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ABSTRACT

This paper proposes a simple modification of a conventional method of moments
estimator for a discrete response model, replacing response probabilities that
require numerical integration with estimators obtained by Monte Carlo
simulation. This method of simulated moments (MSM) does not require precise
estimates of these probabilities for consistency and asymptotic normality,
relying instead on the law of large numbers operating across observations to

control simulation error, and hence can use simulations of practical size.

The method is useful for models such as high-dimensional multinomial probit
(MNP), where computation has restricted applications.
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McFadden A Method of Simulated Moments for Discrete Response Models

1. INTRODUCTION

A classical method of moments estimator 8 of an unknown parameter
mm

*

vector 6 minimizes the (generalized) distance from zero of empirical moments

(1) E
observations

Instrument
Vector

Observed
Response

Expected
Response at 6

1

mm

For some problems, the expected response function may be difficult to express

analytically or compute, but relatively easy to simulate. When this function

is replaced by an asymptotically unbiased simulator such that the simulation

errors are independent across observations and sufficiently regular in B, the

variance introduced by simulation will be controlled by the law of large

numbers operating across observations, making it unnecessary to consistently

estimate each expected response. This is the basis for the estimation method

developed in this paper, the method of simulated moments (MSM).

This paper focuses on application of MSM to the multinomial probit model.

However, the method is more general and can be applied to most moment

estimation problems. In a related paper, Pakes and Pollard (1987) have

independently proposed minimum distance estimators using simulation, and have

established their statistical properties using combinatorial empirical process

methods. Most of the statistical results in this paper could be obtained by

application of their methods.

Section 2 of this paper gives definitions and notation for discrete

response models. Section 3 defines the MSM estimator and gives an informal

argument that it is consistent asymptotically normal (CAN). Section 4

discusses issues of computation and statistical efficiency. Sections 5-7



McFadden A Method of Simulated Moments for Discrete Response Models 2

discuss applications of the method to discrete panel data with autoregressive

errors, to discrete response models with measurement errors in explanatory

variables, and to non-normal discrete response problems. An Appendix contains

formal statements of assumptions and results.

2. DEFINITIONS AND NOTATION

Define C = {l,...,m> to be a set of mutually exclusive and exhaustive

alternatives. A latent variable model for response from C is defined by

(2) u = cxx
i

, i e C,

where a is a row vector of individual weights distributed randomly in the

population, x. is a column vector of measured attributes of alternative i, and

response i is observed if u. £ u. for j e C (with zero probability of ties).

Let d. denote a response indicator, equal to one for the observed response,

zero otherwise.

Assume a = a(6,T)) is a smooth parametric function of a random vector 7),

with unknown parameter vector 6 taking true value 6 . Let g(Tj) denote the

density of 75, and g (a|e) the induced density of a . Let fS[B) and fl(6) denote

the mean and covariance matrix of a. In applications, it is often convenient

to work with a Cholesky factorization of f2: let T(6) be a upper triangular

matrix satisfying rT = n.

Define X„ = (x, x ) and u_ = (u,,...,u ). The response probability
L l m L 1 m

for alternative i, P (i|6,X_), equals the probability of drawing a latent

vector u_ with u, s u, for j € C, given X_. Define
L 1 J U

(3) u_ . = (u -u u. ,-u.,u. -u.,...,u -u.

)

C-i 1 1 1-1 i' 1+1 1' m 1

(4) X_ . = (x -x.,...,x. -x.,x. -x.,...,x -x.).
C-i 1 1' i-1 i'i+l 1' ' m 1
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Then u__, has a multivariate density g (u 1 9 , X ) with mean 0X and

covariance matrix X 'QX , and P
r (i|e,Xr ) equals the nonpositive orthant

probability of u = a(8,T))X ,

(5) P
c
(i|e,x

c
) = S Ku

c_ ii
o)g

u
(u
c_ i

|e,x
c
)du

c_ i

= S Hate.nJx^sOgCTjMTi,

where 1(Q) denotes an indicator function for the event Q.

When a is multivariate normal, one obtains the MNP model. For this

model, a can be written

(6) a = a(6,7)) h £(6) + vT(6)

,

with j) a row vector of independent standard normal variates.

In economic applications, the latent variables u often have the

interpretation of utility or profit, and P_(i|e,X_) is the choice probability

for a population of optimizing agents. The attributes x are functions of

observed characteristics of the alternatives and of the decision-makers, with

ax. interpreted as an approximation to a general economic function of observed

and unobserved characteristics and of the deep parameter 8.

Alternative-specific dummy variables may be included in x. ; the associated

components of a. can be interpreted as alternative-specific additive

disturbances.

Let n = 1.....N index a random sample from the population, yielding

observations (d_ , X_ ) with d_ = (d, d ) and X„ = (x, x ). The
Cn Cn Cn In mn Cn In mn

log likelihood of the sample is

N

(7) L(9) = E £ d. Ln pr (i|e,xr ).
. . „ in C ' Cn

n=l leC

2
The associated score is
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N

(8) 5L(e)/se = Z E W. [d. - Pr (i|e,xr )],
, , _ in in C ' Cn

n=l ieC

where

O) w. = aLn p_(i|e,x_ )/ae.
in L ' Ln

The primary impediment to practical maximum likelihood estimation of S

for the MNP model is computation of the (m-1) dimensional orthant

probabilities for u„_. to obtain P_(i|0,X_). Direct numerical integration is

practical for m ^ 4 using a method of Owen (1956), modified by Hausman and

Wise (1978), or expansions due to Dutt (1976). Otherwise, unless a has a

factor-analytic covariance structure with less than four factors, it is

usually impractical to carry out the large number of numerical integrations

required to iteratively maximize (6). Lerman and Manski (1981) suggest a

Monte Carlo procedure for estimating P(i|e,X ) that can be applied to MNP

models with large m; but find that it requires an impractical number of Monte

Carlo draws to estimate small probabilities and their derivatives with

acceptable precision. Daganzo (1980) has developed approximate maximum

likelihood estimators for MNP using a normal approximation to maxima of normal

variates suggested by Clark (1961). This approach has the drawbacks that the

accuracy of the approximation cannot be refined with increasing sample size,

and the method can be inaccurate when components have unequal variances; see

Horowitz, Sparmonn, and Daganzo (1982).

3. THE METHOD OF SIMULATED MOMENTS

The conventional method of moments estimator of a k x 1 parameter vector

6 in the discrete response model P ( i
j
9, X ) satisfies
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(10) e = argminQ (d-P(B) )
' W W(d-P(9) )

,

mm a

where d-P(0) denotes the mN x 1 vector of residuals d. - P_(i|9,X„ ) stacked
In C Cn

by observation and by alternative within observation, and where W is a K x mN

array of instruments of rank K £ k. The instruments may depend on 6, but are

evaluated at some fixed 6 in forming first-order conditions for solution of

(10). The instrument array (9), evaluated at 6 (or at a consistent estimator

of 6 ) yields a method of moments estimator asymptotically equivalent to the

maximum likelihood estimator for 6, and hence asymptotically efficient. If

computation makes exact calculation of the efficient instruments impractical,

(9) nevertheless provides a template for instruments that with relatively

crude approximations to P and its mN x k array of derivatives P will yield

3
moderately efficient estimators.

Under mild regularity assumptions, sufficient conditions for classical

method of moments estimation to be CAN are (i) and (ii):

( i ) The instruments are asymptotical ly correlated with the score;

- -1 «
i , e, , the array R = 1 i m N WP (8 J is of maximum rank.

9

(ii) The conditional expectation of the residuals d-P(9), given the

instruments, is zero if and only if 6 = .

In the remainder of this section, I will assume the instruments W are a

computationally practical fixed array, defined independently of 6.

(Approximation of the optimal instruments (S) is considered in Section 4.

)

The method of simulated moments (MSM) avoids the computation of P(6) required

for (10), replacing it with a simulator f(0) that is (asymptotically)

conditionally unbiased, given W and d, and independent across observations.

The MSM estimator is given by any argument satisfying
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(11) (d-f(e ))'WW(d-f(e )) s inf (d-f(e))'WW(d-f(e)) + 0(1).
sm sm 8

Simulators for the Response Probabilities

An unbiased frequency simulator f(8) is readily calculated from the

latent variable model (2): Draw one or more vectors 7) from the density g(r)),

independently for each observation n, and fix these draws for the remainder of

the analysis. Given trial 6, calculate u_ = a(8,7))X_ and calculate the
Cn Cn

frequency fr (i|8,X ) with which component i of u_ is largest. This

simulator has discontinuities at values of 8 where there are ties for the

maximum component of u . For the MNP model, the frequency simulator is

computed economically from (6) by drawing standard normal vectors 77 and

calculating u_ = (0(8) + 7)r(6))X_ .

