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Abstract. The philosophy of equilibrium refinements is that the analyst, if he

knows things about the structure of the game, can reject some Nash equilibria as

unreasonable. The word "know" in the preceding sentence deserves special em-

phasis. If in a fixed game the analyst can reject a particular equilibrium outcome,

but he cannot do so for games arbitrarily "close by", then he may have second

thoughts about rejecting the outcome. We consider several notions of distance

between games, and we characterize their implications for the robustness of equi-

librium refinements. (Keywords: noncooperative game theory, refinements of Nash

equilibrium, perfection, stability. JEL Numbers: 026, 213)

1. Introduction

Much effort has been devoted recently to refining the notion of a Nash equilibrium.

Beginning with Selten's [11,12] notions of perfection, concepts such as properness (Myerson

[8]), sequentially (Kreps and Wilson [7]), and stability (Kohlberg and Mertens [5]) are

often invoked or discussed in the literature. The guiding philosophy of these refinements is

that the analyst knows things about the structure of the game that enable him to reject

some of the Nash equilibria as unreasonable. The point of this paper is that the word

know in the preceding sentence deserves emphasis. Specifically, the analyst creates a model

of the situation that is a simplification and (he hopes) an approximation. Suppose that,

in the model, the analyst can reject a. particular equilibrium outcome using the various

refinements, but he cannot do so for models that are arbitrarily "close" to the one created.

Unless the analyst's faith in the model is absolute, he may be wise to have second thoughts

about rejecting this outcome.

To study this "robustness" issue, we carry out the following program. Fix a space of
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games and a notion of "closeness" for the games in the space. For each game in the space, a

Nash equilibria, is strict if, for each player, the strategy prescribed is a unique best response

to the other players' strategies. This is as formidable a refinement criterion as we can think

of, implying, for example, Kohlberg and Mertens' [5] hyperstability. Now ask: which Nash

equilibria of a given game are limit points of strict equilibria, for nearby games? We call

such equilibria, near strict. Following the discussion above, we would hesitate to reject any

equilibrium that is near strict, insofar as the sense of closeness specified captures our doubts

about the exact specification of the game.

In section 2, we take for the space of games all normal form games over a. fixed (finite

player and action) normal form, and we measure "closeness" with the Euclidean metric on

payoffs. The result is that every pure strategy Nash equilibrium is near strict. (We also

give a weakening of the strictness requirement that accomodates every equilibrium, pure or

mixed.) This is hardly surprising, but then the various refinements of Nash equilibrium are

motivated for the most part by the analysis of extensive games. In the rest of the paper, we

turn to extensive games with the following philosophy: The analyst is certain (in his model)

of the "physical" rules of the game: who moves when, with what information about earlier

moves, and so on. That is, roughly, a (physical) extensive form is given. But the analyst

may entertain doubts about the players' payoffs and/or their knowledge of the payoffs.

The perturbations that arise from such doubts are considered in the work on reputation

in repeated games with incomplete information. (See Kreps, Milgrom, Roberts and Wilson

[6] and Fudenberg and Maskin [3].) Our theory differs from this work on reputation effects

in one important way. The previous work considers the effect of a fixed perturbation on a

family of repeated games of varying lengths. The typical result there is that if the horizon

is sufficiently long, even outcomes that are not Nash equilibria of the unperturbed game

are Nash (and even, see below, near strict) in the perturbed game. In this paper the game

is fixed, and the perturbation is allowed to vary (and made to vanish). Hence only Nash

equilibrium outcomes of the original game can be near strict.

Section 3 concerns the program for cases in which the analyst may be unsure of the

players' payoffs himself, but knows that these payoffs are common knowledge among the

players. That is, an extensive form is fixed, the space of games is the space of all payoffs for

the extensive form, and "closeness" is measured by the Euclidean metric on payoffs. We do



not get very clean results here. There do exist near strict equilibria that are not strict, but

the class of near strict equilibria has no apparent simple characterization.

Sections 4 and 5 are the heart of the paper. Here we imagine that the analyst has

no doubts about the physical rules of the game, but is not quite certain of payoffs, and is

willing to admit the possibility that the players themselves are not quite certain of each

others' payoffs. Put another way, close to a given extensive game are games in which players

entertain slight doubts about each others' payoffs, and our analyst is not prepared to reject

an equilibrium that cannot be rejected in games that are nearby in this sense.

Section 4 deals with a definition of "closeness" under which every (pure) Nash equilib-

rium of the original game is near strict. We begin with a. motivating example in subsection

4.1. Technical details and the definition of closeness are given in 4.2. This version of close-

ness allows each player to be uncertain of his own payoff, and to believe that his opponents

may (with small probability) have better information about it than he does. In this setting,

an unexpected deviation by one player can signal that all players should change their play,

as a small ex ante uncertainty can become large upon observing an "unexpected" action.

In 4.3 we show that, with this notion of closeness, all pure strategy Nash equilibria are near

strict. (Once again, mixed equilibria, can be accomodated with a minor weakening of the

definition.)

In section 5 we consider a second notion of closeness, which requires that each player's

additional private information relate only to his own payoffs. If each player's additional

information must also be independent of the information of the others, then an unexpected

deviation by a player signals only that his own payoffs are different than had been antic-

ipated. (In the literature on reputation in repeated games referenced above, the pertur-

bations used satify this restriction.) With this more restrictive notion of closeness, not all

(pure) Nash equilibria are near strict. However all pure strategy equilibria that are strictly

trembling hand perfect in the normal form are near strict, including some that are not

subgame perfect. We obtain a converse by weakening slightly the notion of trembling-hand

perfection. Finally, we consider relaxing the assumption that players' additional informa-

tion must be independently distributed. Here we obtain a characterization of near strict

equilibria that is like trembling hand perfection, but where the "trembles" of various players

may be correlated.



The idea that small uncertainties of the kind we consider can render perfect some

otherwise imperfect, equilibria is not original to us. Van Damme [13] and Myerson [9],

among others, make this point. Our contribution is to define and characterize more precisely

the effects of various kinds of uncertainties corresponding to various measures of closeness.

2. Normal form games and payoff perturbations

Fix a finite player, finite action normal form. (We restrict attention throughout to

games with finitely many players, each of whom possesses finitely many strategies.) Let

i = 1,...,/ index the players, and let a, £ 5, index the pure strategies of player i . Denote

Yii=i ^i by S . Let T be the space of games over this normal form: We take T = RIxS
,

where for 7 £ T
,
j{i,s) is the payoff to player i under strategy s .

The set T comes endowed with a natural topology, namely the Euclidean topology. So

does E,- , the space of mixed strategies for player i
, and E = Yli=i ^« • (^?e wm use the

term strategy profile to refer to elements of E .)

Two strategies for player i , a, and a\ , are said to be equivalent is, no matter what

strategies ct_,- = (cj, ...,o",_i,<7i+i, ...,ctj) are chosen by ? 's opponents, all players receive

the same utility whether ?' chooses a, or o\ .

l

A Nash equilibrium a = (ai,...,aj) for a given game 7 is called strict if, for each

player i, cr,- is
?'

