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Abstract

This paper explores learning models in the spirit of the method of

fictitious play. We extend the previous literature by generalizing the

classes of behavior rules, and by considering games with more than two

players. Most importantly, we reformulate the study of convergence to mixed

strategy equilibrium, using Harsanyi's notion of perturbed games.
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1. Introduction

Nash equilibrium describes a situation in which players have identical and

exactly correct beliefs about the strategies each player will choose. How and when

might the players come to have correct beliefs, or at least beliefs that are close

enough to being correct that the outcome corresponds to a Nash equilibrium?

One explanation is that the players play the game over and over, and that their

beliefs come to be correct as the result of learning from past play. This explanation

has been explored at some length in the recent literature, in models that take a

number of different forms and that stress different aspects of the problem. ]

This paper explores learning models that are in the spirit of the model or

method of fictitious play (Brown, 1951; Robinson, 1951) in which players choose

"We are grateful to Robert Anderson, Robert Aumann, Hugo Hopenhayn, David Levine, Marco

Li Calzi, Ramon Marimon, Tom Sargent, and Jose Scheinkman for helpful comments. We would

like to thank IDEI, Toulouse and the Institute for Advanced Studies, Tel-Aviv University, for their

hospitality while this research was being conducted. The financial assistance of the National Science

Foundation (Grants SES 88-08204, SES 90-08770 and SES 89-08402) and the John Simon Guggenheim

Foundation is gratefully acknowledged.

1
To provide a guide to the literature would take too long, so we will be content with a partial

list of recent references: Canning (1991), Crawford and Haller (1990), Eichberger, Haller, and Milne

(1991), Ellison (1991), Fudenberg and Levine (1992), Fudenberg and Kreps (1988), Hendon et al. (1991),

Jordan (1991), Kalai and Lehrer (1990), Kandori, Mailath, and Rob (1991), Milgrom and Roberts (1990,

1991), Nyarko (1991), and Young (1991). We will comment on some of these papers as we proceed,

when they bear directly on our own analysis.
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their strategies to maximize their current period's expected payoff on the as-

sumption that their opponents will play each strategy with probability equal to

its historical frequency. We extend the previous literature in three ways:

(1) We provide some minor extensions to the basic model of fictitious play, by

generalizing the classes of rules by which players form their beliefs and use them

to choose their actions.

(2) We study models in the spirit of fictitiour play for games with more than two

players.

(3) Most importantly, we reformulate the study of convergence to mixed-strategy

equilibria. We argue that the notion of convergence used previously in the liter-

ature, that the empirical marginal distributions converge, is not an approproate

notion of what it means to play a mixed-strategy profile, and we suggest and

analyze the stronger criterion of the convergence of intended behavior. We show

that all Nash equilibria and only Nash equilibria are possible limit points under

this mode of convergence. Finally, we investigate the global stability of mixed

equilibria in the setting of Harsanyi's (1973) purification theorem.

Section 2 gives a general formulation of learning in a strategic-form game.

This formulation, and our subsequent analysis, supposes that the same players

play each other repeatedly (as opposed to a model with a large number of player

l's, player 2's, etc.) and that in each round of play, players observe the (pure)

strategies chosen by their rivals.

Section 3 reviews the model of fictitious play for two players. We separate

the questions addressed by fictitious play (and models of learning in general)

into two groups. First, if play "settles down" or converges in some appropriate

sense, what are the possible limit points? Second, is play guaranteed to converge?

With regard to the first question, recall that there are two modes of conver-

gence in the literature on fictitious play. In *he first, there is a finite time T such



that a single strategy profile is played in every period from T on; it is easy to

see that any such profile must be a Nash equilibrium. In the second mode of

convergence, play cycles among different strategy profiles in a way such that the

empirical frequencies of each player's choices converge to some (mixed) strat-

egy. The corresponding strategy profile is also a Nash equilibrium; this is the

traditional sense in which fictitious play is said to converge to mixed-strategy

equilibria. Section 3 briefly reviews results from the literature that use these two

convergence notions.

In Section 4, we generalize fictitious play by considering more general as-

sumptions about the ways in which players construct their assessments and then

choose their immediate actions. We will assume throughout that players' choice

of actions are asymptotically myopic; i.e., in the long run, players choose in a -way

that maximizes their immediate payoffs. This assumption requires some expla-

nation and rationale, which we provide. As for players' assessments, if they

are adaptive (following Milgrom and Roberts [1991]), then if intended play con-

verges to a pure-strategy profile, the profile must be a Nash equilibrium, for any

number of players. But more is required if the second form of convergence —
convergence of empirical frequencies to a mixed-strategy profile— is to hav^ only

Nash equilibria as limit points. A sufficient condition is that assessment rules are

asymptotically empirical, which means that players' assessments converge together

with empirical frequencies. Moreover, this condition suffices only for two-player

games.

Section 5 presents several objections to convergence of empirical frequencies

as an appropriate mode of convergence for learning to play a mixed-strategy pn^-

file. In summary, these objections are: (1) Although assessments are converging

(if they are asymptotically empirical), the strategies that are chosen are not. (2)

In examples, correlations will be observed (over time) in the actions of players

who choose their actions independently. (3) Because of (2), convergence in this



sense for games with more than two players is problematic.

For these reasons, in Section 6 we propose a stronger mode of convergence,

namely convergence of (intended) behavior. This raises some technical difficulties:

When players use mixed strategies, the realized distribution of play need not

equal the intended one, which makes notions of convergence inherently prob-

abilistic. These difficulties are attended to, and then we show that only Nash

equilibria are possible limit points under this mode of convergence, as long as

behavior is asymptotically myopic and assessments are asymptotically empirical.

Moreover, for any game and Nash equilibrium of the game, there is a model

of asymptotically myopic behavior and asymptotically empirical assessments for

which the equilibrium is a limit point of intended behavior with probability as

close to one as desired. 2 These results are not limited to two-player games.

The problem with this alternative mode of convergence is that, while con-

vergence to mixed behavior is possible, it is hard to see why it should occur.

The difficulty is the standard one with mixed strategies: If, based on their as-

sessments, players choose their actions to maximize precisely their expected pay-

offs, then (unless their assessments are precisely those of the mixed equilibrium)

their intended behavior will not converge. If players are not restricted to precise

maximization, then any behavior (that puts weight on actions in the equilib-

rium mixture) will be satisfactory. Something outside of payoff-maximization

considerations is required to lead players to the precise mixtures needed in the

equilibrium. In our basic formulation, we see no natural way of doing this.

As a way around this problem, in Sections 7 and 8 we consider learning in

games in which each player's payoff is subject to a sequence of i.i.d. random

shocks that are observed only by that player, as suggested by Harsanyi's (1973)

purification theorem. In this context, a mixture over two strategies does not

To the extent that some Nash equilibria seem unreasonable, such as those where players use

weakly dominated strategies, this last result indicates that are assumptions are too weak. This will

be discussed as well in Section 6.



correspond to mixing by a player who is indifferent, but rather to a player who (in

each period) strictly prefers one of the two strategies, depending on the (period's)

realization of the player's payoff perturbation. Yet from the perspective of other

players, who do not know the precise value of this period's perturbation for the

player, the actions of the first player are random. We show in Section 7 that

in this context all of our earlier results go through without difficulty. Then, in

Section 8, we specialize to the class of 2 x 2 games with a unique equilibrium in

mixed strategies, and we show that any learning process that is close to fictitious

play (in a sense to be made precise) will converge with probability one to the

unique equilibrium. Here we use and adapt results from the theory of stochastic

approximation (Arthur et al., 1987; Kushner and Clark, 1978; and Lyung and

Soderstrom, 1983). 3

Before setting out, let us note that the results given here are only a small part

of the overall story. Among other things, we are assuming that players encounter

the same opponents repeatedly and yet act myopically, a fairly unsavory combi-

nation (see Section 4), they observe the full (stage-game pure) strategies chosen

by rivals in each round of play, and they play the same game over and over.

We hope to return to each of these three simplifying assumptions in subsequent

work.

2. Formulation

Fix an /-player, finite, strategic-form game, hereafter referred to as the stage

game. The players are indexed i = 1,2,...,/, and we let -2' denote the "other"

players; i.e., -i = {1,2,... ,1 - l,i + l,...,/} .* Let S {

, i = 1, ...,/, be the finite

set of pure strategies (or actions) for player i , let 5 = S 1 x . . . x S1 be the set of

' Thus our work is similar to that of Marcet and Sargent (1989a, 1989b) on learning rational

expectations equilibrium.

We use male pronouns for players in general, and for players numbered 2, 4, 6, etc. and lettered

j and -j . We use female pronouns for players numbered 1,3, etc., and for players lettered :' and k.



pure-strategy profiles, and let v
1

: S — 7? give player i's payoffs. In the usual

fashion, let J? be the mixed strategies for player i , let JT = J 1 x . . . x X"
7 be the

set of mixed-strategy profiles, and extend the domain of u' from 5 to 17. Also,

for each i let S~* denote Yljj,: S3'

, and let U~' denote the set of probability

distributions over S~' ; for s' £ S' and a
-1

£ X1-
', let tA-s'^

-
') denote i 's

expected utility if she chooses pure strategy s
1 and her rivals act according to

the (possibly correlated) distribution o~'

.

Imagine that these players play the game repeatedly, at dates t = 1,2,

Imagine that after each round of play, players observe the actual actions chosen

by their opponents; i.e., the pure strategy that is chosen is observed. If a player

chooses his action using a mixed strategy, the mixing is not observed. Then a

history of play up to time t , denoted (< , is a string of (pure) strategy profiles

= {s-i , . .
.

, s t -i) , where s t
> € S for t' = 1, . .

.
, * - 1 . The set of all histories of

play up to time t , or (5)'
_1

, is denoted by 2, .

5 By convention, Zx
will denote

the (singleton) set consisting of the null history. Also, Z will denote the set of

all possible infinite histories; i.e., Z = (S)°° , with typical element ( = (5l5 52 , . . .)

.

The basic object of this paper is a model of learning and behavior, which specifies

how the players behave and what they believe as time passes. A model of

learning and behavior consists formally of t .vo pieces, behavior rules and assessment

rules for each player. We take these in turn.

Behavior rules

We will denote by <f>

f the behavior rule that playei ? uses in the infinitely

repeated game. That is, <f>'
=

(<f>{,

6'
2 ,...), where <f>\ : Z

t
— E l

. The notation
<f>

(for a profile (<£\ . .
. , 4>

!
) of behavior rules for the players), 4> t (for the profile of

behavior rules at date t as a function of (t ), and <?,((<) will all be used.

Insofar as possible, we follow the convention that subscripts refer to time and superscripts to

players. When we write ()' , however, we mean the usual t fold Cartesian product of the argument

within the parentheses. (We will try to avoid this as much as possible.)



Fix a profile of behavior rules q> . Given any t > 1 and (, € Z t , we can use <p

to contruct a conditional probability distribution (conditional on ( t ) for the rest of

the path of play in the usual fashion: Ct and
<t>

give a probability distribution on

s t (the actual play at date t) via (f> t (( t ) This gives us conditional probabilities on

ZM , and with transition probabilities for sM given by
<f>M ((M ) , we can extend

the conditional distribution to Zt+2 , and so on. These then give a probability

distribution over the space of complete histories Z by the Kolmogorov extension

theorem. We will write P(-|(<) for this conditional probability, keeping in mind

that this is for a fixed profile of behavior strategies.

One part of this construction must be emphasized. Given history (, , the

probability that i plays s' at time t is ^J(Ct)(s') . When we construct the con-

ditional probability distribution on ( , we must specify the joint probability that

1 plays 5
1

, 2 plays s
2

, and so on. We insist that

Y(s t
= (s

[

,...,s
I
) |c.) = ^(G)(^)x...x^(G)(3 7

).

That is, players randomize (in their behaviors) independently.

Assessments

To model the behavior rules of players, we will employ some ancillary for-

malisms. Specifically, we will want to speak of what each player assesses con-

cerning the behavior of her rivals, at each date t and contingent on each possible

history £i

.

