a problem in the data. Although the MLE method that accounts for misclassification may not

be able to estimate very precise coefficients if the model does not fit well, it will still give

standard errors that reflect the true imprecision of the estimates. Also, the estimates of a are

quite precisely estimated in cases where the data fit the model well, as in Table II. Not just the

absolute size of the jS's, but their ratios vary from the true to the inconsistent case.^

We test our theoretical model two additional ways. When there is no misclassification

^ The ratios of the betas will stay constant if the simulated Xs are drawn from normal

distributions, even when each individual beta is biased. The appendix includes a table which reports

the results of simulations run using normally distributed Xs. Ruud (1983) discusses reasons for this

result. The ratio of the estimated betas differs between probit and MLE when the Xs are distributed

uniformly or log normally.
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in the sample, a regression of yj on a constant and *(X/3) leads to the coefficients and 1 as

expected (see equation 4). By contrast, the same regression with dependent variable y; created

to have 10% misclassification error gives coefficients .1 and .8, as predicted. The model can

also be estimated by nonlinear least squares. We minimize a quadratic error term which is

altered somewhat from the MLE case. Instead of estimating a, the equation allows the constant

term and the coefficient on ^(X0) to differ from zero and one, respectively:

yi = 5o + dr^(X^) + Vi (13)

We use White standard errors here; they are calculated using the derivative of the nonlinear

function with respect to the parameters in place of the usual regressors, X. The NLS method

results in the following estimates for 5o, 5,, and the /3's.

Table B: One sample generated.

The simulated X's are drawn from a standard normal distribution.

/3, = 1

Design a =0.1

N=2000
Probit: correct y

-1.99 0.995

(.141) (.059)

NLS y misclassified

5o 5, /3o

.099

(.024)

.804

(.028)

-2.05

(.623)

/?!

1.03

(.278)

The results here are close to the MLE results and they satisfy the overidentifying restriction that

5,=(l-25o): .802 = l-(2-.099) = .804.

Thus, NLS leads to consistent estimates in the presence of misclassification. It also permits a

test of the restriction of independent misclassification error made in the basic specification.

In a situation requiring misclassification treatment, the researcher may suspect the



probabilities of misclassification from one category to another are not symmetric* Below is

the basic model, modified to allow for this difference. Simulation results follow.

Let To= probability of correct classification of O's.

T, = probability of correct classification of I's.

We can then evaluate the probability of observing given responses under different probabilities

of misclassification:

pr(yi= l|X) = ir,.pr(y;>0) + (l-TQ).pr(y;<0) (14)

= (l-7ro) + (T, + To- l)-#(X/3)

pr(y;=0 1 X) = To - (T, + To - 1) • *(X/3).

The log likelihood function for the specification which allows for different probabilities of

misclassification is:

For this equation to be identified, Tj + To must be greater than one. If the condition does not

hold, it is likely that the data are sufficiently "noisy" that model estimation is not warranted; in

practice, the condition should not be a restrictive requirement.

' This problem displays a loose relationship to the switching regression problem, e.g. Porter and

Lee (1984). However, the switching regression framework uses the discrete variable to represent a

regime shift as a right hand side variable.
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Table C: One Sample Generated

The simulated X's are drawn from a standard normal distribution.

^, = 1

Design

T'S

Probit:

correct y

^0 ^i

Probit: y
misclassified

00 /3.

MLE : using

design x's

^0 iS.

MLE:
solving for Tq and x,

To T, /So |8i

.950

.975

-2.11 1.03

(.107)(.044)

-.770 .373

(.044)(.011)

-2.18 1.02

(.155) (.064)

.978 .970 -1.98 .969

(.007)(.004)(.145)(.061)

Thus, again MLE is able to estimate the parameters both accurately and quite precisely.

However, note that we can no longer test the overidentifying restriction of the misclassification

specification when we allow for different probabilities of misclassification.

It is also likely that a researcher could encounter a situation where he or she suspects that

the probability of misclassification is correlated with the yi*'s in a continuous fashion:

pr(y.= l|X) = x(y-).pr(y.->0) + (l-x(y-)).pr(y;<0)

= x(X,/3,)-<^(X2A) + (l-x(X,^.)).(l-<i.(X3A))

E(y;|X) = E[l-x(X,A)|X,] + E[(2iriX,fi,yi)'^(XM\X,]

= l-x(X,ii3,) + (2x(X,^,)-l)-*(X2i/32)

(15)

Suppose logit were the monotonic function ranging from to 1 that determined x. Then

the expected value of y; given X could be written,

E(y.|X) = 1-A(X,5) + (2A(X,5)-l)'4>(Xi)3) (16)

If we condition on the X's, all the previous results hold. This case is much more complicated

to estimate; we do not provide simulations here.

11



Logit case

The logit functional form can also be analyzed in the case of suspected measurement

error in the dependent variable. First, we calculate the probabilities of the observed data given

misclassification:

pr(yi=l|X) = T.pr(y,'>0) + (1-T).pr(y;<0) (17)

= T.[exp(X^)/(H-exp(X/8))] + (l-x).[l/(l+exp(X^))]

pr(y-0|X) = x-pr(y;<0) + (1-T).pr(y;>0)

= T- [1/(1 +exp(X/3))] + (1-x) • [exp(X^)/(l +exp(X^))]

We then calculate the expectation of the left hand side variable conditional on the X's and given

the probabilities of misclassification:

E(yi|X) = [(1-T) + T.exp(X/3)]/[l+exp(X/3)]

= [a + (l-a)-exp(X/3)]/[l+exp(X/3)]

We now demonstrate that the case of misclassification leads to a very different outcome than the

case of endogenous sampling, e.g., the papers in Manski and MacFadden (1981). In the case

of endogenous sampling the slope coefficients are estimated consistently by MLB logit; only the

constant is incorrectly estimated. Thus, estimation refinements are concerned with increasing

asymptotic efficiency. Here, in the situation of misclassification, MLE logit leads to inconsistent

estimates of both the slope coefficients and the constant term. This result follows easily from

a comparison of the (Berkson) log odds form of the logit in the case of measurement error and

endogenous sampling. Without misclassification we have:

pr(yi= 1 1 X) = exp(x,/3)/(exp(X<^ + exp(X,/S)) (18)

pr(yi=0|X) = exp(X,^)/(exp(X(^)+exp(X^)).

