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LIKELIHOOD ESTIMATION AND INFERENCE LN A CLASS OF
NONREGULAR ECONOMETRIC MODELS

VICTOR CHERNOZHUKOV AND HAN HONG

Abstract. In this paper we study estimation and inference in structural models with a jump in

the conditional density, where the location and size of the jump are described by regression lines.

Two prominent examples are auction models, where the density jumps from zero to a positive

value, and the equilibrium job search model, where the density jumps from one level to another,

inducing kinks in the cumulative distribution function. An early model of this kind was introduced

by Aigner, Amemiya, and Poirier (1976), but the estimation and inference in such models remained

an unresolved problem, with the important exception of the specific cases studied by Donald and

Paarsch (1993a) and the univariate case in Ibragimov and Has'minskii (1981a). The main difficulty

is the statistical non-regularity of the problem caused by discontinuities in the likelihood function.

This difficulty also makes the problem computationally challenging.

This paper develops estimation and inference theory and methods for such models based on

likelihood procedures, focusing on the optimal (Bayes) procedures, including the MLEs. We obtain

results on convergence rates and distribution theory, and develop Wald and Bayes type inference

and confidence intervals. The Bayes procedures are attractive both theoretically and computa-

tionally. The Bayes confidence intervals, based on the posterior quantiles, are shown to provide

a valid large sample inference method with good small sample properties. This inference result

is of independent practical and theoretical interest due to the highly non-regular nature of the

likelihood in these models, in which the maximum likelihood statistic or any finite dimensional

statistic is not asymptotically sufficient.

Key Words: Likelihood Principle. Point Process, Frequentist Validity, Posterior, Structural Econometric

Model, Auctions, Equilibrium Search, Production Frontier
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1. Introduction

This paper develops theory for estimation and inference methods in structural models with jumps

in the conditional density, where the locations of the jumps are described by parametric regression

curves. The jumps in the density are very informative about the parameters of these curves, and

result in non-regular and difficult inference theory, implying highly discontinuous likelihoods, non-

standard rates of convergence and inference, and considerable implementation difficulties. Aigner,

Amemiya, and Poirier (1976) proposed early models of this type in the context of production analy-

sis. Many recent econometric models also share this interesting structure. For example, in structural

procurement auction models, cf. Donald and Paarsch (1993a), the conditional density jumps from

zero to a positive value at the lowest cost; in equilibrium job search models (Bowlus, Neumann,

and Kiefer (2001)), the density jumps from one positive level to another at the wage reservation,

inducing kinks in the wage distribution function. In what follows, we refer to the former model as

the one-sided or boundary model, and to the latter model as the two-sided model. In these models,

the locations of the jumps are linked to the parameters of the underlying structural economic model.

Learning the parameters of»the location of the jumps is thus crucial for learning the parameters of

the underlying economic model.

Several early fundamental papers have developed inference methods for several cases of such mod-

els, including Aigner, Amemiya, and Poirier (1976), Ibragimov and Has'minskii (1981a), Flinn and

Heckman (1982), Christensen and Kiefer (1991), Donald and Paarsch (1993a, 1993b, 1996, 2002),

and Bowlus, Neumann, and Kiefer (2001). Ibragimov and Has'minskii (1981a) (Chapter V) ob-

tained the limit theory of the likelihood-based optimal (Bayes) estimators in the general univariate

non-regression case, and obtained the properties of MLE in the case of one-dimensional parameter,

van der Vaart (1999) (Chapters 9.4-9.5) discussed the limit theory for the likelihood in the univari-

ate Uniform and Pareto models, including Pareto models with parameter-dependent support and

additional shape parameters. Paarsch (1992) and Donald and Paarsch (1993a, 1993b, 1996, 2002)

introduced and developed the theory of likelihood (MLE) and related procedures in the one-sided

regression models with discrete regressors, demonstrated the wide prevalence of such models in

structural econometric modeling, and stimulated further research in this area.

Nevertheless, the general inference problem posed by Aigner, Amemiya, and Poirier (1976) has

remained unsolved previously. Very little is known about likelihood-based estimation and inference

in the general two-sided regression model. In the general one-sided regression model, the problem

of likelihood-based estimation and inference also remains an important unresolved question, an

important exception being the MLE theory for discrete regressors developed by Donald and Paarsch

(1993a).
1 The general theory of such regression models is more involved and has a substantively

different structure than the corresponding theory for the univariate (non-regression) or dummy

'There is also a literature on the ad hoc "linear programming" estimators of linear boundary functions covering

continuous covariate case, see e.g. Smith (1994) (Chernozhukv (2001) provides a detailed review and other related



regressor case.
2 Moreover, there is a considerable implementation problem caused by the inherent

computational difficulty of the classical (maximum likelihood) estimates.

This paper offers solutions to these open questions by providing theory for estimation and inference

methods in both one and two-sided models with general regressors. These methods rely on the

likelihood-based optimal3 Bayes and also the MLE procedures. This paper demonstrates that these

are tractable, computationally and theoretically attractive ways to obtain parameter estimates,

construct confidence intervals, and carry out statistical inference. These results cover Bayes type

inference as well as Wald type inference.

We show that Bayes inference methods, based on the posterior quantiles, are valid in large samples

and also perform well in small samples. Moreover, these inference methods are tractable and require

no knowledge of asymptotic theory on the practitioner's part. These estimation methods are also

attractive due to their well-known finite-sample and large sample average risk optimality. They

are computationally attractive when carried out through the Markov Chain Monte Carlo procedure

(MCMC), see e.g. Robert and Casella (1998), which helps avoid the inherent curse of dimensionality

in the computation of the MLE. ••

All of these results are preceded by a complete large sample theory of likelihood for these models,

which is useful not only for the present analysis but also for any kind of inference based on the

likelihood principle. Importantly, we show that the MLE is generally not an asymptotically sufficient

statistic in these models (in contrast to the non-regression case or dummy regressor case). Therefore,

the likelihood contains more information than the MLE does, and the totality of likelihood-based

procedures are generally not functions of the MLE asymptotically, as they are in the non-regression

or dummy regressor case (or regular models). This motivates the study of the entire likelihood and

the wide class of the likelihood-based procedures.

results). In some special cases, such as homoscedastic exponential linear regression models, these estimators coincide

with the MLE asymptotically.
2
In fact, we show in this paper that unlike in the univariate models, such as the Uniform and Pareto models

discussed in details by van der Vaart (1999) or dummy regression case, there are no finite-dimensional sufficient

statistics. MLE is not asymptotically sufficient either, making inference theory difficult to analyze. We show that the

limit likelihoods depend on multivariate Poisson point processes with complex correlation structure.

3This terminology follows that of Berger (1993), p. 17.



Our work is also related to a recent important contribution by Hirano and Porter (2002). They

provide a detailed analysis of asymptotic minimax efficiency in a class of boundary models. 4 They

employ an exponential-shift experiment framework along with group analysis to generate new results

and insights on the efficiency structure of Bayesian estimators (which also motivate the present

research) and prove the inefficiency (sub-optimality) of the MLE under the common mean squared

and absolute deviation criteria. We study a different set of questions - focusing on the estimation

and inference problem in the general two-sided and boundary models.

We briefly summarize the contributions of this paper as follows. First, we derive the large sample

behavior of the likelihood ratio process and show that it approaches a simple, explicit function of

a Poisson process that tracks the extreme (near-to-jump) events and depends on regressors in an

interesting way. This limit result is useful for any inference that relies on the likelihood principle.

The limit is useful since it can be easily simulated in order to evaluate the limit distributions of

derived estimators and various likelihood-based statistics. To our knowledge, these results are new.

Second, we prove the consistency, derive the rates of convergence, and provide the limit distribu-

tion of the likelihood-based optimal estimators (BE) and MLE. The results are basic prerequisites

for using these estimators in empirical work. More importantly, these results justify general Wald

type inference based on limit distribution, subsampling, and parametric bootstrap.

Third, we show that posterior r-quantiles are asymptotically (1 — r)-quantile unbiased estimators

of the true parameters. This property implies the validity of Bayes type confidence intervals based

on the posterior quantiles. These confidence intervals provide valuable practical inference meth-

ods since they are simple to implement and require no detailed knowledge of asymptotic theory.

This frequentist validity result is also of general theoretical interest because it covers models with

complicated likelihoods where no finite dimensional sufficient statistics exist asymptotically, and its

proof applies more generally to other problems. We further generalize this result to cover Bayes

inference about general smooth functions of parameters, and show that it provides valid inference

asymptotically.

Fourth, we briefly discuss how the well-known finite-sample (average-risk) optimality of Bayes

procedures carries over to the limit. The discussion is auxiliary and given here to prove some

4Hirano and Porter (2002) also derive the limit distributions of BE's for continuous covariate boundary models in a

different form. (As Hirano and Porter (2002) note, the present treatment of continuous covariates appears to precede

theirs somewhat.) An important difference is that our limit likelihood is stated in terms of a simple transform of a

Poisson process, hence it is quite simple to simulate for inference purposes (which is our focus). Hirano and Porter

(2002)'s limit is implicit, given as a process indexed by continuous covariate values. Consequently, their result is more

suited for efficiency analysis (which is their focus), and its use for classical inference in practice may be infeasible

without the (equivalent) Poisson type representations obtained in this paper. Also, the present paper focuses on

inference in both one- and two-sided models.
5The optimality of Bayes estimates is treated in considerable details elsewhere in the literature. The recent

contribution by Hirano and Porter (2002) provides a detailed limit-of-experiments analysis for a class of boundary

models. Lehmann and Casella (1998) provides a basic discussion, van der Vaart (1999), Chapter 9.3-9.4, treats

3



of the previously stated results and for the justification of BE's, including the approximate and

exact MLEs. The exact MLE, even when bias-corrected, generally does not coincide with optimal

procedures asymptotically. But it is close to the approximate MLE defined as a BE under any loss

function that approximates the delta function such as the 0-1 loss I[\u\ > e]/e or (truncated) p-th

power losses.
6 Such loss functions penalize mistakes differently than the squared loss function. In

that sense, the exact MLEs is approximately optimal under any loss function that approximate the

delta function, and may perform better under the alternative loss functions than other likelihood

procedures such as posterior means or posterior medians. Importantly, this implies that the MLE
generally can not be dominated by any other given BE when the risk comparisons are made across

different loss functions. Such comparisons are relevant when the empirical investigator does not

know the loss function of the end user of her result. Thus, the MLE method, advocated by Donald

and Paarsch (1993a) in the context of the discrete-covariate boundary models, provides a valuable

method for estimation and inference in both the two-sided and one-sided regression models. 7

Fifth, we show through simulation examples based on an empirical auction model from Paarsch

(1992) that(l) particular BE's and MLEs work quite well and their relative performance depends

critically on the measure of risk, and (2) the Bayes confidence intervals and the Wald confidence

intervals based on the limit distributions perform as accurately as the Wald confidence intervals based

on the parametric bootstrap, but are much less expensive computationally. The Bayes confidence

intervals also produce the shortest confidence intervals among other methods. Thus, this paper

justifies a whole array of useful and practical inference techniques, ranging from Wald type to Bayes

type inference methods.

2. The Model, Examples, Assumptions, Procedures

This section describes the model and provides an informal discussion of the assumptions, results,

and inference procedures developed in the later sections of the paper.

2.1. The Model. It is convenient to describe the class of models we consider in terms of a regression

model where the errors have a discontinuous density. Let (Yj, Xi) ,i = 1, . . . ,n, denote the random

iid sample of size n generated by the model

Yi =g(Xi,0)+ei , (2.1)

efficiency jd the Uniform and Pareto models in the non-regression case. Ibragimov and Has'minskii (1981b), p.93

prove a fundamental result on the generic asymptotic efficiency of Bayes procedures under general, non-primitive

(hard-to-verify) conditions.

The approximations are Bayes procedures and are optimal in that regard, and hence can be a good substitute for

exact MLE.

Additional important and distinct properties of the MLE include (i) invariance to reparameterization and (ii)

independence from prior information. Arguably, both properties are very useful.

4



where F; is the dependent variable, Xj is a vector of covariates that has distribution function Fx ,

and the error e* has conditional density / (e\Xi,/3,a). The central assumption of the model is that

the conditional density of the error / (e|Xj, 0, a) has a jump (or discontinuity) normalized to be at

0, which may depend on the parameters and a:

Yimf(e\x,0,a) =q{x,0,a),
(TO

\\mf{e\x,0,a)=p{x,0,a), (2.2)
(10

p(x,0,a) >q(x,0,a) +8, 8 > 0, Vx € X = support(X), V(Aq)e6x1

Hence, in this model the location of the discontinuity in the density of Y conditional on X is given

by the regression function g{X,0), which is described by the parameter 0. Thus, there are two

sets of parameters, collected into a vector 7 = (0',a')', where affects the regression curve and

possibly the error distribution and a affects the shape of the error distribution only. We assume

that e B C Rd/> and a £ Ac Rda
. We also assume that the parameter set Q = B x A is compact

and convex, and that the true parameter belongs to the interior of this set.

We consider two models: the one-sided model and the two-sided model. In the one-sided model,

the conditional density jumps from zero to a positive constant. In the two-sided model, the condi-

tional density jumps from one positive value to another. The one-sided model is a special case of the

two-sided model. In addition, Aigner, Amemiya, and Poirier (1976) suggested that the two-sided

model may be applied to one-sided models in the presence of outliers, using an additional side to

model the outliers. More generally, the two-sided model approximates models with a sharp change

in the density, where the location of the change depends on parameters and regressors. The finite

sample distribution of parameter estimates in such models is approximated by that in the model

with a density jump. The two-sided models also naturally arise in equilibrium search models, see

e.g. Bowlus, Neumann, and Kiefer (2001).

The key feature of the regression model is that the conditional density of Y given X jumps at

the location g(X,0), which depends on the parameter and covariates X. This feature generates

sharp discontinuities in the likelihood, which create statistical non-regularities and computational

difficulties. The discontinuities are highly informative about and imply estimability at rate n.

(The simplest univariate example is the uniform model U (0,/3), where is estimated at the rate n).

On the other hand, inference about a is standard in many regards.

Note that classification of the model's parameters into a and is motivated statistically, as in

Donald and Paarsch (1993a) and van der Vaart (1999) (who considered univariate Pareto models).

The boundary parameters usually coincide with the main economic parameters, as indicated

earlier. If they do not and the Wald type inference is to be used, then one needs to reparameterize



them into a and /3, see e.g. Donald and Paarsch (1993a).8 However, the practical use of Bayes type

inference or parametric bootstrap methods do not require such reparameterization.

In the following, we briefly review a structural example, which will serve to illustrate the plausi-

bility of our regularity conditions and explain the results. It also provides an example for the Monte

Carlo work.

Example: Independent Private Value Procurement Auction. Consider the following

econometric model of an independent private value procurement auction, formulated in Paarsch

(1992) and Donald and Paarsch (2002). Here, Yi is the winning bid for auction i and the covariates

Xi = (Zi,rrii) describes variation across auctions, where mi denotes the number of bidders in the

i-th auction minus 1, and Z, denotes other observed characteristics of auctions.

The bidders' privately observed costs V follow an iid Pareto distribution given X, i.e. the density

of V given X is described by

fv (v\x) = M£ v > e 1 > o, e2 > o,

where 62 and 9\ are parameterized as functions of X and (3 (but this dependence is suppressed for

notation convenience). E.g. 9\ {X,fi) — exp(/?(Z) and 2 (X,P) = exp(P'2Z).

Assuming the Bayesian Nash Equilibrium solution concept, the equilibrium bidding function

satisfies

a(v) = v+
(1
_ Fv{v]x))m ,

which is the cost plus the expected net revenue conditional on winning the auction. Evaluating a (v)

at v = 6\ gives the conditional support for the winning bid. As shown in Paarsch (1992), this implies

the following density function of the winning bid Y, which is the first order statistic generated by

the specified bidding rule, conditional on covariates X:

, ,,Y/l,M
02m [M™-D-i] ./ J^(m-l)

U (y\x,eu e2 )
= ^^ 1 ^ >

6>2 (m-l)-l

8A referee pointed out the following example. Suppose g($) = #i 62, where 62 also affects the shape of the

error distribution. Although this example does not correspond to the economic model we used in the simulations, it

highlights the important issue of reparameterization. In this case the asymptotic theory requires reparameterization

into /3 = 6\02 and a = 9\ , and then the estimates of fli and 62 are deduced from the estimates of a and 0, and Wald

type inference may be carried out using the Delta method (preferably based on the second order expansion, so that

finite-sample estimation uncertainty about /3 is not neglected). E.g. for 02 = PIa (02 — 02) ~ {fi
— P)/a— (a— a)/a2 +

2(6 -q) 2/q3 & n~ l ZB la + n- l/2Za /a2 + 2n _1 (Za )

2 /a3 , where Zs and Za are the limit distributions of /3 and

a. This expansion can be important because in finite samples, variability of estimates of /3 may be of comparable or

larger order than that of 6, motivating this expansion. Of course, one could use the first order Taylor expansion too,

(02 — 02) ~ ~(oc - a)/a 2 + op (l) but this approximation is less accurate.

6



Therefore, this is an example of a one-sided regression model (2.1) where

Yi =g(Xi,0) + ei ,

with

g(X,0) = 91 (X,0) 92 (X, 0) (m - 1) /(92 {X, 0) (m - 1) - 1),

and ti has density f(e\X,0) = fY (g(X,0) + e\X,0) conditional on X.

2.2. Regularity Conditions. The main regularity conditions C0-C5 are collected in Appendix

A. They serve to impose five basic types of assumptions:

(a) identification and compact, convex parameter space (with true parameters in the interior),

(b) continuous differentiability of the regression function g{x;0) in 0,

(c) nondegeneracy and boundedness of the vector dg (X,0) /d0,

(d) continuous differentiability and boundedness of the density function /(e|x,7), of its partial

first derivatives in 7 and €, and of the second partial derivatives in 7(except at e = 0).

(e) continuous differentiability and integrability of the first and the second partial derivatives

of In/ (e|a;,7) in 7.

Conditions of types (a) - (c) are standard in nonlinear likelihood analysis. Smoothness condi-

tions of type (d) represent a generalization of the conditions of Ibragimov and Has'minskii (1981a).