Cn Cn

It is also possible to construct smooth unbiased simulators f(8). This

simplifies the iterative computation of the estimator, and its statistical

analysis. Let y(u__, ) denote a density chosen for the simulation that has the

nonpositive orthant as its support. Then (5) can be rewritten

(12) P (i|e,X ) h T h(u ,e,X Mu )du

where h(u_ . ,6,X_ .) = gT
.(u„ . |e,X_)/r(u_ .). Average h(u,6,X_ .) for an

L— 1 L— 1 U l,
_ 1 ' L L~l C— 1

observation, using one or more Monte Carlo draws from y(u__.) that are taken

independently across observations and fixed for different 8. This gives a

smooth positive unbiased estimator of P_(i|8,X_), provided f has sufficiently

thick tails so the expectation of h exists. The density z can be chosen to

facilitate Monte Carlo draws and reduce simulation variance. For example, if

r is independent exponential in each component, then random variates from this

distribution can be calculated from logarithms of uniform random numbers from
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(0,1). Choices of y that make h flatter can reduce simulation error, as in

Monte Carlo importance sampling. For MNP, h(u .,9,Xr_.)
=

n(u
c_ 1

-p(e)X
c_ i

,X^_
i
r(e)'r(e)X

c_ i
)/y(u ), where n(v,A) denotes a

multivariate normal density centered at zero with covariance matrix A. When r

is exponential, this h is uniformly bounded.

A potential drawback of smooth simulators based on (12) is that they are

not constrained to sum up to one for i e C. An alternative class of

kernel -smoothed frequency simulators are defined in Section 4 that satisfy

summing-up, but are only asymptotically unbiased. Section 4 also defines

special unbiased smooth frequency simulators for MNP.

Statistical Properties

I shall argue that MSM estimators are CAN under mild regularity

conditions. The main result on the asymptotic properties of these estimators

is given in Theorem 1 below. I will assume that the parameter space is a

k *

closed convex subset of [0,1] , that the true 8 is in the interior of 0, that

the explanatory variables have a distribution with compact support, that the

response probabilities are uniformly bounded and twice continuously

differentiate with respect to e, and that the instruments are smooth

functions. Define a simulation bias B(6) = N"
' /£

Vf'(£f (6)-?(6) ) ; this is zero

4
if unbiased simulators are used, and more generally is assumed to satisfy

(13) sup
Q

|B(6)
|

= o (1).

Define a simulation residual process £(e) = N*
1/£
W(f (9)-£f (6) ) . These

simulation residuals are by construction the normalized sum over observations

of independent identically distributed terms, independent of d and uniformly
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bounded, with E(C,(6) |W) = for each 6. Then £{B) is an empirical process in

8 that by a standard central limit theorem is pointwise asymptotically normal.

I shall need the following critical stochastic boundedness and stochastic

equicontinuity assumptions:

(14) sup
Q ICC©) 1

= 0(1),

(15) suP_. lc(e)-C(e*)l = o (l),
0£A

N P

where A^ = {e\ N
V2

|8-8 |stO(-l)>.

I prove these properties for smooth simulators in Proposition 1 at the end of

this section; the technically more difficult case of simulators with

discontinuities is handled in Appendix Lemma 7.

Theorem 1 . Suppose the MSM estimator 8 defined by ( 11 ) satisfies Appendix— — sm

assumptions [Al] to [A10]. (These are stated informally as the assumptions

1/2 *
in the preceding paragraph. ) Then 8 i_s consistent , with N (8 -8 )

converging in distribution to a normal vector with mean zero and covariance

matrix I = (R'rVr'G R(R'R)"
1

, with R = lim N'
1

WP„(6 ) and
sm sm 8

G = lim N"
1

EW(d-f(e*))(d-f(e*))'W' .

sm

Proof: The argument parallels that of Pakes and Pollard (19S7). The vector

W(d-f(8)) entering the defining condition (11) for the MSM estimator can be

decomposed into four terms,

(15) N"
V2w(d-f(e)) h [<;(e*) - c(e)] - B(e)

+ [N"
1/2

w(d-f(e*)) + B(e*)] - [N'
V2w(P(e)-P(e*))].

The asymptotic properties of the estimator are argued by applying conditions

(13)-(15) to the first two terms in (16), and applying the following arguments
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to the last two terms.

-1/2. * *
(a) By construction of the simulator, N %/(d-f(8 )) + B(8 ) has

expectation zero, given W. Random sampling plus the independence of the

simulators across observations implies by a central limit theorem that this

term converges in distribution to a multivariate normal vector Z with mean

5
zero and covariance matrix G

sm
-1 *

(b) The expression <<\j(6) - N W(P(6)-P(6 )) converges uniformly in

probability to a smooth function co(8) with the properties that u>(8) = if and

» — * « 6
only if G = G , and that R = u (8 ) = lim u„ V! (8 ) is of rank k.

e 6N

Consider first the consistency of 6 . Argument (a) implies
sm

N"
1/2

W(d-f(6 )) = (1). Hence, (11) satisfies
P

(17) N"
1

(d-f(6 ))'W'W(d-f(6 ))
sm sm

£ N"
1

inf
Q

(d-f(8))'W'W(d-f(e)) + 0(N'
1

)

£ [N"
1/2

W(d-f(e*))]'[N"
1/2

W(d-f(e*))] + 0(N'
1

) = (1),
P

implying N'
1/2

W(d-f (B ) ) = (1). Then, multiplying (16) by N'
1/2

and using

(13), (14) and argument (b), one has u,,(8 ) = o (1). But u,, converges
N sm p N

uniformly outside each neighborhood of 8 to a function bounded away from

zero. Hence, the probability that 8 is contained in any neighborhood of 8
sm

approaches one.

1/2 *
Next, I argue that N (8 -8 ) is stochastically bounded. From (15),

sm

the condition N"
V2W(d-f (8*

) ) = (1) plus (13), (14), and (17) imply

(18) (1) = N'
1/2

W(P(8 )-P(8*)).
p sm

A Taylor's expansion yields
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(19) N"
1/2

w(P(e )-p(e )) = [n"
1

wp (e ) + o(e -e )]N
1/2

(e -e ).
sm S sm sm

.1 « - *

Then N WP (8 ) = R + o (1) and 6 =0 + o (1) imply
8 p sm R •

(20) (1) = [R+o (1)]N
V2

(8 -8*).
p p sm

— 1/? *
Since R is of rank k, this implies N ' (8 -8 ) = (1).

sm p

Finally, consider the asymptotic normality of the MSM estimator. An

asymptotically normal statistic 8 is defined, and then 8 is shown to be
sm

* .i- .1 *
asymptotically equivalent to it. Let 8=8 + (R'R) R'N W(d-f(8 )).

i /? ~ * — — .1— 1/? ~ *
Argument (a) implies N " (8-8 ) = (R'R) R'Z + o (1) = (1). Then N ' (8-8 )

is asymptotically normal with covariance matrix (R'R) R'G R(R'R) . Also,
sm

(15) implies C,{Q ) - C,{6) = o (1). Substituting 8 in (16) and applying the

Taylor's expansion (19) with 8 in place of 8 implies

(21) N"
1/2

W(d-f(e)) = Z - [R + 0(8-8*). ]N
1/2 (8-8*) + o (1)

P

= [I-R(R'R)'
1

R']Z + o (1).
P

From (13), (15), and argument (b),

(22) A = N"
1/2

W(f(e)-f(6 ))
sm

= N"
V2w(P(e)-?(e )) + c(e) + 3(e) - ?(e ) - B(e )

sm sm sm

= N'
V2
v(P(e)-p(e )) + o (l) = RN

1/2
(e-e ) + o (1)

sm p sm p

3 (

P
= R(R'R)"

1

R'Z + o (1)

° sm

(23) N'
1

(d-f(e))'WW(d-f(e)) + o (l)
p

* N"
1

(d-f(e ))'WW(d-f(e ))sm sm

= N'
1

(d-f(e))'W'W(d-f(8)) + 2N"
V2 (d-f(e))'W'A + A'A.
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From (21) and (22), N'
1/2

(d-f (8)
)

' W A = o (1), and (23) implies A'A = o (1).
P P

But then A s RN
1/2

(0-0 ) + o (1) = o (1), implying 6 and 6 asymptotically
sm p p ' r * ° sm * r *

equivalent. P

The stochastic boundedness and equicontinuity conditions used in the

proof of Theorem 1 can be demonstrated for smooth simulators by the .following

argument

:

Proposition 1

.

If the simulator f (G) j_s uniformly bounded and twice

continuously differentiable, then (14) and (15) hold.