Thus, the expectation of the log odds is:

12



EOn(s,/So)) = Enn(exp(X,/3)/exp(X<;3))] = (X, - Xo)^.

With endogenous sampling where we redefine X to be the weighting constant we find:

pr(yi= 1 1 X) = Xexp(X,/3)/(exp(X<^) + exp(X,^)) (19)

pr(yi=OjX) = (l-X).exp(X<^)/(expCM) + exp(X,^))

E(ln(s,/So)) = ln(Xexp(X,^)[(l-X) • exp(X<y3)]-')

= (ln(X/(l-X)) + /3o)
- (XrXo)^, (20)

Thus, only the constant term is inconsistent with endogenous sampling. Using the expressions

derived above for the case of misclassification, where as before t is the probability of correct

classification:

Ean(s,/So)) = In [(x + (l-T).exppC,^))/(l-T + r'txp(XMl (21)

If we express the problem in a log odds form, it is easier to see that the misclassification will

induce inconsistency in both the constant and the slope coefficient estimates. An interesting

feature of misclassification is that it prevents one observation from causing unbounded

inconsistency. The dependent variable for any one observation can become arbitrarily large or

small as the proportion of ones approaches one or zero. When misclassification is present, the

a terms prevent the limit from reaching infinity.

Simulation results analogous to those using a probit functional form appear in Tables in

and IV. Similar results hold if the probabilities of misclassification are not equal across both

responses. Furthermore, if we use the log odds specification, we can extend our approach to

the case of three or more categories of qualitative responses where the misclassification

probabilities differ both across response category and within response categories. The appendix

holds a simple treatment of this topic.
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m. Semiparametric Analysis

The assumption of normally distributed (or extreme value) disturbances required by the

probit (logit) specifications is not necessary to solve for the amount of misclassification. One

can use semiparametric methods which estimate the extent of misclassification in the dependent

variable and estimate the slope coefficients consistentiy. We employ a kernel regression

technique here. The kernel regression uses an Epinechnakov kernel, as it has desirable

efficiency properties.' The window width, h, defines the intervals over which the kernel, or

weighted average, operates; we use Silverman's rule-of-thumb method as a first approximation:

h* = 1.06ffn
•1/5

One could also determine h* by cross-validation, a computationally intensive procedure which

minimizes the integrated square error over h. However, past experience leads us to expect very

similar results.

Our kernel regression is of the simplest form as it uses an index function to make the

kernel one-dimensional. We calculate the index I=X/3, where the /3's are found in a first-stage

procedure which will be discussed subsequentiy. Then a set of evaluation points covering the

range of the index is chosen. The kernel estimator is the weighted average of the y's associated

with each observation falling in the window centered at the point of evaluation:

/-/.

/(04e^:(I^) (22)

where I is the index, h is the window width, n is the number of observations, and K(.) is the

Epinechnakov kernel. The cumulative distribution of the response function (cdf) is formed by

dividing the weighted sum of y's by the total number of points falling in the window of the

' Silverman (1986), p. 42. describes how the Epinechnakov kernel is the most "efficient" kernel

in the sense of minimizing the mean integrated square error if the window width is chosen optimally.

14



kernel. We plot the cdf using the probit coefficients from above to construct the index. We use

simulated data with a misclassification probability, a, of 0.07, which approximately corresponds

to the estimated probability we find in our empirical example below with the CPS data:'°

Figure la. Standard CDF Figure lb. CDF with Misclassification
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Above are two graphs, one using misclassified data and one using true data. The method

produces the smooth curves of Figures la and lb, where the misclassification problem shows

up clearly. For example, a .07 misclassification rate would cause the cdf of the dependent

variable to begin at .07 and asymptote at a value of only .93. No matter how small X^ is,

there is always a seven percent chance that the observation will be misclassified and observed

y will be one. A kernel regression performed on simulated data, demonstrates the difference

in the cdf s. Note that in Figure la the cdf goes between the values of 0.0 and 1.0 as the index

increases. However, in Figure lb the beginning value is about .07 while the cdf asymptotes to

'° The simulated data consist of 2,000 observations of the sum of normally distributed X's and

es.
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about .93. Using the cdf in this manner allows for identification of the probability of

misclassification using semiparametric or nonparametric techniques so long as the probability

of misclassification is independent of the X's.

We experienced two major problems with the kernel regression. The first is the classic

problem of how to handle the tails of the distribution. In this case, the behavior of the tails is

critical to the discussion of misclassification. Yet, is it misleading to continue the kernel

regression as far out into the tails as possible because the number of observations falling within

the window width becomes very low. In fact, the asymptotic behavior of the cdf becomes

obscured if estimation continues to the extreme points. In Figure lb above we use the points

one bandwidth from the extreme index values as truncation points for the regression. Other

solutions include variable kernel and nearest neighbor methods.

We use the nearest neighbor algorithm as an alternative method to investigate the

behavior of the cdf in the tails. The nearest neighbor method is a weighted average of the k

closest points to the evaluation point. As observations begin to thin out, nearest neighbors

become further away rather than fewer in number. We looked at the effect nearest neighbor

methods have on our particular tail problem using several different k values. The graphs below

use k=100 and exhibit similar tail behavior as the truncated kernel regressions which we

considered above. Again, the probit coefficients are used to construct the index.

16



Nearest Neighbor Methcxl CDFs

Figure 2a: Standard CDF Figure 2b: Misclassified CDF
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The second problem is more severe: how to find the starting jS's. One method is simply

to use the probit regression coefficients in the construction of the index. While illustrating the

problem, we are clearly not freeing the data from an assumed error structure. More

importantly, while the results will demonstrate that misclassification is present because of the

behavior of the cdf, the estimates of misclassification will not, in general, be consistent

estimates.

rv. Application to a Model of Job Change

We now consider an application where misclassification has previously been considered

to be a potentially serious problem. We estimate a model of the probability of individuals

changing jobs over the past year. Because of the possible confusion of changing positions versus

17



changing employers, respondents may well make a mistake in their answers. We would expect

that job changers have a higher probability of misclassification than do non-job changers. Thus,

we consider models both with the same and different probabilities of misclassification, and we

test for equality of the probabilities.