For the analysis in this paper, it will suffice to specify (for each player i , time

t , and partial history (, ) what i believes her rivals will do in the round about to

be played. Formally, for each t , let /ij denote a function with domain Z t and

range E~ x

, representing i's assessment over the possible pure strategy profiles

that her rivals will choose at date t , as a function of (t . Also, we use /i
l

to

denote a full system of assessments or assessment rule for z ; i.e., fi
l

is a sequence



(/Xj',/4,---)- Note well that cr"' e -T
-

' encodes more than z's marginal afsess-

ments for her rivals' behavior; i is allowed to make an assessment concerning

the joint behavior of her rivals that admits correlations in their play.
6 This may

at first seem troubling when contrasted with the independence assumption made

in the earlier construction of the probability measures P . There is no conflict,

however. The measure P reflects the objective probability measure that governs

the evolution of play, as a function of the behavior rules by the players. We do

not allow players to correlate their (mixed) strategies at any date, hence P is

constructed with independence at each date. On the other hand, the fi)(Ct) rep-

resent a player's subjective assessment of what her rivals are about to do; unless

and until i knows what behavior rules her rivals are using, correlation in her

For example, imagine a three-player game in which player 1 has a choice between pure strate-

gies a and b and player 2 has a choice between a' and 6'
. Imagine that player 3 thinks that

player 1 either mixes between a and b with probabilities 3/4 and 1/4 or with probabilities 1/4

and 3/4 , with the same mixing probabilities used at *nch date, irrespective of what is the history

of play. That is, player 3 believes that player 1 is either using the behavior rule ft that is given by

4>\(£t)(a) = 3/4 (where the = means, irrespective of the values of t and Ci )/ or she believes that 1

uses ft given by ftt (C t )(a) = 1/4 . Player 3 entertains similar beliefs about the behavior rule used

by player 2; we use ft and ft to denote the two possibilities. Moreover, player 3 believes that her

rivals randomize at each date independently; i.e., if player 1 is using c and player 2 is using ft ,

then player 3 assesses that the probability of (a, a') in any round is (3/4X3/4) = 9/16 . Imagine that

player 3 initially believes that if player 1 is using ft , then it is more likely that player 2 is using ft .

Specifically, player 3's prior belief is thar. 1 will use c 1 and 2 will use o" with probability .4; 1 will

use ft and 2 will use ft with probability .05; 1 will use ft and 2 will use ft with probability

.05; and 1 will use ft and 2 will use ft
1 with probability .4. And, finally, imagine that 3 uses the

sequence of observed play and Bayes' rule to update her beliefs about the joint behavior rule profile

used by her rivals. With these data, we can integrate out to find 3's assessment about what 1 and

2 will do at any date ( , given any history C., . It is evident that although 3 believes that 1 and 2

are randomizing independently, her initial uncertainty about what behavior rules they are using and

the correlation in her initial beliefs about their behavior rule profile imply that she will be making

assessments about their play at each date that reflect correlation. If we condition on player 1 playing

a at date 1, this makes it more likely that player 1 is using ft than ft , which makes it more likely

that player 2 is using ft , which makes a' more likely. Note as well that even though player 3

believes (with probability one) that her rivals do not change their behavior from date to date as a

function of what happens in the course of play, her assessments n\(C t ) very much depend on <i ,

since the history of play up to date t gives player 3 information about what behavior rule profile

her rivals are in fact using.



assessments can reflect her strategic uncertainty.
7

3. Fictitious play

The model of fictitious play (Brown, 1951; Robinson, 1951) can be viewed as

a model of learning and behavior. First we give the details of fictitious play, and

then we discuss its interpretation as a model of learning and behavior.

In fictitious play, there are two players; i.e., 1 = 2. In this setting, we

interpret — i as "not ?"; i.e., — ? = 3 — ? for 2 = 1,2. Otherwise, the general

setting is just as in Section 2. The behavior and assessment rules are build up as

follows.

(A) For each player i, strategy s
l € S' , and history (, , let k((<)(-s ') be the

number of times that i played s
1

in the t — 1 observations that comprise (, .

8

(B) For each player i , there is an "initial weight" function 77' : S~ l —+ [0, 00) such

that Ej-'-gs-Vk"'') >°-

(C) For each player i, date t > 1 , history (t , and strategy s~ l e S~' , we define

r?j(G)(s
_i

) = riKs-*) + fc(Ct)(s-*") (Note that ^(CiX*
-

*') = ^(s-'') for all 5- .)

Then player z 's assessment rule //' is given by normalizing the r?' ; i.e.,

MGKs ) = —
Eves-^HCt)^')

(D) For player i, at each date t with history ( t , ^}(C<) is a maximizer of

uV^-MCtXs-') (3.1)

a-'es-

over all cr' G £"

We are grateful to Bob Aumann for convincing us of how important this is

Q
We do not bother to write k\ , since the

and the player whose strategy is being counted

Q

We do not bother to write k\ , since the two arguments determine the length of the history



In (D), we have not pinned down the definition of <f>\(( t ) when there is

more than one maximizer of (3.1). We do require that <£}(C<) make a particular

prescription in such cases (which, of course, can be a mixed strategy), but we do

not say what it is. Formally, we would say that a model of learning and behavior

is consistent with the model of fictitious play if there are initial weight functions

7;' such that (C) holds as a definition of the assessment rules fi' and (D) holds

as a condition on the behavior rules <j>'

.

We trust that most readers will be familiar with the model of fictitious play,

but it may help the uninitiated to give a simple example. Imagine two players

who repeatedly play the strategic-form game in Figure 3-1, with player 1 choosing

a row and player 2 a column. We assume that the game begins with the players

holding "beliefs"

7?

1

=(1,0,4.32) and r,
7 = (3,5.7),

where we write these functions as vectors with the understanding that the first

component of 77
1 corresponds to column 1, the second component to column 2,

and so on.

Column 1

Player 2

Column 2 Column 3

*- Row 1w
CD

5,1 8,4.7 2,3

re

a. Row 2 2.3 2,1 4,2

Fie. 3-1. A strategic-form game.

Refer to the first three lines of Table 3-1, which are labeled round number

1. The second line gives data for player 1; first her relative beliefs about what

player 2 will do in the first round (i.e., the vector 77
1

); and next the expected

payoffs she will accrue given those beliefs if she chooses row 1 and then row 2.

Row 2 gives the higher payoff, and that is wrtten down as her choice. Similarly,

10



Round number 1

Player 1

Player 2

Round number 2

Player 1

Player 2

Round number 3

Player 1

Player 2

Round number 4

Player 1

Player 2

"Beliefs" about rival

1 4.32

3 5.7

Expected payoffs

2.56* 3.62

2.31 2.28 2.34

Choice

row 2

column 3

"Beliefs" about rival

1 5.32

3 6.7

Expected payoffs

2.47 3.68

2.38 2.14 2.31

Choice

row 2

column 1

"Beliefs" about rival

2 5.32

3 7.7

Expected payoffs

2.82* 3.45

2.44 2.04 2.28

Choice

row 2

column 1

'Beliefs" about rival

3 5.32

3 8.7

Expected payoffs

3.08* 3.28

2.49 1.95 2.26

Choice

row 2

column 1

Table 3-1. An example of fictitious play.

given 2's beliefs about what player 1 will do (the vector tj
2

), 2's best choice is

column 3.

Move to the second three lines, labeled round number 2. Plaver l's beliefs

about the actions of player 2 are changed to reflect what happened in the first

round. Since player 2 chose column 3 in the first round, the entry for column

3 in l's beliefs is increased by 1. (That is, -q\ = (1,0,5.32).) We recompute the

expected payoffs to player 1 of playing either row, using these reassessed beliefs,

and we see that row 2 continues to be player l's best choice. But player 2 now

finds that column 1 is optimal, when his beliefs are changed to reflect player l's

choice of row 2 in the first period. Hence in the second round row 2 and column

1 are chosen. This gives beliefs for round number 3, and so on.

Fictitious play was not originally advanced as a model of how individuals

would behave (and learn) when playing a game repeatedly; it was advanced

instead as a method for computing Nash equilibria
9 or perhaps as a model

of the preplay thought process of individual players. How well does it stand

as a model of learning and behavior? The following two questions are raised

The connection will become dear in a bit.

11



immediately.

(1) Is there any particular sense to how assessments are being formed? It can be shown

that the assessment rules //' are consistent with a Bayesian model in which each

player believes her rival is playing the same (unknown) mixed strategy in each

round, independent of what came before, and where each player's prior assess-

ment concerning this unknown behavior strategy has a Dirichlet distribution.

(2) Is it sensible or realistic to assume that players would behave myopically, in the sense

that, in each round, they choose a strategy that maximizes their immediate expected payoff,

given their assessments? Behavior that is myopic in this sense will be discussed

in Section 4, so for now we only note that if each player believes that his rival

does not respond to the history of play — as posited in our answer to question

(1) just preceding — then myopic behavior in this fashion is warranted.

Accepting the model as, at least, a very specific but interesting parameteri-

zation of learning and behavior, we can ask about its long-run implications. One

possibility arises in the example of Figure 3-1 and Table 3-1; if we follow this out

until round 8, then in round 8 play reaches the profile row 1-column 2. Since

this pair is a strict Nash equilibrium for the game, increasing the weight on row

1 in player 2's assessment and increasing the weight on column 2 in player l's

assessment only increases the optimality of column 2 and row 1, respectively.

Thus play "gets stuck" at this pure-strategy Nash equilibrium. In general,

Proposition 3.0. In any history generated by fictitious play, if a strategy profile is played

that is a strict Nash equilibrium, then all subsequent play will be that strategy profile.

Or, speaking very loosely, strict Nash equilibria are absorbing for play according

to the model of fictitious play. A related observation is the following.

Proposition 3.1. Suppose that in some history generated by fictitious play, a particular

pure-strategy profile is played for all but a finite number of periods. Then that strategy

profile must be a Nash equilibrium.

12



We refrain from giving the proof here; this is an easy corollary to Proposition 4.1,

which is proved later.

Thus we see one possibility; play might "stick" at some pure-strategy profile.

If so, this profile must be a Nash equilibrium. (It goes almost without saying that

judicious choice of the initial weight functions will allow fictitious play to stick

at any strict equilibrium. Depending on how ties are broken, this is true as well

of any equilibrium, even those in weakly dominated strategies.)

Proposition 3.1 implies that fictitious play cannot converge to a single pure-

strategy profile in games that have no pure-strategy equilibria. Moreover, even

in games that do have pure-strategy equilibria, fictitious play may fail to lock

on to a single pure-strategy profile. For example, take the game in Figure 3-1,

and change the entry 4.7 in row 1-column 2 to a 4, giving the game in Figure

3-2. Note that row 1-column 2 is still a strict Nash equilibrium. Begin fictitious

play with the same initial weight vector as before, and it turns out that column 2

will never be played. Instead, play "cycles" around the best response cycle row

1-column 1 to row 1-column 3 to row 2-column 3 to row 1-column 3, where

"cycles" is put in quotes because the periods of the cycles increase through time.

In the limit, however, the relative frequencies of play of the various strategies

converges. That is, player 1 plays row 1 one third of the time in the limit, and

player 2 plays column 1 two fifths of the time and column 3 three fifths of the

time. Hence the players' beliefs about how each other will be playing converge

to the corresponding mixed strategies. It is straightforward to see that these

mixed strategies constitute a mixed Nash equilibrium. More generally, we have

Proposition 3.2.

Proposition 32. Suppose that in some history generated by fictitious play, the empirical

frequencies of pure-strategy choices converge to some (mixed) strategy profile. Then that

strategy profile is a Nash equilibrium.

The proof is omitted for now; this is a corollary of Proposition 4.2. Note that this

13



proposition implies Proposition 3.0 as a special case.

It is natural to ask whether, in every game and for every set of initial con-

ditions, convergence at least in the sense of Proposition 3.2 will take place un-

der fictitious play. There are entirely trivial reasons why convergence may fail,

connected with the way in which ties (among optimal strategy choices) are bro-

ken. However if due care is taken in dealing with ties, then it is known that

convergence in this sense is ensured for zero-sum games (Robinson, 1951) and

two-by-two games (?vliyasawa, 1961). However for general games convergence

is not ensured; the first (nontrivial) example is given in Shapley (1964).

4. Extensions of fictitious play

One problem with the model of fictitious play is its very rigid, ad hoc spec-

ification. Assessments are formed according to the empirical frequencies of past

play (up to the initially given weight vectors), and actions are chosen to maxi-

mize precisely immediate expected payoffs. Neither part of this specification is

essential to the results given above; we can obtain similar results for a broad class

of models of learning and behavior. In this section, we present some results of

this sort.

Myopic behavior

Definitions. Given an assessment rule u' = (/xj,^,...) for player i, we say that

the behavior rule <t>

1 = (d>\,4>
l

2 ) for i is myopic relative to p* if, for every t and

G / <?{((«) maximizes i 's immediate expected payoff, given assessment //}(Ci)- That is,

n'(4>
,

t (C t ),^(Ct)) = max s^ s^'(s\ f
i](Q).

The behavior rule
<f>

1

is asymptotically myopic relative to p
x

iffor some sequence

of strictly positive numbers \t t )
with limit zero, for every t and (, , <j>)(Ci) comes

within e
t of maximizing i 's immediate expected payoff, given assessment fi\((t) That

is, u'(<p'
t (( t )^\(( ( )) + e t >max 3 . €S,u'(s',fi\(Ct)).
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The behavior rule 4>' is strongly asymptotically myopic relative to p' if for

some sequence of strictly positive numbers {e t }
with limit zero, for every t and Q ,

every s' in the support of d>\(( t ) comes within t t of maximizing i s immediate expected

payoff, given assessment p\(Q . That is, u'iP.p^Ct)) + U > max 3 ; eS , u'(s'
, fi\(( t))

for all s' in the support of <fj\(( t )

.

Note that in asymptotically myopic behavior, the player can use slightly sub-

optimal pure strategies with large probability, or he can use grossly suboptimal

pure strategies with small probability, or both, as long as the "average" subopti-

mality, averaged according to the probabilities with which the pure strategies are

played, is small enough. In strong asymptotic myopia, grossly suboptimal pure

strategies cannot be used at all.