Proof: A second-order Taylor's expansion of C, about 6 yields

(24) c(e)-C(e*) = cD (e*HeV) + (i/2)[n'
1/2

< ivec([ (e-e*)]' [N
1/2

(e-e*)] ),Do

where C, is a k x k array of second derivatives evaluated at points between
00
* •

9 and . The array C, satisfies E(C, (8 )) = 0, with independence across
9 9

observations, so a central limit theorem implies C„(& ) = (1). The
8 p

contribution of each observation to the array C, is uniformly bounded, so
00

N'
V2

Cee
= (1). Hence, (24) implies, for A^ = {0| N

V2
|e-6*| i 0(1)},

(25) sup. . ic(e)-c(e)| = o ti) -o (n'
1/2

),e€A
N ? ?

establishing (15).

I next establish (14), using a "chaining" argument. Given an integer i,

k ki -icover [0,1] with 2 cubes with sides 2 , and let 6. be a set containing one

point selected from each cube that intersects 0. For € 0, define 9 = 0. (6)

to be the nearest point in 0.; then |9-9.(9)| < 2
_1

and |0 (9)-0 (6)1 < 2
_1

.

From this construction,
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(26) lc(e)l * ic(e )| + Z K(e )-c(e )|.

i = l

I shall need a version of Bernstein's inequality, giving an exponential bound

for sums of independent random variables: If Y, are independently Identically

7
distributed with |Y | £ c and EX = 0, then for t > 0,

N

(27) P{N"
1/2

| £ Y
I

> t} £ 2exp[-t
2
/(2c

2
+2ct/3NV2 )].

i = l

Let M £ 1 be a uniform bound for 2, ^W, (f_(i|e,X- )-Ef„(i|e,X„ )) and for its
ieC in C Cn C Cn

00

-i-3
derivative with respect to 6. Note that £ i2 = 1/4. Then, for any

1=1

C > 48M+8kM Ln 2,

(28) P{sup
Q lC(G)| > C>

CO ,

* p{|<(e
1
)|>c/2> + £ p<sup

Q
lc(e

i+1
(e)-<(e.(e))|>i2

_1 "3
c>

i=l

CD

(29) £ P{|c(e
1
)|>c/2> + £ 2

ki
sup p{K(e.

+1
(e)-c(e.(e))|>i2"

1 ~3
c}

i = l

(30) £ 2exp[-C
2
/4(2M

2
+MC/3)]

CO

+ £ 2
kl

2exp[-C
2

i
2
4

X 3
/(2M

2
4 *+2M2

x
Ci2 *

3
/3)]

i=l
CO

(31) < 2exp[-C/4M] + £ 2exp[-iC/8M] i 5exp[-C/8M].
1=1

The inequalities (28) and (23) hold since left-hand-side events are contained

in the union of the right-hand-side events, while (30) follows by application

of the Bernstein inequality, and (31) by use of the bound on C and

manipulation of the exponential terms. Given c > 0, C can then be chosen

sufficiently large to make the right-hand-side of (31) less than c. This

proves (14).
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The preceding arguments also apply to the classical method of moments

estimator by setting f(e) = P(8) and <(6) = 0. Then, the asymptotic

covariance matrix of the estimator is Z = (R'R)'
1

R'G R(R'R)'
1

, with
mm mm

N

(32) G = lim N"
1

Z ( Z Pr (i|e\xr )w; W - W' W -

mm _ 1
L _ C ' Cn in in Cn Cn_

w
Cn=i

E
c

P
c
(i|e .x

Cn
)w

in
.

Define
N

(33) G = lim E E W; W, £(<, C, ),

n=l i.jeC
in Jn in Jn

where C = C(9 ). Then G = G + G , and G is the contribution of the
sm mm ss ss

simulation to the asymptotic variance. If f(6) is the frequency simulator

obtained by r independent Monte Carlo draws for each observation, then G

= r G and I = (1+r )Z . In this case, one draw per observation gives
mm sm mm

fifty percent of the asymptotic efficiency of the corresponding classical

method of moments estimator, and nine draws per observation gives ninety

percent relative efficiency. Use of Monte Carlo variance reduction techniques

such as antithetic variates, or use of smooth simulators, may improve further

the relative efficiency of MSM.

4. COMPUTATIONAL ISSUES AND STATISTICAL EFFICIENCY

Practical use of the MSM estimator requires that easily calculated,

moderately efficient instruments W be available, that the Monte Carlo

simulation of the probabilities and their derivatives be economical, that

iterative algorithms to compute the estimators be fairly stable and efficient,
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and that estimators for the asymptotic covariance matrix of the estimators be

computable.

Choice of Instruments

Consider first the question of suitable instruments. The classical

method of moments estimator is asymptotically efficient if and only if, except

for stochastically negligible terms, W is proportional to SLnP(9 )/dd. The

asymptotic efficiency of MSM relative to the classical moments estimator

approaches one if the expected response in (11) is simulated consistently.

The issue is how to construct W to obtain good asymptotic efficiency for MSM

without excessive computation.

For the MNP model, the integral (12) defining the response probability

can be differentiated with respect to £ and T, yielding

(34) SP (i|e,X)/33 = XtX'nXj'V (u-£X)n(u-/3X,X'nX)du
L

u*0

X(X'nX)'
1

T (u-£X)h(u,X,e)y(u)du,
u^O

(35) sp (i|e,x)/sr
c

= rx(X'nx)"
1

s rx(X'nx)

S [(U-/3X)' (u-0X)-X , nX]-n(u-/3X,X , nX)du
u^O

- (x'nxfV

,

S [(u-0X)'(u-/3X)-X'nX]-h(u,X,e)r(u)du}- CX'QX) X'

,

u^O

where n = TT, X = X , and as before h(u,X,6) is the ratio of the

multivariate normal density to a Monte Carlo sampling distribution y(u) on the

g
nonpositive orthant. Applying the chain rule to /3(e) and T(e) then yields

derivatives of the response probabilities with respect to the deep parameters

e. For discrete response models other than MNP, analogues of (34) and (35),
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involving derivatives of the density g with respect to 0, can be defined, and

smooth Monte Carlo simulators constructed.

Economical Simulators

Simulation of (34) and (35) based on Monte Carlo draws from the density

y(u) yields smooth unbiased estimates of the derivatives. Since the smooth

simulator (12) of P_(i|e) is positive, the ratios of simulators of (34) and

(35) to the simulator of (12) provides an approximation to the ideal

instruments 3Ln P /38. The number of draws per observation must go to

infinity with sample size if the ideal instruments are to be estimated

consistently, permitting MSM to be asymptotically efficient. However,

moderately efficient instruments can be obtained with relatively few draws.

It is essential for the asymptotic statistics of the MSM estimator that the

simulation of (12) and the derivatives used to construct instruments be

independent of the draws used to simulate the expected response in (11);

however, use of common draws from y(u) to simulate P_, 5P_/Sj3, and 8P-./8T at

observation n may improve the approximation of the ideal instruments.

The frequency simulator of P (i|8,X_) is economical to compute, as are

the smooth simulators (12), (34), and (35) when the Monte Carlo density y(u)

permits easy draws. For MNP, a practical choice is y independent exponential,

allowing u to be drawn as a vector of logarithms of uniform random deviates.

However, more accurate smooth simulators may be obtained with suitable

transformat i ons

.

First consider kernel -smoothed frequency simulators that satisfy

summing-up. The construction of these simulators starts from a perturbation

of the latent variable model (2),
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(36) u
c

= u
c

+ ^b
N

,

where v is a vector whose components are independently distributed with a

distribution function * and b is a simulation parameter. Assume * has

a finite moment generating function /i(t) for t in a neighborhood of zero.

Choose b.. so that for some c > 0, N t\, -> 0. Associated with (36) is a
N N

response probability, obtained by first conditioning on u„_, ,

(37) P
c
(i|e,X

c
) = J" K(u

c_ i
/b

N
)G(u

c_ i
|e,X

c
)du

c_ 1
= J" K(a(8, T^X^/b^g^di)

m-1

with K(y y ) = J ( II *(v-y,)) *(dv). As b., approaches zero, K(u_ ./bM )

1 m-1 ,_. J N C-i N

approaches the indicator function l(u__,s0), and P_(i|s,X
r ) approaches

P_(i|9,X ) defined by (5). The kernel-smoothed frequency simulator is an

average, over Monte Carlo draws from g(i)) , of K(a(6,7j)X_ ,/b ). This

simulator is nonnegative. If the simulators for all i € C are constructed

from common Monte Carlo draws, then they satisfy summing-up. They are

strictly positive if the support of * is the real line. Choosing * to be type

I extreme value distributed yields a multinomial logit form K(v v )
=

m-1
m

g
1/(1 + "Z exp(-vj), and (37) is a multivariate normal mixture of logits. A

j=l J

3
polynomial kernel such as *(v) = [6+5v+(2- | v| ) v ]/12 for |v| £ 1 is

computationally economical, and for small b., yields a smoothed simulator that
N

10
for most draws coincides with the unsmoothed frequency simulator. For MNP, a

variant of the kernel -smoothed frequency simulator is unbiased: Write (2) in

the form u_ = u_ + vb.„ with v a standard normal vector and u_ ~ W(|3X_,A'A),
C C N C C

with A upper triangular and A' A = X'rTX.-b I; this can be done provided b is

small enough so X'rTX_-b I is positive definite. As in (37), conditioning
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on u
c ,

(38) P
c
(i|e,x

c
) = S K(OX

c_ i
+TjA

c_ 1
)/b

N
)g(u)d7i,

m-1

K(y y .) = S ( n *(v+y ) »'(v)dv,

with g the multivariate standard normal density, * the standard normal

distribution, and A the array with columns A -A for j * i , where A is aLi j i J

column of A. An average of K in (38) over Monte Carlo draws from g yields an

unbiased positive smooth frequency simulator. Adding-up holds if common draws

are used for i e C.