Conditions of type (e) are the standard conditions for regular smooth likelihood models, e.g. as in

van der Vaart (1999), Chapter 7. Conditions of type (e) reflect that inference about a is standard

if is known.

These conditions are flexible enough to cover various auction models, frontier production function

models, and equilibrium search models. 9

2.3. Definitions of Estimation Procedures and Informal Overview of Results. Define the

likelihood function as
10

Lnil) = II /W-*(*<,W«;7). (2.3)
•<n

The optimal Bayes estimators are the likelihood-based estimators that minimize the average

expected risk, where the risk is computed under different parameter values and then averaged over

A technical addendum gives an example of verification of these conditions in the auction model that underlies

our Monte-Carlo simulations.
I0The likelihood can be made unconditional by multiplying through with the density (probability mass) function

of {X,,i < n). This term is omitted because this additional term does not affect the definition of the likelihood ratio

or can be otherwise canceled out.



these parameter values. The procedures are generally of the following form:

7 = arginf [ p„(7 - 7) , ^fji-d), (2.4)

where pn (7) = p(n/3,y/na) is a loss function, p(-) is the weight density function (prior density) on

Q, and in(7)A*(7)//c ^n(T')/i (7')^7' ls tne posterior density. The optimality properties of the Bayes

procedures carry over to the limit.
11

The loss function pn is made explicitly dependent on the sample size for purposes of asymptotic

analysis, as in Ibragimov and Has'minskii (1981b), but this may be ignored in practice. Convexity

and standard conditions are imposed on the loss function p and the prior p, and collected as D1-D3

in Appendix A. Examples of such loss functions include

(A) p (z) = z'z, a quadratic loss function,

(B) p (z) = Sj_i \zj\, an absolute deviation loss function,

(C) p (z; t) = Y.%1 I
1

(
zj > °) ~ T ) z3> T e (°> !)> a variant of the Koenker and Bassett (1978)

check deviation loss function,

Solutions of (2.4) with loss functions (A), (B), (C) generate BEs 7 that are, respectively, (a) a vector

of posterior means, (b) a vector of posterior medians (for each parameter component), (c) a vector

of posterior r-th quantiles.

Since BEs become very difficult to compute when p is not convex, we focus on convex loss

functions for pragmatic reasons. However, proofs of the main results apply more generally to other

loss functions specified in Ibragimov and Has'minskii (1981b). In practice, 7 can be computed using

Markov Chain Monte Carlo methods, which produce a sequence of draws

(7
(1,

,...,7
( > )

), (2-5)

whose marginal distribution is given by the posterior.Appropriate statistics of that sequence can be

taken depending on the choice of p. (E.g. the means or component-wise medians for cases (A) and

(B) above.) More generally, estimators 7 are solutions of well defined globally convex differentiable

optimization problems. 12

The computational attractiveness of estimation and inference based on the Bayes procedures stems

from the use of Markov Chain Monte Carlo (MCMC) and the statistical motivation of definition

of the Bayes procedures. Since the Bayes estimates and the interval estimates are typically means,

medians, or quantiles of the posterior distribution, by drawing the MCMC sample of size 6 from the

posterior distribution, we can compute these quantities with an accuracy of order 1/vb. In contrast,

Furthermore, another motivation for (2.3) is that any optimal (admissible) estimation procedure is a Bayes

procedure or a Bayes procedure with improper priors, cf. Wald (1950).
1 Given the MCMC series (2.5) 7 solves arginf76 g j X]<=i P" [f ~ 7' 4

')> which is a globally convex and smooth

(if pn is smooth) optimization problem.

8



the computation of exact MLE requires optimization of a highly non-convex, discontinuous and

otherwise highly nonlinear likelihood. MLE can be estimated by grid-based algorithms or MCMC
only with an accuracy that worsens exponentially in the parameter dimension.

The BEs and the MLE are consistent and it is shown in this paper that

0-0 = Op (n-
1

) and 5 - a = Op {n-
1 ' 2

). (2.6)

The BE's are shown to converge in distribution to Pitman 13 functionals of the limit likelihood ratio

process. We first develop a complete large sample theory of likelihood for these models, which

is a prerequisite for any inference based on the likelihood principle. In particular, we obtain an

explicit form of the limit likelihood ratio process as a function of a Poisson process that can be

easily simulated.

This result implies that the limit distributions of the estimators can be simulated for purposes of

Wald type inference through either (a) simulation of the limit likelihood process, or (b) resampling

techniques including subsampling and parametric bootstrap. Subsampling may be more robust than

other methods under local misspecification of the parametric assumptions. However, the resampling

methods are much more computationally expensive and require much more computational time than

Bayes type inference. Simulating the limit distribution is comparable in terms of the computational

expense to Bayes inference due to the linearity of the limit process.

An attractive practical alternative is the Bayes inference based on the posterior quantiles. Our

results establish its large sample frequentist validity. Consider constructing a r x 100% confidence

intervals for rn (7), where rn is a smooth real function that possibly depends on n. Define the r-th

posterior quantile of the posterior distribution as

c(t) = arginf f p (f - r„ (7) I r) ^^ ,
d7 , (2.7)

where p{z;r) is the check function defined above, and TZn = {r„(7),7 € Q). In practice, c(t) is

computed taking the rth-quantile of the MCMC sequence evaluated at rn

(r,
i (7

(1) ),-,rn (7
(6)

))- (2.8)

The resulting r x 100%-confidence intervals are given by

[c(r/2),c(l-r/2)], where Kn^P^cir/Z) < r„ (70) < c(l -t/2)} = r, (2.9)

under mild conditions on r„, which is one of the main results of this paper.

A pragmatic motivation for Bayesian intervals is that the empirical researcher does not need to

have detailed knowledge of complex asymptotic limit theory to apply them. She can simply compute

the intervals through generic MCMC methods, and then rely upon the present results that establish

the large sample frequentist validity of these intervals.

13We follow the terminology of Ibragimov and Has'minskii (1981b) p. 21.



Another classical procedure is the MLE, which is defined by maximizing the likelihood function:

7 = 0', a')' = axgsup Ln (7)

.

The MLE is a limit of BEs under any sequence of loss functions that approximates the delta functions.

We shall only briefly discuss the limit distribution of exact MLE for editorial reasons. A detailed

analysis of MLE is given in the technical report, cf. Chernozhukov and Hong (2003). The MLE
Converges in distribution to a random variable that maximizes the limit likelihood ratio.

3. Large Sample Theory

This section contains the main formal results of the paper. Section 3.1 examines the large sample

properties of the likelihood ratio function. Characterization of the limiting behavior of the likelihood

is necessary for obtaining all of the main results and is useful for any likelihood based inference

methojds. Section 3.2 provides an intuitive discussion of this result and subsequent results through

an example. Section 3.3 describes the large sample properties of optimal Bayes estimators and both

Wald and Bayes type inference procedures. Section 3.5 briefly discusses the limit theory of exact

MLE.

3.1. Large Sample Theory for the Likelihood. A common first step in modern asymptotic

analysis is to find the finite-dimensional marginal limit of the likelihood ratio process or other

criterion functions, e.g. van der Vaart (1999) and Knight (2000). After appropriate strengthening,

the limit serves to describe the asymptotic distribution of all likelihood based estimators. Such an

initial step is sometimes called the convergence of experiments, see van der Vaart (1999).

Consider the local likelihood ratio function

en (z) = Ln (nn (5) +Hnz)/Ln {ln {$)),

where 7n (<5) = 70 + Hn S denotes the true parameter sequence. 6 € Rd and Hn is a diagonal

matrix with 1/n in the first dp — dim (/5) diagonal entries and l/y/n in the remaining da = dim (a)

diagonal entries. Consideration of the local parameter sequence is necessary for subsequent results.

The scaling by Hn corresponds to the convergence rates y/n for a and n for j3.
14

The function £„(z) is said to converge in distribution to Eoa (z) in finite-dimensional sense if for

any finite k

(*»(**)' 3<k)-> d (4o(*i)> 3<k), (3.1)

and ^oo(-) is called a finite-dimensional limit. In this section, ->,j denotes convergence in distribution

under Pln (S)- We partition the localized parameter z accordingly into z = (u',v') , where u £ Rdff

The convergence rates are established as parts of the proof of the subsequent theorems, and follow from the

exponential decay of the likelihood tails E£n (z) ~ const e_c '
z ' as \z\ —> 00, see the proof of Theorem 3.2.

10



corresponds to the localized location parameters and v € Rda corresponds to the localized shape

parameters.

Theorem 3.1 (Limits of the Likelihood Function). Given conditions C0-C5 collected in Ap-

pendix A, the finite-dimensional weak limit of the likelihood ratio process tn (z) takes the following

form: for A(x) = dg(x,0o)/dP, p{X) = p{X,-y ), q{X) =q{X,^ ), and /* (7) =\nf(ei\Xi ,'y),

ex (z) = el0O {v) x £2oo(w),

11oo (v) = exp (W'v - v'Jv/2)

,

(3 2)

i2oo{u)= exp(u'm+ / lu (j,x)dN(j,x)),
V JlixX '

where J = E„
io
(£i, (7o) £h (lb)'), m = EPyo A(X)\p(X) - q(X)}, W A TV (0, J), and

l u (j,x) = \n?P-l[0 < j < A(x)' u]+\n?P-l[0> j > A(x)' u] ,

p(x) q(x)

[where Ibragimov and Has'minskii (1981b) 's convention applies to the case when q(x) = 0: InO =

—oo , lnoo = oo and 1/0 = co, oo • = 0, see equation (3.6) below].

N is a Poisson random measure N(-) = Y^\ 1 [W>-*t') e "] + SSi 1 Wn^i) e ']> where

Jt
= T t

/p(X,), Ti= S1 + ... + Ei , i>\ (3.3)

Jl=rjq{Xl), T'i = -(£[ + .. . + £<), I>1 (3.4)

{Xi,£i,i > 1} is an iid sequence of variables where Xi follows law Fx, and £, is a unit exponential

variable. {X!,£-,i > 1} is an independent copy of {Xj,£j,i > 1}, and both sequences are independent

o/W.

Remark 3.1 (Alternative Form). To analyze the limit ^2oo(u) further, write the Lebesgue integral

fRxX l u (j,x)dN(j,x) appearing in the statement of Theorem 3.1 as

OO OO OO / -v, v

£*««,*) +^(Ji,X!) = £> Syil [0 < J, < A [X,)'u]

(3.5)

+£l*fSM°> 4 >*(*/)'*],

which is a simple function of the variables {X^X-, Jj, J-}. This suggests that the limit likelihood

function can be simulated simply by generating sequences of {X<, X-, J,-, J-,i < b} according to the

distributions specified in Theorem 3.1 for large b, and then evaluating the corresponding expressions.

In practice, the quantities p (Xi) and q (Xi) are replaced by their estimates, and Fx is replaced by

the empirical distribution function. This replacement is permissible for purposes of large sample

inference, see e.g. Chernozhukov (2001).

1
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Remark 3.2 (Boundary Case). There is a drastic simplification of £200 (u) in the one-sided

(boundary) model. Since q(X) = a.s., using the rules stated in Theorem 3.1

£>(./„ *,) +X>GM) = J2 -°° 1 [° < J
' < A (*»)'«]

i=i 1=1 1=1

=0

0, if J4 > A (^i)'u, for all i > 1,

—00, otherwise.

(3.6)

"{

Hence for m = EA(X)p{X)

, . I exp(u'm) if Jj
(u) = <

\

i
> A(Xi)'u, for alii > 1

2oo(u)=S „ . . (3.7)
otherwise.

Thus in the one-sided models, the limit depends only on the set of variables in (3.3) and does not

depend on the variables in (3.4).

Remark 3.3 (Robustness to Misspecification) . It is not difficult to observe from the proof of

Theorem 3.1 (hence Theorems 3.2-3.4) that the limit theory for /? is robust under local misspeci-

fication of the regression function g{x,0) of order o(l/n), and local misspecification of the height

of densities at the jump points p{x,-y) and q(x, 7) of order o(\/ri). It also appears that the qual-

itative nature of the limit theory would be preserved under local 0(l/n)- misspecification of the

regression function g(x,fi) and possibly under 0(1) misspecification on p{x,~f) and q(x, 7) as long as

p{x,f) > (7(2,7) for all x. Given these mentioned conditions hold, the inference about a appears to

be robust up to local o(l)- violations of the information matrix equality for a. A formal development

of these results is beyond the scope of this paper.

Theorem 3.1 extends the results of Donald and Paarsch (1993a) on the boundary models with

discrete regressors and the results of Ibragimov and Has'minskii (1981a) on the univariate models.

Despite its unusual form, the limit likelihood has a simple structure. The term ^ioo(v) is a standard

expression for the limit likelihood ratio in regular models, and inference about the shape parameter

a is thus asymptotically regular. The limit log-likelihood has a standard linear-quadratic expression:

t/W - v'Jv/2,

This limit contains a normal vector W = N (0, J) and the information matrix J . This implies

for example, that conventional estimators of a, such as the posterior mean and the MLE, have the

standard limit distribution

j- 1w = jv(o,j- 1

).

Because is unknown, the limit likelihood also includes a nonstandard term ^2oo(u). The discon-

tinuities in the density are highly informative about /? and are of a local nature. A lot of information

12



about P is contained in the observations YJ that are near the location of the discontinuity g(Xi,P),

that is, for those Yi such that

ei =Yi -g{Xi ,P)

is close to zero. Thus the behavior of extreme (closest to zero) e[s determines the behavior of

^200 (u), as further explained in Section 3.2. Consequently, one expects that the rate of convergence

of likelihood-based estimators will be n for (in contrast to ^/n for a), and that the behavior of

likelihood estimators of ft will be determined by £2oo(")-

3.2. Informal Explanation Through an Example. Consider a simple model 15

Yi =X'i o + ei , ei = E, (3-8)

where £ is a standard unit exponential variable. This is a boundary model with the density at the

boundary equal to p{X) = 1. Assume that there are no shape parameters a (We do not discuss the

inference about a as it is regular as stated earlier). The model is a linearized, homoscedastic version

of more realistic nonlinear models.

Intuitively, the smallest values of tj will be most informative about P, as the likelihood function

will be positive only if Yi — X[p > 0, for all i, that is, when ne* > X'^P — /3n), for all i. Letting

z = n(P — Po), this constraint takes the form

nti > X[z, for all i.

What we can learn about the parameter /?o will depend on these constraints.

The likelihood for this example is Ln {p) = Y\ i
e-<i+x'^-M\{ne i

> X[n(P - p )). Hence the

likelihood ratio Ln (P) /

L

n (P ) as a function of z = n(P — Pq) takes the form

M*) = II (e- e '+X '* /n/e-<-) 1 (nei > X'z),

i<n

which further reduces to

in(z) = e
x 'z

l(n€i > X'
f
z, for all i). (3.9)

Since X-*p EX, the behavior of En {z) for fixed z is determined by the lowest order statistics

"«(1). ««(2)) "f(3)>

The Reny representation, see e.g. Embrechts, Kliippelberg, and Mikosch (1997) p. 189, allows these

re-scaled order statistics to be represented almost surely as

n, n n
£\, £\ H 7^2 , t\ H -Si -\ xt3,...,n—1 n — 1 n — 2

We thank a referee for suggesting using a similar example.

13



where {£i,£2,...,£n } is an iid sequence of unit-exponential variables. For given z, essentially only a

stochastically bounded number of order statistics, say fc, matters in the constraints (3.9). Hence as

n —¥ co, for any finite A;

k

(ne(i), 7i€(2)
,—,ne(k))-*d {£1, £\ + £2 , -, /] £j)

3=1

= (rl5 r2 , ... , r fc ).

Hence the marginal limit of in {z) may be seen as

£«,(«) = e
E(x) '

z
l{Ti > X[z, for all i > 1).

where {I\} is the sequence of gamma variables defined above, and Xi is the iid sequence of regressors

with distribution Fx- Note that this is just a special case of the limit stated in equation (3.3), where

p(X) = 1. (Also there are no nuisance parameters in this example so that £tx{z) = ^2oo(w).) The

definition of points (1^, Xi) is a special case of points (J{,Xi) stated in equation (3.3). The use of

point process methods in Theorem 3.1 formalizes the intuition described above and extends it to

more general heteroscedastic errors.

The result stated in Theorem 3.1 is more complicated for the following reasons:

1. In more general two-sided models, there is also an additional negative error in equations like

(3.8). The information about /? is then largely deduced from the e^s closest to from above and the

e;'s closest to zero from below. This explains the presence of the additional set of gamma variables

and associated regressors in equation (3.4) as the limit distributions of "extremes from below".

2. The density of e*'s may vary near zero, which changes the hazard rates of the limit gamma

variables Tj and r'
;
, resulting in their division by varying hazard functions p{Xj) or q{X-).

3. Uncertainty about the additional shape parameter a leads to the presence of an additional

term Eioo(v)- The form of this term reflects that the inference about a is fully regular. The limit

information about a is given by the limit average score W and the information matrix J . Since

information about /3 comes from a small portion of the entire sample and is based on extreme

type statistics, the average score W is independent of those statistics asymptotically. This follows

from the standard proof of asymptotic independence of sample averages of general form and sample

minimal order statistics, see e.g. Resnick (1986) for a general treatment and van der Vaart (1999)

Lemma 21.19 for a simple example.

3.3. Large Sample Properties of Bayes Procedures. Given the above discussion, the following

Theorem 3.2 can be easily conjectured. The Bayes estimator Z„ = (n(/3 — /?„ (<5))', -Jn (2 — a„ (5))')'

centered at the true parameter 7„ (6) = (/?„ (S) , q„ (5) ) and normalized by the convergence rates,

is related to the localized likelihood ratio £n (z) as follows - it minimizes the posterior loss redefined

14



in terms of the local deviation from the true parameter:

Tn {z)= / p(z - z')nn (z')dz'.

Ju d

Here nn (z) is the posterior density for the local deviation z from the true parameter:

nn (z) = ln (*) M (7n (6) + Hn z) / f £n [z]
fj. (7n (6) + Hn z) dz,

JR d

where £n (z) is the local likelihood ratio process and p. is the prior density. As n —> oo, it can

be conjectured from the discussion in the previous section that the posterior irn (z) approaches

7roo {z) = A» (z) I fRd too {z) dz. The limit local posterior density iTao is a function of the likelihood

only and does not depend on prior information.