's unique best response to the strategies cr_,- = (01, ...,ct,_i,ct,+i, ...,07)

of the other players, up to equivalent strategies for i

.

2 Note that only an equilibrium in

pure strategies can be strict (unless the mixing is over equivalent strategies), according to

this definition. Strict equilibria satisfy all the standard refinements; in particular, a strict

equilibrium, taken as a singleton set, is hyperst&ble in the sense of Kohlberg and Mertens

[5].
3

1 Equivalent strategies arise naturally when the normal form game is constructed from

an extensive form game, and one player has multiple information sets in sequence. Then
if the player takes an action at an earlier information set that precludes reaching a later

information set, the choice of the player at that later information set is irrelevant. N.B.,

it is the player himself who precludes the later information set - equivalence of strategies

does not depend on the strategy choices a_,- of other players.
2 That is, any equally good best response a\ must be equivalent to C{ . We could equally

well speak of strictness in the reduced normal form, in which all equivalent strategies are

identified.
3 Recall that Kohlberg and Mertens work with the reduced normal form. Conversely,
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Definition. A strategy profile a G £ is near strict in the normal form for a game 7 if there

is a sequence of games 7™ (over the same normal form as 7 ) and a sequence of strategies

{ct"} such that (i) lim n 7" = 7 ,
(ii) for each n , u n

is a strict equilibrium of 7"
, and (iii)

lim n a
n = a .

Proposition 1. A strategy combination a £ E is near strict in the normal form for 7 if

and only if it is a pure strategy Nash equilibrium for 7 .

The proof is quite simple. To see that any strategy profile that is near strict in the Normal

form for 7 is a Nash equilibrium of 7 , use the upper hemi-continuity of the Nash equilib-

rium correspondence. For the converse, consider the perturbation that adds a small amount

to the players' utilities at the outcome prescribed by the strategy in question.

It is easy to deal with mixed strategies, if one permits a small extension to the defi-

nition of near strictness. Recall from Kohlberg and Mertens [5] that for any given normal

form game, an equivalent normal form game is one in which pure strategies that are con-

vex combinations of other pure strategies are added to or deleted from the original game.

Corresponding to every strategy profile in an original game are (possibly many) strategy

profiles for a given equivalent game. Consider the following modification of the definition

of near strictness in the normal form.

Definition. A strategy profile a for a normal form game 7 is near strict in equivalent-

normal forms for 7 if it corresponds to some strategy profile a 1

of an equivalent game 7'

that is near strict in the normal form for 7'

.

Proposition 2. A strategy profile o is near strict in equivalent normal forms for 7 if and

only if it is a Nash equilibrium of 7 .

Again the proof is easy. A simple example will illustrate the method of proof. Consider

the game depicted in figure 1, and the particular equilibrium in which player 2 randomizes

equally between L and R. In figure 2 we have an equivalent game 7' , with the particular

equibbrium strategy for 2 added as a new strategy for player 2. In this game, this added

any pure strategy equilibrium that is, as a singleton set, hyperstable, will be strict. Hence

as long as we restrict attention to pure strategy equilibria, we could use "hyperstable as a

singleton set" instead of "strict".



strategy M corresponds to the mixed strategy of player 2 in the original game; the Nash

equilibrium in the original game corresponds to a pure strategy equilibrium in the equivalent

game, and we can apply the first proposition.

The spirit of this extended definition is that players may derive a little extra utility

from playing a particular randomized strategy. This technique can be applied at any point

in the development to follow, to extend results from pure to mixed equilibria. However, as

both referees emphatically observed, this is an artificial device of little content. 4 Hence we

will, in what follows, discuss only the near strictness of pure strategy profiles.

3. Extensive games and payoff perturbations

The result that every pure Nash equilibria of 7 is near strict in the normal form (and,

hence, is near hyperstable as a singleton set) is hardly surprising, since we aUow for any

sequence of (vanishing) payoff perturbations to the normal form game. Recall that, for

most normal form games, every Nash equilibrium satisfies the standard refinements; the

refinements were created initially to deal with games that arise from a specified extensive

form. Hence we might wish to permit, as perturbations to an initial extensive game model,

only perturbations that respect the structure of that extensive form.

We can imagine that our outside analyst is concerned with a game over an extensive

form E , and he entertains no doubts about the physical rules of the game so specified. But

still our analyst may have doubts about the full specification of the situation. He may, for

example, be slightly unsure of the payoffs to the players or their probability assessments

concerning nature's moves. We will suppose that there is no question about the probability

assessments. 5 Thus we can ask: Fix an extensive form E and probability assessments

for nature's moves in E . Let T be the space of all payoffs for players in E . For a given

7 6 T , which strategy profiles are near strict in the following sense?

4 The referees suggested a somewhat more satisfactory treatment for mixed strategy

equilibria, in which one considers as a perturbation of a given game the same game in

which a player is "replaced" by a continuum of identical copies, as per Harsanyi's [4] classic

treatment of purification. We will not follow that route here, except to suggest to the

interested reader that, when one comes to general elaborations in section 4, one will have

to be careful with this if one is not to get as near strict all correlated equilibria, precisely

in the spirit of Myerson [9].
5 The usual accounting tricks make this without loss of generality, if there is no question

about the support of those assessments.
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Definition. Fixing 7 6 T, a (pure) strategy profile a of the game 7 is near strict in

the extensive form if there exist a sequence of payoffs 7" —> 7 and (normal form) strict

equilibria a" of 7" such that <r
n -+ <7 .

We know from Section 2 that, for at least some games, there are equilibria that are

near strict in the normal form but not strict themselves. Viewing a given normal form as

a simple extensive form, we see then that there will be profiles that are near strict in the

extensive form but that are not strict. It is easy to show that every strategy profile that

is near strict in the extensive form is a pure strategy Nash equilibrium. But not every

pure strategy Nash equilibrium over a given extensive form is near strict in the extensive

form. Consider the extensive game in Figure 3. (Our system for diagramming extensive

form games is taken from Kreps and Wilson [7].) It should be easy to see that the Nash

equilibrium (L,D) is not near strict in the extensive form; only (R,U) is.

Indeed, for some extensive games, no equilibrium is near strict in the extensive form.

The game depicted in figure 4 is an example: While (R,Uu) and (R,Ud) (and, more

generally, any randomization between these two strategies) are very nice equilibria, neither

is near strict. In fact, for an equilibrium of an extensive game to be near strict in the

Normal form, it is necessary that any information set h that is not reached with positive

probability either (i) is precluded solely by the action at some earlier information set of the

player whose move it is at h or (ii) is a "dummy" information set, where the player's choice

is irrelevant to everyone's payoff. This is a very simple manifestation of the type of problem

that leads Kohlberg and Mertens to define stable components of equilibria, and we could

similarly attempt to define near strict components. However, we are more interested in the

implications of the less restrictive notions of "closeness" that correspond to the players not

being quite certain of each others' payoffs.