We will work throughout with models of learning and behavior for which

behavior is at least asymptotically myopic with respect to the assessment rules.

Even this less restrictive assumption has one feature that is potentially trouble-

some: It implicitly supposes that players do not try (asymptotically) to influence

the future play of their opponents. To see this, consider the game in Figure 4-

1, and imagine that player 2 selects actions according to the model of fictitious

play. In this game row 2 is dominant for player 1, and so if player l's behavior

is asymptotically myopic for any assessment rule, she will play row 1 eventually.

Since player 2 uses the assessment and behavior rules of fictitious play, he will

eventually choose column 1; play converges to the pure-strategy equilibrium,

row 2-column 1. But if player 1 does not behave asymptotically myopically and

instead chooses row 1 each time, then player 2 would eventually choose column

2. If player 1 discounts her payoffs with a discount factor close to one, this gives

her a higher overall payoff. The point is a simple one. As long as player 2 is

playing according to the model of fictitious play, player 1 can exploit this and

manipulate 2's beliefs in order to receive her "Stackelberg leader" outcome (cf.

Fudenberg and Levine, 1989).
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Player 2

Column 1 Column 2

Z Rowl 1.0 3,2

>>
to

0- Row 2 2,1 4,0

Fig. 4-1. A strategic-form game illustrating the possibility of Stackelberg leadership.

In light of this example, our assumption of asymptotically myopic behavior

requires some defense and explanation. We defend the assumption with stories

that combine two justifications in varying proportions: First, even if a player's

possible influence on opponents' future play is large, the player may discount

the future sufficiently that the effects are unimportant.

Second, even if the players are relatively patient, they may believe that their

current action will have little, if any, effect on what will happen in the future.

Suppose, for example, that player i believes that her rivals chooses actions in

each period according to some fixed but unknown (and possibly mixed) strategy

profile, which is not influenced by the actions of other players. Moreover, because

i learns her rivals' actual play at each date regardless of what i chooses to do,

i 's immediate choice of action will not affect what i learns, and thus (as long

as i 's behavior is subsequently myopic) it will not affect i 's own subsequent

actions. 10 Weakening this slightly, if i believes that her rivals will be playing a

fixed strategy asymptotically, then asymptotically myopic behavior (for the same

reasons) is warranted.

We are not very happy with either of these two justifications on its own. In

order to permit learning to take place, play must be repeated "frequently," more

10 The point of this remark may not be apparent. Imagine that :' 's choice of action in round i

affects the information she receives about the strategy choices of her rivals in that period. This would

be natural, for example, if we imagined that the stage game is an extensive-form game, and players

only observe the outcome of each round of play. Then «' 's choice of action today might affect her own

subsequent actions; and she might choose to invest in information today by taking an action that is

(myopically) suboptimal but that may generate useful information for guiding future choices.
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frequently than would be suggested by a substantial discount rate, except for

extraordinarily impatient players. And the story that players regard their rivals

as playing fixed strategies repeatedly suffers from internal inconsistency; why

should a player imagine that his rivals are so different from himself? A belief

that one's rivals will settle down to repeated play of a single strategy profile

(justifying asymptotic myopia) is more palatable, especially when each plaver, in

consequence, settles down to repeated play of a single strategy. But even in this

more palatable story, each player is (effectively) assuming that his rivals settle

down more quickly than the player does himself.

More convincing justifications of myopia can be given by enriching our story

and combining the two justifications. Rather than thinking of a small group of

players who interact repeatedly, we think of situations in which there are a large

number of (potential) players who interact repeatedly. Imagine that we have five

thousand players 1, five thousand players 2, and so on, that repeated meetings

between the same sets of players are rare, and that whenever a player meets

some group of rivals, he is unaware of how these rivals acted in the past. To be

more precise, imagine that one of the following three stories holds.

Story 1. At each date t , one group of players is selected to play the game. They

do so, and their actions are revealed to all the potential players. Those who play

at date t are then returned to the pool of potential players, and another group

is chosen at random for date t + 1

.

Story 2. At each date 1 there is a random matching of all the players, so that

each player is assigned to a group with whom the game is played. At the end

of the period, it is reported to all how the entire population played. (That is, at

the end of the period, it is announced that twenty percent of the Is chose row 1,

and so on.) The play of any particular player is never revealed.

Story 3. At each date t there is a random matching of the players, and each

group plays the game. Each player recalls at date t what happened in the



previous encounters in which he was involved, without knowing anything about

the identity or experiences of his current rivals.

In each of these stories, myopic behavior seems "sensible," for reasons that mix to

varying degrees the two basic justifications given above. In the first story, the first

justification is mostly at work. Although the game is played relatively frequently,

any single individual plays very infrequently, and at any reasonable discount rate,

immediate payoff considerations will dominate any long-run considerations. In

the second and third stories, it is more a matter of each player believing (now,

with good reason) that his own immediate actions will have little impact on

how his future rivals will behave. In story 2, this is because each player may

believe that how he behaves will have little influence on the reported aggregate

distribution; in story 3, this is because each player attaches low probability to

the possibility that his current rivals will be future rivals any time soon, or even

that future rivals will indirectly be affected by the player's own immediate play

through an effect on the player's immediate rivals, who then (through some chain

of individuals) affects future rivals. These stories make myopic behavior more

plausible intuitively, although it remains a question worth exploring whether this

plausible intuition has some firm, formal basis.

Adaptive assessments

Once we assume that behavior is (asymptotically) myopic, the next step is

to specify the assessment rules /j' used by the players and, in particular, how

these assessments are revised as the players observe the actions of others. In

the models we will consider, players believe that, at least asymptotically, the

past choices of opponents are to some extent representative of future choices. A

fairly weak property that captures this idea is suggested by Milgrom and Roberts

(1991)."

Milgrom and Roberts define adaptivebehavior as opposed to assessments, but it will be apparent

that our formal definition is just a gloss on theirs.
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Definition. The assessment rule ^ is adaptive if for every e > and for every 1

,

there is some T(e,t) such that for all t' > T(e,t) and histories £<> , /x{,(G') puts

probability no more than e on the set of pure strategies by i 's opponents that were not

played at all between times t and t' (according to (<< ).

In words, the definition says that i puts very little weight on strategies by her

rivals that have not been played for a long (enough) time. The class of adaptive

assessment rules is very broad, including, for example, assessments that take a

weighted average of the history of past plays by one's opponent, as long as the

weight put on any initial segment of history can be made small by lengthening

the segment. Four examples of adaptive assessment rules are: (a) assess that

one's rivals will play in period t whatever was played in t — 1 (the assessments

that go with Cournotian dynamics); (b) assess that one's rivals will play according

to an exponentially weighted average of past plays; (c) assess that one's rivals are

equally likely to play any action that has been played at least one percent of the

time, with zero probability for all other actions; and (d) assess according to the

scheme of fictitious play (where all previous observations are equally weighted).

While the class of adaptive assessment rules is broad, there are arguments

that restricting attention to this class is too restrictive. See, for example, the

discussion in Milgrom and Roberts (1991, page 89ff) concerning sophisticated

learning.

Convergence to a pure-strategy profile

We are now in a position to generalize Proposition 3.1. Fix assessment rules

u
1 and behavior rules 4>

l

for our two players. To state the result, we require a

definition.

Definition. The infinite history ( = (s, , s2 , •) is said to be compatible with behavior

rules if for each t = 1 , 2, . . . and for i = 1, . .
.

, I , the action s\ is in the support of

m,).
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That is, ( is something that could be observed with positive probability over all

finite time horizons for players who behave according to the behavior rules that

are given.

Proposition 4.1.
12

Let ( be an infinite history (s-,,s2 ,...) such that for some s m G S

and for some T , s
t
- s. for all t > T . If ( is compatible with adaptive assessment

rules //' and behavior rules
<f>

z

that are strongly asymptotically myopic relative to the

assessment rules, then s» must be a Nash equilibrium of the stage game.

Proof. Normalize the payoffs in the game so that the range of payoffs for each

player is no greater than one. Suppose Q is the partial history (si,s2 ,..- ,s t ) of

( . Maintain the hypotheses of the proposition; ( is compatible with the 4>* , and

C's components are eventually s, . Suppose that s„ is not a Nash equilibrium.

Then (without loss of generality) player 1 has a better response to s~ } than s\ .

Let s
1 be 1 's better response, and set

4

Because the \i
x are adaptive and because history eventually settles on repeated

play of s* , we can find a T sufficiently large so that for all t > T , the probabil-

ity assessment of player 1 , p.](Ct) > puts probability at least 1 — e on the play of

s\ . Thus the expected payoff to 1 for all t > T from playing s\ (against 1 's

assessment of her rivals' strategy choices) is at least 4e(l — e) - e - 3e - 4c2 > e

worse than 1 's payoff from playing S
1

.

13 Thus s\ is more than e suboptimal

against sZ
l for all t > T , which implies that 1 's behavior rule is not strongly

asymptotically myopic, a contradiction.

12 Compare with Milgrom and Roberts (1991, Theorem 3[ii]).

1
This is computed as the probability assessed that -1 plays sf

1

, at least 1 — c , times

4f = ti'Cs'.sT
1

) - uHs\,sZ ]

) , less the probability that -1 plays anything other than s^ 1

, which is

no more than ( , times the maximum possible difference in payoffs playing S 1 and s\ , which by

the normalization is one.
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Note that the proposition assumes that behavior rules are strongly asymp-

totically myopic. If we deleted the modifier strongly, the result would be false

as stated. Consider, for example, repeated play of the prisoners' dilemma, and

behavior where, at period t, each player chooses to cooperate with probabil-

ity 1/t and to defect with probability (t — \)/t. Consider the infinite history

where each player cooperates in each period. This history is compatible with the

behavior rules. And (for any assessment rules) the behavior rules are asymptoti-

cally myopic, because they involve playing a suboptimal strategy with vanishing

probability. But the strategy profile that is "repeated" in each period is not a

Nash equilibrium. The problem of course is that compatibility only requires that

each finite history has positive probability for the behavior rules. For the given

behavior rules, a history where players cooperate in each period has prior prob-

ability zero. " In order to obtain a result in the spirit of Proposition 4.1, but with

asymptotic myopia instead of strong asymptotic myopia, we must either be more

careful about how we make histories consistent with the given behavior rules or

study not the actual history of play but the intended strategies of the players.

We provide one result along these lines at the end of Section 6.

Convergence to mixed strategies in empirical frequencies for 1 = 2

Next we proceed to generalizations of fictitious play and convergence in

the second sense of Section 3, where we look for convergence of the empirical

frequencies of observations to some (possibly mixed) strategy profile.

For the remainder of this section, assume that the game has two players

only; i.e., 1 = 2. We will take up the case of more than two players in Section 5.

Let d(( t ) : S — '[0, oo) give the vector of proportions of strategy profiles

in S along the partial history (, ; i.e., o(£t )(s) gives the number of times .s

For the given behavior rules, no single complete history has positive probability, m fact, with

probability one, there is never a complete cessation of cooperation by one side or the other, although

eventually cooperate-eooperate is no longer observed. All of which is quite beside the immediate

point.
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was played in periods 1 through t - 1 , divided by t — 1 , We write ct'(G) for

the marginal frequency distribution on S' induced by o(( t ) ; i.e., ©-'(CtX^') =

Hs-'es- 1
' tf((t)(s\.s

_
'). Then, in the spirit of Proposition 3.2, we are looking for

conditions on assessment and behavior rules that guarantee,

Suppose C is an infinite history (si,s2 ,...) such that for some a, e £"

,

for 2 = 1,2. Tfaen a. is a Nash equilibrium of the stage game. 15

To get this result, it is insufficient that behavior is strongly asymptotically my-

opic with respect to adaptive assessment rules. Consider, for example, the game

matching pennies, and suppose that at dates t > 4 , the two players assess equal

probabilities for any strategy by their rival that has occurred at least ten percent

of the time in the past; until date 4,they assess equal probabilities for the two

strategies. As for behavior, players behave myopically optimally in all instances,

with the following specification if the assessment leaves the player indifferent:

If t is divisible by 3, then play "heads"; otherwise play "tails." What happens

is that the sequence of plays is tails, tails, heads, tails, tails, heads, . .
.

, for both

players, and each always assesses equal probabilities for his rival's two strategies.

Empirical frequencies converge to (1/3,2/3) for each, which (of course) is not a

Nash equilibrium of the stage game. 16

The difficulty, it should be clear, comes from the fairly weak requirements

of being an adaptive assessment rule. When only one strategy choice by rivals

is eventually observed, adaptive assessment rules converge together with fhe

1
Please note carefully, this isn't quite the same as asking that lim ( a((t) = a. . We are only

asking that the marginal frequencies converge, and not the joint frequency distribution. There is a

lot behind this observation, to which we return in the next section.