Theorem 3.2 {Properties of BEs). Suppose that the conditions of Theorem 3.1 and D1-D3

hold. Then

1. The convergence rate is n for estimating (3 and -Jn for estimating a, i.e. Z„ — Op (1).

2. Zn
—

> Z, where

Z = arg inf / p(z - z') ^ {*'_\ dz'

.

(3.10)
2€RJ iR i JRd too (z)dz

3. If p(z) = pp{u) + pa (v), then n(J3n - Pn (&))-* d Z13 = argmfu fR * pp (u - u') e2oo [u')du' and

y/n(an — an (5)) -)•<* Za = arginfv JR<!a pa (v — v') £ioo («') dv' , and Z® and Za are independent.

Theorem 3.2 obtains the consistency and establishes the rates of convergence and the limit distri-

butions of the BEs. The limit is given in the form of a Pitman functional of a limit likelihood and

is not difficult to simulate using MCMC methods according to Remark 3.1. The result also justifies

the use of the parametric bootstrap, cf. Remark 3.5.

In the stated result, Z& and Za are independent due to the factorization of too(z) into independent

terms £ioo(w) and ^200 («)• If p{z) = PpW) + pa (y) does not hold, part 3 of Theorem 3.2 does not

apply. Also, the limit distribution of the Bayes estimator of the shape parameter a coincides with

that of the MLE if the loss function pa is symmetric (by Anderson's lemma, see van der Vaart

(1999)), i.e. the limit distribution of 5 is given by

Af(0,J- ]

).

This is not the case for the estimators of the location parameter 0. Furthermore, as shown below

the optimal estimators generally are not transformations of the MLE asymptotically, contrary to

the non-regression or dummy regression cases.

Remark 3.4
( Wald Inference with Subsampling). Theorem 3.2 immediately justifies the va-

lidity of subsampling for Wald type inference. Subsampling approximates the distribution of the



estimator in the full sample based on values of this estimator in many smaller subsets of data.

Implementation protocols are standard and can be found in Politis, Romano, and Wolf (1999). The-

orem 2.2.1 in Politis, Romano, and Wolf (1999) applies provided (i) the estimates are consistent at

polynomial in n rates, (ii) the estimates posses a limit distribution. Both of these conditions are

proven in Theorem 3.2. Thus, Theorem 3.2 immediately implies the validity of inference based on

subsampling. Subsampling may not be as high quality as the parametric bootstrap or simulation of

the limit. However, subsampling is (a) computationally less demanding than the parametric boot-

strap and (b) is likely to be more robust than other methods to local misspecification of parametric

models that change the parameters of the limit distribution but do not affect the rates of convergence.

Remark 3.5 (Wald Inference with Parametric Bootstrap). As in Ibragimov and Has'minskii

(1981a), the weak convergence results and the proof can be stated uniformly in the parameter 7,

and conditional on almost every realization of the covariate sequence {Xj,i < n} (n —> 00). In

order to do so, the notation must be made more complicated in a manner similar to Ibragimov and

Has'minskii (1981a) to denote the dependence of the limit on the parameter 7 and on the realization

of the covariate sequence. The uniform convergence in distribution is defined as the convergence

of distributions under the Levy metric uniformly in the parameter 7, and conditional on covariate

sequences. This immediately implies that the parametric bootstrap is valid in the usual sense that

the bootstrap distribution converges to the limit distribution in probability under the Levy metric

as long as the preliminary estimate 7—

>

p 7, conditional on covariate samples. Any initial consistent

estimator 7 may be used. Hence the parametric bootstrap can be used for Wald type inference

based on the point estimates (See for example Horowitz (2000)). Although the Bayes estimates are

not difficult to recompute (especially with a good starting value such as the initial Bayes estimate

7), the parametric bootstrap appears to be very expensive computationally. As discussed in Section

4, it is much more computationally demanding than any other method. The parametric bootstrap

may not be robust against the local misspecification of the parametric models.

Next consider the posterior mean 7 and posterior quantile 7 (t) as the solutions to the problem

(2.4) under the squared loss and the check loss functions, respectively (each defined in Section 2).

Also define Z and Z (r) as the solutions of the limit problem (3.10) under the squared and the check

functions, respectively.

Theorem 3.3 (Mean-Unbiasedness, Quantile- Unbiasedness, Posterior Confidence In-

tervals). Under the conditions of Theorem 3.2

1. Posterior mean estimators are asymptotically mean-unbiased:
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2. Consider any < r' < r" < 1. If Z (t) has positive density in the neighborhood of 0, for t — r'

and t = t" , then posterior r-quantiles are 1 — r-quantile unbiased:

Vm
o
P-rm w{<rt{T))i

< (7n (*)),-} = Ac{(^ W)j < 0} = 1-T, (3.11)

where (a)- denotes the j-th components of vector a. Hence

taP^JRMlj < (%(*)), < (tV)),} =r"-r'. (3.12)

A very useful implication of the quantile unbiasedness result is the validity of confidence intervals

[(7 (
r')) •

1 (7 (
r"))j] f°r large sample inference on parameter components (7) ..

Results 1 and 2 follow from the asymptotic optimality of posterior means and quantiles respec-

tively under the squared and check function losses, which are defined and established in section 3.4.

For example, if the limit posterior mean Z had a mean EZ = c / 0, then the estimator 7 + Hnc

would have a strictly lower asymptotic risk regardless of the local parameter sequence. Hence it must

be that EZ = 0. A similar argument applies to the rth-posterior quantile. The r-posterior quantile

is 1 — r-quantile unbiased because it is asymptotically optimal under the r-check loss function. The

requirement that Zj (r) has positive density around is technical.

The next result concerns the asymptotic validity of the posterior quantiles c(t) for inference

about smooth functions of the parameters. Consider inference about the function rn (7) where

r„ : Id»+ d" -> R is such that for a > 1 and R = [R',R']' with rank R= 1:

rn (7) - rn (70) = R'(a- 00) y/n + R'{0-0o)n + O (n\0 - o \

a + ^\a - a
\

a
)

. (3.13)

For purposes of theoretical analysis, the function is made dependent on n specifically to have a better

finite-sample approximation through the avoidance of the trivial case where all of the asymptotic

inference is determined by either parameter a or due to the difference in rates of convergence.

If a smooth function m (/?) is of prime interest, taking rn (7) = n m (0) fulfills condition (3.13).

If a smooth function m (a) is of interest, then taking rn (7) = ^/n m (a) also fulfills condition

(3.13). Note that these transformations by %fn or n do not affect the practical formulations (2.7) -

(2.9) in Section 2.3 by the linearity of transformations and equivariance of quantiles to monotone

transformations.

Theorem 3.4 ( Inference with Posterior Quantiles ). Under the conditions of Theorem 3.2

1. For any < r < 1, (c{t) - rn (yn (5))) ->d Z (r), where

Z(r) S arginf |/(i - R>Z ;r) ^£ ^^d,
2. Provided Z (r) has positive density over a neighborhood of for r = rl and t = r"

n
limP

Tn(4) {c(T) < rn (7b (6))} = P7o {z(r) < o} = 1 - r, (3.14)
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and

n
lim

o
P7T>w {c(T

,)<rn (7„((5))<c(r")} = t" - t' . (3.15)

Theorem 3.4 generalizes Theorem 3.3 to more inference about more general functions than con-

struction of parameter confidence intervals. For example, a 1 — r-level asymptotic test of the null

hypothesis rn (70) = rn is given by the decision rule that rejects the null if r„ $ [c(t/2) ,c(1 — r/2)],

where (3.15) can be used to deduce the local power and consistency of the test.

3.4. Optimality. Lemma 3.1 below briefly records the finite-sample and asymptotic average risk

optimality properties of BE's, which is needed only for the auxiliary purposes of proving Theorems

3.3 and 3.4. A detailed valuable analysis of (minimax) optimality in non-regular models can be

found in Hirano and Porter (2002).

Define the normalization matrix Hn as in section 3.1, and let 7„((5) = 70 + Hn5, 5 € Kd
, denote

the local parameter sequence. Consider the set Tn of all statistics (measurable mappings of data)

7„. Define the expected risk associated with a loss function p and estimator jn as EP p(Zn ),

where Zn = i/" 1
[7„ — 7n (^)] and the expectation is computed under 7n (<5). Consider the following

measures of risk.

The finite sample average risk (AR) of 7 is given by:

~y J^EP^ (S)
p(Zn)p^n (5))d6, (3.16)

where p. is the weight or prior measure over K, p is the loss function over K, and A is the Lebesgue

measure. The asymptotic average risk (AAR) of estimator sequence {7n } is given by

limsuplimsup —tjtt \ EP p{Zn )d6, (3.17)
KtR d n->°° A

l-
ttJ JK

where K | Kd denotes an increasing sequence of cubes centered at the origin and converging to Rd
.

Compared to the previous formula, the weight p. is replaced by the objective (uninformative) weight

overM'*.

Lemma 3.1. Suppose the conditions of Theorem 3.2 hold. For %,,,,„ € Tn denoting the Bayes

estimator under loss p and prior weight p, Zn = i/" 1

[jP ,,,,n — 7n(<5)], Un = n (B — /?o) x y/n (-A — cxq)

1. For each n > 1 the infimum of finite sample average risk for K = Un is achieved over T„

by the Bayes estimator %,„,„, i.e. at Zn — Zn in (3.16).

2. The infimum of asymptotic average risk over estimator sequences in T„ equals EP^o
p(Z) <

00 and is attained by the sequence of the Bayes estimators jPlll ,„, i.e. {Zn } = {Zn } in

(3.17). (Z denotes the weak limit of Zn ).

Statement 1 is a basic result of statistics, that the optimal estimator under loss p is a Bayes

estimator defined by the risk-weighting function p and a loss function p, cf. Wald (1950) and
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Lehmann and Casella (1998), Chapter 5. Statement 1 is often simply used as an alternate definition

of the Bayes (optimal) procedures. Statement 2 translates finite-sample efficiency into asymptotic

average risk efficiency (this result essentially follows from Ibragimov and Has'minskii (1981b) p.93).

It is critical that unlike in the regular case, the efficiency rankings are largely determined by the

loss function p. For example, MLE may be worse than the posterior mean under the squared loss,

but performs better under other loss functions, cf. Section 4.

3.5. Large Sample Theory of Maximum Likelihood Procedures. We provide only a brief

discussion of the MLE. Consider the MLE Zn = (z% , Z°'\ = (n{0 - n (5))', Jn~{a - an (<5))'Y,

which is centered at the true parameter and normalized by the convergence rates.

Theorem 3.5 {Properties of MLE). Under C0-C5, and supposing that -£oo{z) attains a unique

minimum in Rd
a.s., then Zn — Op (l) and

Zn^ d Z = arginf.6RJ - £00(2)-

In particular, Z°^t d Za = J~ 1W = N{0,J- 1

), Z -> d Z = argminu6R<f/,
- l2oo {u), and Z and

Za are independent.

The proof is given in the technical report (Chernozhukov and Hong (2003)). The limit variable

is an argmin of a limit likelihood, which inherits the discontinuities of the finite sample likelihood.

Due to asymptotic independence of the information about the shape parameter from the information

about the location parameter, the MLEs for these parameters are asymptotically independent. In

the boundary models, the limit result can be stated more explicitly for P as follows:

n(0 - /?„ {8))-> d Z = arginf ( - exp(u'm) such that J; > A (*,•)' u, for all i > l\
,

= argsup ( u'm such that J; > A(Ai)'u,for all i > lj.

This result generalizes the results of Donald and Paarsch (1993a) and Smith (1994). Note that the

solutions of the linear programs like these are unique under fairly weak conditions.

Remark 3.6 (Asymptotic Non-Sufficiency of MLE's). It is important to note here that

the posterior means and medians are generally not equal to the bias corrected MLE. Consider the

example of Section 3.2 where

4o (z) = e
EW z

l [Tt > X(zM all i > 1).

The limit maximum likelihood variable Z maximizes £00 (z), which is equivalent to maximizing

E (X) z subject to the constraint T; > X\z, for all i > 1. In the no covariate case, the limit

For example, a very simple sufficient condition for almost sure uniqueness is that there is one continuously

distributed element in A (A,) and that Af-Y,) has a nondegenerate distribution, cf. Portnoy (1991) for a related

problem. When A (X,) has discrete support, the stated limit result coincides with the result of Donald and Paarsch

(1993a) who show that uniqueness holds if A(/f,) has nondegenerate distribution (assumed in C3).
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MLE Z maximizes over z such that I* > z, thus Z = min{r;,i < n}, l<x>(z) = ez l(z < Z),

implying sufficiency of Z. If Z is sufficient then the limit optimal Bayes estimators are all some

shift transformations of Z by the well-known Rao-Blackwell argument. This raises the question of

whether Z is a sufficient statistic for £«, (z) in the general regression case. Taking the example with

X = (1,X) where X is continuous, it is easy to see that

4o (z) ^ eEm'*l(X!z < X!Z,tor all i > 1) with strictly positive probability,

implying that Z is not sufficient for £<*, (z) even conditional on covariates. Thus, the limit likelihood-

based Bayes estimators Z are generally not nonrandom functions of the limit MLE Z.

4. Computational Experiments

4.1. Monte Carlo Design. We used a simple procurement auction model similar to that in section

2.1, where we set 62 = 1 and <?i = exp(/? + A-X), with X ~ 1/(0, 1), /? = 1, P\ = 1, m = 3. We take

n = 100 and n = 400, which are close to practical sample sizes encountered in empirical work on

auctions. We used the parameter space B — [/3n ± 5] x [j3i ± 5] and a flat prior to compute the Bayes

estimates. The starting value was set to be in the computation of the estimates. The computations

were performed using the canonical random-walk MCMC algorithm described on p. 245 in Robert

and Casella (1998).
17

4.2. Quality of Estimation Procedures. We compare the performance of

(1) the posterior median,

(2) the posterior mean,

(3) the posterior mode (MLE),

across different risk measures. Here the MLE is computed by taking the argmax over the grid

generated by the MCMC sequence. 18

The results given in Table 1 and Table 2 show that: (a) the posterior median is the best under

the mean absolute deviation loss, (b) the posterior mean is the best under the mean squared loss,

(c) the MLEs do better under the mean 10-th power loss function. Thus, it appears that all of the

likelihood procedures perform quite well relative to some risk measure.

In the implementation the first 20,000 draws are made for a "burn-in stage", with adjustments made to the

variance of transition kernel every 200 draws in order to keep the rejection rate near .5. Then additional 20,000 draws

were made with a fixed variance, and used in the computation of estimates. The C++ implementation is available

from the authors.
18We also tried the approximate MLE defined as a BE under (truncated) 10-th power loss function but the

performance of the approximate and exact MLEs coincided up to many digits and is not reported separately. Other

loss functions that approximate delta function can also be used to approximate MLEs by some BE.
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4.3. Quality of Inferential Procedures. In the next step, we compare the performance of several

inference methods, focusing on the coverage properties of the confidence intervals. We compare

(1) the confidence intervals based on the posterior quantiles,

(2) the percentile confidence intervals based on the parametric bootstrap of the posterior mean,

(3) the percentile confidence intervals based in the parametric bootstrap of the MLE,

(4) the percentile confidence intervals based on the subsampling of the posterior mean (using

1/4 x n as the subsample size),

(5) the simulation of the limit distribution of MLE and other estimators as described in Remark

3.1 (using b = n).

Results reported in Table 3 indicate that the intervals based on the posterior quantiles and simulation

of the limit distribution perform nearly as well as the parametric bootstrap, while subsampling

performs worse than any of them. The confidence intervals based on the posterior quantiles also

appear to be the shortest on average. Given that the posterior intervals are the least expensive to

compute, they should be preferred. The subsampling is less expensive than the parametric bootstrap

and is probably more robust for inference purposes under local misspecification.

In terms of computational expense, computation of the posterior quantiles takes less than 1 minute

on a Pentium III PC. Simulation of the limit distribution is roughly twice as expensive (because

the limit expressions are simple transformations of linear functions and do not contain nonlinear

expressions). We used 200 bootstrap draws and the full sample estimate as the starting value in

the MCMC algorithm (which reduces the number of MCMC draws needed in the re-computation of

the estimates). Using this implementation, 200 bootstrap draws take between 7 and 30 minutes for

samples n = 100 and n = 400. (Thus, 1000 bootstrap draws take up to 150 minutes for n = 400).

The subsampling takes about 1/5-th of the time of the parametric bootstrap, using the same number

of draws. The entire Monte Carlo work took several weeks of computer time.

5. Conclusion

We studied estimation and inference a general model in which the conditional density of the

dependent variable jumps at a location that is parameter dependent. This model includes a number

of interesting economic models discussed in the recent literature of structural estimation. We derived

the large sample theory of a variety of likelihood based procedures, and offered an array of useful

and practical inference techniques, including Wald type and Bayes type inference methods. The

results provide a theoretical and practical solution to an important econometric problem.

Appendix A. Regularity Conditions C0-C5 and D1-D3

Notation. Throughout the paper, c and const denote generic positive constants unless stated otherwise;

—
> v and —>d denote convergence in probability and distribution, respectively; ||x|| is the usual Euclidian
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norm Vx'x, and |x| is used to denote the supremum norm , i.e. |x| = supJ<fc \xj\ where x — (xi,...,Xk)-

Note the densities of interest /(e|x,7) are discontinuous at e = and are not differentiable in e at e = 0. To

simplify notation, we use 9/(e|x,7)/3e to denote the usual partial derivative when e ^ 0, and also use it to

denote the directional partial derivative df(Q+ \x,f)/dt when e = 0, etc. Also, .6,5(7) denotes a closed ball

at 7 with radius 5 as measured by
|

•
|

.

Conditions C0-C5 The following conditions apply to x in X, e 6 R. Conditions CO -C3 apply to any

7 = {P,a) in Q. Conditions C4 and C5 apply to any 7 = (/3,a) and 7 = (/3, a) in .8,5(7) f°r some 5 > 0.