4. General Elaborations

4.1. An example

To motivate this development, we provide a simple example. (A similar example is

found in Van Damme [13].) Consider first the game in figure 3 and the equilibrium (L,D)

.

Imagine an outside analyst whose thought about this situation run as follows:



"I know the particular physical rules of this game. Player 1 must first choose

between L and R , and player 2 must choose between U and D if R is chosen.

And I'm fairly sure that the payoffs are as in figure 3. But I'm not completely

certain of this. I am willing to admit that there is a small chance that the payoffs

are quite different from those 6hown. Moreover, it might not be common knowledge

between the players what those payoffs are. That is, the game may have incomplete

information, in that players do not know the precise payoffs, although all the

players will have priors that give probability close to one for the payoffs in figure

3."

To model this, we introduce a game that is more elaborate than that in figure 3, as

follows. Nature moves first, selecting one of several "versions" of the game. Each version

is distinguished by having the same extensive form as in figure 3 but may have different

payoffs. Nature chooses version having payoffs close to those in figure 3 with probability

close to one. Each player has a partition over versions of the game, with each respective

player being told in which cell of his partition the true version lies.

One such elaboration is given in figure 5. Nature picks one of two versions. The first,

which occurs with probability 1 — €, has the same payoffs as in figure 3; the second, which

occurs with probability e , has very different payoffs. Player 1 knows which version nature

picks, while player 2 is not told. Is this elaboration of the game in figure 3 very different

from the original game for small f ? Our outside analyst, plagued by the sort of doubts

expressed above, might not be willing to rule out the possibility that the players perceive

the situation as being that in figure 5.

The point of this example is now easy to make. For the game in figure 5, the equilibrium

(Zi-fto, D) is strict in the normal form, as shown in figure 6. Moreover, it remains strict as

we decrease e towards zero. This should not be bard to see: Given that player 2 will play

D
,
player l's choices at his two information sets are both strictly optimal choices. And,

given the strategy of player 1, player 2 is given the move only if nature picks version 2,

which renders strictly optimal the choice D by 2.

If we were to measure distance so that, as c goes to zero, this game approaches the

game in figure 3, then we would conclude, in the spirit of earlier discussion, that (£, D) in

figure 3 is near strict. This is so even though, in figure 3, (L,D) is subgame imperfect.

8



(Note that a nontrivial step is implicit here: In what sense does {L\R.2,D) approach (L,D)

as e goes to zero? We give a formal criterion below.)

With this as a prelude, we now develop a general treatment.

4.2. Elaboration perturbations

We begin with a precise definition concerning when one game is a small perturbation

of another. We will not develop a formal topology on the space of games, but instead we

give a simple sufficient condition for games to be close.

Fix an /-player extensive game of perfect recall, E . This prescribes a game tree T

(with nodes denoted by t ) which is partitioned into sets of nodes T, that "belong" to the

various players, some of which are initial nodes w £ W , and terminal nodes z £ Z ; an

initial assessment p over W ; information sets h £ H , with H{i) denoting the information

set containing the (nonterminal) node / ; actions a £ A(h) at each information set; and a

payoff function u : I x Z —> R assigning utilities to all players.

The kind of perturbation of E that we have in mind is one in which one of TV possible

"versions" of the game above is selected by nature at the outset, where each version has

the game tree of the game above and, except for initial uncertainty as to nature's choice of

version, the same information structure. Versions are distinguished by the players' payoffs.

And players are unsure (in a general sense) as to which version prevails. Such perturbations

of E will be called elaborations of E .

To formalize this, imagine a game E of perfect recall built up as follows. A positive

integer N is given, together with a probability distribution /j on {l,...,Ar

}. In E , the

game tree consists of an N fold copy of T , or T X {1, ..., N] ; we use (Z, n) to denote the

n th copy of the node t . If player i moves at (non-terminal) node t in E (if t £ T,- ), then

i moves at (i, n) for all n ; i.e., T, = Tt
- X {1, ..., N} . The set of initial nodes consists of the

N fold copy of W , with the probability of initial node (w,n) given by p(w)fi(n) . The

utility to player i at terminal node (z,n) is denoted by u(i,z,n). Finally, information

sets are composed as follows. For each player i, a partition Pi of {1,2,..., A} (with

cells denoted by Pi(n)) is given, and the information set in E with node (t,n) £ T{ is

H(t) X Pi(n) . Actions at information sets are inherited in the obvious fashion.

The information structure bears some scrutiny. Player i 's exogenously given informa-

9



tion concerning which version n is chosen at the outset is described by the partition P; .

That is, if it is player i 's turn to move at node (t,n) , his knowledge about t is given by

H(t) and his knowledge about n is given by Pi(n) . Figures 3 and 5 illustrate the basic

construction. The game E in figure 5 consists of two versions of E in figure 3. In the first

(upper) version, the payoffs are identical with those in figure 3. In the second (bottom)

version, they are quite different. Player 1 learns at the outset which version is chosen; i.e.,

P\ is the discrete partition. Player 2 learns nothing; i.e., Pi is the trivial partition.

We consider such elaborations E of a game E as being among the possible perturba-

tions of E . For E to be a "small" perturbation, we take it to be sufficient that the payoffs

in E should be, with high probability, approximately those in E . Formally, we pose the

following criterion.

Convergence Criterion. For a given game E , let {E k
} be a sequence of elaborations of

E . To say that the sequence approaches E , it is sufficient that:

(i) there is a uniform bound on the number of versions of the original game in each elabo-

ration E k
, and a uniform bound on the absolute values of the u k

;

(ii) for each k, i and z , lim/.—^, u k
(i, z, 1) = u(i, z) ; and

(iii) hnu-^oo^l) = 1.

Conditions (ii) and (iii) state that, along the sequence, the probability that nature picks a

version in which payoffs are asymptotically the same as in the original game approaches one.

Note that a convergent sequence of extensive form payoff perturbations of E corresponds to

a (trivial) convergent sequence of elaborations. 6 The first part of condition (i) is probably

unnecessary to support a notion of closeness, but since we are giving a sufficient condition

for convergence, it cannot hurt. The second part of (i) is quite important, however: Even if

the probability of other versions is going to zero, if there is no uniform bound on the payoffs

of those versions, then we can inflate the payoffs in other versions so that, in expected utility

6 Strengthening condition (ii) to require that payoffs in the first version exactly equal

those in the original game is vacuous: Given a sequence of elaborations satisfying (ii), we
can replace version 1 by two versions, called 1' and 1"

, with payoffs in 1' exactly as in

the original game, and specify that no player can distinguish between 1' and 1"
. With

appropriate care in picking payoffs in version 1" and the relative prior probabilities of the

two, the new elaborations would be strategically equivalent to the old ones.
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terms, the players' expected payoffs over all the versions are anything we wish them to be.

With the uniform bound on payoffs, however, (iii) implies that in ex ante calculations of

expected payoffs, only the first version (which gives nearly the payoffs of the original game)

will loom large in the limit.

Is this a reasonable sufficient condition for closeness of games in the extensive form?