16
At the cost of complicating the description of the assessment and behavior rules, we can modify

this so that the two players eventually play the mixed strategies (1/3,2/3) at all dates; nonconver-

gence of their intended strategies is not the issue.
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(degenerate) empirical frequencies of observations. But when rivals use more

than one (pure) strategy with nonvanishing frequency (or even with vanishing

frequency that vanishes sufficiently slowly), adaptive decision rules can assign

probability to that strategy that is unrelated to its limiting empirical frequency.

To obtain the result that we seek, we must sharpen considerably the criterion

imposed on assessment rules. The simplest and most direct criterion that works

runs as follows.

Definition. The assessment rule //' is asymptotically empirical if for every ( e Z ,

Urn \U(Ct)-o-'(Q\\=0.

where the Q are subhistories of the fixed ( .

17

It is easy to see that: any asymptotically empirical assessment rule is adaptive;

there are adaptive assessment rules that are not asymptotically empirical; the

assessment rule in the model of fictitious play is asymptotically empirical.

Is it reasonable to insist that assessment rules are asymptotically empirical?

This property is natural if one's picture of a rival's dynamic behavior is that the

rival is playing some (unknown) strategy repeatedly, or even if one supposes

that one's rival will converge to repeated, independent play of some (unknown)

strategy. But if you think that your rival's strategy may shift repeatedly through

time — in response to some Markov state variable such as a sunspot, say —
then some assessment scheme that puts relatively more weight on more recent

observations or that tries to uncover the probabilistic structure of the regime shifts

would be more reasonable.

Proposition 42. Let ( bean infinite history (s, ,.s2 ,...) such that for some a. e E,

lim a'(C«) = ai,
1— oc

Whenever we are dealing with finite dimensional vectors as here, || || denotes the sup norm.
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for i = l,2. // C is compatible with asymptotically empirical assessment rules // and

behavior rules <j>

1

that are strongly asymptotically myopic relative to the assessment

rules, then a m is a Nash equilibrium of the stage game.

The proof resembles the proof of Proposition 4.1 with the following amend-

ments. First, since the assessment rules /j' are asymptotically empirical, the

assessments of player i (given by //' ) at the partial histories (, converge to the

mixed strategy a~' . If o\ is not a best response to o~ x

, then there is some pure

strategy I' for player i that is strictly better against a~' than is some s' in the

support of a\ . By a standard argument, for some e > and sufficiently large T ,

s' will be worse against /i'(C<) than is s' by more than e, for all t>T. Thus ±'

will not be played eventually (by asymptotic myopia). But this would contradict

s
7 being in the support of the limiting frequencies of i 's strategy choices. 18

5. Objections to convergence of the empirical distributions

as a convergence criterion

Notwithstanding the results of the previous section, the convergence criterion

employed fails to capture what we want for a model of "learning to play mixed

strategies." Our objections begin with the obvious observation that in examples

such as fictitious play, players are (almost) never playing mixed strategies. They

are instead jumping from one pure strategy to another, (typically) in cycles of

ever-increasing length, so behavior is not converging.

The rebuttal to this is that while behavior is not converging, beliefs are.

Mixed equilibria are sometimes interpreted as equilibria in beliefs; each side

The conclusion of Proposition 4.2 does not require the full power of asymptotically empirical

assessment rules; e.g., the conclusion still holds for assessment rules that do not approach the em-

pirical frequencies along histories where the empirical frequencies don't converge. More concretely,

suppose that fi' reports the empirical frequencies of — £'s choices over the most recent a percent

of history, for a strictly between zero and one-hundred. This assessment rule is not asymptotically

empirical per our formal definition, but it is empirical enough so that Proposition 4.2 holds.
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believes the other to be acting in a manner that makes the first (nearly) indifferent

among several actions. Under this interpretation, the convergence criterion used

in the previous section is fairly natural // players ignore the cycles in their own

and their opponent's play.

However these cycles can lead to phenomena so striking that we do not

believe they would be ignored. Consider, for example, a symmetric battle of the

sexes as depicted in Figure 5-1. Imagine play of this game using the precise

method of fictitious play, where each player begins with the relative beliefs vec-

tor (1,V5) • The symmetry of the situation implies that if player 1 chooses top

in the first round, 2 will choose left, and vice versa. In fact, with the numbers

we are given, top-left will be played, and each player's relative beliefs going

into the second round will be given by (2, V5) . The symmetry again implies

play of either top-left or bottom-right. And so on, inductively. ,9 From general

results about fictitious play, we know that empirical frequencies will converge

to the Nash equilibrium probabilities (2/3,1/3). But this will be realized with

perfect correlation in the two players' choices: Top-left will be played two-thirds

of the time, and bottom-right one-third. Players will get zero round after round,

there will be perfect correlation in their actions, and yet according to the the-

ory they will persist in believing that they are "converging" to the mixed Nash

equilibrium.

"Z. Row 1

a>

TO

Q- Row 2

Player 2

Column 1 Column 2

0,0 2,1

1,2 0,0

Fie 5-1. The battle of the sexes.

19
Because the payoffs are rational and the relative weights have an irrational ratio, there will

never be a tie; each player will have a unique best response at all times.
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Moreover, this example shows that Proposition 4.2 will run into difficulties

for the case I > 2 . Imagine a three-player game, in which the actions of player

3, from the perspective of players 1 and 2, are irrelevant. Players 1 and 2 simply

play the battle of the sexes against each other in each round. Player 3, to choose

an optimal strategy, murt forecast the joint actions of her rivals; for the sake of

definiteness, suppose her optimal action is tic if she believes that they will play

to a main-diagonal cell with probability 2/3 or more, and her optimal action is

tac otherwise.

What should 3 conclude, asymptotically, if 1 and 2 act in accordance with

the particular model of fictitious play given above? Should she conclude that

their actions are perfectly correlated, always playing along the main diagonal,

hence tic is optimal? Or should she conclude that 1 will play top two-thirds of

the time, 2 will play left two-thirds of the time, and hence top-left has asymptotic

probability four-ninths, bottom-right has probability one-ninth, and thus tac is

optimal?

There are (at least) two different ways we could proceed, depending on how

we extend the definition of asymptotically empirical assessments. One possi-

ble definition is precisely the definition given before, interpreting ct
_i

(G) as the

marginal frequency distribution along ( r of profiles from S
-

'
. Under this defi-

nition, i 's assessment (asymptotically) reflects any correlations in the play of her

rivals that are observed empirically. The example shows how this definition per-

mits convergence (under fictitious play) to non-Nash (correlated) assessments,

so that Proposition 4.2 fails.
2C An alternative definition suppose that players

asymptotically assess independent play by their rivals, regardless of the empir-

ical frequencies. 21 Then we obtain Proposition 4.2 for I > 2. However this

One can repair the proposition in this case as follows: Stipulate that along the history C the

empirical joint frequencies are the products (in the limit) of the empirical margins. But this repair

seems a bit cheesy.

1 One way to formalize this is to define, for each t ,
(' , and s € S , r)(0)(s) =

Y[,ci <7'(CiH ')
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seems to us to be somewhat unnatural; if there is correlation asymptotically, we

feel that it is unnatural to assume that players ignore it.

Moreover, if it is unnatural for player 3 to ignore correlation in the choices of

players 1 and 2, then isn't it equally unnatural for player 1 to ignore correlation

in her choice of strategy and that of player 2? If so, then the example indicates

that even for two-player games, asymptotic empiricism as formulated may be

dubious.

All these objections (past our first and most basic objection) are grounded

in the battle-of-the-sexes example; if that example is nongeneric, perhaps these

objections have less force. In fact, it can be shown that the example is nongeneric

for 2x2 games: In a 2x2 game, for generically chosen payoffs the actions of the

two players (under the model of fictitious play) will be asymptotically uncorre-

cted. However we conjecture that robust examples of asymptotic correlation can

be found in larger games. The basis for this conjecture is the game rock-scissors-

paper. Fictitious play in this game must converge to the unique Nash equilibrium

(1/3,1/3,1/3), since the game is zero sum. And, for most initial weight vectors,

this happens while (asymptotically) avoiding the three cells along the main diag-

onal. (Each of the other cells has asymptotic frequency 1/6.) We conjecture that

these properties hold for a neighborhood of games around rock-paper-scissors,

although we are unable to prove either convergence to the Nash equilibrium fre-

quencies (since most games in a neighborhood will be nonzero sum) nor are we

sure of the asymptotic frequencies of the cells. Robust examples can be created

easily, though, if we move from the strictures of exact fictitious play.

Because we cannot verify our conjecture, we do not leave neat-and-tidy our

secondary objections based on asymptotic correlation in empirical frequencies.

Nonetheless in our view the first objection — that this mode of convergence

That is, fj(Ci) gives the "frequency distribution" obtained by using the marginal frequencies a' and

forcing independence. Let fj~'(Ci) give the S -
' marginal distribution of f?(G). Then asymptotic

empiricism in this second sense is the condition limi ||/i'(Cr) - *7
-,

(Ct)|l = along every history C •



does not correspond to learning to play mixed strategies — suffices to motivate

research into stronger modes of convergence. With this motivation, then, we

proceed.

6. Convergence of behavior strategies

Rather than look for convergence of empirical frequencies (and hence as-

sessments about the actions of others), we look for convergence of the behavior

strategies employed by plavers. That is, we study convergence (in i ) of <p]((,t )

to some o\ 6 -' , for each player ?

.

Because we wish to consider games with I > 2 , we must first specify how

we will adapt the definition of asymptotically empirical assessments. We proceed

in the easiest fashion, by using the definition precisely as it was given earlier, but

interpreting — z as the set of i's rivals. That is, i's assessments asymptotically

exhibit any correlation that is observed empirically in the choices of her rivals.

Two problems surface immediately. First, if <f>\(Ct) is meant to converge

to a mixed strategy, then player z must be willing to play one of several pure

strategies. In the model of fictitious play, we insisted that players choose only

myopic best replies, computed on the basis of their assessments of the actions

of their rivals. How likely is it that a player, based on some history of play,

would assess for his rival precisely the mixed strategy that makes him (the first

player) indifferent? If this is unlikely, how can we ever have players willfully

randomizing?

It is here that the asymptotic parts of asymptotic myopia and asymptotic

empiricism come into play. We do not insist in general that players play only

myopic best responses; they can play slightly suboptimal responses, as long as the

degree of suboptimality vanishes as time ( t ) passes. So if assessments converge

to the equilibrium mixed strategies quickly enough relative to the rate at which

the allowable suboptimality vanishes, we can sustain mixed strategies even if
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assessments do not match precisely the equilibrium mixtures. At the same time,

we do not insist that players' assessments are precisely empirical; if the empirical

frequencies of play converge to some equilibrium mixed strategy, then players'

beliefs can sit at precisely that limit mixed strategy, justifying the play of mixed

strategies even if behavior is precisely myopic.

This means that the divergence from precisely myopic behavior and precisely

empirical beliefs which we allow carry a lo! of power in our story, at least insofar

as convergence to mixed strategies is concerned. As we shall see, we don't require

both at once. That is, our results obtain with asymptotic myopia and beliefs that

are precisely empirical, or with behavior that is precisely myopic and beliefs that

are asymptotically empirical. But we will need one or the other, if we are to hope

for convergence of behavior to mixed-strategy profiles.

The formal "nonconvergence" criterion: Unstable strategy profiles

The second problem that is raised is that statements of convergence in terms

of behavior strategies must be probabilistic statements. To see what is at issue

here, imagine playing the matching pennies game repeatedly. Suppose that along

some history £ , the empirical frequencies of the two rows and the two columns

approach (1/2,1/2), but the behavior rules converge to the mixed strategies

(1/3,2/3). This, you may object, is very unlikely. How could players' behavior

strategies be converging to (1/3,2/3) and at the same time empirical frequencies

are approaching (1/2,1/2)? Unlikely is just the right word. There is nothing

that prevents this — any history ( is compatible with behavior rules that have

players mixing strictly in each round — but by the strong law of large numbers,

this history belongs to an event of probability zero. If behavior strategies are con-

verging to (1/3.2/3), then the strong law of large numbers says that empirical

frequencies will converge to (1/3,2/3) with probability one. Given asymptoti-

cally empirical assessment rules, this would rule out players continuing to play

anything close to the (1/3,2/3) strategies.
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Accordingly, when giving results in the spirit of Propositions 4.1 and 4.2,

we give results of the following form: If a. is not a Nash equilibrium, then

there is probability zero that behavior will remain forever in a small-enough

neighborhood of <7» , no matter what are the initial conditions. The formalities

run as follows.

Fix a set of behavior rules <f>' (which will be accompanied by assessment

rules fi
l

, although for the time being only the behavior rules are needed). Recall

that P(-|C<) represents the objective conditional probability distribution on th.?

space Z created by starting at (, and using the behavior rules thereafter.

Definition. A strategy profile a. G U is unstable if there exists some e > such that

for all t and (t , V(\\<j>ACv) - <r.\\ < e for all t' >t
\ Ct) =0.

Note that e here is independent of the starting conditions (< .

Proposition 6.1. Fix behavior rules 4>
l

that are asymptotically myopic relative to some

asymptotically empirical assessment rules p.' . Then every strategy profile a, that is

not a Nash equilibrium is unstable.