CO For each 7, (Y,, Xi) is an iid sequence of vectors in R x R*, denned on probability space (Q,7", P7 ).

Q C Rd
is compact convex set such that 70 £ interior Q\ for any 7 and 7^7, P7 {/(yi — <?(Xi,/?)|.X,,7) ^

/(Y, -
S(X, /

3)|X,,7)}>0.

CI Xi has cdf Fx, that does not depend on 7, and has compact support X. In addition to (2.2),

uniformly in 7 and x, we have either

(i) the two-sided model: p(x,y) > q(x,~f) > c > 0, or

(ii) the one-sided model: p(x,7) > c > and f (t\x,~y) = q(x,~/) = 0, for all e < 0.

C2 Without loss of generality, the density /(e|x,7) is upper-semicontinuous at e = for each x and

7. The density f(e\x,f) is bounded from above uniformly in (e,x,i). f(e\x,*y) has continuous first partial

derivative in e (except at e = 0) that is bounded uniformly in (e, £,7); f(e\x,*y) has continuous first and

second partial derivative in 7 that is bounded uniformly in (e, x, 7). The density and the derivatives specified

above are continuous in x on X for each « and 7. Lastly, sup
7
Ex J \$-f(y — g(X,/3)\X;~/)\dy < 00.

C3 The function g(x,fi) has two continuous and bounded derivatives in /?, uniformly in x and /?, and

ffi da aa 1
's positive definite uniformly in /?. The function and the specified above derivatives are

continuous in x on X for each /3.

C4 When the nuisance parameter a is present, for U (7) = In/ (Y, — g(Xi,p) \Xi,^) where 7 = (J3,a),

uniformly in 7 and 7 either (a) EPl [-§^U (7) JWj (7)'] is positive definite and bounded or (b) if -^U (7) =

P7 -a.s., then £^-,[^'1 (7) ^U (7)'] is positive definite and bounded.

C5 In the two-sided model Cl.i, the terms

\%lnf(Yi - g{XiJ)\Xin)\, \\^ ln f (
y* -*(X*,0)|**,7) f, W^rlnf (Yt - g(Xi,p)\Xi^)\\ (A.l)

are bounded respectively by Cj(f,,Xj), j = 1, 2,3, for all Y, — g(Xi,/3) 6 R \ {0}, uniformly in 76 Bs(~)o),

where sup
7
EPl Cj (e,;, Xi ) < 00 for j = 1,2,3. Similarly, for the one-sided model Cl.ii the terms in (A.l)

are bounded respectively by Cj(e,,X,), j = 1, 2,3, for all Yi — p(X,,/3) > 0, uniformly in 7 e #,5(70), where

sup7 EPy Cj (e,„ Xi ) < 00 for j = 1 , 2, 3.

Lemma A.l (Important Constants). The conditions C0-C3 imply that there are finite constants f, f,

f", f_, 9, 9', 9" such that

sup /(e|*,7)</, sup ||^*w/(«|«,7)ll</', sup ||Jfc,/(«|x,7)|| < /",

sup \g(x,/3)\<g, sup ||^,s(x,/?)|| < 3, sup Hj^cKx,/?)!! < s",
J68.I6X S6B,i6X SgB.igX
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and also that for some 6 > and V(0) = [—5,(5] \ {0} in case of Cl(i) and V(0) = (0,<5] in case of Cl(ii)

inf /(e|x,7) > / > 0.
*ev(0),xex,7?g -

Remark A.l. The regularity conditions are summarized in Section 2.2. The parameters 7 include the

location parameters /? and the shape parameters a. If j3 is known, the inference about a is regular. Thus,

the conditions C0-C5 are a mixture of non-regular and regular assumptions, as in Ibragimov and Has'minskii

(1981a) and van der Vaart (1999), Ch. 7. Condition Cl(ii) allows for the boundary model, where the density

is zero to the left side of the jump and is positive on the right side. Condition Cl(i) allows for the two-sided

model where the density is positive on both sides. Conditions C3-C5 are common in nonlinear analysis.

Conditions D1-D3 The prior p : Q -> R+ and the loss function p : Rd" +ds -* R+ have the following

properties:

Dl p () > is continuous on Q,

D2 p ( •) > and p(z) = iff z = 0, p is convex,

D3 p(z) is dominated by a polynomial of \z\ as \z\ —> 00.

Remark A. 2. These are standard assumptions on the loss function p and the prior ft, see for example

Ibragimov and Has'minskii (1981b). Since BE's become essentially uncomputable when p is not convex, we

do not consider the non-convex loss functions for pragmatic reasons. However, the proof of Theorems 3.1-

3.4 do not rely upon the convexity assumption and the results apply more generally to other loss functions

specified in Ibragimov and Has'minskii (1981b).

Appendix B. Proofs for Section 3

[N.B. In the proofs we extensively use the constants defined in Lemma A.l]

B.l. Proof of Theorem 3.1. In the proof we set the local parameter sequence fn = 70- Considering a

general sequence does not change the argument but complicates notation.

Following Ibragimov and Has'minskii (1981a), we split the log likelihood ratio process

Q„ (2) = \nen (z) = In L„(f + H„z)/L„(7o)

into the continuous part Q c
n (z) and the piece-wise constant part Q„ (2), and analyze each part separately.

Our goal is to show that Qn (z) converges in distribution in the finite-dimensional sense to

Qoo(z) = QUz) + Qi>(z),

where

Qlc(z) = W'« - \v'Jv + m'u, Qt(z)= [ lu(j,x)dK(j,x),
1 JRxX/RxX

where each term is defined in Theorem 3.1. Given this result, the finite-dimensional limit of tn (z) is

^00(2) = axp (Qao(z))
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For z = (u ,v')' , using that e,- = V* — g(Xi,j3o),

Qn (z) = ^2ri„(z) x[l(e< > {A„(X„«)/n} V0) + l(e, < {An (X,,u)/n} A 0)]

1=1

n

+ ^(r,„(z) - 7Nn (z)) x [1(0 < u < An (X„u)/n) + 1(0 > e, > A„(X,-,u)/n)]

i=i

+ ^Ttn„(z) x[l(0<e, < An (X,,u)/n) + l(0>e, > A„(X;,u)/n)]

<?*<*)

= Ql (z) + Ql («) ,
where

f,„(z) = In

= ln

f(Yi - g(X,,/3 + u/n) \X,,/3o + u/n,a + v/-fn)

HYi-giXuM&i^o)
f(tj - An (Xi,u)/n)\X,,l3o + u/n,a + v/y/n)

rin (z) = In
q(Xi)

lP(X,)

/(e,|X,-,7o)

1(0 <e,)+ln
p(Xi)

q(Xi)
1(0 > e,),

An (x,u) = n(g(Xi,/3o + u/n) -g(Xi,0o ))-

The convergence analysis of the continuous part Q
c
n (z) is standard. In sharp contrast, behavior of discon-

tinuous part Ql (z) differs from that of Qc
n (z), and is analyzed using the point process methods.

Also, in above expressions and all proofs we use the algebraic rules of Ibragimov and Has'minskii (1981a)

for working with oo's defined in Theorem 3.1. This is done to include the proof for the boundary model as

a special case. In particular, the expressions involving 1(0 > e, > ...) cancel, since in the boundary models

e, > 0. Also in the boundary model r;„(z) = r,„(.z) = — oo when < e; < An (X",, u)/n, so that

QL(2) = o.

Thus, the term Qlniz) is only non-zero for the two-sided model. Further details follow.

Part I obtains the finite-dimensional limit of Qc
n {z). The proof method is standard for the smooth likelihood

analysis.

Application of Taylor expansion to each r, n (z), i = 1, ...,n, so that the expanded terms are iid, followed

by application of the Markov LLN and Chebyshev inequality, yields for a given z [see Addendum]

Q^z) = -u'EA(X% )

f
'

{£

'^'l
o)

+v' -L£Aln/
(
e,|X„ 7o)

s. • L *

—

*
* £a^'°E/( < |A'^l v + op (l),
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where A(A,) = dg{Xi,/3 ) /d/3. The information matrix equality for a implies -J = E d "

'"l^f
' 7o) =

_g ai°g/Hx, T0 )aioS /^|x,-rQ )

'

|
^ the CLT giyes W7i _>

rf W =7V(0,J-). Also it follows by C2 19

m = EA(Xi)(p(Xi)-q(Xi )).

Therefore, the finite-dimensional limit of Q\ n (z) is given by

Q^(z) = urn + Wv - \v'Jv.

It remains to show Q\n (2) = op (l). In the one-sided case Q2T. (2) = 0, hence consider the two-sided case.

Note that by assumptions C1-C3, for any compact set Z, as n -> 00,

In
/(e - An (x,u)/n\x,/3o + u/n,ap + v/\/n)

/(e|z,7o)
- In

g(x)

p(x)
<2x(/7/)xS'||z||/v'n (B.l)

uniformly in {e, z,x € R+ x Z x X : A„(x, u) > 0, < e < A„(x,u)/n}. Likewise

hi,
/(e - An (x,u)/n\x,/3o + u/n,cto + v/y/n)

/(e|z,7o)

p(x)

_g(x)
<2x (/'//) xg'\\z\\/JZ (B.2)

uniformly in {e, z,x 6 R_ x Z x X : A„(i,a) < 0,0 > e > A„(i,u)/n}. Thus

71

sup |Q
C
2„ (2) |

< 2 x (/'//) xg' x \\Z\\/y/H x V l(|e,
I

< K/n) = Op {\[y/n~)
-•EZ ~t

(B.3)

for some constant K= ||Z|| x g'
, where ||Z|| = sup{||z|| : 2 6 Z}, where /C is finite by C3. The Op (l/y/n)

conclusion is by C2:

££^1(M <^/n) <2/A" <co. (B.4)

Part II obtains the finite-dimensional limit of Q„ (2). Recall

^^-l(0<ne,<An (X„u)) + .,oi(z) = J2 [
|n t53 1(0 < ne

' - A"(^" u)) + ln4§ 1(0 > ne
- £ An(^..«)].

By C2 and C3
n

£^|l(0 < ne, < A„ (A\,u)) - 1(0 < ne, < A(Xi)'u)\

1 = 1

+ |l(0 > ne, > A„ (X,,u)) - 1(0 > ne, > A(A,)'u)| < 2fg"\\u\\
2
/n = o(l),

where A(X,) = 8,^V '^ which implies that for given 2

<5n(^) =£ f
In ^TTT 1 (° < ne ' < A(*0'") + In ^7^1 (0 > ne, > A(Xf )'u)
P(X, 9 (A",)

Op(l).

Now note that (Q„ (zj) ,j<l) and (Q5i (z
7-) , j < I), for any finite /, are asymptotically independent. This

follows by applying a standard argument concerning the independence of minimal order statistics and sample

averages of general form, see for example Resnick (1986) or Lemma 21.19 in van der Vaart (1999) [ Addendum

provides the proof for completeness].

19RecalI that for a density function /, which is everywhere continuously differentiate except at with an integrable

derivative, fR f'{u)du= -/(0+ ) + /(0").
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The next step is to obtain the finite-dimensional limit of Qd
n . The behavior of Q%. is determined by the

near-to-jump observations, whose behavior is described using a point process. We split the argument in two

steps. Step 1 constructs the required point process and derives its limit. Step 2 applies Step 1 to obtain the

finite-dimensional limit of Q^.

Step 1: Intuition for Step 1 is provided in Section 3.2 of the main text.

Define E = R x X. The topology on E is standard, e.g. [a,b] x X is a compact subset relative to E.

The point process of interest is a random measure taking the following form: for any Borel subset A

n

N(A) = ^l[(nfi,I,)ei],
i=i

N is a random element of MP (E), the metric space of nonnegative point measures on E, with the metric

generated by the usual topology of vague convergence, Resnick (1987) Ch. 3. [Technical Addendum provides

a review]. We show that

N => N in MP (E),

for N given in Theorem 3.1. This is done in steps (a) and (b).

(a): By CI and C2, for any F € 7", the basis of relatively compact open sets in E (finite unions and

intersections of open bounded rectangles in E), limn-n*, E'N(F) = lim,,-^ nP((rae,,X;) e F)

= I \p(x)l(u > 0)du + q(x)l(u < 0)du] x dFx (x) = m(F) < oo, (B.5)

where measure m is defined as m(du,dx) = \p(x)l(u > 0)du + q(x)l(u < 0)du] x dFx (x). Since {(ne,, -X*) g

F} are independent across i by CO, by Meyer's Theorem, Meyer (1973),

lim P(N(F) = 0) = e-
m(F)

. (B.6)
n—MX)

Statements (B.5) and (B.6) imply by Kallenberg's Theorem - Resnick (1987), Proposition 3.22 - that

N => N in MP (E), where TV is a Poisson point process with the mean intensity measure m(-).

(b): Next we show that N has the same distribution as N given in Theorem 3.1. First, consider the

canonical Poisson processes No and N with points {I\} and {Tj} defined in Theorem 3.1. No has the

mean measure mo(du) = du on (0, oo), and N has the mean measure m' {du) = du on (— oo,0), see Resnick

(1987), p. 138. Because JVo and N' are independent, Ni(-) = JV (-) + iV (-)' is a Poisson point process

with mean measure mi(du) = du on R, by definition of the Poisson process, see Resnick (1987), p. 130.

Because {Xi, X-} are i.i.d. and independent of {r^Tj}, by Proposition 3.8 in Resnick (1987), the composed

process N2 with points ({Pi, Xi}, {P;, X[},i > 1) is a Poisson process with the mean measure m,2(du,dx) =

[l(u > 0)du + l(u < 0)du] x Fx (dx) on R x X. Finally, N with the points {T(r,, X),T{T'U A
7

/)}, where

T : (u,x) i-> (l(u > 0)u/p(x) + l(u < 0)u/q(x),x) is a Poisson process with the desired mean measure

m(du,dx) = TO2 oT~ 1
(du,dx) = \p(x)l(u > 0) + q(x)l(u < 0)]du x Fx(dx), by Proposition 3.7 in Resnick

(1987).

Step 2: We have for 2 = (u,v)

Q
d
n(z) = Q

d
Ju) = [f>^l [0 < nu < A(X,)'«]+f>jgjl [0 >ne, > A(X,)'«]] + op (l).



Ignoring the op (l) term, write Qi{u) as a Lebesgue integral with respect to N:

Q
d
n (n)= f lu (j,x)dN{j,x),

J E

where lu (j,x) is defined in Theorem 3.1. The convergence of this integral is implied by N => N in both the

two-sided and one-sided model:

(a) In two-sided model: By conditions Cl-3, the function (j,x) M- lu (j,x) is bounded and vanishes outside

the compact set Ku = [-?7,+??] x X, 77 = supx€X |A(i)'u|, where 77 < 00 by C3. Thus (j,x) >-> lu (j,x)

has compact support but is discontinuous when j = and j = A(x)'u. Define the map T : MP (E) i-> R' as

TV 1-4 (f lUk (j,x)dN(j,x),k < I) for I < 00. Hence by Proposition 3.13 in Resnick (1987) T is discontinuous

at V(T) = {N e MP(E) : j? = or jf = i4A(zf ) for some i > l,fc < /} where (j? ,x? ,i > 1) denote the

points of Ar
. Since e,'s are absolutely continuous P[N e V(T), for some n > 1] = 0, and by definition of N,

P[N e 1>(T)] = 0. Therefore N => N in MP (E) implies r(N)-> d T(N) by the continuous mapping theorem,

Resnick (1987), p. 153. It follows {Qi(uk ),k < l)-* d (Qio(u k ),k < I), where

Qt(u) = [ l.(j,x)dN(j,
J

E

(b) In one-sided model: Using the Ibragimov and Has'minskii (1981a) rules for algebraic operations with

oo's stated in Theorem 3.1, note Q„(u) = Qto(u ) = /£ lu(j, x)dN(j, x) as a binomial random variable:

Qi(u) = -00 if N(-4(u)) > 0, Qi(u) = if N(A(u)) = 0, where A(u) = {(j,x) e R+ x X : j < A(x)'u}.

Also define Qt(u) = QtM = JE lu (j,x)dN(j,x) = -00 if N(A(u)) > 0, Qt(u) = if N(yl(u)) = 0.

Thus, to show finite-dimensional convergence (for 7* = —00 or 0):

lim P(Qd
n (uk ) = 7fcl fc < J) = P(QUuk ) =~fk ,k < I),

n—¥oo

it suffices to show (N(A(ut)),fc < l)—*d (N(A(uk )),k < I) for / < 00. By a definition of weak convergence

of point processes, cf. Embrechts, Kliippelberg, and Mikosch (1997) p. 232, this is immediate from N => N,

since by C2 and construction of N, N(9.4(7i t )) = and N(d.4(ujt)) = a.s.

B.2. Proof of Theorem 3.2. The proof applies Theorem 1.10.2, p. 107 of Ibragimov and Has'minskii

(1981b) that states the limit distribution of BE's provided some general conditions hold.

First, BE's are measurable by Jennrich's (1969) measurability theorem since they minimize the objective

functions that are continuous in data and parameters.

Second, the following conditions (l)-(3) verify the conditions of Theorem 1.10.2, p. 107 of Ibragimov and

Has'minskii (1981b):

(1) (a) Holder continuity of („ (z) in expectation proved in Lemma C.2,

(b) Exponential bound on the expected likelihood tails proved in Lemma C.2: for a >

EPJn (z)
U2 <e-°'^- l

\

where function a'(\z\ — 1) falls to the class of functions G defined on p. 41 in Ibragimov and

Has'minskii (1981b), i.e. (i) a'(\z\ — 1) is monotonically increasing to 00 in \z\ on [0, 00), and (ii)

for any N > 0, lim^^^ \z\
N
e
- a'<l*l-» = 0.
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(2) Finite-dimensional convergence of £n (z) = exp(Qn (z)) to £oo(-z) = exp(Qoo(z)): for any finite

collection (zj,j < I)

(in(Zj),j<l)~^d {too(Zj),j<l),

(all of the terms are defined in the proof of Theorem 3.1.)

(3) The limit Bayes problem:

Z = arginf / p{z - z)-—°° Z
dz,

is uniquely solved by a random vector Z, which is by D2 (since p is convex with a unique minimum,

cf. p. 107 in Ibragimov and Has'minskii (1981b).)

and conditions Dl -D3 on the loss functions p and prior p.