The considerations put into the mouth of our outside analyst at the top of this section

would argue that it is, although the reader may already see how broad a class of small

perturbations this allows. Insofar as the refinements of Nash equilibrium deal with out-of-

equilibrium behavior, a small probability ex ante of very different payoffs may loom quite

large ex post. In what follows, we will see that this is so, and the reader should consider

carefully whether the uncertainty of an outside analyst may be so great as this.

4.3. Near strictness under general elaborations

As in the previous two sections, we wish to identify (equilibrium) strategies for a given

game E that are near strict, in this case under the notion of closeness developed above. To

do so, we must specify a mode of convergence of a sequence of strategies for elaborations

to a strategy for the original game. This is not completely trivial, because strategies in

an elaborated game are much richer than strategies in the original game. Since we take

the point of view that the outside analyst is only able to view actions in the physical

game given by E (and not those actions contingent on which version nature selected), one

answer is to look at the (marginal) distribution induced by strategies on endpoints of the

"physical" game. That is, one could compute the distributions induced on Z , and require

that they converge. Note that even if all elaborations are trivial, in the sense that each

has a single version of T , this gives us convergence of strategies only at information sets

that are reached with positive probability. Hence this is weaker than the usual convergence

of entire strategies. We therefore use a slightly sharper convergence criterion: We ask for

convergence of behavior prescribed in an elaborated game at all information sets h that

contain the nodes (t, 1)

.

Definition. An strategy a for the game E is near strict under general elaborations if

there is a sequence of elaborations of E
,
{E k

} , that converges to E in the sense of the

convergence criterion given above, and a sequence of strict (normal form) equilibria {cr
k
}

11



for the respective elaborations, such that the behavior prescribed by the a k
at nodes (/., 1)

in their respective games converges to behavior at node t prescribed by a .

Proposition 3. A pure strategy profile a for the game E is near strict under general

elaborations if and only if it is a (pure strategy) Nash equilibrium in E .

Proof. First we show that any strategy profile that is near strict under general elaborations

is a Nash equilibrium. Suppose that some a is near strict but is not a Nash equilibrium.

Then there is some player i , strategy 5",-
, and e > such that u(i, (<7,-,<7_j)) > u(i,a) + €

,

where u(i,a) denotes the utility to player i in the game if the outcome is determined by

the strategy profile o , and (<7,,<7_i) is the strategy profile composed of a, for i and Oj

for all j 7^ i

.

Fix a sequence of elaborations {E k
} and corresponding strict equilibria {v k

} which

converge to a in the sense we are using here. Payoffs are uniformly bounded in all versions,

payoffs in version 1 of elaboration k approach payoffs in the originally given game, and

the prior probability of version 1 approaches 1 . Therefore i 's overall expected utility in

elaboration k approaches u(i,a). Suppose that there were some &{ as above. Construct

d k so that, in elaboration k, at information sets (/i,P,-(l)) for h £ H l

, i follows the

prescription of d{ , and otherwise i follows the prescription of d k
. As k grows, u(i,(a k

))

coverges to u(i, (ai,a_,)) so that for large enough k , b k would be better for i than a\

in elaboration k , a contradiction.

For the converse, we fix a (pure strategy) Nash equilibrium a and construct an elab-

oration E k
as follows.

For each player i and pure strategy S{ for i , design payoffs for i that make strategy

S{ strictly dominant for player i throughout the course of play. To do this, at each terminal

node z € T , ask how many times 771,(2, s^) player i had to deviate from Si if 2 is to be

reached. (For example, when z lies along a path that passes through no information sets

of i , 777,(2, Si) = .) To give i the strict incentive to follow s,- at every opportunity, set

i 'S payoffs at — T7l;(2,S;) .

Letting #5,- be the number of pure strategies for player i , in each elaboration there

are Yli=i(i^^i + 1) versions of the original game. We label these versions by (rl5 ..., 77)

,

where each r, is drawn from the set 5ilJ{0}. Inversion (r : , ....,r,) of elaboration k , the

12



payoffs to player i are as follows:

(i) If r; £ Si , then player ? is assigned the payoffs described above that make r, a strictly

dominant strategy.

(ii) If r,- = and, for some j ^ i , rj £ Sj , then player i is assigned payoffs that make

playing Oi a strictly dominant strategy.

(iii) If T{ = and, moreover, r$ = for all j , then player i is assigned utility equal

to u(i,-) — mi(-,<7i)/k , where u is the originally specified utility function and m,- is the

number-of-deviations function defined above.

The prior distribution on these versions is set as follows. Version (rj, ...,?"/) of elab-

oration k has prior probability
I [,- Mi( r !') ? where /x;(r,) = 1/(A: • #5,) if r; G 5"; and

M«( r i)
= (^ ~ l)/'c ^ r '

=
• Finally, for his initial information concerning the version

selected, at version (rj, ....,77)
,
player ?' is told the value of 7-,-

.

This construction may seem quite complex, but it has a. simple interpretation. Each

player i is either "crazy" or "sane", and there are as many different ways for i to be

crazy as i has pure strategies. The overall chance that i is crazy in elaboration k is

Ijk , divided equally among the many different forms of craziness. A player is told whether

he is crazy or sane and, if crazy, the form that his craziness takes. Players' "types" are

selected independently. (Note that the payoffs of one player will depend on the type of the

other, so the payoff perturbations are not independent.) If a player is crazy according to

a certain pure strategy, then the player has payoffs that cause him to play that strategy

at every available opportunity. ' If a player is sane and some other player is crazy (of any

type), then the sane player wants to follow the fixed Nash equilibrium strategy a,- at every

available opportunity. Finally, if all players are sane, then payoffs are as in the original

game, with a small "kick" in favor of the fixed Nash equilibrium strategies a; .

It should be evident that this sequence of elaborations converges to the originally given

game, according to the criterion we have given. We claim, moreover, that in each elabo-

ration, the following strategies d{ are strict: Player i follows a,- if his initial information

7 This sort of construction, in which every strategy is played with positive probability,

is used by Fudenberg and Maskin [3] to obtain a robust folk theorem for repeated games
with long but finite horizons and small levels of incomplete information.
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is r,- = , and he follows 7"j if his initial information is some v, e £', . Once this claim is

established, we will have the proposition.

Suppose that some (pure) strategy cr; is one of i 's best responses to the strategies

{dj} of his opponents (in some elaboration k ). We wish to establish that a l is precisely

a, except possibly at information sets that i 's own actions preclude. By the assumption of

perfect recall, the information sets of i are ordered by precedence. Take any information

set h for i that is earliest in terms of precedence among all of i 's information sets in which

&i is different from cr; and in which i 's previous actions (which would be the same under

b{ and cr,- because this is an earliest information set) do not themselves preclude h . If no

information sets of i satisfy these conditions, we are done. There are three possibilities to

consider:

(i) The information set h belongs to a crazy variety of i . Because i himself doesn't

preclude h , and because every strategy profile of his opponents is possible under their

strategies in a (conditional on whatever type is i ), the information set h has positive

prior probability. And at that information set, any action other than that prescribed by d{

does strictly worse than CTj (from then on). Hence there is a strategy for ?' strictly better

than <7; , which contradicts the assumed optimality of a, .