Note that in this proposition, behavior rules are required to be (only) asymp-

totically myopic relative to the assessment rules. Compare with Propositions 4.1

and 4.2, in which strong asymptotic myopia was assumed. We return to this

point at the end of this section.

Although the details of the proof of this proposition are tedious, the idea

is fairly simple. If behavior lies forever in a small neighborhood of the strategy

profile a. , then empirical frequencies will eventually lie in a small neighborhood

too, and thus the players' assessments will too. If the strategy profile isn't a Nash

equilibrum, then (eventually) some player will want to move far away from the

strategy profile, a contradiction to the supposition.

The key technical result is the application of the strong law of large numbers,

which we state in the form of a lemma.
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Lemma 6.2. Let {x t ; t = 1,2,...} be a sequence of random variables cr. a probability

space with range some finite set A . Fix a probability distribution - on A and an

e > 0, and let A be the (measurable) subset of the probability space consisting of all

sample points such that for t = 1,2,..., the distribution of each x
t

conditional on

{xi,... ,zt-i} , denoted 7r t (-|xi,... , z<-i) , satisfies

max iTtialxi x t -\) — 7r(a)j < e.

Let T
t {a) be the random variable 5I|» =1

l a (z t <); that is, r
t
{a) is the number of times

that Xf = a for /' = !,...,/. Then

hm sup. _ < 77(a) + e and hm inf, ^ > 77(a) - t

for all a £ A, almost surely conditional on A 22

Proof of Lemma 6.2. Fix any a € A . Construct a "standard" probability space

{Q,F,P} where i? = [0,1]^'2,-) and, writing u t as the t th component of u> , the

sequence {u
t } is an independent sequence of random variables, each uniformly

distributed on the unit interval. Enumerate A as {a] ,a2 ,...,ajv} (where A7
is

the cardinality of A ), with a :
= a . Now define random variables y t on this

standard probability space as follows: For t = 1 , yi(uj) = a„ for that index n

such that
n —

1

n

m=l m=l

Then, inductively in t , let y,(u.') = a n for that index n such that

n —

1

n

^7r<(am|yiM,---,y«-i(u;)) < u t
< *)T 7rt (qm \y^{u), . .

. , y,-^)).
m=l m=l

This construction uses the uniformly distributed random variables to construct

a sequence of random variables whose joint distribution is identical to the joint

If A has zero pnor probability, the lemma is taken to be vacuous.
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distribution of the original sequence {x t } Accordingly, we can define A in

terms of the constructed probability space, and if we prove that the stated bounds

on the limits superior and inferior of Tt (a)/t hold almost surely conditional on

A for each a taken one at a time, then they hold almost surely on A for all the

(finitely many) as simultaneously, which then gives the desired result.

But showing that the two bounds hold on A for the y t sequence and the

fixed a is easy. Because we set a, = a, the set of points u G A for which

y (
(a,') = a contains the set {u : w, < n(a) — e) and is contained within the set

{u : u
t
< z(a) + e) . This is so because 7r(a) — e < 7rt (a|y,,— ,y ( _i) < 7r(a) + e for

all t , for points in A by definition; then compare with how we determine those

u for which y t {u) = a. For r 6 [0,1], let u
t
(r,u) be the number of times that

u t
> < r for t' = 1 ,... ,t . Then the estimate

vt {-(a) — e.u) < rt (a,u) < v t {r;{a) + t.u) for u £ A

follows from the asserted set inclusions. By the strong law of large numbers,

v,(r,u)
hm — = r
t— oc t

with probability one for each r individually, so this holds with probability one

both for r = 7r(a) - e and r = z(a) + e . This, combined with the previous bounds

on r
t
(a) on A, gives precisely the desired result.

Proof of Proposition 6.1. Suppose that a. is a strategy profile that is not a Nash

equilibrium. Then there is some player i and a pure strategy P such that s
1

is strictly better against a~' than is a\ . Since v'(a\a~') is continuous in both

arguments, we can find an e > so that for all a
-

' that are within It of

<7.
-

' and a 1

that are within t of a\ , both in the sup norm (on E~ l and Z" ,

respectively),

v'(a\a-') + e < u'dVi.
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(Interpret o~ x here as any element of ~E~ l

; i.e., a~ l needn't be based on inde-

pendent play by i 's rivals. But a~ l

is composed of independent choices by ? 's

rivals according to the components of the strategy profile a, .)

We claim that for this e and for all asymptotically empirical behavior rules

<f>
and assessment rules /j. that are asymptotically myopic relative to these as-

sessment rules,

P(||<MCf) -M < e for all t' > t
| (t ) = 0.

To see why, suppose to the contrary that for some C< / this probability is strictly

positive. We proceed to derive a contradiction.

From the lemma, we know that on the set A of positive probability (con-

ditional on Q) where ||<Pr(Ct') — o*
||
< e for all t' > t, the limits inferior and

superior of the empirical frequency distribution a
-,

((<') almost surely lie within

(/-l)e of a~ l

. (If f^,(C«')(s
J')-<ri(sJ')| < c for all ^ , then for any s~>

' = (^)jVl
-,

| IIjV: <?
3
i'((t')(s

J
) - rij/i <7«(5J

)| < (7 - l)e .) Since assessments are asymptotically

empirical, along every infinite history in A there is a T such that for all t' > T

,

the assessments of player i lie within Je of cr~
2

. But then asymptotic myopia

implies that along every ( G A, <f>\,((t) will eventually be more than e away

from a\ , which contradicts the definition of A

.

Two remarks about the proof are in order.

(1) Note that the neighborhood of a, that is used in the proof is independent of

the behavior and assessment rules that are assumed to be given; the value of e

depends only on the strategy profile a, and the extent to which it is not a Nash

equilibrium.

(2) The full strength of asymptotic empiricism is not required for this proof. What

is essential is that if behavior lies forever in some small neighborhood of a strategy, then
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assessments come to lie in another small neighborhood of that strategy. We used the

strong law of large numbers to show that the empirical frequencies would lie

in a small neighborhood, and then we were able to enlist the asymptotically

empirical character of assessment rules. But suppose the assessment rule took

the following form: /*)(£) is asymptotically equal to the empirical frequency of

observed strategy choices by one's rivals over the most recent \/i periods. Since

the length of this segment of history grows without bound, we can still enlist

the strong law of large numbers to come to the desired conclusion. Or suppose

p)(Qt) is a weighted average of past observations, with greatest weight on the

most recent observation. As long as that "greatest weight" falls off to zero fast

enough as t goes to infinity, we can enlist a variation of the strong law of large

numbers and get the desired result. (Of course, this rules out exponential moving

averages, where the weight on the most recent observation doesn't vanish at all.)

We will stick to asymptotic empiricism for the remainder of this paper, since

it is expositionally the easiest thing to deal with. But you should note that it is

a bit more restrictive than we actually need.

Locally stable strategy profiles

Proposition 6.1 shows that every strategy profile that is not a Nash equi-

librium is unstable. We know by example that there are some strategy profiles

that are not unstable. It is natural to wonder whether any Nash equilibria are

unstable The answer is no; no Nash equilibrium profile is unstable.

To avoid double negatives, we make the following definition.

Definition. A strategy profile a. is locally stable if there exists some asymptotically

empirical assessment rules and behavior rules that are asymptotically myopic with respect

to the assessment rules such that for every e > 0, we can find some t and Q t e Z t

such that

P( Urn <MG') = a,
| Ct) >l-c

t'— oo
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We do not insist that behavior converges to the target strategy with probability

one, but only that the probability can be made arbitrarily close to one (for a fixed

model of behavior and assessment rules) for some choice of initial conditions. We

couldn't have a probability one statement as long as the target strategy is not

pure (except for degenerate cases), since as long as players use mixed strategies,

there is positive probability of a very long run of "bad luck," which would lead

players away from the target strategy.

On the other hand, the requirement that we be able to make the probability

as close to one as we wish is not as demanding as may appear. As long as we

can make the probability strictly positive, we know that we can make it as close

to one as we wish.

Lemma 6.3. Suppose that for a strategy profile a m there exists some asymptotically

empirical assessment rules and some behavior rules that are asymptotically myopic with

respect to those rules, such that for some t and (< e Zt ,

P( Urn &'(Cf) = ff.| CO >0.
t'— oc

Then a. is locally stable.

To prove the lemma, let A be the event {linv_00 0<'((,V) = c«} By the usual ar-

guments, this is measurable with respect to the a -field generated by the {£, , (2 , . .

.}

Thus by Paul Levy's zero-or-one law (Chung, 1974, p.341), the probability of A

conditional on £t
« approaches the indicator function of A as t' approaches in-

finity.
a Since A has positive probability conditional on (t , for some (positive

probability) (,< that are continuations of ( t , the conditional probability of A can

be made as close to one as desired, which gives the result.

If you have trouble squaring this assertion with what you find in Chung (1974), recall that (,-

'contains" C. t for t < t' , so conditioning on f,i is the same as conditioning on {Ci.— i Cf } -
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Proposition 6.4. Every Nash equilibrium profile a, is locally stable.

Proof. Fix the Nash equilibrium profile a, . By virtue of the lemma, we only

need to find asymptotically myopic behavior rules and asymptotically empirical

assessment rules, and a t and ( t such that

P( lim 4>AQv) =o.\ G) >0.

We provide two constructions that work, one in detail and one sketched.

In the first construction, we use assessment rules that (after the first period) are

precisely empirical, and we rely on the asymptotic part of asymptotic myopia.

In the second, we use behavior that is precisely myopic and rely on the asymp-

totic part of asymptotic empiricism. We discuss the relative merits of these two

constructions at the end of the proof.

For the first construction, create a probability space on which is defined a

sequence of random strategy profiles {5i,52 ,...} where each s t is independently

and identically distributed according to a. . By the strong law of large numbers,

with probability one the empirical frequencies of strategies and joint strategy

profiles all converge to the corresponding probabilities under a, . Write SI for

the support of o\ , and let

e(C<) = max
1=1 ;

max u\s\a *(Cr)) — mirv u'is'.a '(<;<))

where a~'(C<) is shorthand for the empirical frequency distribution of the s~'

up to time t along the history ( (
. That is, e(G) is the maximum amount by

which any s' in the support of a\ is suboptimal against a
-,

(C<)- Then with

probability one, e((
( ) goes to zero as t goes to infinity For m = 1.2, . .

.
, let A'„,

be a positive integer sufficiently large so that the event

1

c(Ci) < — for all t > K,m
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has probability at least equal to (2™ +1 - V,/!™^ . For ease of exposition, assume

that A'm+] > Km . For each * = 1,2,..., let m(t) = if t < A", , let m{t) = 1 if

A'] < t < A"2 , and so on. Note that limf—oc m(0 = oo

.

We claim that by construction, the event

e(G)<-rrv < = 1,2,..
m(i)

has probability at least one-half. To see why, note that this event can be written

as

P| \ e(G) < — f°r a 11 * such that ?n(0 = m I,

and note that the probability of the events in this intersection are one for m = 0,

3/4 (or more) for m = 1 , 7/8 (or more) for ?77 = 2 , and so on. Apply De

Morgan's law to see that the complement of this event is the union of events,

the first of which has probability 0, the second probability no more than 1/4,

the third probability no more than 1/8, and so on. Hence the probability of this

union is 1/2 at most, and the probability of its complement — the event we are

interested in — is at least 1/2.

Now we define the assessment and behavior rules. As promised, the assess-

ment rules are very simple. For t - 1 , define ^ arbitrarily, and for k > 2 , let

fj.\(£t) = <i((,t) That is, except for the first period, the players' assessments are

empirical.

As for the behavior rules, for t such that m{t) = 0, let
(f>\
= a\ . For t such

that m(t) = m, let d',((<) = o[ if e((<) < 1/m and <^j(Ct) = any best response by

i to n\(( t ) otherwise. It it obvious that these behavior rule are asymptotically

myopic (even strongly asymptotically myopic), relative to the assessment rules

given previously.

And for these behavior and assessment rules,

P(lim Mtt) = a*
|
Ci) > \-

t—>oo ' ' Z



To see this, note that if e((f) < 1/m(t') for t' = l,...,t, then <t> t
= a, . Thus

the probability of the event {e(0 < l/m(0, t = 1.2,...} under the measure

induced by the behavior rules <j> is precisely the same as the probability of this

event under the probability distribution where all strategy profiles are drawn

independently and identically according to the distribution a, . By construction,

this event has probability at least 1/2 under the i.i.d. generated measure, so

it has the same probability (at least 1/2) under the measure generated by the

behavior rules 4> . And, of course,

{e(Cf)<l/m(0, * = 1,2,...} = {&(0 = a., < = 1,2,...}.

This completes the proof by the first construction.

For the second construction, go back to the standard probability space on

which is defined a sequence of random strategy profiles that are i.i.d. according

to o, , and let

5(0= max ||&-(0-*r

That is, <5(0 is the difference (in the sup norm) between the empirical frequencies

and the target strategy. From the strong law of large numbers, lim,_ oc,<5(0 =

almost surely. So for n = 1,2.. .. , let L„ be a positive integer sufficiently large

so that the event

£CO < - ror a11 * > L n
n

has probability at least equal to (2
n+1 - l)/2

n+1
. Assume that L n+] > L„ . For

each t-.
= 1 , 2, . .