Our data come from the January 1987 Current Population Survey of the Census Bureau.

We extracted the approximately 5,000 complete personal records of men between the ages of

25 and 55 whose wages are reported. Among the questions in the survey is one asking for the

respondent's job tenure. This type of question is well-known for its misclassification; people

confuse position with job or may have re-entered the labor force. Those respondents who give

tenure as 12 months or fewer are classified as having changed jobs in the last year. Those

individuals who answer more than one year are classified as not having changed jobs. The

means of the data are in Table V below.

We estimate a probit specification on the variable for changing jobs, which we call

Jobchange. Our specification is quite similar to specifications previous used in the applied labor

economics literature, c.f. the specification of Freeman (1984). We maximize the log likelihood

function presented initially in equation (7) using the same explanatory variables but allowing a,

the probability of misclassification, to be non-zero. We present the results in Table VI. Note

that when we allow for the probability of misclassification we estimate the probability to be

0.058, with an asymptotic t-statistic of about 8.3. Thus, we find quite strong evidence of

misclassification. Many of the probit coefficients also change by substantial amounts. For

instance, the effect of unions in deterring job changes is found to be much higher when possible

misclassification of the response is allowed for. Likewise, the effect of higher earnings in

affecting job change also becomes much greater in the misclassification specification.

Next, we allow for different probabilities of misclassification as in equation (15) since

non-job changers are less likely to misreport their status. In the third column of the table, oq,

the probability of misclassification if the observed response is no job change, is allowed to differ

from CK,, the probability of misclassification if the observed response is a job change. Thus, we

allow the misclassification probabilities to differ across the responses. Freeing the a parameters

produces a markedly different value for a, than in the case where the two are constrained to be

equal, a, jumps to 0.31 while ao remains at 0.06 The difference between the two estimates of
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a in column 3 is .248 and has a standard error of .164, giving it an asymptotic t-statistic of

1.51, which is not quite significant. However, the effect of both union and earnings in deterring

job change are even greater than previously estimated. Thus, allowing for different probabilities

of misclassification again leads to quite different results than in the original probit specification.

We now perform kernel regression to determine if it also demonstrates that response

misclassification exists in the responses. The kernel regression results in Figure 3 demonstrate

the situation clearly. The graph below uses the probit coefficients to create an index function.

We find the minimum probability of job change to be around .06 with an increase up to about

0.6. These results are extremely close to the MLE probit results of Table VI where we estimate

the respective probabilities to be .06 and 0.7 with an asymptotic standard error of 0.17.

Semiparametric estimation of the cdf can reveal the a' s by showing different asymptotes

at each end of the function. In our case, the lower asymptote is 6-7% and the upper one, though

much less well defined, is in the 50-60% range. However, semiparametric estimation of the

probability of misclassification by visual inspection is not totally satisfactory. We cannot achieve

consistent estimates of the job change model parameters nor can we estimate the sampling

distribution of the misclassification probabilities. Thus, we now develop a semi-parametric

methodology which allows us to overcome the shortcomings of our previous approach.

Nevertheless, our results up to this point do demonstrate quite convincingly that misclassification

of job changes does exist in the CPS data.

Figure 3: Probit Coefficients; Jobchange Data

f»»^. >»•. 17 TI.M n IMJ

O r

o .

in

o

o

rn

O

o
(N o
O o

o
o

OOOOq ^oooooooO

o
2

o -26 -22 -'8 -11 -'0 -06 -0-2



V. Consistent Semiparametric Estimates

We now derive a methodology which permits consistent estimates of the misclassification

probabilities and the unknown slope coefficients." We first use the Maximum Rank

Correlation (MRC) estimator described in Han (1987). This binary response estimator is

straightforward to calculate even in the instance of multiple explanatory variables and dummy

variables. MRC operates on the principle that for observations where the index Xj3 > Xj/3 for

a given estimate of )3, we would expect that y; > yj. The necessary monotonicity property for

MRC holds under misclassification so long as Tq + x, > 1; see equation (14). The

observations are ordered by the index ^ = Xfi and then a sum is constructed by giving an

indicator variable a "one" in cases where the dependent variables are also in the "correct" order.

Thus, the MRC function which is maximized is:

S^ (0)
=

''
E[^(>'. > yj)nx]0 > Xj0) + /(>'.. < yj)l{x.^ < y)] (23)

where 1(.) is an indicator function with 1(.) = 1 if (.) is true, while 1(.) = otherwise and the

summation is over all distinct pairs of elements (i,j) from the sample i = (1,...,N).

An advantage of using MRC instead of probit (or logit) is that the normality assumption is not

required. Violation of the distributional assumption may lead to inconsistent results when probit

(or logit) is used.

The MRC was designed to allow estimation of the /3's in the index in the case of any

monotonic transformation of the index. Misclassification is just such a case; the cdf no longer

runs from to I, but instead is bounded by the probabilities of misclassification. However, the

problem remains monotonic in the indicator variable, Ij = Xj/3, so long as the probabilities of

correct classification, Xq and t,, exceed 0.5 each and do not depend on the X's. Thus the /3's

" Manski (1985) discusses use of the maximum score estimator when a single misclassification

probability exists for the data.

20



from MRC estimation are consistent in the case of misclassification. The consistency is proved

by Han (1987) and asymptotic normality of the MRC coefficients is proved by Sherman (1992)

and in Cavanaugh and Sherman (1992). However, we still need a semiparametric, consistent

estimate of the misclassification probabilities, ao and a,.

Misclassification probabilities are given by the asymptotes of the cdf; the chosen

technique gives estimates of those asymptotes. The first method that a researcher might choose

would be kernel regression on each tail of the cdf. (Recall that we know the estimated |8's so

we can construct such a cdf.) However, it is not obvious how to weight observations in the tails

of a distribution. Where does the "tail" begin, for example. The data become very thin and the

last observation becomes disproportionately important.

Instead, in order to solve for the as semiparametrically, we use the technique of isotonic

regression (IR). IR nonparametrically estimates a cdf using ranked index values. The technique

is useful for our problem because the final estimate is in the form of a step function; the lowest

and highest "steps" provide consistent estimates of oq and 1-a,. The combination of MRC and

IR techniques achieves consistent estimates of both the coefficients on the explanatory variables

and an estimate of the amount of misclassification in the data. The Isotonic Regression

technique involves the following basic steps.