For MNP, construction of economical simulators is aided by the use of

spherical transformations. Each of the expressions (12), (34), and (35)

involves simulation of integrals of the generic form

m k

.

(39) Q=;(Du. J )n(u+u,A)du,
u£0 j=l J

m
where £ k. is 0, 1, or 2, u = j3X , and A = X-.OX' .. Make the

m o/2
and s . = u ./v. Define

J J
transformation r =

0=1 J
'

c/ini nt v.i r n -(r-b/a) a/2,
(40) C(n,a,b) = j r e dr;

this is proportional to a parabolic cylinder function (Spanier and Oldham,

1987), and satisfies the recursion

(41) C(O.a.b) = (2:i/a)
1/2

*(b/aV2 ),

C(l,a,b) = C(0,a,b)b/a + e
b /2a

/a,

C(n,a,b) = C(n-l,a,b)b/a + C(n-2, a, b) (n-1 )/a (n 2: 2).

Then,
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m m k

,

(42) Q = c c £ C( Z k,+m-l,a,b)( n s, J
),

° 1 S
J-l

J j-1 J

where s is distributed uniformly on the intersection of the unit sphere and

the nonnegative orthant, and

a = s'(X^_
i
nX

G_ i

)- 1

s,

*» - " <a
c. l

(xj_
i
Qx

c. i
)-V

,„ * 1/2„-3m/2, _.. -1/2_, ,~%-1
c = ( 2n ) 2 i n i r ( m/2 ) ,

o

c = exp(-[px(x , nx)"
1

x ,

p
, -(£X(x , nxf 1

s)/s / (x
/ nx)"

1

s]/2),

with X = X , and c independent of X and s. To generate uniform draws from

the distribution of s, draw a standard normal random vector u, and take

(43) Sj = |u |/

m „ ,1/2

L j=l J J

Then, (43) is simulated by drawing one or more s, and for each s using the

recursion (41) to calculate C. A further refinement is to use control

12
variates for C.

The spherical transformation can also be used to calculate an economical

unbiased smooth frequency simulator for MNP. Let s be a uniform draw from the

K 2
unit sphere in R , and let A be a random variable with a Chi-squared

2
distribution with K degrees of freedom, denoted IL,(A ) Then, the latent

variable model for MNP can be written ur = O+AsDX . Given s, an easy

computation yields a partition of [0,+co] into intervals [A., A. ], j =

0,...,m, on which each of the components of u is maximum. (Some of the

intervals may be degenerate.) The probability of response i, given s, is

P„(i|e,X , s) = EL(A, .) - Hj,(X,), where j is the ascending rank of sTx. in the

vector srX . The A. are smooth in 6 for almost all X , so P (i|e,X , s) is
O J L* L* w

also smooth. The simulator is an average of the P (i|6,X ,s) for r random
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draws of s.

The accuracy of simulators for MNP that are based on spherical

transformations can be improved substantially by use of antithetic variates.

Deak (1980) gives an effective procedure: For uniform draws from the sphere

K IK
in IR , first draw a random basis s , . . . ,s . This can be done for example by

drawing K standard normal vectors and applying a Gram-Schmidt

orthonormalization. Then use the 2K vectors ±s , or the 2K(K-1) vectors

(±s ± s ) for i < j, as directions for the simulation.

Iterative Estimation methods

A practical estimation procedure is first to use relatively crude

instruments, defined independently of 6, to iterate to an initial consistent

estimator 9, second to simulate the ideal instruments using (12), (34), and

(35) at 6, and third to carry out one or more iterations using the

approximately ideal instruments. Good candidates for crude instruments are

low-order polynomials in the explanatory variables; e.g., X__. for

SLnP
c
(i |e,X )/33 and X

C
_.X^._. for SLnP ( i |6,X )/3r.

14

Consider iterative algorithms for calculation of MSM estimators. When

smooth simulators are used for f(6) in (12), and the instruments W are defined

independently of 6, then estimates can be computed by Newton-Raphson iteration

or a similar second-order method applied to minimize the criterion

(44) (d-f(e))'W'W(d-f(e)).

This criterion may be irregular; in particular, kernel-smoothed frequency

simulators may have local flats. Then, optimization methods that use
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non-local information, such as simulated annealing, may be more reliable; see

Press et al (1986).

When a frequency simulator is used, (44) is piecewise constant in 6,

and non-local methods must be used in iteration. I have tried random search

algorithms and pseudo-gradient methods that adapt ively approximate slopes

using long baselines; the former have performed better. For discrete

response models that can be parameterized in terms of mean and variance,

such as MNP, convergence can be accelerated using a method due to Manski:

Suppose r simulations per observation, and that starting from a trial 6 , a

search direction A8 has been determined. Consider (44) as a function of

6 +AA6, with A a step size to be determined. The value A , at which there is
o

* nj

a jump in (44) from draw j, observation n, is easily calculated. Then, it is

practical to enumerate the values of (44) at all the jump points X . and

choose a global minimum along this search direction.

Generally, iteration using smooth simulators is faster that that using

frequency simulators. However, in applications where the number of

alternatives is very large, the burden of computing f(6) or approximations to

the optimal instruments for all alternatives may be excessive. Then, a

frequency simulator f(8) with r repetitions will be non-zero for at most r

alternatives, and the instruments need be computed only for these alternatives

plus the observed one. For example, a single Monte Carlo draw for each

observation requires calculation of the instruments only for the observed and

drawn alternatives, and yields fifty percent of the efficiency of the

classical method of moments estimator, no matter how large the set of possible

alternatives. Comparable reductions in computation can be achieved using a

kernel-smoothed frequency simulator with a kernel of bounded support.
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Asymptotic Covariance Matrix

Consider estimation of the asymptotic covariance matrix of the MSM

estimator, £ = (R'rYVg R(R'R)'
1

. A consistent estimator of G is
sm sm sm

N

(45) G = N"
1

E Z W. Cd. -f(i|e ,X_ ))(d. -f(i|e ,X_ ))W' .

sm . . . _ in in ' sm Cn jn ' sm Cn jn
n=l i.jeC

- -1 *
The matrix R = lim N WP (9 ) is consistently estimated by

(46) R = N'
1

WPQ ,

where P is an unbiased simulator of the array P , evaluated at or any
sm

»

initially consistent estimator of , obtained using one or more draws per

observation in (34) and (35) or their analogues in models other than MNP,

independent of any simulation used to compute W.

To show (45), note first that this expression with in place of
sm

converges to G by a law of large numbers; see part (a) of the proof of

Theorem 1. Second, by (13) and (15), terms involving the difference of

*

f(0 ) and f(0 ) are o (1). The argument for (46) is the same, but it is
sm p

necessary to use versions of (13) and (15) for P . These hold for smooth

simulators using the argument of Proposition 1.