.
, let n(t) = if * < L^ , let n(t) = 1 if L, < t < L2 , and so on.

Note that lim,—,^ n(t) - oo .

Now we give the assessment rules. For any history d , let

„, , f
^-', if ll*"%) - *V\ < Vn(t), and

{ a '((r), otherwise.

That is, the i believes that her rivals are playing (independently) according to

a~ 7 unless and until the accumulated evidence against this hypothesis becomes
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severe (as measured by \/n{t)), at which point the player reverts to empirical

beliefs. These assessment rules are clearly asymptotically empirical. Behavior, as

promised, is precisely myopic behavior; but it still remains to specify what each

player does when more than one strategy is optimal. In such cases, for ;*, such

that /i)(C<) = cf~
l

, the player should use the strategy c\ ; otherwise, the player

can make any selection desired (say, choose the optimal strategy of lowest index

for some fixed enumeration of S' )•

With these behavior and assessment rules, the players begin with a, , and

the sequence {L n } has been constructed precisely so that, with probability one-

half or more, the players continue to use a. forever. The proof of this is like

that for the first construction.

Remarks on the two constructions. In both of these constructions, players use pre-

cisely the equilibrium strategy for no positive reason at all. The second construc-

tion has the comparative advantage of not relying on the flexibility provided

by asymptotic myopia, as the mixed strategy is an optimal choice (albeit one

of many) given the beliefs. However the second construction does rely on the

flexibility afforded by asymptotic empiricism: For no obvious reason, players be-

lieve that their opponents are playing exactly the equilibrium strategy, and they

continue to believe this unless and until the evidence to the contrary becomes

overwhelming.

Thus, although the constructions show that convergence to a mixed-strategy

equilibrium is possible, neither one seems particularly plausible. This concurs

with our intuition, as mixed-strategy equilibria are hard (for us) to defend in the

stark environment of this chapter. Instead, we tend to follow Harsanyi (1973) in

interpreting mixed-strategy equilibria as a shorthand description of pure-strategy

equilibria in games where parameters of the game (such as the players' payoffs)

are subject to small random perturbations which are private information. Sec-
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tions 7 and 8 consider learning in this context and argue that "mixed-strategy"

outcomes are indeed plausible when interpreted in this way.

Asymptotically myopic behavior and compatible histories

Before moving to this development, we have on piece of pending business

to take care of.

In both Propositions 4.1 and 4.2, we assumed that the players' behavior rules

were strongly asymptotically myopic relative to their assessment rules, whereas in

Proposition 6.1, we assumed that behavior was (only) asymptotically myopic. We

earlier indicated why the results in Section 4 would not work with asymptotically

myopic behavior; viz., compatibility of a history and a profile of behavior rules

is (too) weak. In order to get results in the spirit of Section 4 without strict

asymptotic myopia, we must work with the sort of probabilistic convergnece

criteria used in this section.

Because we do not assume On Propositions 4.1 and 4.2) that strategies con-

verge, to avoid problems of correlation we must restrict attention to the case of

two players. Also, because strategies are not assumed to converge, we cannot

use the definitions of unstable and locally stable strategy profiles given above.

Instead, for fixed behavior and assessment rules, we make the following defini-

tion.

Definition. A strategy profile a, € E is xunstable if there exists some e > such

that for all t and G, P(||a*"(Ci') - crl\\ < e for all t' > t and i = 1,2
|
C<) = 0.

The x in front of xunstable is not a typo; this is to distinguish this definition from

the definition of an unstable strategy profile given earlier, in which intended (as

opposed to empirically observed) play has probability zero of remaining in a

small neighborhood of a. . Note that this captures some of the spirit of Proposi-

tion 4.2, in that it asks for empirical frequencies to remain close to a target profile

a. . At the same time, it is a probabilistic statement about the likelihood of this

event.
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Proposition 6.5. For asymptotically empirical assessment rules // and behavior rules

<p' that are asymptotically myopic with respect to the assessment rules, every strategy

profile a. that is not a Nash equilibrium is xunstable.

We omit the proof. The idea is that if empirical (marginal) frequencies lie close

to <r» , then so must beliefs. But if beliefs are close to a, , and a, is not a Nash

equilibrium, then for some i and some pure strategy s' in the support of a\

,

s
1 will be used with vanishing probability. And then (by the strong law of large

numbers) the frequency of s' must fall to zero, which contradicts the hypothesis

that empirical frequencies stay close to a\ (which puts positive weight on s
1

).

7. Learning in games with randomly perturbed payoffs

Although Proposition 6.2 shows that all Nash equilibria are locally stable,

including equilibria in mixed strategies, we have suggested that convergence of

intended behavior to a mixed-strategy profile in the standard model seems im-

plausible, as it requires that players use just the right mixed strategy whenever

they are indifferent, and it is not apparent why they should or would choose

to do so. Of course, this apparent drawback of mixed-strategy equilibria is not

special to our learning-theoretic approach, but arises whenever mixed strategies

are considered. In response to this problem, Harsanyi (1973) proposed that the

mixed -strategy equilibria of a game could be interpreted as pure-strategy equi-

libria of a related game of incomplete information, in which each player's payoff

is randomly perturbed by a stochastic shock which is private information. For

example, a mixed strategy placing probability 1/3 on one pure strategy and 2/3

on another corresponds to a situation in which the payoff shocks and opponents'

strategies are such that the player has a strict preference for the first strategy

when his payoff perturbation comes from a set with probability 1/3 and strict

preference for the second when his payoff perturbation comes from the com-

plementary set. Harsanyi showed that for generic strategic-form payoffs, every
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mixed-strategy equilibrium can be "purified" by any small and well-behaved

payoff perturbations.

In the spirit of Harsanyi's work, this section extends our assumptions on

behavior and notions of convergence to games in which the players' payoffs

are subject to an i.i.d. sequence of payoff perturbations. As we will see, this

allows us to construct a more satisfactory model of learning to play a mixed-

strategy equilibrium. The concluding section then examines the question of global

convergence to a mixed equilibrium in 2 x 2 games.

The model

Consider / players i = 1,... .1 playing a strategic-form game at times t =

1,2,..., where the action spaces .4' are the same in each period, but the payoffs

are subject to random and privately observed shocks. Specifically, the payoff to

player i from the action profile a = (a',a~') in period t is u\(a) = vKaj + e'tia').

This is the augmented or perturbed version of the underlying game, which is the

game where the payoff functions are simply the u" . We call ej = (e^a'))^^' the

date-t perturbation of player i's payoffs. We assume that for each i the {e\;t =

1,2,...} are independent and identically distributed, and that the perturbations

of different players are independent. We denote the probability distribution of

each e\ by p
x

, and we denote its support, which we suppose is compact, by

E' C RA '

.

Each period, each player i observes the shock c\ to her own payoffs, but

does not observe the shocks to her opponents' payoff functions. Hence in the

stage game, a pure strategy for player i is a map from E' to .4'
. (We will not

need to consider mixed strategies in the augmented game.)

To model learning in the stage game, we suppose that at date t player i

knows the sequence of (pure) action profiles that have occurred in the past, the

past shocks to her own payoffs, and also her currently payoff perturbation e'
t ;
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player ? does not learn the past payoff shocks of her opponents. We adopt the

following notation:

(a) We use A =
J~[ I=1

A' to denote the space of action profiles, with typical ele-

ment a . Profiles of actions by all players except i are denoted by a
-

' e A~ l
.

Probability distributions over actions by player i. are denoted by a 2 € A 1

, and

probability distributions over A~' (which can reflect correlations in the actions

of i's opponents) are denoted by a~' £ A~'

.

(b) Histories of actions up to time t are denoted by Q € Z t ; i.e., (r
= (a, , a t -i) 6

(.4)'" 1 = Z, . Complete histories of actions are denoted by ( € Z .

(c) We write a
t (( t ) to denote the empirical distribution of action profiles up to time

t along the history (, , and we use a~'(C«) to denote the empirical distribution of

action profiles by i 's opponents up to time t along the history C, •

(d) In addition to (t , at time t player i knows her own history of payoff per-

turbations up to and including time t , or (ej , . .
.

, ej) . We use £\ € X\ to denote

the vector of all this information; i.e., fj looks like (Ct, (e{, • • • , ep) . Dropping the

subscript t ,
£' denotes a complete history for player i of action profiles by all

players at all dates and all of i 's payoff perturbations; dropping the superscript

i , as in £* and f , denotes (respectively) a time t and complete history of plays

and all the players' payoff perturbations.

(e) A behavior rule for player i is denoted by <?' = (<p\,<t>\ ), where <j>) : X] —

»

.4' 24

(f) An assessment rule for player i is denoted by /i" = (/ij,^,...) , where ^ :

Z
t -*A-\

All of this is a straightforward extension of our earlier model. In particular,

i 's assessment rule gives her predictions how her opponents will play at each

Measurabiiity of the behavior rules is always assumed.
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date, based on history so far. In this regard, note that the domain of fi\ is Z, and

not X\ . We are assuming that players other than ? never observe i 's payoff

perturbations, so it seems sensible that i would not have assessments of the

actions of her opponents depending on her payoff perturbations. Nonetheless, at

the cost of some notational complexity, we could assume that i 's assessments at

date t depend on all of £] , as long as asymptotic empiricism is properly defined.

Given behavior rules for all the players, and given the exogenous probability

distributions on payoff perturbations, we can construct the induced conditional

probability distribution, conditional on ft, on the space X . We use P(-|£«) to

denote this probability distribution.

Definition. For augmented games:

(a) The assessment rule fx' is asymptotically empirical if

limJ\ri(Q-cx7%)\\ =

for every £ e Z .

(b) The behavior rule <f>' is asymptotically myopic relative to ^ iffor some sequence

of nonnegative numbers {e,} converging to zero, i 's choice of action at every E,\ is at

most e t suboptimal against /^(C*)-
2526

Nash equilibria of the augmented game

Before examining learning in the context of this model, we review the struc-

ture of Nash equilibria in the augmented (stage) game.

A Nash equilibrium of the augmented game is, as usual, a strategy profile

such that each player's chosen strategy s'(-) (:£'—» A') maximizes her expected

Suboptimaliry here is measured given the period t payoff perturbation. We believe that nothing

of interest changes with a weaker definition in which suboptimality is measured averaging over e', ,

but the proofs are somewhat more involved.

Throughout, we are loose in our notation, taking as understood things such as: in (a), C<

denotes the date I subhistory of the fixed ( ; and in (b), (, is the actions-profile part of £| .
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payoff given the strategies of her opponents, or equivalently that for p' -almost

every e
1

, a' = s'(e') maximizes the expectation (over c~') of v ,

(a
, ,s~ l(c~ t

)) +

e'(o
!

).

Assumption 7.1. For each i , the distribution p
l

is absolutely continuous with respect

to Lebesgue measure on RA '

.

This assumption simplifies the analysis, because it implies that for any distribu-

tion of the opponents' actions, i has a strict preference for one of her actions at

p' -almost every e'

.

Lemma 7.2. For every o
-

' t A~' , the set of c' for which

argmaxai£A , £ [t'(a',a-') + e'V^a-'Co-')

is a singleton has measure one under p
7

.

We omit the proof, which is based on the observation that the complement of

this set lies in a finite union of lower-dimensional hyperplanes. Note that this is

true whether a-1
reflects independent or correlated play by i 's rivals.

For each e' and a
-
', let b'(e\a~') specify some best response for i to a~ l

when her payoff perturbation is e' , and let 3 1

(a~'t

) be the distribution that b
7

induces on player i 's actions:

^(q-'Xq') = p'{t
J

e E 1

: &V,a-') = c'}.

(Lemma 7.2 shows that 8 1

is well defined, since for every o~' , 6
!

is uniquely

determined for p
x -almost every e' .)

It is straightforward to prove the following technical result.

Lemma 73. The function 3 7

is continuous.

For each i and strategy profile 5' , let t'(s') denote the distribution on .4'

induced by s* ; i.e., 7T'(s')(a
l

) = p'{e' € E l

: s
l

(e') = a
1

}. For s~' a profile of
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strategies for ?'s opponents — that is, s~* = (s-7

)^, where s3
: E3 — A 3 — let

tt~'(s~') denote the distribution on A~ x induced if i's rivals use the strategies

in s
-1

. Note that 7r
_, (5~') € A~' is a product measure (since the various e 3 are

independent of each other).

Lemma 7.4. (a) A strategy profile s is a Nash equilibrium of the stage game if and only

if, for each player i and p* -almost all e' , s'ie
1

) = b
, (e\7r~ 1

(s~')).

(b) If (a 1

,...,

a

1
) € A* x ... x A 1

satisfies /?'(a~') = a' for all i (where it is

understood that a
-

' is the product measure in A~' whose margins are the various a 3

for j f i), then every strategy profile s such that s
x

{e
l

) = a'(e\a
-

') for all i and

p
1

-almost every e' is a Nash equilibrium.