It must be noted that Ibragimov and Has'minskii (1981b) impose the symmetry of p throughout their book.

However, the inspection of the proof of Theorems 1.10.2 (and Theorem 1.5.2) reveals that the proof does not

require the symmetry and applies to the loss functions that satisfy D1-D3.

Thus, conditions (l)-(3) imply by Theorem 1.10.2 of Ibragimov and Has'minskii (1981b) our result:

Zn—><j Z.

Furthermore, conditions (l)-(3) imply by Theorem 1.5.2 and Theorem 1.10.2 of Ibragimov and Has'minskii

(1981b) that for any local sequence 7n(5) = 70 + H„S,S 6 W.
d and any N >

lim H- NPlnls) {\Zn \
> H} = 0, and lim EP ,„p{Zn ) = EP p(Z) < 00. m.7)

The last result is not needed to prove Theorem 3.2, but will be used later.

B.3. Proof of Theorem 3.3. To show claim 1, note under the conditions of Theorem 3.2 by (B.7)

lim E7n(5) [H- 1 (7- 7„ (*))] = EPlo Z.

Consider the problem minc EPl p {Z + c) , where p(z) = z'z. The solution of this minimization problem is

to set c = —EZ. Suppose that c^O, then

EPlo p(Z + c)<EPlo p(Z), (B.8)

where by Lemma 3.1 the lhs of (B.8) is the asymptotic average risk of the sequence of estimators 7 + Hn c

and the rhs of (B.8) is the asymptotic average risk of the sequence of posterior means 7, which contradicts

the asymptotic average risk efficiency of the posterior mean established in Lemma 3.1.

To show claim 2, note that by Theorem 3.2 and definition of weak convergence

Yvm
i

P^w {^(T))
j
< (70),.} = Ym^P^^Zn (r)). < o} = P-f0 {{Z{r))j

< o}.

since is assumed to be a continuity point of the distribution of (Z (t)) .. Consider the problem

m
c
in Ep

-, P ((
Z

(
T
))j

_ c
'
T
) '

where p(z;r) = (1 (z > 0) — t)z. Note that the quantity EPlo p UZ (t)) . — c; t) is finite for any c by (B.7)

or by Lemma 3.1. A solution of this problem is given by the root of the first order condition

Py {{Z(r))
j
> c} = r or P, {(Z (r))

J
< c] = 1 - r, (B.9)
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i.e. c = (1 — r)-th quantile of (Z(r))- (under the condition that (Z (r)) has positive density in any small

neighborhood of 0). Suppose c 7^ 0, then

EP7o p((Z(t)) j
-c;t)<EPioP ((Z(t))

j
;t), (B.10)

where by Lemma 3.1 the lhs of (B.10) is the asymptotic average risk of the sequence of estimators defined as

(7(7-) — Hn c) , and the rhs is the asymptotic average risk of the posterior r-th quantile (7 (r)) . See section

3.4 and Lemma 3.1 for definitions. Then (B.10) contradicts the asymptotic average risk efficiency of the

posterior quantiles under the check function loss established in Lemma 3.1.

Thus it must be that c = in (B.9), so that the first part of claim 2, equation (3.11), is proven. The

second part of claim 2, equation (3.12) is immediate from (B.9) with c = for r = r' and r = r":

limP7„ (<) {(7 (r')) < (7n (*)),- < (7(1-")),} = Hm P^mUZn (r% < < {Zn (r")),|

= 1 - lim P7 „ (S) {(Z„ (r")) < 0} - lim P,.„,{(ZB (r')) > o\ (B.ll)
Tl—HX> K. J J 71—fOO L J J

= l-P,o {(Z(r"))
j
<0}-P7o {(Z(r'))

j
>0}=r"-r'.

B.4. Proof of Theorem 3.4. Consider at first two useful lemmas.

Lemma B.l (Integral Convergence of t7l (z)). Suppose that (1) £„ (z) has the properties specified in

Lemma C.2 and (2) £n (z) converges marginally to £x (z) under a parameter sequence 7n (<5) = 70 + Hn 5.

Then (a) l^ (z) > in some ball at zero a.s., (b) for any vector-valued continuous function g(z) dominated

by a polynomial as z —* 00

f .
,

ln(z)fi (70 + Hnz) , ^ f ,
. ex (z) ,

U 9 (z)

sKjAz')»{io + HnZ ' )dz >

dz^ JK
9 {z) j~e^WW dz -

Here Kn is either the set {z : yn (S) + Hn z 6 Q} , in which case K = R ; or Kn = K is a fixed cube centered

at the origin. [Convergence in distribution here is taken under any local sequence ~yn {8).]

Lemma B.2 (Convexity Lemma). Suppose {Rt} is a sequence of R-valued random functions, de-

fined on R . If Rt converges in distribution in finite- dimensional sense to Poo, i.e. for any I < 00

(Rt (zj) ,j < l)—*d (R<x>{zj) ,j <l), where R^ is convex and finite on an open non-empty set a.s., then

arg infzeR'! -R7"(z )
->d arginf2gR ,i P«,(z).

Proof of Lemma B.l Assertion (a) is a special case of Lemma 1.5.1 in Ibragimov and Has'minskii (1981b).

Assertion (b) is proven on p. 106-109 of Ibragimov and Has'minskii (1981b) under more general conditions

than conditions (1) and (2).

Proof of Lemma B.2 See Davis, Knight, and Liu (1992) and Pollard (1991).

The first part of the proof of Theorem 3.4 is done by setting the true parameter sequence 7„ (5) = 70.

Considering general sequence does not change the argument but significantly complicates notation.

Write Zn (r) = (c(t) - r„ (70)). Note that

Zn (r) = arg inf T„ (z) , I\, (i) = / p (z - r„ (70 + Hn z) + rn (70) ; r) /" (* )/X (
.

7° + %"**
.

,

dz.
*eR JR d JRd en (z')p,(-ro + Hn z')dz'
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Since \rn (70 + Hn z) — r„ (70) — R"z\ = O Iz \Hn z\
a

J
for a' > 0, it is the case by the properties of the

check function that

\p (z - r„ (70 + Hn z) + r„ (70) ;t)- P (z- R' z; r)
|
< 2\0(z \Hnzf)\,

for any 2. Hence by Lemma B.l

in (z) p. (70 + Hn z)

(B.12)

Tn (z) =f (p(S- Hz; r)+0(z- \Hn z\")) /77wt^L^Jk* jRi in (z')ft (70 + Hn z') dz'

f I- D ' \ In (z) ft (jO + H„Z)
= / p(z-Rz\T)-f „ . . ; —

. , dz + Op(l) .

./if* fRd ln(z')ft(yo+Hn z')dz'
pv;

Applying Lemma B.l again, it follow that the marginal limit of r„ (5) is given by

Recall that Z (r) denotes the minimizer of T^, (z). By Lemma B.2

Zn (t) ->d Z (r) .

Thus, in what follows it suffices to consider only linear functions such that r„ (70 + Hn z) — r„ (70) — R'z =
for all z.

Next we need to establish the uniform integrability for Zn (r). Consider linear transformation f = M'z

defined by the nonsingular matrix M such that R is a column of M . Then, the likelihood for £ given by

£n (M _I
£) has the properties (for some c > and c' > 0):

(a) E^\&2 (M-'O - en
/2 (M~ lt) I

2 < cW - e"| (1 + 2|e'| V jf'|)

,

(b) EP^*{M- li)<e-c'<M- l

\

by nonsingularity of M and Lemma C.2. By Theorem 1.5.2 of Ibragimov and Has'minskii (1981b) for any

local sequence of -yn (<5) = 70 + Hn 5,5 e Rd and any N >

lim H- N
P,n(s) {\Zn (r)\>H} = 0,

ri —too,n—too

(- \ l- \
(B13)

hence hm^ EP^ {s) p \Zn (r) ; r 1 = J5p
70 p ^Z (t) ; tj < 00.

Then identically to the steps in the proof of Lemma 3.1, it can be concluded that {c(t)} minimizes the

asymptotic average risk in the sense of achieving the infimum of

lim sup lim sup—T^r / EP^ p{Zn \T)d&.
KfR d n-too A("-)Jk

over all statistic sequences {£} which are measurable functions of sample (Yj, Xi, i < n), where Zn =
(c — r„ (7n (5))). The rest of the argument that establishes the r-posterior quantiles are (1 — r)-quantile

unbiasedness and resulting coverage properties is identical to the proof of Theorem 3.3

B.5. Proof of Lemma 3.1. Claim 1 is just a special case of Theorem 1.1 of Lehmann and Casella (1998),

Chapter 5. Claim 2 follows by an argument similar to that given by Ibragimov and Has'minskii (1981b)

p.93. Details are omitted for brevity. See Chernozhukov and Hong (2003).
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Appendix C. Important Lemmas

Let 7 = (/?,a) and h = (hg,ha ). Define the standard Hellinger distance ri (757 + ft)
2 =

j J l/'
/2 (v-9(x,0 + h ); x,f + ft) - f

1 ' 2 (y-g (x,0) ; 1,7) \

2dyFx (dx)

.

(note that Ft (dx) is taken outside the
|

•

|

2
-brackets, since it does not depend on the parameters).

Lemma C.l (Hellinger Distance Properties). Under C0-C5, there are a > and A > such that for

all h such that 7 + h 6 Q, uniformly in 7

(a) rl (r,^h)>2^J 1^
', I^P)

"* W r| (7; 7 + ft) < A (|ft,| +
\
ha

\

2

) . (C.l)

Lemma C.2 (Exponential Tails and Holder Continuity). Given (C.l), for some no and all n > no

/or any z, z such that 7 + Hnz 6 5 and 7 + H„,z' 6 Q, and some a' > uniformly in 7

£p7 «» (*)'
/2 < e-'""- 1

', £p7 |4, (z)
1 ' 2 - In (z'Y

/2
\

2 <A (\z - z'\) (1 + 2 • \z'\ V \z\) . (C.2)

C.l. Proof of Lemma C.2. For some B > and
| |

denoting the sup norm,

,„ (i)

EPJn (z)
1/2 < 1 - 2

r2 h> P + u/n >
a + V/Vn)

:
2 > n 2/ «. / . / /--\ ( 3 ) „ ""(l-I.H?) (4) m.«(M.I"l 2

) (6) -.I-I + -

where constant Kg depends only on the diameter of the parameter space Q\ (1) follows by the standard

manipulations of Hellinger distance, as on p. 260 in Ibragimov and Has'minskii (1981a); (2) follows by the

inequality (1 — r) < e
_r when r > 0, (3) is given by (C.l), and (4) and (5) are obvious. Also,

EP,\tn (z)'
/2 - *„ (z')'

/2
|

2 <nr| (7 + (u/n, v/-J^) ;
7 + (u'/n, w'A/n)) < A (\u - u'\ + \v- v'\

2

)

<A (\z -z'\ + \z- z'\
2

)
< A (\z - z'\) (1 + 2 \z'\ V |*|) ,

where (1) follows by the standard manipulation of Hellinger distance, as on p. 260 in Ibragimov and Has'minskii

(1981a), (2) is given, (3) and (4) are obvious.
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C.2. Proof of Lemma C.l. In order to establish (C.l)(b), let 7 = (/?, a) and h = (hp,ha ),

rl{T,l + h)<Ex j (/
1/2

(y -g(X,l3+M I*;/? + fc/j, Q + ha )
- f

i/2
(y - g (X,0) \X; 1))

2

dy

(i)

< Ex f
Hsix,,

\f (y - g(X,p + h )\X;P + h ,a+ha) - f(y - g(X,0)\X;i) dy
'[9{X,0),g(x,0+h

/) )]

+ Ex j (/'
/2 (y- g(X,0 +h )\Xn + h) - f

1/2 (y- g(X,p + hp)\X;fi + hp,a)Y
J\9iX.0),9(X '0+h t))Y

dy

Ex
J\9 <.x,0),g (x„(X,8+h

)]

c
f (y -g(X,0 +M \X;p + he ,a) - / (y - g (X,0) \X;-y) dy

(2)

< 2Ex \g(X,p + h
fi )-g(X,0)\f

da
+ \ha

\

2
I Ex [>

df (y -9(X,/3 + h )\X,p + hg,a + uJ h.

+ ]h0]

l
Ex

f\

dyduj

(3) _
< 2f\hs \Ex [

Jo

\
df(y-g (X, p + whff) \X,

§_ + whe , a)

dp

\dg(X,p + u,hg)

dp

dydw

du + O (\ha
\

2

)
+ (\h \)

= 0(\he \) + 0(\ha
\

2

)

where [a,b] = [0,6] if a < 6 and = [b,a] if 6 < a, and the bound is uniform in 7. The first inequality follows

by triangle inequality and from \a — b\
2 < \a

2 — b
2

\
for a > and 6 > 0. The first term in the second

inequality follows from the fact that \f (|) |
< /. The second and third terms in the second inequality are

by the Taylor expansion and Pubini. The first term in the third inequality follows from Taylor expansion

and Pubini. The second term in the third inequality follows from C4, while the third term in that inequality

is by C2.

The lower bound from below, the equation (C.l)(a), is established by considering separately \h\ < S for some

sufficiently small S and \h\ > S.

Indeed, for sufficiently small S and \h\ < 8 it is shown below that

r
2

{T,l + h)> const max(|ft^|, |/i„|
2
).

On the other hand, by the identification condition CO for all \h\ > 8 such that y + h £ G

r2(7;7 + /0 > es > 0.

Hence for some a > the bound in (C.l)(a) is immediate from (C.3) - (C.4).

It remains to prove (C.3) for \h\ < 8 for some sufficiently small 8. Write

(C.3)

(C4)

'(- '" >'•./ (f
,/2 (y-g(X,p + hg)\Xn + h)-f i ' 2 (y-g(X,p)\X--y)Ydy

l[9(X,e),g(x,(!+h
l) )]

x '

Ex f (f
1/2

(y -g(X,P + hs )\X; 1 + h)-f ,/2 (y-g(X,p)\X; 1)Ydy.



> const Ex
dg{X-p)\

> const \hg\

For small hg, we can bound / from below uniformly in 7 by

Ex ^\g(X,p + hg)-g(X,fi) p
I/2

(X,f) - q
,/2

(X,7)

using assumption C3 and Taylor expansion. On the other hand, by C1-C3, bound // from below by:

Ex f (f
i/*(y-g(X,p + hg)\X- 1 + h)-f

i/2 (y-g(X,0)\X-y))
2

dy
J\g{x,e),9(x.g+h 9 )Y

v Jl[g(X,3),g(x,B+hg)Y

X f
(*

J\g(X.0),g(X.e+h„)Y \

df ll2 (y-9(X\P)h)

)
dy-o(\h\ 2

)

l[g(X,0),g(x,0+h
l) )]

c V <9t

Under C2, C3 and C4(a), a further lower bound is \h\
2
inf, u

|
=1 Ex Ju

( x,fS),g<x.0+hg)Y (

^5(!,

7f ,g);i,) 'u) dy

f ff^(y-g(X,/3)-n )'

>i*r w&
<>,

u 1 dy + O (|/ig|) 1 > const |/i| > const |/iQ
| ,

for sufficiently small |ft|, where the remainder term O (\hg\) arises from neglecting the integrand over the small

area [g (X, 0) , g (X, p + hg)} and using bounds in C2 and C3 to do so. On the other hand, if assumption

C4(b) holds, the uniform lower bound is

,a/' /2
(y-g(*;/?)l7)V

da
Ex f(«

:

&•)

* inf Ex
J I

^ al
X'^'^

u
)

dV> const l^|
2

Conclude inf7 r
2
. (757 + h) > const • max (\hg\, \ha\
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Table 1. Estimator Performance for Intercept /?o- (Based on 500 repetitions).

Estimator RMSE MAD Median AD pthloss (p=10)

n=100
Posterior mean 0.0114 0.0081 0.0059 0.0401

Posterior median 0.0115 0.0078 0.0054 0.0433

MLE 0.0127 0.0088 0.0063 0.0369

n=400

Posterior mean 0.0029 0.0021 0.0015 0.0104

Posterior median 0.0030 0.0020 0.0014 0.0106

MLE 0.0034 0.0023 0.0015 0.0103

Table 2. Estimator Performance for Slope /3i. (Based on 500 repetitions)

Estimator RMSE MAD Median AD pthloss (p=10)

n=100

Posterior mean 0.0212 0.0147 0.0105 0.0983

Posterior median 0.0214 0.0144 0.0096 0.1053

MLE 0.0216 0.0145 0.0096 0.0693

n=400

Posterior mean 0.0053 0.0037 0.0026 0.0227

Posterior median 0.0054 0.0037 0.0025 0.0228

MLE 0.0057 0.0038 0.0024 0.0201

Table 3. Comparison of Inference Methods: Coverage and Average Length of the Nominal

90% Confidence Intervals (Based on 500 repetitions)

Confidence Interval coverage: intercept length: intercept coverage: slope length: slope

n=100

Posterior Interval 0.87 0.0298 0.85 0.0555

Bootstrap P-mean 0.88 0.0392 0.86 0.0720

Subsampling: P-mean 0.83 0.0416 0.82 0.0770

Limit process: P-mean 0.86 0.0346 0.84 0.0587

Limit process: P-median 0.85 0.0352 0.86 0.0610

Limit process: MLE 0.93 0.0347 0.95 0.0653

n=400
Posterior Intervals 0.87 0.0075 0.86 0.0140

Bootstrap: P-mean 0.84 0.0089 0.88 0.0167

Subsampling: P-mean 0.82 0.0085 0.83 0.0158

Limit process: P-mean 0.89 0.0085 0.82 0.0145

Limit process: P-median 0.86 0.0087 0.86 0.0150

Limit process: MLE 0.89 0.0084 0.92 0.0157



Technical Addendum, Part I

This addendum includes the excluded material, such as omitted simpler calculations and simpler proofs,

and some background material on point processes. The addendum will be made available as a part of an

MIT Economics Department Technical Report published by the Social Science Research Network.

Appendix D. Point Processes

The following definitions are collected from Resnick (1987).