5. DISCRETE PANEL DATA WITH AUTOREGRESSIVI ERRORS

Consider longitudinal discrete response data (d, , x, ) for subjects n
v.n tn

= 1,...,N observed over t = 1.....T periods, where d, = ±1 indicates ar tn

binary response and x is a vector of explanatory variables. This proble

T
has 2 alternative response patterns, large for long panels. A latent

variable model that may be appropriate for such data is

m



McFadden A Method of Simulated Moments for Discrete Response Models 22

(47) u = /3x + c ,tn tn tn

d = sign(u ),
tn tn

with c, = £ + v. , £ a normal subject-specific disturbance, v, a normal
tn n tn n tn

first-order autoregressive disturbance, and £, v independent of each other

and independent across subjects. If c is stationary, with variance

normalized to one, then

(48) c. = (l-X
2

)

1/2
7,nn + X

tn On

t-2
m 2,V J t-1

2
with X the proportion of the variance in the autoregressive error, p the

serial correlation, and ri . independent standard normal variates. The
jn

probability P(d |x ,j3,X,p) of d
n

= (d
ln

> • •

•

d
Tn

^ given x
n

= (x
Jn

x
Jn

)

equals the probability of a (T+l) dimensional draw (tj , . . . , t)_ ) such that

d, ut > for t = 1 T.
tn tn

Full maximum likelihood estimation of this model requires

T-dimensional numerical integration to evaluate P(d |x ,B,\,p), which is& n 1 n

computationally impractical for T > 4. Ruud (1981) has developed practical

consistent estimators using partial likelihoods for small numbers of

adjacent periods; see also Chamberlain (1984). The MSM method, starting

from initially consistent estimators, offers a computationally practical way

to increase efficiency. A frequency simulator or a kernel-smoothed

frequency simulator with a finite-support kernel, can be computed using

(41), and with a moderate number of repetitions requires simulation of the

instruments for a practical number of alternatives per subject, even for

large T. Alternately, it may be possible to compute directly an unbiased

simulator of the score SLn P(d le.x )/8Q for the observed response pattern
n 1 n

d . From the analogues of (34) and (35) for the discrete panel data
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problem, this requires that one obtain asymptotically unbiased or consistent

simulators for the conditional expectation of first and second order

polynomials given draws from the nonpositive orthant. Unbiased simulators

can be obtained by use of acceptance/rejection methods, or asymptotically

unbiased simulators by allowing the number of repetitions in the simulation

of the probability in the denominator of P dP/89 to go to infinity with <

sample size. These approaches have been investigated by Ruud and McFadden

(1987) and Hajivassiliou and McFadden (1987).

MSM estimation of discrete panel data models extends readily to more

general time-series covariance structures, so long as it is practical to

Cholesky-factor and invert the covariance matrix to obtain a representation

analogous to (48) for the c in terms of independent normal variates, and

so long as it is practical to construct instrument arrays for the deep

parameters of the problem. The estimator can also be applied to models

with general state dependence, provided the initial value problem (Heckman,

1981) can be handled. For example, consider the model

(49) u, = £x. + \p± . + £ + v.
,tn tn r t-l,n ^n tn

d
tn

= Sign{u
tn

]

with £ a subject-soecif ic disturbance and v independent across t. If the
n ° tn -

disturbances are normal, and v, has unit variance, then
tn

T
(50) P(d |x ,dn ,p,£ ) = n *(d. Ox, + ifjd, . + £ )).

n 1 n On n tn tn t-l,n n
L —

1

Suppose the conditional distribution of £ given x and dn can be assumed to
n n On

depend only on d ; this is justified if x is independent of the past history

of the x process. Suppose the inverse distribution of £ given d is given a

flexible parametric form that spans the true inverse distribution. Then the
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response probabilities are given by the expectation of (50) with respect to £,

which can be simulated economically from the inverse distribution. Adding

serial correlation to the disturbances v. in (49) makes (50) a T-dimensional
tn

integral, whose simulation by MSM can be handled jointly with simulation of

the expectation with respect to £,.

6. DISCRETE RESPONSE MODELS WITH MEASUREMENT ERROR

Suppose discrete response for a random sample n = 1,...,N satisfies a

latent variable model

(51) u = |3z + c
,n n n

d = H(u ),
n n

where H maps the row vector u into m discrete categories with d an indicatore n n

for the observed category, and H (d ) the set of u yielding the observed

category. To simplify notation, assume (3 is a scalar; generalization merely

requires that the construction below be carried out component by component.

Suppose z is not observed directly, but is related to a vector of

observations x by

(52) x = 2 A + C .n n n

where £ ~ N^O,^), independent of c. We interpret the x as observations on

z measured with error, or as indicators for z. In form, this is a multiple

indicator or factor-analytic latent variable model, with A giving the

factor loadings.

Suppose in the population z ~ N{f±,r) , independent of £ . Then the

conditional distribution of z given x, suppressing subscripts, is

(53) z ~ Nin + (x-uA)(A , rA+i<)"Vr,r-rA(A'rA+>i')"Vr).
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If the e ~ W(0,fi) in (51), then

(54) u ~ w(p/i+p(x-MA)(ArA , +*)" 1

A'r,p
2
[n+rA(A'rA+*)"

1

A , r]).

and the response probabilities given x are of MNP form. The MSM estimator for

the general MNP model can be adapted directly to this problem, the main

practical difficulty being calculation of the derivatives of the Cholesky

factor of the covariance matrix with respect to the deep parameters in order

to calculate a relatively efficient instrument matrix.

A number of variants of the measurement error model (51) may be

encountered in applications, including variables measured with error that are

common to several alternatives or interact with alternative-specific dummys,

multiple variables measured with possibly correlated errors, and simultaneity

between the latent variables and observed indicators. These may alter the

details of (52) and (53), but give the same basic structure for the response

probabilities and MSM estimator. It is also possible to treat measurement

error in discrete response models such as multinomial logit by allowing the e

to have an appropriate distribution. For the logit example, MSM estimation

can be used by simulating the expectations of the logit formulas with respect

to the conditional distribution of the true explanatory variables. These

topics are studied in greater detail in McFadden ( 1985a, 1985b) and Train,

McFadden, and Goett (1987).

7. NON-NORMAL DISCRETE RESPONSE MODELS

This paper has focused on estimation of the MNP model. However, the MSM

estimator can be applied to any latent variable model in which unbiased

estimates of the response probabilities can be obtained economically by Monte
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Carlo methods. For example, in the latent variable model (1), it may be

reasonable to assume that some components of a are always non-negative, giving

monotonicity. This could be modeled by taking the density of a. to be

multivariate truncated normal, or by giving some components non-negative

densities such as gamma. This complicates the analytic representation of

response probabilities, but is .readily accommodated in Monte Carlo draws from

the latent variable model to obtain frequency estimators.

The MSM estimator also permits analysis of discrete response data

generated by more complex partial observation functions than the maximum

indicator appearing in (1). For example, consider data on ranks of

alternatives. With the exception of the multinomial logit model, it is

impossible to obtain analytically tractable expressions for probabilities of

more than the first few ranks in terms of response probabilities; see Falmange

(1978), Barbara and Pattanaik (1985), and McFadden (1986a). However, Monte

Carlo drawings from the latent variable model provides unbiased frequency

estimators of the ranking probabilities that can be used in MSM estimation.

8. SUMMARY

This paper has proposed a simple modification of a classical method of

moments estimator for discrete response models that avoids the necessity for

accurate numerical integration to calculate response probabilities, using

instead asymptotically unbiased simulators of these probabilities. This

method of simulated moments is practical for problems where direct numerical

integration is computationally intractable.
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9. APPENDIX: THEOREMS AND PROOFS

I use the following notation, mostly collected from Sections 2 and

3 of the paper:

C = {1 m} the set of possible responses.

u. = ax. or u = aX a latent variable model, i e C, with X_ =

(x. x)aKxm array, u„ = (u. u ),
1 m L l m

a = a(G,7)) a 1 x K vector function, with 8

a k x 1 parameter vector with true value 8 ,

and T) a random vector with density g(ii) and

associated measure g, independent of X„.

d. = l(u.iu_) indicator for maximum u. (= observed response),
l l C l

P (ile.X ) probability of t; such that a(8,T))X is maximized

at i, given X .

f (i|8,X ) a simulator for P (i|e,X ).

W. k x 1 instrument vector, determined as a function

W. = w.(e.X-).
l l C

n = 1 N a random sample.

d, P(8), f(8) mN x 1 vectors formed by stacking d. , P (i|8,X ),

or f (i|e,Xr ) by alternative, then by observation.

W = W(6) k x mN array formed by stacking W. .

P (8) mN x k array of derivatives of P(8).
o

6 anv vector satisfying IIW(8 )(d-f(8 ) ) II

sm o sm
£ infJIVtG )(d-f(9))li + (1), some 8 .

8 o p o

p(X ) density for X_, with associated measure p.

P^te), R(8), R k x k array of sample covariances, ^(6) = N'
1

W? (8)

R(e) = lim F^.O). R = R(e*).
15

The response probabilities are invariant under monotone transformations of the

latent variable model. Hence, without loss of generality, we may normalize x

= 0, so X is contained in a K(m-l) dimensional space. Further, a may be
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1 R
defined without loss of generality to have a compact domain.

The first assumptions made require X and 9 to have regular domains, and

guarantee a zero probability that the latent variables for different

alternatives are equal, so the response probabilities are well-defined without

additional tie-breaking rules:

k '*

t Al ] The parameter space S is a compact convex subset of R , and 6

is in the interior of 0.

[ A2 ] The domain t of the attributes X j_s_ a compact subset of a

K(m-l) dimensional space .

[A3] The random vector tj i_s finite-dimensional with domain IN, is

independent of X , and has a finite mean . The function a = a (6, 7))

is continuous on x IN, and is twice differentiable in 6 with these

derivatives continuous on x IN.