This is largely a matter of marshalling definitions, hence the proof is omit-

ted. This lemma shows that to analyze Nash equilibria it suffices to work with

the induced marginal distributions over actions, which motivates the following

definition.

Definition. The vector of marginal distributions a = (a 1
,..., a*) € A* x . . . x A 1

is

a Nash distribution if /?'(a
-

') = a" for all i

.

Local stability

As one would expect, our results about the relationship between Nash equi-

librium and local stability carry over to the context of augmented games. Since

all that each player observes about the others, and all that matters for a player's

decisions, are the actions chosen, we define stability and stability of beha -ior

rules <f> in terms of the induced distributions on actions ^'(^(fi)).

Definition. A profile a, 6 A1 x . . . x A 1
is unstable if there exists some e > such

that for all t and £ r ,

P(lkW(fJ'))-ai|| < t for all t' > t and i £ f

J

=0.
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Proposition 75. Fix asymptotically empirical assessment rules p
l and behavior rules

that are asymptotically myopic relative to the p' . Then if a, is not a Nash distribution,

a. is unstable.

The proof uses the following lemma, which shows that as time passes, asymp-

totically myopic behavior converges to myopic behavior, in the sense that the

induced distributions over outcomes become close.

Lemma 7.6. For any 6 > there exists an e > such that, for any beliefs a
-1

and

for any s' that e -maximizes player i 's payoff against a
-

' for p' -almost every c
1

,

Htt'V) - /?'(a-')|! < L

Proof. We will show that for any 6 there exists an e such that for all a~' , the

set of e' for which player i has more than one e-best response has measure

(under p
l

) no greater than 6 . To see this, fix some a
-

' and note that the set

of e' that make player i indifferent between any two given actions lies on a

lower-dimensional hyperplane, and there are (at most) (#.4*) 2 such hyperplanes,

where #.4' denotes the cardinality of .4'
. Put a "sleeve" of diameter e around

J

each of these hyperplanes, and the set of e
! where player i has multiple t -best

responses is contained in the union of these sleeves. In the compact set E' , there

is a uniform (in a 1 upper bound on the Lebesgue measure of the union of (#.4')
2

sleeves of this sort, and this uniform upper bound goes to zero as e goes to zero.

Because p
x

is absolutely continuous with respect to Lesbesgue measure, there is

thus a uniform upper bound on the o
l -measure of these sets, going to zero as e

goes to zero, which establishes the result.

Proof of Proposition 7 .5 . Fix an a. that is not a Nash distribution. Without loss

of generality, suppose that ^(oj 1

) f a\ . Let 8 = ^'(q: 1

) - a\\\. Since l3
]

is



continuous, we can find e' sufficiently small that \\0
l
(a

l

) - /?
1

(ai,)|| < 6/4 for

all a
-1

within It' of a^ 1

.

We will show that profile q» is unstable for e = min(e'/7, 6/4). Suppose not,

so that for some history f<

,

P(lkW(£-))-a||| < e for alii' > t and for 2 = 1,...,/ &
J
> 0.

Lemma 6.2 then implies that (almost surely on this event of positive probability)

the empirical marginal frequencies of actions eventually lie within e of the a'„

.

Then because assessments are asymptotically empirical, we conclude that (almost

surely on this event), ||/zj.(Cr) - a 7
l

\\
< It < e ' This *n turn implies that the

distribution on actions /^(/^.(GO) induced by the myopic best response to /j],((t')

is within 6/4 of /^(a.
-1

).

From Lemma 7.6, there is one e" such that the set of e" -best responses to

/iJ-(G') is within 6/4 of ^(/^. ((/')) for any (,- . Let t' be large enough that

the suboptimization allowed for by player l's decision rule is less than this e" .

The triangle inequality then implies that the marginal distribution over player

l's actions is within 6/1 of ^(q^ 1

) , and hence at least 6/1 > e away from a\ ,

which contracts the hypothesis.

The next step in parallel with Section 6 is to note that every Nash equilibrium

is locally stable for some asymptotically empirical assessments and asymptotically

myopic behavior rules. This can be most easily shown by adapting the second

construction in the proof of Proposition 6.2, in which players believe that the

distribution over their rivals' actions corresponds to the equilibrium unless and

until they receive sufficient evidence otherwise. With these beliefs, the arbitrary

nature of the players' behavior rules is eliminated; rather than just happening to

mix in the way the equilibrium prescribes, the players have a strict preference

for the behavior they choose. Of course, the players' beliefs are still cooked to
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favor the equilibrium, so we do not yet have a really satisfactory explanation of

how players might learn to play a mixed equilibrium. The final section provides

such an explanation for a special class of two-player games.

S. Global convergence in a class of 2 x 2 games

This section will show by example how learning in augmented games can

lead to a mixed equilibrium even when the assumed behavior and assessment

rules do not build in an arbitrary predilection for equilibrium play. To this end,

we will restict attention to behavior and assessments that take precisely the form

of fictitious play, as specified in (A) through (D) of Section 3. Moreover, we

will do more than show that convergence to a mixed equilibrium can occur

even when the equilibrium is not artificially built in the behavior rules: In the

games we consider, play will converge to the (augmented version) of the mixed

equilibrium with probability one, regardless of the initial beliefs of the players.

We do not aim for very general results here. Rather, we content ourselves

with the special case of 2 x 2 games that (before being augmented) have a unique

Nash equilibrium, which moreover is completely mixed. At the end of the section,

we speculate about possible extensions that would provide a sufficient condition

for local stability of mixed equilibria under fictitious play in other augmented

games. We suspect, however, that convergence cannot be guaranteed for gen-

eral augmented games; we conjecture that an augmented version of Shapley's

example will provide the desired counterexample, but we have not verified this.

The remainder of this section will discuss and prove the following result.

Proposition 8.1. Take any 2x2 game that has a unique, completely mixed Nash

equilibrium, and consider any augmentation that satisfies Assumption 8.3 given below.

If behavior rules and assessments are as in the model of fictitious play, the induced

marginal distributions on actions converge, with probability one, to the unique Nash

distributions of the augmented game.
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Previous results about the global convergence of behavior in learning pro-

cesses have focussed on games that are solvable by iterated strict dominance

(Moulin, 1984; Guesnerie, 1991; Milgrom and Roberts, 1990; Borgers and Janssen,

1991). In contrast, the augmented games we consider are not dominance solvable.

Preliminaries

Fix a 2 x 2 augmented game with expected payoffs (v\v2
) and payoff

perturbation vectors e
1 and e

2
. Write the action sets for each player A = {1,2)

,

so that, for example, r2
(l,2) is 2's playoff if he chooses column 2 and player 1

chooses row 1. (Player l's choice of row is listed first.) Assume that the game

(v\v 2
) has a unique Nash equilibrium that is completely mixed.

Because (r\r 2
) has a unique Nash equilibrium that is completely mixed,

(v\v2
) has a strict best-response cycle. Rearrange rows, if necessary, so that this

best-response cycle is counter-clockwise. That is, i^O.l) < ?'
1

(2.1), r 2
(2.1) <

i<
2
(2.2), r ]

(2,2) < i.'

1

(1,2), and y
2
(l,2) < u20,l).

Let FHz) be the probability that, on any given date, (e
1 (2)-f 1 (l))/(r 1 (1.2)-

t
,1
(2,2)) < z . This probability is derived from the distribution function p

1

in the

obvious fashion. Note that F 1

is continuous on R1

.

Let F2
(z) be the probability that, on any given date, (e

2(l)-e 2
(2))/(i-

2 (2.2)-

u2
(2,l)) < 2 . Note that F2

is continuous.

We want to compute /3
l
(c

2
) , the marginal probability that 1 plays row 1

if she assesses probability a 2 that 2 plays column 1. If si.e plays row 1, her

expected payoff is aV(l,l) + (1 - a 2
)v

y
(l,2) + eHD, while row 2 nets for her

aV(2.1) + (l - a 2
)u

1

(2,2) + e
1

(2) . Simple algebra shows that the former is greater

if

e
1 (2)-e 1 (D _ 2 A, .

1^(2,1) -1^(1.1)<l-aMl +

Define

u , (l,2)-vK2,2) V f ] (l,2)-t.'H2.2)

r 1 (2.1)-r , (l,D
x = 1 +

i'
1 (1.2) -i-H2.2)
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Then row 1 is chosen whenever (e'(2) - c'(D)/(t'
1 (1.2)- d1

(2,2)) < 1 -xa 2
. This

gives

/
3

1

(q
2
) = F,

(1 -xq 2
).

Note that x > 1 and (thus) that /?' is a nonincreasing function of a 2
.

A similar computation will show that if we define

f2(l,l)-v2 (l,2)

V +
r2(2.2)-u2 (2,l)'

then

/3
2
(Q

1

) = l-F2(l-ya 1

).

Note that y > 1 and (thus) that /?
2

is a nondecreasing function of a 1
.

Lemma S.2. Fix any 2x2 game iw'f/i a unique Nash equilibrium that is strictly mixed.

Then every augmented version of the game that satisfies Assumption 7.1 has unique

Nash distributions, and thus has Nash equilibrium strategies that are essentially unique.

Proof. Nash distributions are pairs (a\,a2J where /S'(q~') = al for i = 1,2.

To show existence of a solution to these two equations, note that (a^,a2
) >-*

( /
5 1

(q
2
),/5

2
(q

1

)) is a continuous function mapping the unit square into itself, and

use Brouwer's fixed point theorem. To show uniqueness, suppose that (a\,al)

and (a\,a2
m ) are two Nash distributions. Without loss of generality, assume

a\ f a\ and, in fact, a\ > a\ . Because 1
is nondecreasing, this implies that

a 2 > a 2
. And because Z?

1

is nonincreasing, this implies that a\ < a. , a contra-

diction.

We hereafter denote the probabilities of row 1 and column 1 in the unique

Nash distributions by a\ and a 2
. In general, it is not the case that a\ and a 2

are both strictly between zero and one, even if the original (unaugmented) game

has a unique, completely mixed equilibrium. However the Nash distribution

probabilities are strictly between zero and one if the supports of the perturbations

are sufficiently small.
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Assumption 83. For i = 1,2, the density function of F' is uniformly bounded on

its support. The density function for F 1

is strictly positive on some neighborhood of

1 — xa\ , and the density function for F2
is strictly positive on some neighborhood of

This assumption is stated in somewhat implicit form, since it involves the

density functions of the distribution functions F1 and F2
. Restating it in terms

of the original distribution functions p
1 and p

2 of the perturbation vectors is

tedious but not difficult. A set of sufficient conditions for this assumption is that

the supports of the perturbation vectors F 1 and F2 are connected and small

enough that the equilibrium marginal distributions are strictly between zero and

one, and the density functions for p
1 and p

2 are bounded and strictly positive

on the interior of their supports.

The intuition for the proof of Proposition 8.1

The proof of Proposition 8.1 is fairly involved, and it is easy to get lost in the

details. So before giving those details, we sketch the intuition behind the proof.

We fix behavior and assessment rules where behavior is myopic with respect

to the assessments and the assessment rules conform precisely to the model of

fictitious play, as given in Section 3. We will write a\ for the probability assessed

by —i at date t that player i will play her first action. This is a random

variable, depending on the history of play up to date t . We will show that

limi_oo(aJ,Q-j) = (q^q 2
) with probability one; since behavior is myopic, this

implies that behavior converges to the Nash equilibrium strategies.

For notational simplicity, we suppose that the players' assessments equal the

empirical distributions at all dates t > 2 , which corresponds to the case of initial

weights identically equal to zero in the fictitious play model. It will be clear that

allowing for nonzero initial weight does not alter the analysis. In this case

(ta'
t
+ l)/(t + 1), if i plays action 1 in round t, and

qm =
ta\/(t + 1), if z plays action 2 in round t,
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which is more conveniently written as

(1 — a\)/(f + 1), if i plays action 1 in round /, and

—a\/(i + 1). if 7 plays action 2 in round 1.

The key thing to note here is that the size of the changes of the o' vanishes

asymptotically, at rate 0(1/1)

.

The theory of stochastic approximation (Arthur et al., 1987; Kushner and

Clark, 1978; Lyung and Soderstrom, 1983) shows when such asymptotically van-

ishing stochastic variations can be ignored; i.e., when the successsive random

variables will almost surely evolve according to the evolution of their expected

values. Starting from some value of (a], a]) , compute the (conditional) expected

values (q
1

^, , a2

uz ) , then use these to compute expected values of (a) +7 . a 2

u2 ) , and

so on. If for every starting value of (a], a]), this "successive expected values"

sequence converges to (a\<al) , and if certain regularity conditions are met, then

the random process will almost surely approach (Q»,a^)

.

So fix some (a] , a2
,) and compute the conditional expected values of (a] +: , a 2

t+] )

Or, since it makes matters a bit more transparent, let us compute E[oJ+]
— aj|£,]

for 2 = 1,2, where E[-|£ ( ] denotes expectation taken with respect to P(|£<) .

Given a\ , the probability that player 2 will play his first strategy is i3
2
(a)) =

1 - F2
(l - ya\) , so the expectation of the difference between a2M and a] is

£f(l-«1 -»<.!)) + £l*l-va;).