First, we use the coefficient estimates from the MRC procedure of Han (1983) which are

N"^ consistent. We want to estimate the probability distribution of the dependent variable

conditional on an index constructed from the MRC estimated /3's. The index is defined Vj =

Xj p . Next, the indices are ordered so that v, < Vj < Vfj. An isotonic function, F, with

respect to the index v is any non-decreasing function defined on the N index values. F is an

isotonic regression of y if it minimizes

N

Jliy, -^(v,))^
i-l

In addition, F (v) = if v < v, and F (v) = 1 if v > Vn. F(.) must also be non-

decreasing, so F (Vj.,) < F (Vi). Under this specification for known index values v,

Groeneboom (1993) proves that the point estimates, F (v) are N"^ consistent for F (v) €
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(0,1). We will demonstrate that using Han's estimator of v leads to the same result.

Performing isotonic regression is quite straightforward.'^ The idea is to organize the

index values into pools, where each pool is assigned a "best guess" for the value of y conditional

upon the index being in the pool. The "guess" is just the average of the >»; values corresponding

to the index values V; in the pool.'^ The initial set of pools has each pool corresponding to a

distinct index value. Then the algorithm compares the lowest-indexed pool with the next lowest-

indexed pool. If the guess for the first pool is less than the guess for the second pool, the pools

are left intact; the second pool is used for the next comparison. Otherwise, the pools are

combined, and the combined pool is used for the next comparison. This process is continued

until the pools are exhausted. Finally, if any combinations of pools occurred during the last

sequential comparison of the pools, repeat the process. Otherwise, the regression is complete.

The isotonic regression of y with resi>ect of v is described completely by the guesses associated

with the final set of pools; (Vj) is the guess for the pool containing v, at the end of the algorithm.

The lowest and highest steps resulting from the isotonic regression are consistent

estimates of Uq and ai. However, it is critical to realize that the estimated a's can only be

identified using nonparametric methods. In order to observe the lower asymptote of the cdf, the

researcher must have observations with very low index values. Similarly for the upper

asymptote; if there are no observations at high index values, the estimated cdf will end before

those values are reached. The researcher must ask the question, does the cdf end because the

final value is the "true" asymptote or because there are no data points in that area? In order to

solve the problem, the data would have to contain observations with index values which

approach negative or positive infinity. However, if the data display a long tail that is

approximately constant at some non-zero a, that is good evidence that misclassification could

be a problem in the data. Certainly further investigation would be warranted; perhaps

resampling techniques could be employed to find out more about the problem.

Once we have the MRC estimates and the IR estimate of the cdf, we find the asymptotic

'^ See Barlow et. al. (1972) or Robertson et. al. (1988) for detailed discussions of IR and the

algorithms used for estimation.

'^ The non-decreasing property constrains pools to contain only adjacent index values.
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distribution of the IR estimator. To date no asymptotic distribution has been found for methods

which estimate both the unknown slope coefficients /3 and the cdf simultaneously in

semiparametric models of discrete response. However, we are able to derive the distribution

of both sets of coefficients here. We use known results combined with a basic insight. The

insight follows from the fact that MRC estimates are N"^ consistent while isotonic regression

of the form we use with step functions is N"' consistent, so we can treat the MRC coefficients

as known in deriving the asymptotic distribution for the isotonic regression in applying

Groeneboom's (1993) results. (The proof is given in the Appendix V.).

Estimation of the Asymptotic Distribution for the Isotonic Regression Step Function

We use the method of isotonic regression to estimate the c.d.f. F(/) = Pr()'=l |7) with

a step function where I is the index, I = X/3. We use the N"^ consistent estimates of these

parameters which come from estimating the model by the MRC technique in Han (1987) and

then do an isotonic regression using these estimates for the index value. If we did not use the

MRC estimator (or other N"'^ estimator), we would be unable to derive the asymptotic

distribution of the misclassification probabilities. Using the index observations //,...,/„ (derived

from x,, ...^ and the N"^ consistent parameter estimates of /3), we find the IR functional

estimate F^ . We are interested in the asymptotic standard errors associated with the height

of the steps of F„ . The asymptotic distribution was found by Groeneboom (1993): For any

known v s.t. F(v) E (0,1),

n'^iFAv) - F(v))

TH ^^ ^^ (24)
^- F(v) ( 1 -F(v) ) ^^
a ^(v)j

where /is the derivative of the true distribution F, g is the derivative of the distribution of the

index, and Z is the last time where two-sided Brownian motion minus the parabola v^ reaches

its maximum. Thus, the Groeneboom technique to estimate the asymptotic distribution cannot

be applied to the Cosslett-type IR estimator because the slope coefficients /3 are being estimated

along with the cdf. However, our approach which utilizes an N"^ estimator for jS allows the
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parameter vector to be treated as known for purposes of estimating the cdf.

The distribution of Z can be written (Groeneboom (1984)) as

h(v) = l.s(v)s(-v), V € St (25)
^

2

where the function s has a Fourier transform

9 1/3

H^) = ^ (26)

i4j(2-"^H'i)

and where A/ is the Airy Function and I = V- 1

.

Solving for Z will allow us to estimate the variance of F^ HAT. We have E(Z) = from

symmetry of h^. Also, via numerical approximation of the Fourier transform and numerical

integration, we estimate Var(Z) = 0.26.

Using (23), we then have

VariF(v) - F(v)) = 1.04

^

^.(v)(l--^n(^))/(v)f (27)

2ngiv)

where we use the numerical estimate of the index density for g(v). Unfortunately, we cannot

use the numerical derivative of F„(v) for/(v) since the derivative of a step function is zero except

at a fmue number of points (where it is infinity). Instead, for a given step level, we use a

"slope approximation" arrived at by looking at the jumps from or to the adjacent steps. J{v) is

defined to be the slope of the straight line from the point half way up the vertical rise to the

current step and the point half way up the rise to the next step. Because this definition of the

slope does not exist for the highest step, we calculate it assuming that the next step level is one.

The density of the index is estimated using a window width of 0. 1 ; the results are not

sensitive to the choice of window width. The point at which g{v) is estimated is the middle of

the step. The process that estimates the standard errors of the /3's uses a kernel window of a*n'
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"^ where a is the standard deviation of the index function and n is the number of observations.