[A4] For an open set X £ 5? with p(X ) = 1, the subset IN(6,X ) of IN

such that a ( , 7) ) X is. distinct in every component has probabi 1 ity one for

each 8 € 0.

The last assumption is usually imposed in the definition of discrete response

models, and can be derived from more basic structural conditions. The

following lemma covers common applications, including MNP. When the model

contains alternative-specific random effects, the array A„„ in this result is

a (m-1) dimensional identity matrix.
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Lemma 1. Suppose [Al] and [A2]. Suppose there is a partition

f0 A
X
C

=

A
12

22

such that A „ is. (m-1) x (m-1) and almost surely nonsingular.

Suppose a = a(8,T)) = /3(B) + Tjr(6) is. twice continuously differentiable in

6. Suppose a is. partitioned commensurate ly with X„, so

(55) [a
1

a
2

] = 1^(6)
2
(G)] + [tj

1
i)

2
]

r
il

r
i2

° f
22

Suppose T i_s nonsingular for 8 e 8. Suppose the density of

2 1
7) conditioned on r\ is uniformly bounded and continuous , with support

R , and suppose tj has a finite mean . Then [A3] and [A4] hold.

Proof: aX
c = pX

Q + [0, 7)

1

(
r
11

A
12

+r
i 2

A
22

) + 7,2r
22

A
22

]- With Probability

one, the term T) T k has a continuous density with support R , given

1
7) , implying that the probability of a hyperplane where components of aX

f

are tied is zero.

The next assumption guarantees that the response probabilities are

well-behaved:

[A5] The probabi litv P (i|e,X_) is. positive, and twice differentiable in

6, and the probabi litv and its derivatives are cent ir.uous , or. 6 x X.

The following result gives a sufficient condition for [A5] which holds in

particular for the MNP model with alternative-specific dummys:

Lemma 2. Suppose the hypotheses of Lemma 1, with A„ always nonsingular .

Then [A5] holds.

Proof: By the symmetry of the problem in alternatives, it is sufficient to
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consider P (lle.X ) = Pr(ctX =£ °| xr ^- Using the decomposition of Lemma 1,

aX = [0,s] so implies

(56) r,

2
= [s - p\ 2

- e
2
A
22

- ^(rn A
l2+

r
l2

A
22

)](r
22

A
22

)- 1

.

1 12
Then, given tj , the set B(tj ) of tj satisfying aX £ is the intersection

of m-1 linearly independent half-spaces, with each bounding hyperplane

twice continuously differentiable in (9,X ). Hence, P (l|B,X )
=

2 12 11
J" J" g» .(t| |k) )dij g (t) )dT) is twice continuously differentiable in

1 1

m— 1

(S,X ). Since g has support R , the probability is positive, n

The next assumptions concern the instruments and identification of 9 :

[A6] The function W. = w. (B,X_) determining the instruments is

continuous , bounded , and twice continuously differentiable on 6 x 1.

( Let M denote a bound on w. and its B derivative , uniform in i, 6, X_.

)

w l C

[A7] The instruments identify B , with

(57) u(e,e) = Sy, Z w (e,x
c
HP

c
(i|e,x )-P (i|e ,x )]dp(X

c
)

ieC

* - - 17
eoual to zero if and only if 9 = 6 , for any 9 € 6.

[A3] R is of max i mum rank

.

To satisfy [AS], instruments constructed by simulation require the use of

smooth simulators such as (12), (34), and (35) in the case of MNP. If [A5]

holds and the instruments equal the score of the likelihood evaluated at each

trial 9, w. (9,X ) = 5Ln P (i|9,X )/59, then 6=9 and u reduces to
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«(e,e) = Sy, S P
c
(i|e*,x

c
)[5LnP

c
(i|e,x

c
)/ae]dp(x

c
) 1

the expected score of an observation under maximum likelihood estimation. For

this case, [A7] requires that 6 be the only critical point of the expected

log likelihood, a standard identification condition. Also, in this case, R

*

equals the information matrix evaluated at 6 , which is symmetric and

nonnegative definite, and by [A7] is definite at some point in every

neighborhood of G . Then, [A8] adds only a regularity requirement. In the

case of more general instruments, [A7] and [A8] are standard assumptions for

the identification and regularity of classical method of moments estimators.

Hence, the identification conditions for MSM are the same as for the

corresponding classical method of moments estimator.

The next assumption concerns the simulator f (
i

| 9 , X ):

[A9] Vectors (17, , . . . , t) ) are drawn , by simple random sampl ing or
In rn

otherwise , independently of W and d, and independently for different n,

so that each tj has marginal density g ( tj ) . Define ip ( i
1 6 , X ) to. be the

frequency in the r draws for observation n of the event that a ( 8 , 17 . )

X

is maximized at component i . Define f (
i

| 6 , X_ ) to. be anv uniformly

bounded function of e , X_ and ( 73 , , .... 77 ) satisfying
Cn In rn '

(58) £{f
c
(i|e,x

Cn
)|w,d} = ?

c
(i|e,x

Cn
) + 0(N*

C " V2
)

for some c > 0; and for some M , M„, X > 0, and all 6,6 € 8 and X_ € X,
cp 1 Cn

(59) |f_(i|e,Xp )-fr (i|e,xr )| s M | Vr (i|e,x_ )-p_(i|e,xr )l + M,je-e|\
C ' Cn C ' Cn <p C ' Cn C ' Cn f

Condition (58) requires that the simulator be asymptotically unbiased,

while (59) requires that it be at least as smooth in 6 as the frequency

simulator. Condition (59) is satisfied trivially by either the frequency
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simulator, or by a smooth simulator such as that based on (12). If the

simulator is different iable, then X - 1; the assumption also allows < X < 1,

corresponding to "polynomial" non-differentiability. A simulator satisfying

(59) will be termed X-Lipschitz in neighborhoods where <p is constant. The

following lemma establishes sufficient conditions for a kernel-smoothed

frequency simulator to satisfy (58).

Lemma 3. Suppose the assumptions of Lemma 1_ hold , with A always

nonsingular . Suppose a kernel -smoothed frequency simulator (37) with a

distribution function * having a finite moment generating function in a

neighborhood of the origin , and with N b -> 0. Then . (58) holds .

Proof: Let u(t) be the moment generating function for *. There exists t >

TV "TV
such that *(v) £ e u(-t) for all v < and l-*(v) ^ e /i(t) for all v > 0.

m-1

Then, for c = max. y./2 > 0, K(y. y ,
)= f ( II ¥(v-y.)) ¥(dv)

J J 1 m-1
v£c j

m-1 _
°

+ J ( II *(v-y.)) ¥(dv) ^ e /i(-t) + e mCt), with the first term the result
v>c J-l

J

of bounding the product at negative arguments, and the second the result of

bounding the measure at positive arguments. A similar argument for c <

yields K(y
1
,...,y

B_ 1
) 2= (1 - e~

T|cl
u(T))

m
^ 1 - me"

T|c|
u(x). Define 1(A) =

J\|K(u_ ./b.,) - l(u_ .sO)|G(u_ . |e,X_)du_ .. Define A, to be the set of u_ .

A C-i N C-i C-i ' C C-i 1 C-i

less than -Mb., in every component, A. to be the set of u_ . greater than Mo

m-1
in at least one component, with M a positive constant, and A = R -A -A .

-tM -tM
Then, the bounds on K imply 1(A) i e u(T)m and I(A_) ^ e (u(t)+u(-t) )

.

Further, I(A„) £ £. . ProM |u .-"u. |=s Mb,,). But (55) in the proof of Lemma 2

holds when the second partition is of dimension one and s is the value of a

single component u.-u. of u_ .. Then, letting M be a uniform bound on the
J i C-i r

2 1conditional density of -n given tj , Prob( |u .-u. s Mb.,) £ 2Mb„M •. Therefore,
j l N N z



McFadden A Method of Simulated Moments for Discrete Response Models 33

I(A
3

) £ 2mMb
N
M . Then, N

1/2
|P
C

( i |G, X
c

) - P
c
(i|e,X

c
)| * N

V2
(I(A

1
) + KAg) +

I(A„)) s N
1/2

(e"
TM

u(T)m + e~
TM

(u(T)+u(-r) ) + 2mMb M ). Choose M = x"
1

Ln N.