(ii) The information set h belongs to the sane variety of i , and it corresponds to an

information set that is hit with positive probability under a in the original game and

equilibrium. Then under a it is hit with positive probability in one of two ways: Either

we are in the version in which everyone is sane, in which case foDowing d{ is a strict best

response for i (recall the "kicker" in defining utilities for this the all-sane version), or we

are in a version in which someone else is crazy and i is sane, in which case following ct;

is a strict best response for the rest of the game. In either case, there is a strategy for i

strictly better than a, , and again we have a contradiction.

(The kicker perturbation to utility in the all-sane version would be unnecessary as long

as there is more than one player, since then we would have that following a,- is at least

weakly best in the all-sane version, strictly best in every someone-crazy version, and the

latter would have strictly positive probability. For one player games, however, the latter

has zero probability.)
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(iii) The information set h belongs to the sane variety of i , it corresponds to an information

set that is off the equilibrium path in the original game under the strategy a , and player i

does not, by his actions, preclude h . Since there is positive prior probability of every other

strategy combination by i 's opponents, there is positive prior probability that h will be

reached. Moreover, Bayes' rule forces i to conclude that some one or more of his opponents

must be crazy at this point, at least insofar as they all follow their parts of a . Hence it

is strictly better for i to follow a,- at this point and henceforth, and we have the same

contradiction as in the previous two steps.

Q.E.D.

Proposition 3 shows that any Nash equilibrium can be "justified" if the players entertain

the right kinds of doubts about each other's payoffs. Naturally, different forms of payoff

uncertainty will justify different equibbria, because the way in which a player responds to

an unexpected deviation by his opponents depends on the inferences that he draws from

this deviation. However all of the Na,sh equilibria are "robust" in that sense that, given a

sequence of elaborations that approaches the original game and justifies a given equibbrium,

we can consider any "small enough" further perturbations of the elaborated games and get

the same conclusion. Loosely speaking, every (pure) Nash equibbrium is justified by an

"open cone" of elaborations whose vertex is the original game.

5. Elaborations with Types

5.1. Independent types

In terms of our outside analyst story, section 4 says that unless one is certain that

players wiU not draw unmodelled inferences about their own payoffs from the deviations

of their opponents, one should not reject any (pure) Nash equibbrium. Suppose, though,

that our outside analyst is prepared to assert that the model as written captures ab of the

information that players have about each other; he entertains (only) the possibibty that

each player has unmodelled private information about his own payoffs. Using language

from the bterature, the analyst entertains the possibibty that each player is one of several

types (specified by payoffs), and each player knows his own type. If it is also true that no

player has information (beyond the information possessed by the analyst, which ab players

have) about the types of the others, then we will say that the types are independent. In
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this case the class of small perturbations that the analyst would consider is smaller than in

4.2, and the set of near strict equilibria that result might be smaller as well.

(Note that in the general elaborations considered in section 4, a player's payoffs were

not wholely determined by the player's "type". In particular, in the proof of proposition 3,

the utility function of the "sane" type of player i depended crucially on whether any other

player was "crazy." Hence we did not meet the requirement that each player knows his own

payoffs; we will now require this. Initially, we also require that the types be independently

distributed; that is, that the prior f.i will have a product structure.)

To see the force of this restriction, consider the game in figure 3 and the Nash equi-

librium (L,D) . We made this equilibrium near strict by formulating, in figure 5, a game

in which player 1 received information that was pertinent to player 2's payoffs. Hence, in

this elaboration, player 1, by choosing R, was communicating to 2 that 2's best choice

lay with D . (This, of course, supposes that 1 chooses L in the top version of the game.)

But if we supposed that player 1 could not be given information about 2's payoffs superior

to the information that 2 receives, this would be impossible, as player 2, moving in the

information set that contains the node from the high probability version, would know that

U is dominant for him.

This is not to say that "elaborations with independent types" (to be defined formally

below) will not render near strict some equilibria that are not themselves strict. Consider

the games in figures 7 and 8. In figure 7, we have an equilibrium (Lu,D) which is subgame

imperfect. In figure 8 we have an elaboration of this game in which there is some uncer-

tainty as to the payoffs to player 1 only. (There are two possible types of player 1.) Player

1 is informed about his payoffs; player 2 gets no information. In this game, (L^R^u-ido, D)

is sequential; a more involved elaboration with independent types will make it strict, which

renders (Lu,D) near strict under such elaborations. 8 The intuition is that in the alter-

native, bottom version of the game, player 1 plays R% with positive probability and will

8
In figure 8, (Li^^i^, D) is not strict because player l's choice between u^ and di

is irrelevant given player 2's choice of D . To make the choice matter, imagine that there

is independent uncertainty about 2's payoffs, where, with small prior probability, 2 has A
as a dominant strategy. Think of an elaboration with four versions, two (for each type of

player 1) by two (for each type of player 2), where each player knows his own type but not

the type of the other. If this is too sketchy, the general definition and construction to be

given in a moment will clarify matters.
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continue with d 2 , because in the bottom version, R 2 d2 is dominant. Player 2, then, given

the move, assesses probability one (at the L\ action equilibrium) that the bottom version

is being played. As 1 will therefore continue with d2 given the chance, 2 chooses D.

With this example to provide motivation, we turn to a formal development. First, we

must modify the definition of an allowable elaboration.

Definition. An elaboration is said to be an elaboration with independent types if:

(i) for each player i there is an integer TV,- such that the number of versions in the elabo-

ration is Yii Ni i

(ii) writing (ji,...,ji) as the index of one of the elaborations, where ji 6 {1,...,TV,-} , there

is for each i a probability distribution /z,- on {1,...,TV,} with //((ji, ...., ji)) — [} m(ji) ;

(iii) there is for each i and j G {1, ...,TV,} a payoff function v(i, z;j) such that for each i

and version (ju ...,'jj) , u(i, ;(ju ...,j/)) = v(i, --Ji)

.

(iv) the information given to i if the true version is (j\,.--,ji) concerning which version

prevails is simply j,-

.

The same convergence criterion as in section 4.2 is used, although we now restrict to

elaborations with independent types for perturbations.

Definition. A strategy a for an extensive game E is near strict under elaborations with

independent types if there is a sequence of elaborations with independent types of E
,

{E k
} , that converges to E in the sense of the convergence criterion, and a sequence of

strict equilibria {cr
k
} for the corresponding normal forms, such that the behavior prescribed

by the d k
at nodes (i, 1) converges to behavior at node t prescribed by a .

To give our result, we need a further definition.

Definition. A (pure strategy) equilibrium a of a normal form game 7 is strictly perfect

in the normal form if there is a sequence of totally mixed strategies a k —> a such that, for

each player i and index k , o± is a strict best response (up to equivalent strategies for i
)

to the other players' strategies prescribed by o k
.