Definition D.l (MP (E)). Let E be a locally compact topological space with a countable basis, and £ to be

the Borel cr-algebra of subsets of E. A point measure (p.m.) pon (E,£) is a measure of the following form: for

{Xi,i > 1}, a countable collection of points (called points of p), and any set A G £: p(A) = £V l(i, 6 A). If

p(K) < oo, for any K C E compact, then p is said to be Radon. A p.m. p is simple if p{x) < 1 Vx 6 E, and

is compound otherwise. Let MP(E) be the collection of all Radon point measures. Sequence {pn } C MP (E)

converges vaguely to p, if / /dp„ —> / fdp for all functions / € Ck (E) [continuous, real-valued, and vanishing

outside a compact set]. Vague convergence induces vague topology on MP (E). The topological space MV (E)

is metrizable as complete separable metric space. MP (E) denotes such metric space hereafter. Define Ai p(E)

to be cr-algebra generated by open sets.

Definition D.2 (Point Processes. Convergence in Distribution.). A point process in MP (E) is a

measurable map N : (CI, J7 , P) —> (Mp (E) ,M P (E)) , i.e. for every elementary event w 6 ft, the realization of

the point process N(u;) is some point measure in MP (E). Weak convergence of the point processes N„ taking

values in MP (E) is the same as for any metric space, cf. Resnick (1987): we shall write N„ =$ N in MP(E)

if Eph(N n ) —> Eph(N) for all continuous and bounded functions h mapping MP(E) to R. Note that if

N„ => N in MP (E), then JE f(x)dNn (x)—>d Jf:
f(x)dN(x) for any / 6 Ck(E) by continuous mapping

theorem.

Definition D.3. (Poisson Point Process) The point process N is a Poisson Point Process with mean

intensity measure m on (E,£), if

(a) for any F € £, and any non-negative integer k

= *) =
{

P(N(F) = *) = <
--"MfOVH if-W < oo

ifm(F)=oo,

(b) if (Ft,i < k) are disjoint sets in £, then (N(F,),i < k) are independent random variables.

Appendix E. Plausibility of CO C5

This section illustrates the plausibility of conditions C0-C5 using the Paarsch's (1992) independent

private value auction model in section 2.1. For clarity consider the example used in the Monte-Carlo

section: 02 = 1 and 8\ = exp(/3'Z), with the following assumptions. More general examples can be verified

similarly. For example 62 can be made a function of regressors too, and verification proceeds similarly but

is notationally much more burdensome.

Assumptions (in addition to those listed in Section 2.1)

Al Yi,Xi = (Z,,mi) are iid, /? G B, a compact convex subset of W*. X 6 X, a compact subset of Rd" +I
.
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A2 Fx (x) does not depend on /3. EZZ' is positive definite.

A3 3 < m, < M for some M < oo, where m, is (non-degenerate) number of bidders (minus 1).

Verification of CO: Al implies iid sampling and compactness and convexity of parameter space stated in

CO.

Under the stated parameterization

g (A',/3) = exp {0Z) (m - 1) / (m - 2)

and

'('••
' ",

.

9{x
^r,m+1 He>o).

Note that 7 = j3 and A2 and A3 imply that for /3 ^ /3'
,
g(X,@) ^ g(X,/3') for some X with positive

probability. Since the f (y — g (X,/3) \X,/3) density function is strictly monotone in g (X,/3), identification

holds.

Verification of CI: Clearly the model is a one-sided model Cl.(ii) in which f(e\x,(3) = q(x,/3) = and

P(XJ)=m
[g(XMm+,= 9lxT)

is strictly bounded away from and from above by Al and A3.

Verification of C2: / (e|A,/3), as defined, is obviously upper semi-continuous at « = 0, is maximized at e =
for each A and /3, and is uniformly bounded by Al. Its first derivative in e:

is continuous in e except at e = and bounded uniformly in (e, A, /?) by Al and A3.

9(X,0)

The first partial derivative of / (e\X, /?) in

d

dp
f{e\X,p) = Z m — (m + 1) f(e\X,P)

[e + g(X,/3)]i

is clearly continuous in X and /3 and bounded uniformly in (e, A,/3) by Al and A3. This holds similarly

for -*
2

epeprf(e\X,P)

a
2

d/Sd/37
f(e\X,0) = ZZ'f(e\X,j3) I m — (m + 1)

9(X,j3)

[e + g[X
'i_V_ (m + 1)r

i^L + (ra + 1)
jM

[e+g(X,p)] [e + g(X,0)Y

All of the above quantities are continuous in X for each e and /?. Finally, for some constant C

dp

which implies

f(y-g(X,P)\X,0) \=l(y>9(X,p))
m2g(X,pr

,,771+ 1
-9(X,P)Z

sup Ex f\&{*-'&>fi\*' i*)\*s Bxcy=x

<i{y>-C)—^,

dy < 00.

Verification of C3: This is verified immediately by noting that:

^g(X,P) = g(X,p)Z,



and

due to Al. Also note that

dpdp

dg(X;p)dg(X;p)

-g{X,p)=g(X,p)ZZ',

E [g(X,j3)
2
ZZ'] > cEZZ

dp dp

for some c > due to Al and A3. By A2 EZZ' is positive definite.

Verification of C4: Verification of C4 is not needed since parameter a is not present.

Verification of C5: When the true parameter is 7 so that e, = Y, — g(Xj,P), we have that

/ (Y, - g(X„0)\X,p) = m—l^S-^-^l (Y, - g(X„p) > 0) .

Therefore by Al and A3

sup
B

£\nf(Y-g(X„0)\X„p)

[e,+g(X„l3)r

= supl(Y,-g(X„P)>0)
&

(m+D 9ixrJK^

m — (m + 1)
g(x„p)

[t,+g(X„p)}\
z,

t, + g{Xi,P)

< C\ < 00,

and

sup
3

^\nf(Y,-g(X,J)\X,J) = sapl{Yi-g(XiJ)>Q)
8

g(x,J)

{m + d
9(x

;
J)

iZ
,

(m+1)
[e,+g{X„p)}\

zX

e,+g(X„p)

< Cz < 00.

Appendix F. Excluded Simple Derivations

F.l. In Proof of Theorem 3.1. These additional derivations are added at the request of a referee. Write

Tl

<?!»(*)= £>«(*) xl„(«) (F.l)

t=i

where l )n («) = [l(e, >{A„(X„u)/nV0}) + l(«, < {An (X„u)/n A ()})] .

At first, for a fixed 2, we use a Taylor expansion of f,„(z) for each i and plugging this back into expression

for Q\n {z)

Tl *—

»

,1 ^ dg(Xu p +^) d
, ( ( An (X„n,n )

5/3 dt
In/

(« Xi
, po + u/n, Qo + v/y/nj l«n(«) t

V-=V"* 5— ln/(«i|A'i,7o) lin(u) +«'- V" ^3 In/ I e, 2 -

—

\X,,Po + uln /n,a + v/y/n ) l,„(u)
y/n '—^ oa n *—* op \ n /

1 ,

+
2
V ~~ / a a , f e> A,,/3 + ,"/rJ,Qo + V,„/VJ1 l,n(u)

n f—f oaoa \ n I
1 = 1

'

v,



where «i„ is a point on the line between and u that depend on u and (e,, Xi) (but not on other observations),

and Vi n is a point on the line between and v that depends on v and (ty, Xj) (but not on other observations).

Thus, the terms are iid in the above summations.

Application of Chebyshev inequality, the bounded density condition Cl, and the bounded derivative

condition C3 removes lin (u) in the term II, and adds op (l) to the above expression. For example, consider

Var -^f^ln/(ei|*,-,7o)(l,-n(u)-l) < const • {f/ff -f]E\lin (u) - 1|— Tt. * *
(F.2)

Similarly

Hence

< const(/7/) 2
-2-(/p')/7i = (l).

£iE £ ln f^\X»^ (!.»(«) - 1) = o(l).

* 1= 1

Also elementary calculations, as in (F.2), and application of Chebyshev inequality, show that by the

bounded density conditions C2 and bounded derivative condition C3, we can replace «,„, Vin by and

remove l,„(a) from the expression for /, //' and ///, and add a term op (l) to the whole expression. The

application of Markov LLN along with C5 allows to replace each of the terms with its limit expectation,

and gives the required conclusion.

F.2. Proof of Independence needed in the Proof of Theorem 3.1. These additional derivations are

added at the request of a referee. The proof was omitted from the main text, because it follows essentially

from the standard proof concerning the independence of minimal order statistics (extremal processes) and

sample averages of general form (partial sum processes), see e.g. Resnick (1986) and Lemma 21.19 in van der

Vaart (1999). It is presented here for completeness.

Since up to op (l) terms, the only stochastic element in {Q
c
n (zj) ,j < I) is W„, we need to show that

(Qn ("Uj) ,j < ') are asymptotically independent of W„, where ignoring op (l) term

On(u) =E f
ln ^Ya 1 (° < nti < A (*')'«) +ln£7$l 1 (° > "e ' > AW«)
p(Xi q(X,

For clarity we first present the proof for the case when I = 1, and discuss the changes needed to accom-

modate I > 1. For notation sake, we do not index P by 7.

Case I: / = 1. By an argument similar to that in (F.2), Wn — Wn = op (1), where

Wn = -^^^ln/(e 1 |X,, 7o)l(e, > {A(X,)'u/n} V or a < {A(X,)'u/n} /\0)
V

1= 1

Therefore it suffices to show asymptotic independence between Wn and Q^ (u). Define

71

Ql (u ) = ^ [1 (0 < nc, < A{X,)'u) + 1 (0 > ne, > A(X,)'u)]



and
CO

QZ,(u) = J2 [!(° < * <&{Xi)'u) + 1(0 > J'f > A (#/)'«)]

Then asymptotic independence between W„ and Q^ («) follows by the Portmanteau Lemma and proving

that for any real x,y and integer k:

limsupP IqI (u) = fc,q* (u) < x,W, < y} < -P {<?L («) = *,<& (u) < x} P{W < y} .

To show (F.3), proceed in two steps. In Step 1 below, invoking iid sampling, it is shown that

P [Ql («) = k,Qi (u) <x,Wn <y}=P [Ql (ti) = fc,Q* (u) < x} p{yiZiW„ < y}

where

(F.3)

(F.4)

W„ E^/tel*.*). (F.5)
yjn-k f^ da

where ?;, X; for i < n — k axe i.i.d. draws from the distribution of ei,X, conditional on

A(ei,Xi) = {e, > A(X,)'u/n V or e, < A(X,)'u/« A 0}.

Step 2 applies CLT to show that Wn —> d W. Finally, convergence N => N implies similarly to the proof in

Theorem 3.1 and by the Portmanteau Lemma that

lim sup P{QZ (u) = k,Qdn (u) < x) < PJQ^ (u) = k,Qt («) < x} .

Thus the proof is complete given Steps 1 and 2.

Step 1. Define pn = P {A(ci, Xi)
c
}. By i.i.d. sampling in CO, the left hand side of (F.4) can be written as

(l)pUl-Pn)
n - k P\ J2 M"«»,*i)<*

;=n-i+ ]

1 (0 < nti < A(Xj)'u) + 1 (0 > ru, > A(X,)'u) = 1, for i = n- k + 1,.,...,71 >

XP{^g£'n/(f ' |X-' 70) ^
= P{Q^M=k,Qi(u)<x}

e, > {A(Xj)'u/n} V or e, < {A(X,)'u/n} A 0, for alit < n- k >,

where function /„ is defined in Theorem 3.1 and W„ in (F.5).

Step 2. W„—>d W follows by checking three conditions:

(a) £Wn ->0,

(b) Var (w„) -» Vor(W), and

(c) Lindeberg's condition is satisfied.

Condition (a) requires EW„ = Vn - kE-§^ In / (ii\Xi,~fo) -> 0. This is true because

E* />!(<,,x,)£ ln / W*.>7o) /( f,|X, 7o)^, _ /=
-Sx^(«.,x .

)
«£ln/M^7o)/(*i|*,-,7o)<fei

EW„ =Vn^k = —vn- fc-
P{>4( f„X,)}

By C2 limn-,00 P{A(e,,X,)} = 1. In addition, for large enough n:

P{A((„X,)}

-Ex f ^-\nf(e,\X, no)f(u\X„ 1o)de,<2U'/f)(9f)(b
JAUi.Xi)* oa n



Hence £W„ —> 0. A similar calculation verifies

Var(wn) =JS^ln/(e,-|X„7o)^ln/(ei|X1-,7o)'- E— In/ (e,|X1)7o )

^££ln/(e,|XI ,7o)^ln/(e 1 |X! ,7o)' = Var(W„).

The final step is to verify the Lindeberg condition, that for all A ^ and all f > 0,

n-k

> &n-k\/n]^£#l ln>NW)i( V^ln/^IXi.To)

where we define

2
°n-k ^T, Var

\
x'i: lQf(^^)

n — k
= X'Var

da
ln/(ei|Xi,7o)

(F.6)

(F.7)

Since a\_ k converges to a positive constant by (b), the conclusion (F.6) follows from

^(A'^ln/(e-,|X,, 7o)) ^(V^ln/^pG^o)) /P{A(u,

X

t)} < oo;

which, in turn, follows from limn_nx, P{ J4(e,, -X,)} = 1 and by C4.

Case II: I > 1. This involves more tedious notations but follows the same logic. Note that W„-W, = ov (1),

where

Wn = ^y"#-ln/(€,|X,, 7o)l(e, >{A(X0'%/n}V0ore, < {^{X^'uj/n} A 0, for all j < i) •

vn ~^ oa

Hence it suffices to show the asymptotic independence between (Q^ (uj) ,j<l) and Wn . By the Portman-

teau Lemma it suffices to show that for any real Xj and y and any integers kj and k for j = 1, ...,l

limsupP {qI (m) = ku Q
d
n (Ul ) < x u ...,Q

p
n (u,) = k,,Q

d
n (ui) < xh Qi = k, W„ < y\

<P{QPX («i) = fci.Qi («i) < x,, ...,(&, (ti,) = fc,,Qi («i) < *,,QU = *} -P{W < y}

(F.8)

where

Q*n =^2(l[0 < ne, < A (X,)' uj, for some j < l] + 1 [0 > net
- > A (X,)' u,, for some j < I])

and

QU = ^ fl [0< J, < A (Xi)' uj, for some j < l] + 1[0 > J\ > A (AT/)' jy, for some j < I])

By iid sampling in CO, the left hand side of (F.8) (without limsup) equals

P {QKu,) = huQiim) < xU -,Q*(u
t ) = kh Qi(ut ) < xi,Q

(

n = k)

„f i v;'«
da

\i>f(ei \Xi ,jo)<y €i > {A(Xj)'uj/n] V or c, < {A(X,-)'tt//n} A 0, for all j < J, for alii < n - fc I,

- p{v^?w"- !'}

where W, = -J=f^°=1 ^ In / I e,|X,,7o) and e,,X, are i.i.d. draws from the distribution of a,Xi

conditional on

A(u,Xi) = {e, > {A(X,)'uj/n} V or u < {A(A\)'u_,/ti} A 0, for all j < I}.
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Similarly to the proof of Theorem 3.1, convergence N => N implies that by the Portmanteau Lemma that

limsup p{Qp
n (ui) = ki,Qi (ui) < xi,..., QS (w) = fo.On (w/) < x,,Q|, = A:}

<p{Q^(ui) = *i,Q£,(ui)<zi,...,Q^(ui) = fci,Q»(ui)<x,,QU = *}

Finally, that limn _,<x, f{
1/

ZL^Wn < y} = P {VK < y} follows similarly to the proof of (a)-(c) in Step 2 in

Case I (when 1 = 1).

F.3. Proof of Lemma 3.1. Claim 1 is just a special case of Theorem 1.1 of Lehmann and Casella (1998),

Chapter 5. Claim 2 follows by an argument similar to that given by Ibragimov and Has'minskii (1981b)

p.93.

Let Z* = H„' (7,.^,„ — 7n(<5)), where index 5 emphasizes the dependence of the distribution of Zt on the

local parameter sequence 7n(<5). Define

I(K) = limsup In (K), In (K) = -^— [ EP p(Zs
n )d6.

It follows from Fatou's lemma and conclusion (B.7) that I(K) = -^rj^. JK EP_
lo
p(Zao )d& = EP^ p(Z). Thus

I = limsup^R,; I(K) = EP^o p{Z).

Next let Z^(-K) = H„' (7p.a k ,t. — 7n(<5)), where ~/P ,x K ,
n is the Bayes estimator defined with respect to

the loss function p and prior A«(7) = 1{H~ 1

(7 — fo) 6 K}. Define

II(K) = limsup //„(«"), //„(*) = rr^r [ EP (Zl
n (K))d6.

dBy Lemma B.2 and Lemma B.l it follows that for any <eK

Zs
n (K)-^d Z

5
(K) = axg inf / p{z - {r, - 8)) ^_~ ^.. dr,.

The property - P7n(6) {Z*(iir) > |K| + <$} = 0, for |/C| = sup{|z| : 2 6 K} for any <5 e III
d and n < 00, -

provides the necessary uniform integrability to conclude limn_Kx, EP p(Z„(K)) = EP p(Zs (K)); which

by Fatou's lemma implies that II(K) =
Jk(

'

K . fK E

p

n
p(Zs (K))d5

.

By finite-sample average risk efficiency of the Bayes estimator ~jP ,>. K ,n

IIn (K) < In (K) for each n, hence IJ(K) < I(K) = I.

Then limsupKTR j H{K) — I follows from (a) II(K) < I for each K, (b) noting that for any 8 6 Md
as

K f R Z (A") —

>

p Z, and (c) dominated convergence theorem, as shown below.

The claim (2) now follows. Indeed, suppose there exists an estimator sequence {7,1} that achieves a

strictly lower asymptotic average risk. Define Z£ = H~ l

(yn — 7n(<5)), then it must be that for some K, no,

and infinitely many n > no, wW fK EP p{Zs
n )d8 < II„(K), which contradicts to finite-sample average

risk-efficiency of the Bayes estimator
~tP .\ K ,„ for each such n.