Then, the right-hand-side of the last inequality goes to zero if N (Ln N)b

-> 0. The condition N b.. -» implies the required limit.
N

The next result characterizes the regularity in 8 of the simulated

moments, and guarantees that with probability one, the condition defining e

has a solution with |W(d-f(G ))| £ mM M /r:
sm w (p

Lemma 4. Suppose [A1]-[A9]. Then , almost surely . W(d-f(6)) ijs uniformly

X-Lipschitz in 6 except for a closed subset of 9 with Lebesgue measure

zero , and the jumps in this function on are bounded by mM M /r.
» *j—* jl w y

Proof: Define I(S,X , tj) = if the components of a(e,T))X
r

are all distinct,

and I(e,X , 7}) = 1 otherwise. For each 9 e 0, [A4] implies

(60) = J"N S% I(e,X
c
,7))dg(T)) dp(X

c
),

and hence

(61) o = S
Q s^ S

t
Ke,x

c
,7))dg(T)) dP (xc

) de.

Applying Fubini's theorem to (54), there exists a set X £ X with

probability measure one, for X_ e X a set N(X ) £ IN with probability

measure one, and for (X ,tj) e X x N(X„) a set (X ,7)) £ of full Lebesgue

measure on which 1(6, X_, t?) = 0. The continuity of a(6,T)] in 6 implies that

if I(6,X , 7)) = 0, then this is also true in a neighborhood of 6, so (X_,7))

is upcji.

The function W(d-f(6)) is defined by N independent draws X„ with

density p(X_), and for each n, r draws (tj, tj ), each with marginal
l ln rn

density g(7j). Hence, with probability one, X_ 6 X, and tj . e (N(X_ ) for
Cn 1 jn Cn
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N r

j = 1 r and n = 1, . . . ,N, implying 6 =
p| ("| (X , tj ) is an open set

N
n=l j=l

l Ln Jn

of full measure. But, by [A9], f (i|6,X ) is uniformly X-Lipschitz with

constant M_ on 0...
f N

Suppose 6*0, so 9 i i( xr .V- ) for some (n,j). With probability

one, is contained in (X„ ,,T)., ,) for (n, 'j') * (n,j). Hence, using

(52), the discontinuity in |W(d-f(8))| is at most mM M /r with probability
w tp

one. n

Assumption [A4] implied that the set of 7) for which there are ties in the

components of a(6,7))X_ has probability zero for all G and almost all X .

The next assumption requires that the geometry of a(6,i)) be such that the

exceptional set IN(6,X ) of -q where ties occur varies smoothly in (6,X_).

[A10] There exists M and X > such that for X_ e X and almost all 6 e 0,g C o

the set B_(e,X_) {tj heN(e, X,J
C
for some |e-9|s5} has g(B_(G,X_)) * M 8

X
.

18

o L. ' L o L g

(INSERT FIGURE 1 ABOUT HERE)

Figure 1 illustrates the construction of B_(6,X_). The assumption holds
o L

if the set-valued function IN(G,X_) is transversal at G or if there is at

most a polynomial singularity. The next result shows that with regularity

conditions, the case a(6,X„) = 3(G) + T)T{e) for the MNP model satisfies

[A10].

Lemma 5. Suppose the hypotheses of Lemma i, with A always non-singular ,

and [AB]-[A9]. Then [A10] holds.

Proof: Suppose a tie between alternatives 1 and 2, so ax = 0. Using the
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notation of (55) and (56), partition a. = (a, ,a„ ...,a ) and let a„ denote
1 l J, m <L

the second component. Then,

(62) -n

2
= [- p\ 2

- p\2
- ^(rn A

l2+
r
l2

A
22

)](r
22

A
22

)- 1

.

2 1
This function tj = 0(0, X , tj ) is continuously different iable in (0,X ), and

hence has a Taylor's expansion

(63) 0(6, ^.tj
1

) - 0(e,X
c

,T)
1

) = [A t^A ]

e-e

Vx
c

where A and A are vectors of continuous derivatives of 0(0,X„,7) )

evaluated between (6,X ) and (0,X ). Then uniform continuity on compact

x X implies there exists a constant M such that for
|
(0, X_)-(0, X_) | ^ 6,

(64) |0(0, X^n 1
) - 0(0,X

c
,T)

1
)| ^ M (1+It)

1

I
)5.

Then the set [^(0, X-,7}
1

) = {r>
2

\
I 7)

2
-0(0, X

c
, tj

1
) I

£ M (1+|t)

1
|)6> contains all

2 ~ ~
7) solving (55) for [ (0, X )-(0, X ) |

s 6, and satisfies

11 2 1 1 2
(65) J" g^T) )dT) J g2

(7) 1 7) )dT)

T)
1

N
2
(0,X

C
,7)

1
)

i M.d+ElT)
1

!
)6M = 2M 5/m(m-l),

r g

where M bounds g . There are m(m-l) possible combinations of tied

alternatives, each of which can with permutations of components of X„, c.,

and 7) and relocation of X be put in the form above. The sum of the bounds

for each combination gives [A10].

Given c > 0, a finite family of random functions F is said to bracket

a family of random functions F if for each Y € F there exist Y,Y e F such- c

that Y ^ Y ^ Y and E(Y-Y) < c. The logarithm of of the number of elements

in the smallest set F that brackets F, denoted H(e), is called metric
c
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entropy with bracketing . The following result establishes stochastic

equicontinuity conditions for families whose metric entropy does not rise

too rapidly as c falls.

Lemma 6. Assume F is a uniformly bounded family of measurable random

functions satisfying J" H(e ) de finite , where H is the metric entropy

with bracketing . Suppose y , y_, . . . are Independent identical ly distributed

copies of Y-£Y for Y e F. Define IIYII = £|Y-£Y|. Then for every X > 0,

N

(66) lim limsup Pr{sup sup N"
1/2

| £ (y -y ) | > X} = 0.

8-»0 N-»0 F ..
~
IUe _ n=l

n n

Proof: Dudley (1984), Theorem 6.2.1, establishes (59). I use a

restatement from Alexander (1987), Theorem 2.1.

The next result establishes that the simulation residuals satisfy

stochastic equicontinuity and boundedness conditions sufficient for the MSM

estimator to be CAN. The critical step is to show that these residuals

19
satisfy the assumption on metric entropy required by Lemma 6.

Lemma 7. Suppose [A1]-[A10]. Define £(e) = N"
V2

W(f (6)-£f (6) ) and

B(B) = N'
V2

w"(£:f (e)-P(e)). Then given X,5 > 0, there exists M such that

(67) limsup sup |B(G)| =0,

(68) sup PHsup K(e)| > M} < X,

and for A, = {G| N
V2

|e-6 |£6>,

(69) limsup Pr{sup \C,{B)-^{6 )| > A} = 0.

6eA
N
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Proof: Condition (67) is immediate from [A8]. Assume 8 € [0,1] . For any

k k i -

1

integer j, cover [0,1] with 2 cubes with sides 2 , and for each X €-X ,

v.* O

let 0.(X ) be a set containing one point selected from each cube that
J L

intersects 0. By [A10], the selection can be made so that #(13.(9, X„) ) < M 5
° C g

for 6 € 8 (X ). Define 9.(9,X ) to be point in 8 (X ) nearest to 6; then
J C J L J L

|e-e.(e)| ^ 2~ J = 5..

Let Y(9,X ) = E W.f (ile.X ). Define q (9,X ) to be the number of
L

i€C
1 L L J L

draws tj for s = l,...,r with t? e B. (9.X.J. Using the notation of (59),
s s o . C

J

and X satisfying [A9] and [A10], define

(70) Y°(9,X ) = mM (M |e-e.(e)|
A
+M q.(e,X )/r).

J ^ WI J y5JL
Then, by [A10], £q.(e,X„) s rg(Bs (6.X.J), implying

j C 8. C

(71) EY°(e,X_) £ mM MJe-e.(G)|
X

+ mM M g(B. (e,Xr ))
J C wf j w <p° 5 . C

i mM (M„+M M )5.
X

= M S A
w f <p g J o j

From (59),

(72) |Y(e,x_)-Y(e.(e),x
rj| * mM (Mje-e .(e)

\

x
)

L- J L W I J

+ mM M max|<p (i|e,X )-(p (i|e.(6),X )|

£ mM (MJe-e .(e)
|

A
-rM c(e,x„)/r)

w i J ^ "J C

Hence, Y.(9,X_) = Y(e.(6),X_) - Y°(6,X_) * Y(6,X_) £ Y.(e,X_) = Y(9.(9),X_)
J C jCj'C 'CjC JC

+ Y.(e,X ). Given c > 0, choose j to be the smallest integer such that 2
J >-

< c. Then the 2
k^ +1 functions Y. and Y. bracket Y(9,X_), 6 e 8. This

J J >-

implies that the metric entropy with bracketing for F = <Y(9, X_) |9e8}

satisfies H(e) == (kj+l)Ln2 * (-Lnc)k/A + (k+l)Ln2, and hence si H(e
2

)

1/2
dc ±

12 1T H(e )dc £ (k+l)Ln2 - 2(k/X)T Lne de < co. This establishes the assumptions

of Lemma 5, so (66) holds.
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For any 5 > 0, forming the expectation of (59) and using [A10], |6-0|

< 6 implies E| Y(e,X_)-Y(e > X_) I < mM (M„+M M )5 = M 5. Hence, (66) can be
L L W I <p g O

written in the form

(73) lim limsup Pr{sup sup IC(6)-C(0)| > X} = 0.

i

Taking 5 = 2~\ j = 1,2 one has 1
0-0 1 < 5 for N £ 4^ and N

V2
|0-0| < 1.