The standard errors for the a's in Table IX use a kernel window of 0.05. Again, the estimates

are not greatly affected by the choice of window width.

Consistent Semiparametric Estimates of the Job Change Model

We now apply the combined MRC and isotonic regression estimators to the job change

data from the GPS. The results of using the estimators on the job change data are reported in

Table VIII. MRC/IR produces coefficients which are scaled so that each coefficient vector has

length one. Thus, the absolute magnitude of the coefficients is indeterminate; only the ratios

can be found from MRC/IR. In order to compare the results from probit and MLE with

MRC/IR it is necessary to scale the MRC/IR coefficients. We assume that the coefficient on

Western stays fixed across methods; it is also the coefficient which is assumed to be fixed in

calculating the asymptotic semiparametric standard errors. In this way we obtain a scaling factor

which will convert the MRC/IR coefficient into the probit coefficient and multiply the remaining

coefficients by the same factor.

Table VIII restates the earlier results (Table VI) for ease of comparison. MLE produces

point estimates which differ from those of probit as was seen before in Table VI. However,

estimating the model using the MRC/IR procedure gives results that always lie in between the

estimates obtained from ordinary probit, ignoring misclassifications, and MLE correcting for

misclassification. Thus, when we use the combined MRC/IR approach we find that the

estimated probabilities of misclassification are 0.035 and 0.395. Both are estimated quite

precisely, and we can now reject the hypothesis that the probabilities of misclassification are

equal. Freeing the misclassification model from the assumption of a normal error distribution

significantly changes the estimate of a^; only 3.5% of observed non-jobchangers have a

misclassified response. As mentioned above, the accuracy of the upper asymptote depends on

the amount of data we have in that index range. Since the number of datapoints in the upper

range is small, the estimates of a, should be perhaps be viewed with some caution. However,

it seems to us that the lower asymptote is well established. There are plenty of observations at

low values of the index and the lowest step is relatively long.
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In Figure 4 we plot the estimated cdf from the MLE model which allows for

misspecification and also the MRC/IR estimate of the cdf. The results are reasonably similar.

Figure 5 shows the MRC/IR estimate of the cdf with a confidence interval of two standard errors

in either direction. The confidence interval demonstrates that the IR step function estimate of

the cdf is estimated accurately, except when the size of the step function becomes small. In

these situations, we smooth the estimation of the confidence interval. We also include a

comparison of the MRC/IR estimated cdf with a standard kernel estimate of the cdf. Figure 6a

uses a fixed-window kernel; this is problematic for observations at the ends of the distribution

because there are only observations on one side of the point. One can see that the kernel

estimate becomes non-monotonic at the upper tail of our data. Figure 6b tries an alternative

approach by using the 200 nearest neighbors to construct the kernel estimate. Again, the upper

tail of the cdf is quite different from the MRC/IR estimate. Kernel regression techniques are

basically not suited to estimating the asymptotes of a cdf where data become sparse.

If the assumption of normally distributed errors were correct for our data set, we would

expect to see the MRC coefficients come very close to the MLE coefficients. Some coefficients,

such as Union, match closely, but others such as Last Grade Attended and Married, do not. The

differences could well arise from a failure of the underlying probit model assumptions of

normality.

To explore further the accuracy of the MRC/IR approach compared to probit, we

conducted another simulation analysis. We generated 5,000 observations of simulated data with

three explanatory variables (none distributed normally), a constant, and a normally distributed

error. Ten percent of the binary response dependent variable was purposefully misclassified.

The results of the three estimation techniques are reported in Table IX. MLE correcting for

misclassification should return the coefficients used to construct the data, as should MRC with

no special correction. The conclusion of this exercise is that the assumptions required for probit

are not met by our job change data, and that the MRC estimator provides superior estimates.

It is also interesting to note from Table VIII that the MRC/IR estimator is able to estimate the

misclassification probabilities quite accurately and their values are close to our expectations

formed by the earlier semiparametric and MLE analysis.
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VI. Conclusions

The discussion above shows that ignoring potential misclassification of a dependent

variable can result in substantially biased and inconsistent coefficient estimates when using probit

or logit specifications. The researcher can use our maximum likelihood procedure described

above to estimate the extent of misclassification and estimate consistent coefficients. If the

misclassification probabilities are asymmetric across groups, they may still be estimated easily.

However, should the errors in the data not be normally distributed, these coefficients may

nevertheless be inconsistent. Semiparametric regression using the MRC technique of Han (1987)

will yield consistent estimates of the coefficients regardless of the amount of misclassification

in the data. Furthermore, the isotonic regression techniques detailed above provide a procedure

which will give consistent estimates of the misclassification percentages in the data. We are able

to derive and estimate the asymptotic distribution for both the slope parameters and for the

misclassification probabilities.

Other model specification problems may exist besides misclassification: e.g. non-

normality or heteroscedasticity. Misclassification in particular need not be the problem in a case

where the probit model does not fit. However, the types of results we achieve here suggests that

misclassification can be a serious problem; results that suggest its existence certainly justify

looking more closely at the data to determine what error structure does exist.

We apply our econometric techniques to job change data from the CPS. We find that

misclassification exists in the data. Furthermore, the probabilities of misclassification differ

depending on the response. We are able to estimate the parameters by the MLE parametric

approach and by the distribution free semi-parametric approach; the estimated parameters are

reasonably similar although they are estimated with only moderate levels of precision. Our

approach is quite straightforward to use on discrete response models that are commonly used in

applied research. Thus, we hope our approach will be useful to others working with discrete

data —especially in probit and logit models.
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Table la: Simulations

X, is drawn from a lognormal distribution

Xj is a dummy variable drawn from a uniform distribution

Xjis drawn from a uniform distribution

Repetitions Sample Probit: y ratio to MLE: solving ratio to

= 146 Design misclassified constant for a constant

n=5000 a 0.02 — — 0.0192

(.0054)(.0051)

00 -1.0 -0.787

(.069)(.066)

1 -0.990

(.068)(.077)

1

^1 0.20 0.158

(.001)(.005)

0.20 0.199

(.008)(.009)

0.20

02 1.5 1.27

(.063)(.054)

1.61 1.49

(.075)(.073)