9

9 The term "strictly perfect" is used by Okada [10] to mean something quite different.

In the same vein, we later use the term "quasi-perfect" in a sense different from its usage

in van Damme [14].
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Remark. Figure 9 shows that (Lu
7
D) is strictly perfect in the normal form. The num-

bers in parentheses are "trembles" corresponding to a sequence of totally mixed strategies

converging to (Lx,D) such that Lx and D are strict best responses for players 1 and 2,

respectively, in the reduced normal form. The key is that player 1 trembles onto Rd more

often than onto Ru , even though, having played R
. ,

player one "should" continue with

u. 10

Proposition 4. For a given extensive form E , every equilibrium o that is strictly perfect

in the normal form is near strict under elaborations with independent types.

Proof. Fix a sequence of totally mixed strategies u k —> o such that each a,- is a strict

best response to each o . In the k th elaboration, N, is set equal to #5,-, the number

of pure strategies of player i . Payoffs for i in versions corresponding to S{ are as in the

original game if s; = 0{ , and they make s
l
dominant otherwise. The marginal probability

that type Sj for i is chosen is exactly that assigned to s; in a\ . Hence these independent

elaborations do converge in the sense of the convergence criterion to the originally specified

game.

By construction, it is a strict Nash equilibrium in E k
for each player i , if sane, to

play a, , and to play S{ when crazy of type s, . This gives the result.

Q.E.D.

Given our previous results, Proposition 3 should not be surprising. Imperfect equilibria

that are perfect in the normal form correspond to players inferring that, if an opponent has

deviated from equilibrium play once, he is likely to do so again. Such inferences can be

justified if each player believes that with small probability his opponents' payoffs may be

quite different from payoffs that have high prior probability.

The converse to Proposition 4 is, however, false: Imperfect equilibria can be near

strict with respect to elaborations with independent types. The problem is that the perfect

equilibrium correspondence is poorly behaved with respect to extensive form payoff pertur-

bations. Consider the foDowing two person simultaneous move game. If both players choose

L , both receive 1. If either chooses R , then both receive zero. Only (L,L) is perfect, but

10 Recall that Selten introduced perfectness in the agent-normal form precisely to rule

out such correlated trembles.
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(R,R) is near strict under payoff perturbations in the extensive form: Imagine thai the

payoff to (R,R) was e for each player, holding the payoffs for {L,R) and (R, L) at zero,

and let ( approach zero.

One way to obtain a partial converse to Proposition 4 is to assume that each players'

"main type" (the type corresponding to the main version of the game) has exactly the payoffs

given in the original game. That is, our outside analyst assesses small probability that he

has the payoffs off by (possibly) a large amount, but he assesses high prior probability that

he has precisely the correct payoffs, and each player knows this. This class of perturbation

is not particularly interesting. Instead, we modify the definition of a perfect equibbrium by

taking its closure with respect to payoff perturbations in the extensive form.

Definition. Fix an extensive form E with payoff function u. A (pure strategy) equilibrium

a of the corresponding normal form game is quasi-perfect if there is a sequence of payoffs

for the extensive form, {um } , with hmit u , such that a is strictly perfect in each of the

normal forms corresponding to the um .

u

Remark. Every perfect (pure strategy) equilibrium is quasi-perfect.

Proposition 5. For a given extensive form game E , a pure strategy equilibrium a is

near-strict under elaborations with independent types if and only if it is quasi-perfect.

Proof. 12 Suppose that o is quasi-perfect. Let u be the payoff function for E , and

let um - 11 be the extensive form payoffs such that a is strictly perfect in the normal

forms corresponding to the um . Write Em for the extensive form game with payoffs

um . From Proposition 4, there are elaborations with independent types E m,k
of Em and

strategy profiles dm '
k

for those elaborations are such that am '
k are strict equilibria in

the corresponding normal forms, and & m,k — a in k . Examination of the construction in

Proposition 4 shows that we can assume that the number of versions and size of payoffs in

the elaborations Em '
k are uniformly bounded in m and k . For each positive integer N

,

take m;v large enough so that umN is within 1/2N of u , and then take k^j large enough

11 Eddie Dekel has pointed out that this definition of quasi-perfection is equivalent to

a definition in which a need be only (weakly) perfect in each of the normal forms corre-

sponding to the um .

12 We thank Eddie Dekel for finding an error in an earber version of this proof.
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so that (i) kN > N
;
(ii) the payoffs in version 1 of EmN >

k» are within 1/27V of umN ; and

(iii) the first version has probability (TV — 1)/7V or more in this elaboration. It is immediate

that {EmN '
k*} is a. sequence of elaborations with independent types approaching (in N

)

E , with amN ' N
a. sequence of strict equilibria for those elaborations that approaches a .

Hence a is near strict.

To establish the converse, we begin with a piece of notation and a preliminary obser-

vation. Fix an extensive game E , and let E be an elaboration (with independent types)

of E . If ct, is a strategy for i in E , we will write Ma, for the marginal distribution

on strategies of i in E induced by cr,- . That is, averaging over all versions of the original

game in E according to ^ (or averaging over all of i 's personal types according to /x,
,

which gives the same result because types are independent) we compute the probability

with which i will be "observed" to play various strategies in E

.

Now suppose that we have an elaboration E and a pure strategy profile a which is a

strict equilibrium for the normal form of E . We claim that it is without loss of generality

to assume that M<7; is totally mixed, for each i . This is so because we can append to each

player's list of types a further type for each pure strategy of i in E , where in the extra

type for strategy Sj , i has s; as a dominant strategy. Because a,- is a strict best response

for i in a , we can, in the augmented elaboration (with the extra types) choose the prior

probability of those extra types to be sufficiently small (but still strictly positive) so that the

composite strategy for each player i : "Follow a,- for types from the original elaboration,

and follow the dominant strategy for the appended types," is a strict best response to the

composite strategies for the others. (The constraint on the size of the probability of i 's

extra types depends on the extent to which the other players' strategies were strict best

responses.)

Suppose then that a is near strict for E , and fix a sequence of elaborations (with in-

dependent types) E k —y E and corresponding strict equilibria a k —* a . By the observation

just above, we can assume that WLa k
is totally mixed.

For each player i (holding a fixed), partition the terminal nodes of the original game

tree into two sets: Let A,- be those nodes which, for some combination of strategies by i 's

opponents, can be reached when i uses a,- , and let B{ be the complementary set. Using

v (i,z; 1) to denote the payoffs to player i in the main version of the game in elaboration
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E k
at node z , consider the payoffs w k

(i, z) for the original extensive form given by

w k
(i,z) = supu'(?. z; 1), for z £ A, and

j>k

w '(i,z) = inf uJ
'(i, z\ 1), for z £ Bi.

We assert that <r is strictly perfect in the game with payoffs given by w k
, against the test

sequence Ma-7
.

To see this, we compare the difference to i between playing a; and some other (pure)

strategy Si against Mai,- when payoffs are given by w k with the difference when the

payoffs are uJ (-, •;].), for j > k . Write 11(2) for the probability that terminal node z

is reached when strategies are (a,-, Mai,-) , and write II' (z) for this probability when the

strategies are (s;,Mai,-) . We wish, then, to sign

a = ]T(n(z) - n'(z)K(», z) - £(n(*) - n'(z)y(i, z- 1).