This simplifies to

E[a^ +] - a]\it] = ^(1 - F*(l - yo)) - a
2

).

A similar calculation gives

1

E[a] + ,
- a\\Z t ]

= —(F\l - xa]) - a\).
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The fact that the step size in these difference equations is going to zero suggests

that the evolution of the "successive expected values" approximates that in the

related differential equation system

^ = F'(l -*a>) -a], and ^ = 1 - J*(l - ya\) - a?,

where we reinterpret the a 1
s as the successive expected values, and the time

index has been changed: Because the amount of change between time t and

t + 1 in the differential equations is independent of t, more and more steps

of the difference equations are compressed per unit of time of the differential

equation system as t gets larger.

The trajectories of this system of differential equations are most easily studied

by comparing them with those of the system

^ = F'(l - xa\) - ai, and ^ = 1 - F2
(l - ya\) - a 2

.

We show below that the second system has closed, convex orbits around the point

(a\,al), and that relative to the second system, the first always points strictly

inward. (See Figure 8-1.) Thus the first system spirals in towards (q».q») . This

suggests that the "successive expected value" sequence approaches (a\,a 2
,) from

any starting point, and then the methods of the theory of stochastic approximation

will yield the almost sure convergence that we desire.

In relating this intuition to the proof we now give, there are two things to

watch for. First, we will use the closed orbit trajectories of the second system

of differential equations as level curves for a Lyapunov function. Second, we

derive parts of the theory of stochastic approximation that we need, because

the Lyapunov function we construct is a bit less regular than is required for the

general results as they are stated in the literature.
27

Specifically, our Lyapunov function is not twice continuously differentiable in general.
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a'

Fie. 8-1. Dynamics of expected beliefs.

The solid curves represent trajectories of the second system of differential equations given

in the text. These closed orbits give the level sets of the Lyapunov function L . (Note that

these level sets are not restricted to stay inside the unit square.) The dashed arrows show

the trajectories of the first system of differential equations, the system that describes the

dynamics of "expected beliefs." (These do stay within the unit square.) Since the dashed

arrows always point inwards relative to the closed orbits of the second system, the first

system gives trajectories which spiral in towards (a\,a\)

.

Proof of Proposition 8.1

For (a 1

, a 2
) € [0,1] x [0,1], let L(a\a 2

) be the function defined by

L(a\a 2)=
/

[l-F2 {l-yF)-al]dF- /
[F 1

(1 - x/?
2

)
- a\}d02

.

The function L (a mnemonic for Lyapunov) has the following properties:

(a). L(a\,a 2
.) = 0.

(b) If (a^o^CaiXhthen L(a\a2)>0.

(c) L is continuously differentiable with gradient vector

VI = (1-F2
(1 -ya^-Q^Q 1

. -F ]

(l -xa2
)).
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This gradient vector is zero at (q'.,q») and nonzero everywhere else.

(d) L is convex. In fact, the level curves of L are trajectories of

^ = J«(l - xal) - a\ and ^ = 1 - F2
(l - yaj) - a 2

.

which gives closed trajectories that wind around the point (a\ .a 2
)

.

Property (a) is immediate from the definition of L . For property (b), note first

that 1 — F^O - ya\) = a 2
, and F ] - xa\) = a\ . Then enlist Assumption

8.3 to note that 1 - F2
(l — ya 1

) is nondecreasing, and it is strictly increasing

in a neighborhood of a\ , and F ]

(l — xa2
) is nonincreasing, and it is strictly

decreasing in a neighborhood of a 2
. Property (b) then follows. Property (c) is

virtually a matter of definitions, together with the properties of 1 - F2 — ya^)

and F ]

(l - xa2
) just noted. For part (d), compute the Hessian of L to show

convexity; the rest is an exercise in integration.

Note that L is separable; i.e., L(a\a2
) = Via 1

) - L2(a 2
) where we define

L\*>) = / [1
- F2

(l - y/?
1

)
- a2

]d/?\ and
Jol

r
2

L2
(a

2
) =

/
[F'{1-x/37)-a\]d!32

.

Jal

Now fix assessment rules according to the model of fictitious play, and sup-

pose that behavior is precisely myopic with respect to these assessments.

For every (' , t > 1 , define

L«(C«) = L{a\,a\) = Via)) + L2
(a

2

t
).

In words, L
t (Q) is the value of the function I at the vector of assessments by the

two players. We will have proved the theorem if we prove that lim,_oo 1,(0) =

with probability one, since this will imply that the beliefs are converging (with
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probability one) to a\ and a\ , hence (by earlier analysis and myopic behavior)

the marginal distributions over actions are converging to those values.

The first step in proving that lim, L t (( t )
—* is to derive an upper bound for

E[Z,+] ((<+i) - Li(Ct)|&]- Specifically, we will show that there exists a nonpositive

continuous function l on the unit square with i(a'
1

,oc
2
) < for (a'

1^ 2
)^ (a\,al)

,

such that if A' is the uniform bound on the density of the two perturbation

scalars,

E[Ll+1 (C,+i) - X-f(Ci>KiJ <
t + 1

+
2{t

~
1)2

(+)

We obtain this bound by looking at the two (separable) pieces of L
t (Q)

.

That is, we write

E[LM (CM)-L t(Q\it]=-E[V{a'M )-V{a\)
|
fc] - E[L 2

(a
2M )

- L 2
(a])

\
( ( j

,

and we begin with estimates of each of the two expectations on the right-hand

side.

Consider first the term involving V . Given a\ , we have that q'
(+]

will

equal (ta] + 1)/(t + 1) if player 1 plays row 1 in round t , and q] +]
will equal

ta)/(t + V) if player 1 plays row 2. Since l's beliefs about 2's actions are given by

a 2

, , player 1 will play row 1 in round t with probability F 1

(l — iq') . Now

rdoj +D/U+1)

which is bounded above by

'ta) + 1

[l-F2 (l-yp)-ai}df3\

t + l

~ a
<

l-F*(l- ya))-a]
2

y

ta) + 1

t + 1

a,

where K is the uniform bound on the density functions of F 1 and F2
.

28 Sim-

28
This is the length of the interval of integration, times the value of the integrand at 3 1 = a) ,

plus a bound on the integral of the difference between the true integrand and the integrand at a 1

,
.

This latter bound comes from noting that P •— F2
(l - y/3) is Lipschitz continuous with Lipschitz

constant Ky .
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plifving, this is

Similarly,

1-°1
* + l

l-f^l-yaj) -a2
.

2
y

l/ tQ ' \ T-ifS-J- I a. s

-a

< + 1

+ xA'y
* + l

Hence E [X 1 (a 1

,.,.,
) - -^(a 1

,) |
fr] is bounded above by

1-F2 - a:

t + 1

- al)F' - qJO - F 1

)

1 - F2 - a 2

F1 - a!

F 1

)

Kxj

'

2(y + l) 2

'2/

2(f + l) 2 '

where we suppress the arguments (respectively 1— :m 2 and 1— yaj ) of F 1 and

F2
.

Similar calculations show that E[X2
(q

2

+1 )
- I 2 (a2

)
|
6] is bounded below

by
F 1 -q

t + 1
1 - F2 - a 2

A'

1

2(* + l) 2

Thus

E[WC,+i)-L,(Ct)
I
&] = E[L(q| +1 .g^) -1(a), a 2

) | 6]

= E[L 1

(al+1 )-I 1

(a])
I

6] -E[L2
(a

2

+1 )-L2
(a

2

) I

G

is bounded above by

1 - F2 - Q 2

1

F 1 - a)

1 ,0F1 -a
t + 1

1 - F2 - a 2
Jy'Gt + y)

2(* + l)2

Write [F'-a 1
,] as [F'-ai+ai-Q;] ard write [1-F2 -q 2

] as [l-F2 -a 2,+a 2
m -a2

t ]

,

substitute these two expressions into the upper bound, and simplify. This gives

E[X.m (Cw)-Li(Ci)
I

it] <

t-f2 -q:

t + i

F 1 -q 1

.

M 1
a. - a,

A'(x + y)

2(i + D 2
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Define

,(a\a 7
) = [l - F2

(l - J/Q
1

) - a;] [a\ - a 1

]
- [F(l - xo 2

) - a\) [a
2 - a 2

}.

The signs of 1 - F2 - a 2 and q 1

.
- q 1 are opposite, and the signs of F 1 -a\ and

a 2 — a 2 are the same, so that i is a nonpositive function. Moreover, if a 1

^ a1

,

,

then 1 - F2 - a 2
± 0, and if o

2
^ a 2

, the^ F1 - a\ f 0, so i(q\q 2
) < for

(a 1

. a 2
) ^ (a

1

., a 2
) . Putting everything together, this gives the bound (*)

.

Next, for each / and (r , let

I'ACt) = E[I,(C«) - Lf_i(C»-i)
|

6-i].

and

LtiO = LAG) - ^max{^(G-),0}.

By construction, {!,((,)} forms a supermartingale over the information sequence

{0} • By the bound (*),

so {!<} is a bounded supermartingale, and hence has a limit almost surely. As

an immediate consequence, L
t (( t ) itself has a limit almost surely.

Finally, it is not possible that, with positive probability, this limit is a value

greater than zero. To see this, suppose that along some history ( , lim,—^ L,(Q) >

. From the construction of the function i given previously, it is easy to show

that, in this case, lim sup^^a^a 2
) < 0, so that for all t > T for some large

T , da), a]) < f < 0. Increase T if necessary so that T > A'(x + y)/|f |. Then it is

a matter of algebra to show that ri»,(C») < i/(2(t + 1)) for all t > T . Accordingly,

if we define L t (Ct) as L,(Q - ]T',
=1 ibviQv) , we know that lim,— oo -WCt) = °°

for those ( where L
t (( t ) has nonzero limit.
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But {L t (Ct)} is a martingale that is bounded below. If L^d) has nonzero

limit with positive probability, L/(C<) has limit oc with positive probability. In

this case, lim,^ooE[Z,((<)] = oc, which contradicts the fact that {£,((,"<)} is a

martingale.

Extensions of Proposition 8.1

Proposition 8.1 gives a relatively restricted global convergence result. It is

restricted in that the behavior and assessment rules that are permitted are quite

specific; behavior must be precisely myopic with respect to assessments that are

formed according to the model of fictitious play It is further restricted in that it

considers only 2x2 games, and then only 2x2 games in which the unaugmented

game has a single equilibrium that is completely mixed, and then only those for

which the augmentation satisfies Assumption 8.3.

Thinking first about the behavior and assessment rules, it is clear that exten-

sions are possible. (Indeed, extensions along these lines are suggested by Arthur

et al. (1987).) Assessments can be asymptotically empirical and behavior asymp-

totically myopic, as long as the "rates of convergence" to fictitious play and my-

opic behavior are sufficiently fast. All we need are the bounds on E[LM -L,\£
t ] ,

which involves the two possible values of a'M — a\ (two for i = 1 and two

more for i = 2) and the probabilities of those values; we can tolerate changes

that, in terms of these differences and probabilities, contribute differences that

are uniformly 0(1 /t
1
) or smaller. One can control the probabilities by imposing

a rate of convergence test on the sequence {e<} that governs the asymptotic part

of asymptotically myopic behavior. But for the differences q|+1
— a\ , a bit more

delicacy is called for. One's first instinct might be to impose a uniform rate of

convergence to empirical assessments; the natural condition would seem to be

that |q'
(

- q~'(G)| is at most 0(1 /i
2
).

29 But this is stronger than is needed,

9
Here q

_,
(Ci) is the fraction of the time that -i has played his first strategy.
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since this controls deviations of u! from empirical frequencies; we don't need

to know that a\ is "close" to empirical frequencies, but only that if a\ is fairly

far from empirical frequencies, aJ+] is going to be about the same distance away

(from the new empirical frequency) in the same direction. In this regard, note

that for fictitious play beliefs with nonzero initial weight vectors, |ai - o
_1

(G)|

is 0{\/t). If we insisted that \a) - a~''((,)\ is 0(1/t 2
) or smaller, we would rule

out these assessment rules, for which the result does hold.

Extending our results to other classes of 2 x 2 games or beyond 2x2 games

(and to games with more than two players) seem to offer greater challenges. We

conjecture that results on local stability can be derived, along the following line.

Take an augmented game and any equilibrium distribution for that game. Write

down the continuous-time dyanmics for the expected values of the empirical fre-

quencies, as in equations (*) above. 30
If this system is locally stale at the equi-

librium values by the usual eigenvalue test, then the equilibrium will be locally

stable in the sense of this paper for fictitious-play learning dynamics. (Compare

with Arthur et al. [1987].) It is interesting to speculate whether the continuous-

time system that goes with the Shapley (1964) counterexample is unstable at the

equilibrium. If so, then its instability under fictitious play (for augmentations)

might follow.

Regardless of these conjectures, we hope that the limited results we have

managed to derive here indicate that, with Harsanyi's notion of purification, it

is plausible that in some cases players would learn to play a mixed strategy

equilibrium.

This is conceptually straightforward, but it is not a simple exercise in practice, which is one

reason we offer conjectures instead of results.
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