1.51

/?3 -0.60 -0.518

(.023)(.021)

0.66 -0.598

(.026)(.028)

0.60

n=5000 a 0.05 — — 0.0497

(.0076)(.0075)

—

00 -1.0 -0.567

(.073)(.058)

1 -1.007

(.084)(.090)

1

/3, 0.20 0.114

(.010)(.004)

0.20 0.201

(.OlOK.Oll)

0.20

02 1.5 1.06

(.051)(.048)

1.87 1.504

(.082)(.089)

1.50

03 -0.60 -0.431

(.019)(.019)

0.76 -0.599

(.032)(.034)

0.60

n=5000 a 0.20 — — 0.198

(.014)(.013)

—

00 -1.0 -0.163

(.061)(.050)

1 -0.991

(.168)(.159)

1

0^ 0.20 0.037

(.005)(.002)

0.23 0.198

(.023)(.022)

0.20

02 1.5 0.554

(.045)(.041)

3.40 1.48

(.182)(.169)

1.49

0, -0.60 -0.228

(.018)(.016)

1.40 -0.592

(.072)(.064)

0.60

(The left hand parentheses contain the standard deviation of the coefficient across 146 Monte Carlo

simulations. The right hand parentheses contain the average (n= 146) standard error calculated from

MLE. The similarity of the two show that the maximum likelihood asymptotics work well.)
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Table lb: Simulations from Table la in Ratios

X, is drawn from a lognornial distribution

Xj is a dummy variable drawn from a uniform distiibution

X3 is drawn from a uniform distribution

Repetitions =
146

Design

Ratios

Probit: y misclassified MLE: solving for a

e small e large e small e large

n=5000

a = .02

00

02

/3,

1

0.2

1.5

0.6

1

0.20

1.61

0.66

1

0.20

1.58

0.63

1

0.20

1.51

0.60

1

0.20

1.48

0.58

n=5000

a = .05

^0

02

03

1

0.2

1.5

0.6

1

0.20

1.87

0.76

1

0.20

1.67

0.66

1

0.20

1.50

0.60

0.19

1.47

0.57

n=5000

a = .20

00

0:

02

03

1

0.2

1.5

0.6

1

0.23

3.40

1.40

1

0.24

2.49

1.04

1

0.20

1.49

0.60

0.21

1.50

0.63
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Table 11: Simulations: One Sample Generated

Simulation vector = (-3, 0.3, 0.2)

X, drawn from a normal distribution

Xj a dummy variable drawn from a uniform distribution

true a

sample size

True Probit

X and y

Probit: y
misclassified

MLE using

true a
MLE: solving

for a
a

a = .025

n=2000
^0

/32

-2.958

(.138)

.295

(.012)

.204

(.080)

-2.443

(.119)

.240

(.010)

.208

(.075)

-2.937

(.166)

.290

(.015)

.224

(.088)

-3.170 .0397

(.289) (.013)

.314

(.028)

.236

(.095)

a = .05

n=2000
/3o

^2

-3.048

(.137)

.296

(.012)

.296

(.079)

-2.396

(.114)

.233

(.009)

.168

(.074)

-3.266

(.200)

.316

(.018)

.290

(.097)

-3.210 .046

(.291) (.014)

.311

(.027)

.282

(.100)

a = .l

n=2000
/3o

02

-3.007

(.137)

.296

(.012)

.235

(.077)

-1.901

MOl)
.187

(.008)

.143

(.069)

-3.191

(.243)

.316

(.022)

.238

(.110)

-2.961 .085

(.359) (.020)

.293

(.054)

.218

(.105)

a = .2

n=2000
00

02

-3.270

(.151)

.328

(.013)

.164

(.082)

-1.186

(.086)

.122

(.006)

.051

(.065)

-3.480

(.401)

.370

(.040)

-.0379

(.173)

-3.282 .190

(.532) (.019)

.348

(.056)

-.020

(.163)

Note: The coefficients are different in each row of column one because only one random sample is

generated for each row; thus it is unlikely that the /3's would match exactly.
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Table ill: Logit Simulations : One Sample Generated

vector =(-2, 1)

Xi drawn from a normal distribution

True a

Sample size

True Logit

X and y

00 /3i

Logit: y
misclassified

^0 ^.

MLE with

true a known

/3o ^1

MLE solving for

a and jS

/3o /3, a

a= .05

n= 2000

-1.990 1.012

(.153) (.054)

-.967 .504

(.095)(.023)

-1.897 .933

(.192) (.070)

-1.830 .901 .045

(.207)(.080)(.008)

a= .1

n= 2000

-2.131 1.065

(.159) (.058)

-.612 .342

(.081) (.017)

-2.100 1.071

(.257) (.107)

-2.115 1.079 .101

(.287)(.125)(.010)

a= .2

n= 2000

-2.057 1.045

(.154)(.056)

-.399 .201

(.071) (.012)

-2.338 1.146

(.401) (.178)

-2.425 1.192 .205

(.479)(.223)(.012)

Standard errors are in parentheses.
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Table IV: Logit Simulations: One Sample Generated

Simulation /3 vector = (-2, 0.5, 0.2)

X, is drawn from a normal distribution

X, is a dummy variable

true a

sample size

True Logit

X and y

Logit: y
misclassified

MLE using

true a
MLE: solving

for a

a

a = .025

n=2000
^0

/32

-2.08

(.151)

0.504

(.023)

.238

(.137)

-1.63

(.133)

0.407

(.019)

0.128

(.127)

-2.14

(.172)

0.511

(.027)

0.232

(.149)

-2.18 0.029

(.207) (.011)

0.520

(.038)

0.235

(.152)

a= .05

n=2000
^0

02

-1.895

(.146)

0.506

(.023)

0.117

(.136)

-1.56

(.130)

0.398

(.018)

0.142

(.125)

-2.03

(.184)

0.530

(.032)

0.120

(.163)

-1.917 0.037

(.215) (.015)

0.497

(.047)

0.129

(.153)

a = .l

n=2000
00

02

-2.26

(.155)

0.509

(.023)

0.420

(.136)

-1.17

(.117)

0.281

(.014)

0.110

(.115)

-2.08

(.229)

0.494

(.038)

0.292

(.183)

-2.40 0.124

(.389) (.019)

0.565

(.076)

0.373

(.220)

a = .2

n=2000
00

0^

02

-2.25

(.158)

0.526

(.024)

0.400

(.140)

-0.903

(.107)

0.189

(.012)

0.194

(.107)

-2.271

(.330)

0.509

(.058)

0.398

(.259)

-2.29 0.201

(.540) (.027)

0.515

(.118)

0.401

(.268) 1

Note: The coefficients are different in each row of column one because only one random sample is

generated for each row; thus it is unlikely that the /3's would match exactiy. Standard errors are in

parentheses.
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Table V: Means of the CPS job change data

The first row of each cell is the sample statistic.