2 Z

Partition the terminal nodes z into four classes: (1) nodes that are reached with positive

probability under both a; and s; ; (2) nodes such that Jl(z) = II'(z) = ; (3) nodes with

U(z) > = IL'(z)
; (4) nodes with Il'(z) > = U(z) . Note that classes (1) and (3) make

up A, , and classes (2) and (4) make up B l
. Now since a,- and Sj are pure strategies,

11(2) = II'(z) in class (1). Thus the terms making up A for z in class (1) net to zero. For

z in class (2), the terms are zero. Thus we can rewrite

A= J2 n(z)(™%z)-vj (i,z;l)) - ]T U'(z){w k (i,z)-v^i,z-l)),

zeClass (3) ^eClass (4)

where we have used the facts that II'(z) = for z in class (3) and II(z) = for z in

class (4). Since z in class (3) are in A{ , w k > v^ there, and conversely for class (4). We

conclude, then, that A is nonnegative.

But a,- is a strict best response to Mai,- when payoffs are given by vJ
. The nonneg-

ativity of A shows that the same is true when payoffs are given by w k
. Thus a is strictly

perfect when payoffs are given by w k
. And, since vi(-,-;l) converges to u, w k —> u.

Thus a is quasi-perfect.

Q.E.D.
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5.2. Personal types

The effect of perturbations with independent types is essentially (i) to allow for ex-

tensive form payoff perturbations and (ii) to allow correlation between the "trembles" at

different information sets of the same player. We can, and now will, loosen the definition

of elaborations with independent types to allow for the trembles to be correlated across

different players.

An elaboration has personal types if each player's payoffs depend only on his own infor-

mation about Nature's choice of version; the players' information need not be independent.

Formally, an elaboration with personal types must satisfy (i), (iii) and (iv) of the definition

of an elaboration with independent types, but the overall measure n on versions needn't

have the product form.

Consider the game in figure 10.
13 In the subgame where players 1 and 3 have played

R and r, players 1, 2 and 3 play a 2x2x2 simultaneous move game. Against any

pair of independent strategies by 1 and 2, player 3 can guarantee himself a payoff of at

least in this subgame by playing a 50-50 mixture of A and B , so d is never part of

any (normal form) perfect equilibrium of the game. Hence in any normal form perfect

equilibrium of the game, 1 and 3 choose R and r , respectively. The subgame must lie

along the equilibrium path in any perfect equilibrium, and in the subgame 1 and 2 have

unique equilibrium strategies. (They play matching pennies no matter what 3 does.) Hence

3's best choice is A . That is, this game has a unique (Normal form) perfect equilibrium,

namely (R, r,A, .577 + -5T, .5h + .5t) . Perturbing the extensive form payoffs will not affect

this, hence this is the unique equilibrium that is strict under elaborations with independent

types.

But now consider elaborations with personal types. In particular, imagine that there

are two other types of players 1 and 2. In the first other type of player 1, RE is a

dominant strategy. (We refer to this as type RE .) In the second other type of player

1, RT is dominant. For player 2, there is a type for which h is dominant and a type

for which t is dominant. Each player learns only his own type, so, in particular, player

3 learns nothing at all. And, what is crucial to our construction, the probability measure

13 This game is a variation on a similar game suggested to us by J.-F. Mertens. Myerson

[9] gives another example, making the same point.
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/i is such that there is high probability, say 1 - 2<5 , that all players are of the "standard"

types, probability 6 that 1 is type RH and 2 is type h , and probability /> that 1 is type

RT and 2 is type / . (If the reader doesn't like this perfect correlation in the types of 1

and 2, it will suffice to have high but less than perfect correlation.) Now consider the Nash

equilibrium outcome (L,d,a,.5H + .5T, .5/i+ .5<) in the original game. It is Nash because

d by 3 engenders L by 1, and 3 can do anything he wishes, as L by 1 puts him off the

equilibrium path. 14 This equilibrium is made near strict if we adopt the personal type

elaborations above, for 6 approaching zero. The intuitive argument runs as follows: Since

1 plays L in the main version, the choice of R signals to 3 that some other version has

been selected. Given the prior \i we posited, 3 sees it as equally likely that (i) 1 will follow

with H and 2 with h , and (ii) 1 will follow with T and 2 with t . When 3 assesses this

correlated continuation by 1 and 2, neither A nor B will guarantee him a payoff above

-.5 , and so 3 optimally chooses d . (Of course, this choice by 3 validates l's choice of D

in the main version.)

We advance this example and the general definitions to follow in the following spirit.

General elaborations may seem to the reader to be too large a class of perturbation, because

they allow one player to know more about a second player's payoffs than that second player

knows herself. By constraining ourselves to elaborations with the "type" structure, we

suppose that each player has all the information about his own payoffs that any other player

has. The further restriction to independent types implies that no player learns anything

about others' types from his own. One might instead imagine that players have "links"

in their past - perhaps they went to the same school, or had similar teachers when they

learned game theory, or whatever. Knowing that these links are possible, one suspects that

knowing something about the payoffs of one player might tell you something about payoffs

of another. This is true, pari pasu, of players within a game. Which leads to personal, but

not independent, types.

Although it doesn't lead to quite the same thing, we can give another perspective

on this sort of elaboration. By analyzing the game noncooperatively and by restricting to

Nash equilibria, one is supposing that players cannot access correlating devices, as defined in

14 Subsequent moves can be fiUed in any way the reader wishes, and we will still have a

Nash equilibrium. We have filled them in with the subgame perfect equilibrium strategies

for a reason that will become apparent momentarily.

23



Aumann [1]. (See also Forges [2] arid Myerson [9].) Suppose that a more accurate statement

of the outside analyst's state of knowledge is that while he is fairly certain that players do not

have access to correlating devices, he is not completely certain of this. Then an appropriate

perturbation of the game would be an elaboration with personal types, where the utility

functions of the players in each version are close to (or perhaps even identical with) their

payoffs in the game modelled. (In the example given in figure 10, even if players 1 and 2

had access to a correlating device, the fact that they play matching pennies in the subgame

means that the device will be of no use to them. But if we change the subgame so that it

is a game of coordination, then they might well use a correlating device if one is available.

And if player 3 is unable to observe the outcome generated by the correlating device, then

he might choose d at his information set, afraid that l's choice of R indicates that 1 and 2

have obtained access to the correlating device and will play a correlated equilibrium.) The

point is that a low prior probability that players can access correlating devices may become

a high posterior probability, if one observes an out of equilibrium action from one or more

of the players.

To characterize the set of near strict equilibria under elaborations with personal types,

we introduce the following definition, which may be of independent interest. The idea is to

modify trembling hand perfection, to allow for "correlated trembles."

Definitions. Fix a pure strategy profile a for a normal form game. A sequence {{<f>i}{-i}kLi ,

where for each i and k , <f>\ is a totally mixed distribution over the pure strategy profiles

of players other than i , is a c-perfect test sequence for a if, for each i
, $ (a) —> 1 . A

pure strategy profile a of a normal form game 7 is c-perfect if there exists a c-perfect test

sequence {{^f}} for a such that for each player i and index k
, a is a best response to

4>i
. The equilibrium is strictly c-perfect if each a t

- is a strict best response in the normal

form.