Proof of limsup KTR<i //(X) = I. Rewrite II(K) < I(K) as JK EP^ o [p(Zs (K)) - p(Z)] d5/X(K) < or

J
E

",o
[p(Z

S (K))-p{Z)]
+
dS/^K)-J EPno [p{Z

s {K))-p(Z)]~ d8/\{K) < 0. (F.9)



Next as r(K) —> oo

f EPlo \p(Z
s
(K)) - p(Z)] ' dS/X(K) = [ EPlQ \p{Z^K\K)) - p(Z)]

~
dr, -> 0, (F.10)

JK l J J (-1,1)* L J

where r(K) denotes the width of the cube K (which is assumed to be centered at zero). Conclusion (F.10)

follows by (b)
,
(c), and the domination (uniform integrability) condition:

for any 77 6 (0, l)
d and any K, \p(Z

VT{K) (K)) - p(Z)Y < p(Z), where EPl(j p(Z) < 00. (F.ll)

But (F.9)- (F.ll) imply that it must be that JK EP^ o
[p(Z*(K)) - p(Z)]

+
d5/X(K) -> as r(K) -> 00.

Thus JI(K) - J -+ as # t Rd
-



Technical Addendum, Part II: Maximum Likelihood Estimation

This addendum includes the material on the maximum likelihood estimation. The main text only contains

the statement of the result. The addendum will be made available as part of a MIT Economics Department

Working Paper published by the Social Science Research Network.

Appendix G. Maximum Likelihood Procedures.

The Maximum Likelihood Estimator (MLE) is given by

7 = (&',&')' = arginf - Ln (f).
765

We obtain various properties of the MLE such as consistency, rates of convergence (n for the parameter j3

and -Jn for the parameter a), and its asymptotic distribution. The limit distribution for a is the standard

one for smooth likelihood analysis. The asymptotic distribution for /3 is an extreme type distribution, which

may be used for inference in the same way as any standard distribution. For example, denoting the limit

variable Ze and the parameter sequence 7n(<5) = 7o + Hn 5,

Zi = n0 - /?„(<*))->* Z*
,

for any continuously differentiate functions r of /?,

«(rW-r(ft))^|r(W'Z'.

Then, quantiles of distribution of ^r(/?o)''

Z

s can be estimated by simulating a series of draws of

£sr((3)'ZP , according to the formulas given in this paper, and then used for classical inference and hy-

pothesis testing. (Alternatively, parametric bootstrap may be used). For example, denoting by c(t) the

Q-quantile of §gr(f5)'
Z°

, an asymptotic 90% confidence interval is given by

'rcft-321, kA-S?}
The limit distribution is also useful for bias correction. For example, to remove the (first-order) asymptotic

median bias, simply take r(ft) — £~-

On the other hand, inference about a is standard. The limit distribution of either MLE or BE's (for

symmetric loss functions) under the parameter sequence 7n(<5) = 70 + Hn 5 is given by

Zl = V^(a - a„(<5)Hd Z
a ±N{Q,J~ l

),

where J = —E o*
a ,

ln/(Yi —g{Xi,j3)\Xi,p,a) is the usual information matrix for a. The limit variable Za

is in fact independent from Z , which follows from the information about /9 coming from a small fraction

of the whole sample located near the jump points, and information about a coming from the whole sample

and averaged over (so that impact of the small fraction is negligible).20

20This intuition is based on e.g. Resnick (1986) and van der Vaart (1999)'s Lemma 21.19 concerning the indepen-

dence of minimal order statistics and sample averages.
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The usual estimates of the information matrix can be used for inference. This result, combined with the

one above, can also be used for inference about functions r(fi, a) of both /? and a using the delta-method:

>/n(r08, a) - r(/3 ,a )) =
dr

^ ao) '^0 - fa) +
dr{

^
ao) '^i(& - Qo ) + o,(l/VS)

&dr(g2
i
aoyza +

oa

Also, in this case it is possible to use the second order expansion, from which ($ — /?o) does not vanish, to

better capture the estimation uncertainty, i.e.

/ZMA A\ r lR n ^ i. dr(p ,a Y ZB gK^op) ' Za
' 1 d2

r(/3o,a ) „„ ,-
v^(r(^a)-r(/? ,ao))«

Q&
-j* + 9q

Z +—-—^—Z +0p(l/^).

In many situations, such as the previous auction example, the functions of prime interest depend only on

/?, and the regular parameter a is not present. Quantiles of the above distributional approximation can be

obtained by simulation, which consists of making draws of the variables Z and Za , independently of each

other, evaluating the above expressions (with derivatives of function r evaluated at the estimates), and then

taking the appropriate quantiles of the simulated series. The resulting quantiles can be used for classical

Wald intervals and hypothesis testing.

Theorem G.l (Properties of MLE). Under C0-C5, and supposing that —too(z) attains a unique mini-

mum in R a.s., then Zn = Op (l) and

Particularly, Z°-> d Za = J-'W = A/"(0, J
--1

), Z%->d Z = argmin^ cR^ - £>oo(u), and Ze and Z" are

independent.

This result states the consistency, the rates of convergence, and the limit distribution of the MLE. The

limit is given in form of argmin of a limit likelihood. Due to asymptotic independence of the informa-

tion about the shape parameter from the information about the location parameter, the MLE's for these

parameters are asymptotically independent.

Remark G.l (Boundary Models). In the boundary models the limit result can be made more explicit:

y/n(a - an (6))-+d argsup (Wv - v'jv/2) = J" 1W = ^(O.J^ 1

),

and by (3.7)

n(P — Pn(i))—>d arginf (
— exp(u'm) such that J, > A(Xi)'u, for all i > lj,

= argsup f u'm such that J, > A(Xi)
1

u, for all i > 11.
u ^ '

The limit distribution of MLE is thus convenient in the boundary models and can be simulated by solving

an Li-linear programming problem, which can be done at the speeds of OLS through the use of interior

point algorithms, cf. Portnoy and Koenker (1997). In contrast, bootstrapping requires repeated solutions of

a nonlinear programming problem and is much less practical.

Remark G.2 (Uniqueness). The condition that —loo(z) attains a unique minimum a.s. is necessary and

does not appear to be problematic. The invertibility of the information matrix J guarantees the unique-

ness of Za
, and the solutions of linear programs like those above are unique under mild conditions, which

10



guarantees uniqueness of Z® . E.g. when A (^^'s support does not concentrate on a proper linear subspace

of lower dimension, has an absolutely continuous component and the variables J, are absolutely continuous,

see e.g. Portnoy (1991) for a related problem. Also when A(/f,)'s have discrete support the limit result

corresponds to the result of Donald and Paarsch (1993a) who show that uniqueness holds in that case too.

G.l. Epi-graphical Convergence. Epi-convergence in distribution has been developed in the work on

the stochastic approximation of optimization problems, cf. Knight (2000), Pflug (1995), Salinetti and Wets

(1986), Rockafellar and Wets (1998), among others. Suppose that the sequence of objectives {Qn} are

random lower semi-continuous (1-sc) functions, that is for each n, Qn{x) < liminfIj._n Qn(x3 ), Vz, Vij —

>

x. Let £ be the space of 1-sc functions / : Rd —> R = [— oo, -t-oo] such that / ^ oo.

Qn is said to epi-converge in distribution to Q in C if for any closed rectangles .R] , ..., Rk in R with open

interiors R*\, ...,Rk , and any real n, ..-, rk :

p{ inf Q(x)>r u..., inf Q(x) > rk )

(1)
f

-1

< liminfP^ inf Q„(i) > n, ..., inf Q n (x) > rk \

(2) f
1< limsupP-^ inf Qn {x) > n , ..., inf Qn {x) > rk f

(3)
f

-,

< P\ inf Q(x)>r,,..., inf Q{x)>rk \.

(G.l)

Note that the inequality (2) is simply by lower-semi-continuity. Epi-convergence is a weak condition that

leads to weak convergence of argmins. It is also an evident condition, since P[arg infl£ K Qn(x) < a] =

P[infIg K,i< a Qn(x) < in{X£K tT .£ a Qn (x)]. Thus if one can characterize the joint distribution of the terms

infieK,x<a Q-n(x) and infl€ K>ga Q n {x), one obtains the limit distribution of argmin.

The following lemma is given in Knight (2000), Pflug (1995) Salinetti and Wets (1986), among others.

Lemma G.l. Let Z„ be s.t. Qn (Z„) < inf. eR j Qn (z) + en , e„ \ 0, and suppose

i. Zn =Op (l),

ii. Zoo = arginfieR jQoo(z) 13 uniquely defined m TR
d

a.s., and

iii. Qn() epi-converges in distribution to Qoo(),

then Zn —>i Zoo.

Epi-convergence is more general than uniform convergence, because it allows for non-vanishing discontinu-

ities. In our case, the non-vanishing discontinuities make the uniform convergence of the likelihood function

impossible. The recent remarkable work of Knight (2000) provides convenient sufficient conditions for verify-

ing epi-convergence, which amount to converting the finite-dimensional limits to epi-limits via a device called

stochastic equisemicontinuity. The work extends Salinetti and Wets (1986) by defining an "in probability"

version of stochastic equisemicontinuity a.s. We shall prove epi-convergence directly, albeit borrowing the

general structure of the proof from Knight (2000). In fact, part of the proof replicates the proof of Theorem

2 of Knight (2000).



G.2. Proof of Theorem G.l. First, note that the MLE and other variables such as infze /c —Qn(z), are

measurable by Proposition 3.2 in Dupacova and Wets (1988), given C0-C3.

Second, we use Lemma G.l on epi-convergence to prove the result. By definition

Zn = arg sup tn(z) = arg inf -Qn {z),

where U„ is the rescaled parameter space ^/n(A — an (S)) x n(B — /?n (<5)), Qn (z) is defined in the proof of

Theorem 3.1. It will be proved that

Zn ->d Z = arg sup £oo(z) = arg inf -<2oo(z),

where Qao(z) is defined in the proof of Theorem 3.1.

Lemma G.l may be verified by checking three conditions:

(a) epi-convergence in distribution of —Qn to its finite-dimensional limit —Qoo,

(b) Zn = 0„(1), and

(c) uniqueness of Z.

Conditions (c) is assumed. Condition (b) is shown below. It is more difficult to prove (a). The general idea

of the proof is borrowed from Knight (2000) 's proof of his Theorem 2. The specifics are based on bounding

two types of modulus of continuity by a strategy that is similar to the one in Ibragimov and Has'minskii

(1981a).

Definition of epi-convergence in (G.l) consists of parts (l)-(3). We verify part (1) only, part (3) follows

almost identically, and part (2) holds trivially (by definition of lower-semi-continuity.) For notation sake, in

what follows we do not index P by 7n(5).

Given a collection of rectangles Ri,..., Rk, write

Pi inf -Qn(z) > n,..., inf -Qn(z) > rk \ = 1 - p{u,< fc { inf -Qn (z) < rj }\.
K z£R] z€.Rk J I. z£Rj )

Thus, to verify (1) in (G.l) it suffices to show

limsupP{u7<t { inf -Q„(z) < rj}\ < P\uj<k { inf -Qoo(z) < rj}\. (G.2)

To explain the result clearly, first bound the probability of the event

{ inf -Qn (z) <r} = { inf (-Ql(z) - Q
d
n {u)) < r\.

Denote R = R^ x R" . Define two sets of grid-points as follows.

Consider the grid of equidistant points {vs } and {um } inside the rectangles Ra and R such that sup-

distance between the adjacent points is at most tp. Also cover R by the sets V,*, as defined in the proof

of Lemma G.2 where and let Ukj denote a carefully chosen point inside the cover set Vjy, as defined in the

proof of Lemma G.2.

Next, define collection of points {zi} as the Cartesian product {vs } x ({wm } U {«*j})- This collection of

grid points has the property that the nearest grid-points are at most <p apart from each other. The collection

of {zi} will be used to approximate the infz6 fl
—Q c

n (z) by inf^j.,} —Qc
n (z). The collection of {ukj} will be

used to approximate the behavior of infueH^ —Qn(u ) by infu6 {ut }
—Q„(u).

12



Then

\mf -Qn(z)<r\c\\ inf -Q c

n {z) + inf -Q d
n (u) < r + e\ n

{
a}\ U Ac

,
(G .3)

where A is the event that the finite-dimensional approximation "works" and Ac
is its complement, that is

A = {»g ; (R, <p) < e, iQi
(R, <p) = 0}

,

where wQ ^(R,<p) and Ld (R,<p) are the moduli of continuity of the continuous part Qc
n and discontinuous

part Qi, respectively:

WQ'„(R><P) = SUP l<3n(2l) - Qn(22)l.
Il,^2e'?i|z ] -Z2l<V

^(fl,rf = l inf -<#(«)< inf -Qi(u)\.

The modulus WQ^(R,(p) is a standard measure of equicontinuity of Qc
n . The modulus £Q j(R,<p) is a

Skorohod-type modulus, it tells whether the infimum of the step function —Qi(z) coincides with the mini-

mum of — Qn(z) computed over a finite set of grid points {zi}-

Lemma G.3 bounds the probability of Ac
:

P{wQ '
n
(R,ip) > c\ < const -\R\ -£~ l

<p, P{(Qd (R,¥>) = l} < const \R\ tp, (G.5)

where \R\ = sup{|z| : z e R}. For any e > and given R, we can pick ip(e) small enough such that the rhs

of (G.5) is smaller than e/2.

Hence

P{ inf-Q„(z) <r\<p{ inf -Qc
n (z) + inf -Qd

n (u) < r + e\+e,

and by Theorem 3.1 and the Portmanteu Lemma

limsupPJinf -Qn {z) < r) < p{ inf -Qc

n (z) + inf -Q?,(z) < r + c\ + e

< p{ inf -QK (j) < r + e} + e.

Since £ > is arbitrary

limsupPJ inf -Qn (z) < r\ < p\ inf -Qx (z) < A.

Thus for UfP) C R, it follows that

limsupP{u*=1 { inf -Q„(z) <r
; }| < P{u*=i{ inf -Qoo{z) < r,1 + e}\ + e.

Since e is arbitrary, the required conclusion (G.2) follows.

Finally, it remains to establish Zn = Op (l). First, the MLE 7 is consistent by a generalization of Wald's

Theorem on Consistency of MLE - Theorem 3.3 of Artstein and Wets (1995) - which requires

(a) 7 >-» — ln/(V, — g(Xi, /3)|X,,7) is a.s. lower semi-continuous (which is true by C2 and C3),

(b) the domination: sup^EPl sup
T

, ln/(K, - g(Xi,P')\Xi,*j') < In/ < +oo, which is true by C2,

(c) identification (by CO),

(d) compact parameter space (by CO).

13



Consistency implies wp —> 1 Zn € Sn = {z : |u|/%A* < £n, \u\/n < en } for some e„ -> 0; which aJlows the

use of inequalities (G.6) and (G.7) proved in Lemma G.3, along with the exponential inequality for El]/ (z)

given in Lemma C.2. These inequalities imply, by a standard argument like that on p. 265 in Ibragimov

and Has'minskii (1981a) [see Lemma G.4], that for sufficiently large A > and any N >

p{ sup en (z) >A~ N
\ <CN A~ N

, where Ov > 0.

Hence P{\Zn \
> A} < CNA~N , and it follows that Zn = Op (l).

Lemma G.2 (Lipschitz Continuity of Q c
n ). Under C0-C5, for a small 8 > 0, there is a random variable

Cn > such that for all n > no and some large no

\Ql(zi) -<?.»(*i)| < Cn \zi - z2 \{\zi |+1), sup EP^Cn <oo,
i>no,7efl<(7o)

uniformly over all \z\ — zi\ < 1 in the set Sn = {z : lul/v^ < £n, |«|/" < £«}, tuftere £„ -4 0.

Lemma G.3 (Bounding Moduli of Continuity). Under C0-C5, for all n : N > no, where no is

sufficiently large, for some 5 > 0, and any bounded rectangle R C Sn :

1. For all sufficiently small <p > and e >

su

2. For all sufficiently small ip >

sup P7 (wQ^(R,tp) > e) < const • \R\ e V. (G 61
76B4<-ro) v

'

'

sup P7 (£ ,i (P, tp) = 1) < const |i?| vs, /G ^

where \R\ = sup{|z| : z G fl}, and tziQ^ () and £Q d () are defined in the proof of Theorem G.l.

Lemma G.4 (Tail Bound). Under C0-C5, for sufficiently large A > and any N >

P7 { sup en (z) > A~N \ < CNA~ N
, where CN > 0.

uniformly in 7 € .8,5 (70) for some 8 > 0.

G.3. Proof of Lemma G.2(short proof). The Lemma G.2 is needed for the MLE part only. The result

follows by a standard empirical process argument, noting that the object of interest is a function that is an

average and that is a spline type object. The result then follows by the Taylor-like expansion and obtaining

expressions of the from Cn (ei,Zi , Z2)|zi — £2|||zi| + 1|, and finally applying a maximal moment inequality

to the coefficients Cn (u,zi,Z2), specifically Lemma 19.34 in van der Vaart (1999). [Details are given in the

last section of this document.]

G.4. Proof of Lemma G.3. The first part follows by the Markov inequality and Lemma G.2. The second

part is proven below. In the one-dimensional case with no covariates, the argument essentially reduces to

the proof given on p. 262 in Ibragimov and Has'minskii (1981a).

(a) [Covering Sets.] For a hyper-cube R = Ra x R8
, where R" C Rd" and R C Rd

", construct a

collection of (possibly overlapping) subsets {Vkj} of R8 as follows. First cover the support of vector A(X)

by the minimal number of closed equal-sized cubes {Xj,j,j < J((f>)} with the side-length of the cube equal

to <p < 1. There are J{4>) < const (l/<f>)
dB such cubes.

14



Recall that
dAn (X,u) _ dg{x,P) \

du d/3 \0=eo +u/n

Note also that uniformly in u in Rs and uniformly in Rr C {u : \\u\\/n < En } for some given sequence

en —> 0, we have
dA n (X,u)

du
In particular, choose no such that for all n > no (no depends on <j>)

I dAn (X,u

= A(X) + o(l).

depends on <j>)

A(X)| < (j>

7
a.s.