The second row contains the statistic ior jobchange=Q observations

The third row contains the statistic for jobchange= I observations

mean std dev min max obs

married .7293

.7468

.6253

.4443

.4349

.4844

1

1

1

5221

4471

750

grade 14.38

14.40

14.30

2.823

2.834

2.760

1

1

1

19

19

19

5221

4471

750

age 37.43

37.98

34.17

8.526

8.535

7.712

25

25

25

55

55

55

5221

4471

750

union .2454

.2668

.1173

.4303

.4424

.3220

1

1

1

5221

4471

750

earn per

week

488.9

507.9

375.1

240.2

235.7

235.6

2

999

999

999

5221

4471

750

west .2015

.1946

.2427

.4012

.3960

.4290

1

1

1

5221

4471

750
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Table VI: Determinants of Job Change

Probit MLE ao=ai>0 MLE ao ^ tt]

"o
— 0.0579

(.007)

0.061

(.007)

«1
— 0.0579

(.007)

0.309

(.174)

married -0.108

(.049)

-0.073

(.077)

-0.103

(.100)

last grade

attended

0.026

(.009)

0.063

(.015)

0.080

(.026)

age -0.022

(.003)

-0.028

(.005)

-0.033

(.007)

union membership -0.434

(.061)

-0.707

(.148)

-0.811

(.199)

earnings per week -0.001

(.0001)

-0.003

(.0004)

-0.004

(.0009)

western region 0.214

(.054)

0.301

(.086)

0.367

(.127)

constant 0.051

(.162)

0.171

(.259)

0.581

(.495)

log likelihood

number of obs.

-1958.1

5221

-1941.4

5221

-1940.9

5221

Standard errors are in parentheses.
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Table Vila: Marginal Effects

at the mean, first, and third quartiles of the data

quartile regular probit MLE ao=ai>0 MLE tto 5^ CK,

married 1st

mean -.13 -.04 -.05

(.08) (.07) (.12)

3rd -.20 -.04 -.04

(.12) (.10) (.23)

grade 1st .41 .86 .93

(.21) (.25) (.35)

mean .61 .73 .79

(.34) (.31) (.60)

3rd .80 .54 .49

(.51) (.38) (.97)

age 1st -.81 -.88 -.87

(.13) (.17) (.36)

mean -1.35 -.85 -.83

(.29) (.25) (1.16)

3rd -1.76 -.62 -.51

(.51) (.37) (2.07)

union 1st

mean -.18 -.14 -.14

(.06) (.07) (.14)

3rd

earnings per 1st -.49 -1.05 -1.09

week (.11) (.16) (.34)

mean -1.05 -1.32 -1.37

(.31) (.25) (1.05)

3rd -1.49 -1.04 -.92

(.54) (.34) (1.89)

western 1st

region mean .07 .05 .05

(.02) (.02) (.07)

3rd

( Asymptotic standard errors are in parentheses. )
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Table Vllb: Semiparametric Marginal Effects

at the mean, first, and third quartiles

quartile MRC/IR MLE Oo ?i a,

married 1st

mean

3rd

-.0032

(.0196)

-.0080

(.0261)

-.0389

(.0415)

-.0012

(.0013)

(-.0073

(.0077)

-.0184

(.0200)

grade 1st

mean

3rd

.0010

(.0065)

.0026

(.0090)

.0127

(.0122)

.0009

(.0005)

.0057

(.0032)

.0143

(.0069)

age 1st

mean

3rd

-.0007

(.0042)

-.0018

(.0055)

-.0085

(.0026)

-.0004

(.0002)

-.0023

(.0011)

-.0058

(.0021)

union 1st

mean

3rd

-.0156

(.0965)

-.0395

(.1281)

-.1920

(.1040)

-.0092

(.0042)

-.0575

(.0216)

-.1447

(.0553)

earnings per

week

1st

me^n

3rd

-.0001

(.0003)

-.0001

(.0004)

-.0007

(.0003)

-.00005

(.00002)

-.0003

(.0001)

-.0007

(.0003)

western region 1st

mean

3rd

.0072

(...)

.0182

(...)

.0887

(...)

.0042

(.0026)

.0260

(.0162)

.0655

(.0299)

( Asymptotic standard errors are in parentheses. )
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Table VIU. Comparison of Probit, MLE, and MRC/IR Results

The dependent variable is Jobchange.

Probit MLE ao=a,>0 MLE Qto ^ «i MRC/IR

"o .058

(.007)

.061

(.007)

.035

(.015)

"l .058

(.007)

.309

(.174)

.395

(.091)

married

(0 if unmarried)

-.108

(.049)

-.073

(.077)

-.103

(.100)

-.161

(.191)

last grade

attended

.026

(.009)

.063

(.015)

.080

(.026)

.052

(.043)

age -.022

(.003)

-.028

(.005)

-.033

(.007)

-.035

(.021)

union membership -.434

(.061)

-.707

(.148)

-.811

(.199)

-.794

(.503)

earnings per week -.001

(.0001)

-.003

(.0004)

-.004

(.001)

-.003

(.0015)

western region .214

(.054)

.301

(.086)

.367

(.127)

.367

(...)

constant .051

(.162)

.171

(.259)

.581

(.495)

log likelihood

number of obs.

-1958.1

5221

-1941.4

5221

-1940.9

5221

Notes:

1. MRC/IR coefficient estimates and their standard errors have been rescaled so as to be

comparable to the other coefficients.