Then (73) implies (69).

Next prove (68). From (73), given X > 0, there exists 5 > such that

(73) limsup Pr{sup sup IC(6)-<(6)| > X} < A.

N^° 16-6 1*5

Choose any 6 e 0. A central limit theorem implies there exists M such

that sup., Pr{|C(6 )| > M } < X. But any 6 e can be written 6 = 6
N o o o

+ E (6 . .|"e -) with 6. = (j/J)6 + (l-j/J)G and J the smallest integer
j=0 J J J °

exceeding 1/6. Then,

(74) Pr{|C(6)| > M
Q
+XJ}

* Pr{|<;'(eJ| > M & lc(e )-c(e )| < x, j=o J} < x.
*' ** vJ

'

\J

Then (67) holds with M = M + XJ.
o

In this lemma, the construction in (70) and the following arguments

hold even if the number of repetitions r is a random function of 6, X_, and

N. Then, in particular, the lemma holds for simulators formed by

acceptance/rejection methods with random stopping rules, and for consistent

simulators where r increases with sample size.

Let 8 be a sequence in and assume that the instruments are
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evaluated at 6 for each N. The 8 might be non-stochastic, or a sequence

of initially consistent estimators, or might equal the MSM estimator
sm

In the last case, 9 solves HW(G )(d-f(6 ))ll £ infJIWO )(d-f(6))ll +
sm sm sm 6 sm

(1). Lemma 7 holds in all these cases.
P
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FOOTNOTES

1. The idea of simulating response probabilities from an underlying

latent variable model, generating the response probabilities by stochastic

integration, is standard in the area of computer simulation; see Hammersley

and Handscomb (1964), Fishman (1973), and Lerman and Manski (1981). This

literature has concentrated on simulating the response probabilities to a

level of accuracy that enables their use in standard maximum likelihood

procedures.

2. Use the identity

o = £ sp
c
(i|e,x

c
)/ae Z [3LnP

c
(i |e,x )/ae]P

c
(i |e,x ).

ieC ieC

3. Starting from any K x mN array of instruments Z , and taking account

of the structure of the covariance matrix of the residuals, one can show by a

standard argument from non-linear least squares that the asymptotic minimum

variance estimator in the class using linear combinations of instruments in Z

* " — i *

is attained by W = P(6 )'Z'(ZPZ' ) Z, where PQ (6 ) is the mN x k array of
8 6

» *

derivatives 5P (i|e,X )/50, evaluated at 9 , P = diag P(6 ), and

Z. 2? - S Z° P_(j|e*,Xr ).
in in . _ jn C Cn

jeC

o * * *
If Z = 5LnP(e )/S6, then W = 5LnP(6 )/8Q. Approximations to 6 and to the

functions P and P yield approximations to the minimum variance instruments

that can be constructed from Z .

4. Appendix Lemma 6 and assumption [A3] give sufficient conditions for

simulators to satisfy (13).

5. The independence of the simulators across observations can be relaxed

to any process that is sufficient to give the term in (a) asymptotically
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normal and to give stochastic equicontinuity of the simulation residuals.

6. Continuous differentiability and compactness imply | u (G)-co (6) |
i

M| e-e
1

, where M £ max |R(6)|. Given c > 0, extract a finite covering of

with neighborhoods of radius less than e/3M; let 8 denote the finite set of

centers of these neighborhoods. Then choose N sufficiently large so that

for N > N , P{max |u..(e)-u(e) |
> e/3> < c. By construction of 8 , for

e ' 8 N c
c

each 6 e 8, there is a 6 e 8 such that |u.,(e)-u(8) | ^ |u.,(e)-<4e) |
+

C N N

2e/3. Hence, P{max | u> (e)-u(G) | > c} < c. Regularity condition [A8]

*

implies R(6 ) nonsingular.

7. The inequality, from Gine and Zinn (1986; Lemma 3.2), is

N
2 2

P{ I Y. > tt s exp[-t /(2Ncc + 2ct/3)],
i=l

1

2 2
where cr = EY. ; see also Pollard (1984) or Shorack and Wellner (1986).

l

Replace t by N t and use cr £ c to obtain (24).

8. Consider the normal density

nCu-n.A) = (2Tt)-
l/2

|Ar
1/2

e
(u^ ),A

"

1(U'^/2
,

with A = XTTX and p. = £X. The following matrix differentiation formulas

are derived by writing out terms from the familiar expressions 5Ln|A|/6A -

A and dk /ok = - A ©A cwhich hold when A is symmetric, but identity

of cross-terms is not imposed in the differentiation):

aLn|XT'rx|/ar = 2rx(XT'rx)*
1

x',

3(z' (xT'rx)"
1

z)/6r = -2rx(x / r , rx)"
1

zz' (x'r'rx)"
1

x'.

The derivatives of Ln n(u-|3X, X' TTX) are then

SLn n/sp = X(XTTX)" 1

(u-pX) '

,

sLn n/ar - rxu'rrxrV + rx(x'r'rx)"
1

(u-3X)' (u-px)(x'r'rx)"
1

x'.
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This construction was suggested by Paul Ruud.

9. A mixture of multinomial logit models, with the mixture interpreted

as the result of taste variations in the population, has been of independent

interest as a discrete choice model; see Westin (1974) and McFadden (1984).

10. The polynomial kernel limits the number of alternatives for which

calculations must be done. If an observation has every component of u

greater than 2b in magnitude, then K(u ) coincides with l(u„ .^0); the

probability of the converse is 0(b). If for a draw of u for an
IN L.•

observation, all component differences exceed 2b in magnitude, the

kernel-smoothed frequency simulator coincides with the simple frequency

simulator. Then, in a sample of size N with r Monte Carlo draws per

observation, the expected number of alternatives for which further

calculation is required to obtain the simulator and corresponding

instruments is bounded by (r+l)N + mrN0(b ) ^ (r+l)N + 0(mrN
+

). This

makes the calculation practical even if the number of alternatives is large.

11. Discussions with Jim Heckman contributed to the formulation of

kernel-smoothed frequency simulators. The unbiased kernel-smoothed frequency

simulator for the MNP model was suggested by Steve Stern.

12. Moran (1984) suggests several control variates. Peter Phillips ana

Vasillis Kajivassiliou suggested the use of spherical transformations for this

problem, and Dan Nelson developed many of the details.

13. To generate a denser set of antithetic points, for any integer T > 1,

and each pair s
i
and s

J with i < j, construct the directions (±ts ± (T-t)s )

for t = 1 T-l. Combined with the points ±s , this gives 4(T+1) evenly

spaced points on each great circle, for a total of 2K + 2TK(K-1) directions.

14. When £ = and T consists of an identity submatrix corresponding to
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alternative-specific dummy variables and a zero submatrix corresponding to the

remaining variables, then X and X__,X'_. are, except for proportional

constants, a superset of the ideal instruments. If the model is identified,

then it will always be possible to find low-order polynomials in X_ , that

have an asymptotic correlation matrix with 5P„(i|e)/59 that is of full rank.

Thus, the crude instruments proposed may not be grossly inefficient. In the

third step when smooth simulators are being used, one iteration from 6 using

Newton's method achieves the maximum asymptotic efficiency attainable from

better instruments simulated at 6.

15. With random sampling, R»,(8) converges almost surely to a limit R(8),

for each 8, by application of a strong law of large numbers.

16. For any continuous function a = a(6,7j), the transformed latent

variable model u = (1+llall) aX yields the same response probabilities,

and is uniformly Lipschitz in X .

17. If crude instruments independent of 6 are used to obtain an initially

consistent estimator, then w in (50) is independent of 9. If approximations

to the ideal instruments are calculated, starting from an initially consistent

estimator, then it is sufficient that [A7] hold for 6 in a neighborhood of G .

18. The following argument establishes that B_(8,X_) is closed, and hence
o L

measurable, for (8,X_) € X X : If V e B r and 77^ -» tj , then tj^ e M(e J ,X^)
c

,Loo L

a closed set, for some (6 ,X^) in a closed <5 neighborhood of (e,X_), by [A3].

Hence, using the continuity of a(8,7))Xr. in (8,X_), i) € N(6 ,X„)
C
for each

L L u

limit point (0 ,X°) of (8
J ,X^).

19. I am indebted to Ariel Pakes and David Pollard for discussions that

led to the formulation of this lemma.
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