Remarks. Note that the distributions <f>^ need not correspond to independently mixed

strategies by the players. Also perfection and c-perfection are identical for the case of

two-player games.

Proposition 6. If an equilibrium o is strictly c-perfect, then it is near strict with respect

to elaborations in personal types.
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Proof. Let
<f>

k be the c-perfect test sequence that makes a strictly c-perfect. We construct

elaborations (for k = 1,2,...) that are composed of two kinds of versions of the original

game: There will be a "main" version of the game in which players are all sane, having the

payoffs given in the original game. And there will be one version of the game for every pair

(i,a'_
{ ), where i runs over all the players and cr'_

i
over the pure strategy combinations

for the other players. In the (i, a'_i) version, player i will have the payoffs given in the

original game, and the other players will have payoffs that make the constituent, parts of a'_
x

dominant as in our previous constructions. In each elaboration, player i is told whether he

is "sane" or not and, if he is not, what are his payoffs. This then meets the requirements

for an elaboration in private types.

To specify the k th elaboration, it remains to specify the probabilities of the various

versions. We will assign probabilities so that, in elaboration k , the probability of the main

version is 1 — nek (for some e^ > to be determined in a bit), and the marginal probability

of all versions in which i is sane and the others not will be ek . More precisely, we will

use p
k
(i,c'_i)tk to denote the probability of the (i,a'_

{ )
version; that is, p

k
(i,a'_

i )
is the

conditional probability of crazy types u 1

_ { , conditional on i being sane and the others

crazy.

Suppose that, in elaboration k
,
players all play according to a when they are sane

and according to their dominant strategies when not. Then conditional on i being sane,

the probability that i assesses that his opponents will play a'_
i

is

(1 - n€fc)V ._,_. + tkP
k
{i, di)

l-(n-l)£* '

where I denotes the indicator function. The numerator in this expression is the joint proba-

bility that everyone is sane and the others play a'_
{
(which is non-zero only if cr'_

i
— cr_,-

),

plus the probability that only player i is sane and the others play a'_
i

; the denominator is

the marginal probability that i is sane. We will want this to equal ^H^'-i) > which, solving

for p
k
(i, a'_i) ,

yields

and, for a'_
i ^ <r_,

,

p (t,a_i) =
€ k/(l-{n-l)ek )
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To ensure that ;/"(?', CTj) > , we must have that

1 - nek

m°-i) >

That is, we must have

€fc<

1 - (n - l)e
fc

1 -#(*-,-)

n-(n-l)#(<7_0

So if we choose e^ > to be less or equal to the minimum (over i ) of the terms in the right

hand side of the previous inequality, and use
<f>

k to specify the p
k

as above, the elaboration

is well defined. By construction, we see immediately that a is strict in each elaboration

k . And since
<f>

k
is a c-perfect test sequence,

:

fc (a_;) —» 1 , implying that ejt
—

, so the

elaborations converge to the original game.

Q.E.D.

Finally, we have a converse to Proposition 6, exactly parallel to our converse to Propo-

sition 4.

Definition. An equilibrium a of an extensive form game E with payoffs u is quasi-c-

perfect if there exists a sequence of payoffs u k — u such that a is strictly c-perfect in the

corresponding normal form games.

Proposition 7. An equilibrium a of an extensive form game is quasi-c-perfect if and only

if it is near strict in elaborations with independent types.

The proof is just as in the proof of Proposition 5, except that Mai
2
- is replaced, for each

i , by the conditional distribution of the actions of the others, conditional on i being the

first type.

26



References

1. R. Aumann, Subjectivity and correlation in randomized strategies, J. Math. Econ. 1

(1975), 67-96.

2. F. Forges, An approach to communication equilibrium, Econometrics 54 (1986), 1375-

1386.

3. D. Fudenberg and E. Maskin, Folk theorems for repeated games with discounting or with

incomplete information, Econometrica 54 (1986), 533-554.

4. J. Harsanyi, Games with randomly disturbed payoffs: A new rationale for mixed-strategy

equilibrium points, Int. J. Game Theory 2 (1973), 1-23.

5. E. Kohlberg and J. F. Mertens, On the strategic stability of equilibria, Econometrica 54

(1986), 1003-1038.

6. D. Kreps, P. Milgrom, J. Roberts and R. Wilson, Rational cooperation in the finitely-

repeated prisoners' dilemma, J. Econ. Theory 27 (1982), 245-252.

7. D. Kreps and R. Wilson, Sequential equilibria, Econometrica 50 (1982), 863-894.

8. R. Myerson, Refinements of the nash equilibrium concept, Int. J. Game Theory 7 (1978),

73-80.

9. R. Myerson, Multistage games with communication, Econometrica 54 (1986), 323-358.

10. Okada, On the stability of perfect equilibrium points, Int. J. Game Theory 10 (1981),

67-73.

11. R. Selten, Spieltheoretische behandlung eines oligopmodells mit nachfragetragheit, Z.

fur die Gesamte Staatswissenschaft 121 (1965), 301-324.

12. R. Selten, Re-examination of the perfectness concept for equilibrium points in extensive

games, Int. J. Game Theory 4 (1975), 25-55.

13. E. van Damme, "Refinements of the Nash Equilibrium Concept," Springer- Verlag,

Berlin/Heidelberg/New York, 1983.

14. E. van Damme, A relation between perfect equilibria in extensive form games and

proper equilibria in normal form games, Int. J. Game Theory 13 (1984), 1-13.

27





L R

0,1 2,1

FIGURE 1





L

2

M R

0,1 1,1 2,1

FIGURE 2





u -
(2 '0)

L 1 R 2
(1,1) -< o •

(-1,-1)

FIGURE 3





(1.1)
u

(0,0)

(0,0) u

i

I

i

2

1 R

0,1)

FIGURE 4





u (2,0)

(1.1)-*
U 1 R.

M
-*-•

(-1.-1)

u

(-1,0)^
1

-o-

w

(0,-1)

(0,0)

FIGURE 5





D

Lu = Ld

1 Ru

Rd

2,1 2,1

3,3 0,2

1,0 0,2

(*) (£)

n-2

(tt)

(i)

FIGURE C





(2,1) -* o •^ • (3,3)

FIGURE 7





(2,1)-*

(-1.1) *+
L

1 R
1

•o (3,3)

1 R.

FIGURE S





L
1
L2

hR2

R1L2

R
1
R2

u D

1-26
,
1-6 1-26, 1-6

1-6
,
1-26 1-6

,
1-6

2-36 ,0 -1,-1+6

2-26,-6 -1+6 ,-1+6

FIGURE 9



361 I C83



(-V2.2)-*

^(1,-1,-2.9)

--(-1,1,1.1)

(-2-3,-V2)

FIGURE 10













MIT LIBRARIES

3 TDflD ODS 13 D7E