2. The standard error for the variable Western can not be estimated because one coefficient

must be held fixed when estimating the standard errors for the MRC estimator.
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Table IX: Simulation

e drawn from a standard normal

X, is drawn from a lognormal distribution

X2 is a dummy variable

X3 is drawn from a unifonn distribution

Sample Design

Sample generated with 10% misclassi fied observations

Probit MLE
MRC/IR
scaled

-0.80 /3o -0.539

(.052)

-1.01

(.137)

—

0.20 0^ 0.139

(.011)

0.235

(.026)

0.200

1.50 /3, 0.952

(.046)

1.69

(.164)

1.44

(.036)

-0.70 ^3 -0.446

(.023)

-0.729

(.060)

-0.594

(.203)

0.106 ao assume q;o=0 0.117

(.015)

0.116

(.020)

0.096 «i assume a,=0 0.111

(.037)

0.128

(.108)

N 5000 5000 5000
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Appendix

I. Concavity

The conditions for a probit log likelihood function, with argument z, to have a negative second

derivative are:

a(z^-l) - (l-2a)exp(-.5zV2T <
and,

(l-a)(z^-l) - (2a-l)exp(-.5f)v/27r <

For the logit function:

a-1 + aexp(-2z) <
and,

-a + (l-a)exp(-2z) <

II. Derivative of Estimated Coefficients with respect to the Misclassification

Parameter

The log likelihood can be transformed:

E[E[l{^^,y)\X] ]
=

E[\nFix0)-pr{y = l\x,0„a,) - \nil-F(x0)) - pr{y=O\x,0„a,)]

Notice that the probability of observing a particular y value depends on the true parameters of

the model, ^q and ao. By collecting terms, the expression above can be rewritten,

= E^„^l{0^,y) - aE[(\rxF{x0) - lnil-F(x0)](l-2F(x0^) (2)

The derivative with respect to is then set equal to zero to form the usual first order condition.

Since we want to know how the optimal estimated /3 varies with a, we take another derivative

with respect to a. Call the first term of equation (2) J,, and the second term, aJj, and use the

product rule to calculate,

i^l .!l\ .^1 „.a^^l „ = (3)

81380
'^''^ 8a°"° a^

'"•" d0da"'°

Since we are interested in evaluating this expression at a=0, the last term drops out and we can

isolate the expression of interest:

41



aa'-" 3/3 3/3 3/3

Note that the first term in equation (4) is simply the inverted information matrix for the

likelihood without misclassification. In the case where F(.) is the probit functional form,

equation (4) will equal:

which can be evaluated for different X distributions.

Additionally, this expression is bounded ifX has bounded second moments, a standard condition

for consistency of probit estimates. Use a condition that (F7F) is bounded by c(l +
|
z

j
) to show

that the estimates of /3 will change at a finite rate as a increases from zero.

ni. Non-Block Diagonality of the Probit Information Matrix

(symmetric misclassification probabilities)

The true log likelihood is equation (7) from page four of the pap)er:

L = >'ln[a+(l-2a)<l'(X^)] + (l-j)ln[(l-a)+(2a-l)#(X/3)] (1)

The information matrix off-diagonals are:

d^L ^ <i>{X&)X _ <i>{X&)X
(2)

a/3aa [(l-a)+(2a-l)#(A:/3)]^ [a * {\-2a)^{X^)f

In expectation these off-diagonals are not equal to zero:

E\J!L_^ - <^(A:g)X _ 0(X/3)X
(3)

d&da (l-a) + (2a-l)«^(X/3) a + (l-2a)*(X/3)
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IV. Identification of Berkson Log Odds
with Three Classes, Misclassification, and the Logit Functional Form

Define the following:

To = the probability of correct classification of an observed 0.

^20 = probability a 2 is misclassified to be a 0.

a,o = probability a 1 is misclassified to be a 0.

X, = the probability of correct classification of an observed 1

.

Uii = probability a 2 is misclassified to be a 1.

aoi = probability a is misclassified to be a 1.

T2 = the probability of correct classification of an observed 2.

cKo2 = probability a is misclassified to be a 2.

a,2 = probability a 1 is misclassified to be a 2.

The probabilities of observing any particular outcome must add to one, resulting in the following

restriction:

T; + Qjj + ajk = 1 V i ?i
j

?i k (1)

Then the probability of observing the outcome can be expressed:

Y.e"^ Y.e"' Y.'"'
;=0 ;>0 ;»0

Similarly, the probabilities of observing outcomes 1 and 2 can be expressed:

Pr(y=l) = _! + ^' °'

Pr(y=2) =

J-o y-o >-0

TT,.^^ ^ a^'' ^ a^f^

52
.V

J'O

(3)

(4)

The probabilities can be reinterpreted as shares and any two can be written in ratio form. The
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log odds of ups and 1 will be:

It is straightforward to write out the expression for other pairs of ups, so they are not included

here. The condition that the probabilities of seeing any particular outcome must add to one

results in overidentification of equation (5). Condition (1) places two restrictions on the six

coefficients one would estimate in equation (5).

V. Proof of N"^ Convergence for Isotonic Regression when Index Parameters are

Estimated with N"^ Convergence

Assume the regularity conditions of Groeneboom (1993). For each n and index value

V define In(i') as the positive distance to the closest jump and define ']J,v) as the (vertical) size

of the jump. We now use two facts to establish the proof: {\) p - \ = Op(N'"^ from the

property of the MRC estimator and (2) the total cumulative size of the jumps cannot exceed 1.0

because we are estimating a cumulative distribution by IR. We can then calculate:

Pr (
I

^„(v) - F,(v)
I
^ e n-'^)

s f
^—- y,(v) - n'l' wiv)dv

^ ^ n-'l'

(1)

where w(v) is the density of v and [ —— w(y)dv ^ K.
>' /n(v)
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Thus, because the total cumulative size of the jumps cannot exceed 1.0, either jumps are

relatively large but far apart, or jumps are frequent but small. The net result is we can derive

the bound. To complete the proof we calculate

„i/3 [F rv)-F(v)] = n'/3 [F(v)-F(v)] ^ n^[F rv)-F(v)] (2)
(1^ ' V ^j • )!' ' n^ '» * n

The first term on the right hand side, n"^ [F„( v ) - F„{i')] is order Op(l) by equation (1) while

the second term n"^ [F„(v) - F{v)] is order Op(l) with the asymptotic distribution as proven by

Groeneboom (1993). Thus, we can treat the estimated P parameter as known in computing

the asymptotic distribution of the IR.
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