I du

Thus, for any given x and any R , and given that A(x) G X^,
; , we have that

Uuefl" "^""^— belongs at most to K" = 2 " cubes of the form X^j/ that are adjacent to X^ .
(G.8)

(We only need that K" is finite and is independent of <f>
and R ). Thus, in what follows it is helpful to think

of
aA

Q^
1 '"'

as being equal A(x) and independent from u.

Construct the (overlapping) sets
21

{vk] ,k = -m,...,m,j = l,...,J{<l>)}cR
de

such that

Vkj = -j u G R " ' v
k
— ip < An (x,u) < t^ + ip for all n > no and all x s.t. A(x) G X^.j k

where ip > and

v k
= fci^, for k G {—m, ...,0,...m}.

Since the range of |An (X, u)\ is bounded a.s. by p||i?^|| for all n, we can cover the range by 2m -I- 1

brackets of the form [vk
— ip,vk + <p] where m < const \Rg \/<p, \RS

\

= sup{|u| : u G Re
}. Choose

<t>
oc </l\R

e
\

(G.9)

for all small <p. Hence the total number L of covering sets Vkj is bounded as L < (2m + 1) • J(<t>) and grows

at most polynomially in \R
\
and in 1/V-

22

Next, construct the "centers" ukj in Vkj n Rs so that for all n > no
23

hj < A„(x,utj-) <Skj+V, Vi:A(i)eX^ (G.10)

where

5,.- = inf A„(x,u) where inf is taken over u 6 Vkj PI i? and x : A(x) 6 X^ .-.

We will need that n : < 77 << if, i.e. that n is sufficiently small relative to tp. Moreover, in order to

satisfy the constraint in (G.10), we need to have <t> set sufficiently small as well. Setting
<f>

small restricts the

variation of A(x) and hence of dAn (x,Uk,)ldu at most to const • 4> when x : A(x) G X^j. Thus, we choose

77 as n oc <p
2 and as stated in (G.9).

21 The covering sets Vkj can be thought of as "approximate linear subspaces" of K <*.

22Note also that Vkj clearly cover R& for n > no, because given u we have An (x,u) belongs to at least two different

brackets of the form [v k
- <P,v k + <p] for all n > no, and A(x) G X^ for some X^j that is at most 2 away from

dA„(i,u)/du for all n > no- Hence u G Vkj for some k and j.

23Note that for Vkj in the interior of R? , it is the case that 6^, = vk — <p; but otherwise, this is not the case.
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(b) [Characterization of Break-Points] Recall that

l(Xi
Qt{u)=Y. •n i7^{l(0<ne, < An (Xi7 u)) +^

n r

1=1

\n^\l(0>nei >An (X„u))
q (A,)

We next examine the nature of the discontinuities of Qt(u) by first examining those of Qi.
+
(u) and then

those of Qi~(u).

Suppose we have nti = A„(A'j,u) for some u £ Vkj and A(A";) 6 X^,j, then the pair (ne,, Xi) is said to

induce a break-point in the set Vkj and in the bracket \vk
— ip, vk + <p] to which A„(X,, u) belongs. 24

Given that this is the only pair that induces a break-point in Vkj it follows that

inf -Qt
+
(u) # -Qd

n
+ (ukj ) only if net £ [5kj , 6kj + n]

since —Q^+ (u) is piecewise-constant and can only jump up if the index A„(A',-, v.) increases.

Thus, what we need is as follows. First, we need to control the probability of the event that more

than one break-point happens in any of the brackets of the form [v k
— ip,vk + tp] for |fc| < m. This is

included in the event that the errors net are not separated in non-overlapping brackets, which is the event

A\(R) = Ujt<77i{ there are nei,nei' e [vk
— <p,yk + <p]}- Second, we need to control the probability that for all

nei that are separated into the brackets \v k
— <p,vk + tp], they do not fall into the "bad subset" \5 k -, Sk • + rj\

of such brackets, given that A(Xj) G X^j. Formally, conditionally on the complement of A\(R), i.e. on

A\(R) define the event A2 (R) as the union of

A2i,kj(R) = [nei 6 [S kj ,Skj + f?]|ne. 6 [vk - f,vk + ip],A{Xi) 6 X^-.u 6 Vk}
j

across i < n, \k\ < m,j < J(4>).

To begin,

71 n

p{a 1 (r)] < J2 J2 x^p{
ne" ne

' e fc* - *>** + fi} ^ (2m + *) <2-^
2

^ const
i
fliv-

|k|<m i'=l:i'£i i=l

Denote the total number of rce, that fall into brackets of the form [v
k
— ip, vk + tp] by Afn . Because (i) any

bracket [vk
— <p, vk + <p] overlaps with at most two other brackets and (ii) (G.8) holds for n > no, there are

at most 3 • K" jV„ neighborhoods of the form Vkj in which the break-point may occur (where K" is defined

in (G.8)). Then

p\A2(R)\tfn , Al(R)} < 3 K' Nn sup p{A 2i ,j, k (R)\ < 3 • K' Mn (///) fo/(2p)).
i<»,l*l<mj'<J»)

Since F{M,} < nEl{\nu\ < g'\\R\\) < 2g'\\R\\f,

p{a2(R)\AUR)} < const \R\(nM.

Hence (since n oc <p
2
)

P{ Ukj {Jnf -Qt+(u) # -Q*+ («,-»)}} < P{A2 (J?)|A;(iJ)} + p{^(fi)}

< const \R\(r)/tp + ip) < const \R\<p.

The terminology "break-points" is borrowed from the linear programming literature.
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Therefore, conclude that

J = p\ inf -Q d
n
+
{u) < inf -Qi+ {ukj )

} < const \R\<p.
UtH" Ukj} >

Likewise, it follows that for a finite collection of grid points {Ukj}

II = P{ inf -Qi~(u)< inf -Q d
n {ukj)\< const \R\<p.

Finally,

P\ inf -Qd
n {u) < inf -Q*(u)) < J + JJ < const |#|¥>.

'•u£R0 ^H^kj.^kj} >

G.5. Proof of Lemma G.4. This uses the method of the proof on p.265-266 of Ibragimov and Has'minskii

(1981a). We need to establish for sufficiently large A > 1 and any N >

PJ sup en(z)>A-"\ <CN A~
N

. {GU)

where Cn denotes a generic constant that only depends on N. Let R(t) = {z : t < \z\ < t + 1}. It will

suffice to show that for sufficiently large t > A

PJ sup en(z)>i-
N}<CN i~

N
, (G.12)

since then
oo

PJ sup £n (z) > A~"\ < VP-rj sup £„(z)> (i + f)"""
1

} <CnA"
,v

.

*• z£S„:\z\>A ' f^ L :6S(/l+t)nSn J

Next cover R(t) by grid-points {zi} in the way defined in the proof of Theorem G.l. It follows that

pJ sup tn(z)>r N \<Py\ sup £n(z)>r N
/2} + pJwQCJR(t), <p) >\\n(r

N
/2)\UZQ * (R(t),<p) = l\,

^
: eR(t)nsn

> L *e{*i} J
v_!; 2 i,

'
'

//

where ujqc and £ ,i are the moduli of continuity defined in (G.4).

The number of partition points {zj} is bounded by L < const (\R(t)\/<p)
K

, where \R(t)\ = sup{|z| : z 6

i?(t)} = t + 1, that is L < const (2 + l)"^
-
", where 1 < k. < oo (n is given in the proof of Lemma G.2).

By Lemma C.2 and Markov inequality, Py {(n (zi) > <~'v
/2} < const t

,v exp(— b\t\). Hence for t > A

I< const • (t + 1)
V""

• t'
v
-e"

6" 1

. 6>0 (G.13)

By Lemma G.3 noting that \R(t)\ = i + 1

Il< const (< + 1)| ln(r
w
/2)|"V+ const (t + 1)^. (G.14)

Select v? = <" 2Ar"\ then (G.12) immediately follows from (G.13) and (G.14).
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G.6. Proof of Lemma G.2(Detailed proof). We have

n

Q
c
n {z)=^fin{z) x[l(ej >{A„(X,,M)/n}V0) + l(e i < {An (X„u)/n} A 0)]

1=1

+ ^(f"'(z)
- r'"(z )) x l^ < e< ^ A„(Xi,u)/n) + 1(0 > et > A„(Xi,u)/n)]

.

i=i
" « '

Recall that Q|n (z) = in the one-sided models.

Intuitively, note that the functions of interest are all Lipschitz-smooth (spline-type) objects by construc-

tion, given the differentiability assumptions in CI- C3. Thus, it is reasonable to expect the final result:

Under C1-C5, for a small 5 > 0, there is a random variable Cn > such that for all n > no and some

large no

\<&M-QU*2)\<Cn\Zl-Z2\QZl\ + l), SUp EP_,Cn <OC,
7i>no,76Bj(7o)

uniformly over all \zi — z2 \
< 1 in the set Sn = {z : \v\/*Jn < e„, \u\/n < e„}, where en —> 0.

The proof is tedious but it does have a very simple structure. Given some careful Taylor-type expansions,

the maximal inequalities will be applied to the coefficients of those expansions to obtain the required result.

Split Q c
\ n {zi) — Qi„(z2 ) into two terms

n

7 = Y, f'n (*i)l(ei > {A„ (Xi,B,)/n}V0) - r,n (z2 ) 1 (et > {An (X„u2 ) /n] V 0)

,

1=1

n

II = Y^f,n (zi) 1 (e, < {A„ (X„ Ui )/n} A 0) - f,n (z2 ) 1 (a < {An (X,,u2 ) /n} A 0)

.

i=i

We focus on term I, and only briefly indicate the differences for term II. The term I can bounded as

h - h < I < h + h,

where

/, =J^l(ei >{A„(I„u 1 )/t!}V{A„(X1 ,i12)/ji}v0)

i=i

x (In/ (e; — An (Xi,u\) ln\Xi\po + ui/n,ao + v\/y/n)

- In/ (e, - A„ (X,,u2 ) /n\Xi;

p

+ u2 /n, ao + v2 /y/n))

n

72 = ^l(0<e t e [An (Xi,ui) /n, An (Xu u2 )
/n])

i=i

I / ( ei
- A„ (X,,uj) /n\Xi;p + Uj/n,a + Vj/\/n) I

x max in —.—r—— r

j = i.2 I /(e,|X,;/3 ,ao) I

where [a, 6] denotes {i : a < i < 6 or i) < i < a}.

Analogously approximate the term 77 as follows:

77, - 772 < 77 < 7/i + 772 ,
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where

Tl

IIj =^ 1(e ' < {A„(A",,w,)/n} A{A„(A'„b2 )/ii}AO)

x (In/ (e, - A„ (A,, ui)/7j|A;;/3 + Ui/n,a +Vi/Vn)

-In/ (e, - An (Xi,Ut) /n\Xi;/3 + u 2/n,a + v2 /%fn))

n

J/2 = ][] 1(0 > e, e [An (A„u,)/n,A n (X,,U2)/n])

i=i

I. /(e, - A„ (Aj.Mjj/nlA.jjgo + Uj/n,a + Vj/-fn)
\x max in —; —— - -

j=J.»l /(e,|A,;/3o,ao) I

where [a, fc] denotes {x:a<x<b or 6<i< a}.

Part I. Bounds on Terms I\ and II\. Term 7i equals by Taylor expansion

n

^ 1 (f, > {A„ (A, lUl )/n} V {A„ (X„u 2 )/n} V 0)

i=i

x— ln/(e, - A„ (A,,u*)/n|A,;/3 + u"/n,a + v* j-Jri) (u\ - u2 )/n +
ou

In

da
$S(e,- > {A n (X„ui)/n}V{An (X l ,u2)/n}V0)-^\nf((,\X,, lo)(v 1 -«s)/Vn-
i=i

£)l(* > {A^A.^O/nlViAnCA,,^)/^} V0)
i=i

92 w" u"
x(H„z")'^-5

-
r
ln/(e, - A„ (A,,u") /n|A,;/3 + ,<*o + -7=) (ui - uz) /%/«.

o-yoa n ^/n

Analogously decompose the term II\ as 77n + 1hi + U\z-

J2 1 («> < {A« (A„ Ul )
/n} A {An (A„u2 )

/n} A 0)

1=1
O

x— ln/(e, - An (A, , u" ) /n\Ar, 0o + u' /n,a +v"/y/n) (ui - u2)/n +

"
<9

£l(e,< {A„(A„ Ul )/«} A{An (A,, U2 )/n} A 0) — In / (e,|A,, 7o) (u, -^2)/^ +

]£l(e. < {A 7I (A,,w,)/n} A{A„(A,,u 2)/n}A0)
1=1

*(Hnz')'J!—\nf( e, - A„ (A,,0/"|A,,,3o +— ,a + ^=) (w, - w) /VS.
070a n -Jn
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By C5, the term |Jji + II\\\ is bounded by

(I£ VC2(e„X,))
|
UI - ual, (G.15)

where the expectation of the random term is finite and constant across n by iid sampling.

By C5, the term Ii3 + II\ 3 is bounded by

n
i= l

where the expectation of the random term is constant for all n.

Write

Jn *—
' oa

1=1
" v '

Jill

1
n

z^\ + l){z, - z2)\-Y^C3{u,Xi), (G.16)

-4=y"l(0<eJ e[A„(X,-,ti,)/n,An (Xi,ti2)/n])^-ln/(e j |Jfi,To)(t;, -w 2 )

v 1=1 (G.17)

;/72

- -7= Y" 1(0 > £i 6 [A„ (A-j.m,) /n, A„ (Xj; «2) /n])^-ln/ (e,|X„ 7o)(vi - u2 )|vn —

'

Oa
i=i

» *

By C5 J//i has two finite moments, which remain constant for all n. Next we show a bound for llli

and the same bound for III3 follows identically. By Lemma 19.34 in van der Vaart (1999)

E sup \IIh - EIII2 \
< J

{]
{F,F,L2 (P)) < oo, (G 18)

I*ll/n+|ii2l/n<2€„
v

'
;

where J[\(F, T, L%(P)) is the L2(P) bracketing entropy of the function class, which we rewrite in terms of

original parameter

F={l(g(X„,3 ) < Y, e [s(X„/3 1 ),9(X,-, /
92)])^-ln/(e 1 |X) , 7o), |£ - fa\ + \02 - #>| < 2e„}

with the constant enveloped = /'//I by C3, where 1 is the vector of ones. Note that the bound \ui—U2\fn <

e„ eventually puts /?o + ttj /n's in a small fixed neighborhood of /?o for n > no, and also puts A„ (X{ , Uj )
/n's

in any small fixed neighborhood of 0.

The entropy in (G.18) is finite uniformly in n by a standard argument, because T is formed as a product

of a Donsker class

{l(p(X,,/?o) < Yi 6 [g(X„p 1 ),g(X„02 )]), |/3, - fa\ + \fo ~ Po\ < 2e„}

(see type V functions in Andrews (1994)) and a bounded by F random variable, which by Theorem 2.10.6

in van der Vaart and Wellner (1996) implies that T is Donsker, and thus J[)(F, T, L2(P)) < oo.
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Also note that by C2 and C3:

\EIIh\ = E^\ lfe.f' 7JI
/(e|X„ 70 )|l( e > 0)de

rAn (X^ ,112 )/ n

< E^fn I /'l(e > 0)<7e < g f \\u, - u 2 \\/y/n,

/i,(x„ii,)/»

where the constants are defined in Lemma A.l.

Thus, for some random variable C„ with bounded expectation uniformly in n

|Ii2+//h| < Cn \vi -v2 \.

Now collecting all the bounds established so far, we have for some random variable Cn with bounded

expectation uniformly in n

|/l +IIl\ <Cn \zi -Z2\(\Zl\ + l). (G.19)

Part II. Bounds on Terms 72 and 772 . Let's get back now to the terms 72 and 772 . Recall that

n

72 =^1(0 <e. e [A„(A',,M,)/n,A n (X,,«2 )/n])

>=i

I, f ((, - A„ (Xj,Uj) /n\Xj;Po + Uj/n,ao + Vj/\/n)
\x max in

,

j = i.2 I /(e,|A,;/3o,Qo) I

and that

n

772 =^l(0>f, 6 [A„(X,, Ul )/n,A„(A,,« 2 )/n])

t=i

/(ei - An (X,,Uj) /n\X,;0o + u
j
/n,a + Vj/y/n)\

x max In-
j = i.2 1 /(ei|Ai;/?o,ao)

By C2-C3 72 is bounded by

i^ 1(0 < e,- e [A„ (X\,u,) /n, A„ (A„ U2 )
/n])(/'//) x||«, - «2 ||,

'2

where the constants are defined in Lemma A.l.

By C2-C3 772 is bounded by

-J* 1(0 > e,- 6 [A„ (Xi,ui)ln, A„ (A„ «2 ) /n])(f'/f) x||Ul - «2 ||,
7J. <—

"

—

7/21

where the constants are defined in Lemma A.l. Then, by an argument that is identical to the proof of

inequality (G.18) we obtain that uniformly in n

E sup \y/n(hi - EI2 t)\ < co,

"1 ."2

and identical bound follows for the term 772 i:

E sup \y/n(II2 i
- £772 i ) | < oo.

U],T12

Furthermore by C2- C3 7J(72 i +772] ) < const • |m - u2 |.
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Hence for a random variable Cn with uniformly bounded expectation (uniformly in n and in 7)

II2 + /I2I < U21 +II21I < const(l + Cn/Vn)\ui - u2 \.

Combining this inequality with the one in (G.19), the bound in the statement of the lemma follows:

For a small 5 > 0, there is a random variable Cn > such that for all n > no and some large no

IQi.(«i) - Q?»(«>)l < cr»|*i - a|(|a| + 1), sup EPl cn <oo,
™>no."r€B«(7o)

uniformly over all \z\ — zi\ < 1 in the set 5„ = {z : \v \/y/n < e„, \u\/n < e„}, where c„ —> 0.

Similarly it follows that for a small 5 > 0, there is a random variable Cn > such that for all n > no and

some large no

IQLfcO-QLMI <Cn|zi -22|(|2l| + l), SUP EP^Cn <00,
n>no.T6Si(7o)

uniformly over all \z\ — zi\ < 1 in the set 5n = {z : \v\/y/n < en ,|tt|/7i < £„}, where e„ —» 0. Note that

C„ = in the one-side models.
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