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The main purposes of this paper are to unify some uncoordinated parts

of the theory of optimal taxation, and to develop methods of analysis

that can be quickly and easily applied to all kinds of optimal tax problems,

The analysis is presented without attention to minor points of rigour

(which I intend to treat elsewhere). As a result, the basic mathematical

manipulations are relatively brief once the best ways of setting up the

problems have been found. At the same time, a number of important details

are treated in depth.

Theory can contribute to discussions about the levels of tax rates

in a number of ways. It makes possible the calculation of optimal tax

rates, to gain knowledge of how tax rates vary with objectives and possi-

bilities. It shows how tax rates depend on certain indices (elasticities

of various kinds, for example), thus indicating what form of evidence

would be most useful and what influence that information would have on

tax rates. It can formulate rules for optimal taxation which, though

not expressed in terms of tax rates, may serve to attract attention to

better measurements of the effects of economic policy. It can explore

the consequences, for optimal tax rates or optimal taxation rules, of

introducing considerations that have previously been absent or imperfectly

present in models and policy discussions.

A number of papers have presented calculations of optimal tax rates

under a variety of assumptions; including Atkinson (1973), Mirrlees

(1971) , and Stern (1976) for income taxation; Atkinson and Stiglitz

(1972), and Deaton (1975) for commodity taxation. I contribute nothing

to that topic in the present paper, which is concerned with formulae

for optimal tax rates, and optimal taxation rules. Rules for commodity

1 R7?K
%-74



-2-

taxation have been discussed in many papers, including Diamond and Mirrlees

(1971), Mirrlees (1975), Ramsey (1927), and Stiglitz and Dasgupta (1971).

Formulae involving optimal tax rates have been derived by Atkinson and

Stiglitz (1972) for commodity taxes, and Mirrlees (1971) for a nonlinear

income tax.

There is a striking contrast in this literature between the analysis

and interpretation of first-order conditions which is usually emphasized

in work on commodity taxation, and the development (and numerical implementa-

tion) of formulae for marginal tax rates that is characteristic of theories

of optimal income taxation. This contrast seems to be quite basic to

the theory of optimal taxation, as I shall argue in Section 1. Sections 1

and 2 are devoted to a relatively quick, and therefore nonrigorous, deriva-

tion of the main formal results in optimal tax theory, and a discussion

of their interpretation. Section 3 outlines the conditions for a more

general nonlinear theory.

The discussion of Section 2 raises the question of the interrelations

between optimal commodity taxes and an optimal nonlinear tax on (say)

labour incomes. In Section 4, first-order conditions for this case are

derived, and discussed. This is the central part of the present paper.

The analysis provides a unification of previous theories of optimal taxa-

tion, in that it covers linear (commodity) or fully nonlinear taxation,

or any mixture of the two. This approach also enables one to derive

a general 'Paretian' tax rule, corresponding to a result previously

obtained (Mirrlees [1975]) for the two-class case. The rule is a necessary

condition that must hold independently of the welfare function used.

Naturally this rule is far from enough to determine the optimal tax
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system. Using the whole set of first-order conditions, I discuss the

implications of optimizing the labour- income tax for optimal commodity

taxes, and vice versa . In particular, one would like to be able to gain

some impression how the presence of commodity taxes. bears upon the overall

progression of the tax system, and on the progressivity of the labour-

income tax. As yet, these implications are not entirely clear to me.

It is striking how easily the rules for the optimal provision of

public goods can be obtained in the general setting introduced in Section 4;

and how simple the rules are. They are derived in Section 5.

Finally in Section 6 it is shown how the various optimality conditions

derived in the paper are particular instances of a general principle which

is quite simple to formulate. This principle shows clearly how both

efficiency and distributional considerations operate in the rules for

optimal economic policy.

Apart from this 'fundamental principle', and the general 'duality'

method used throughout, the most important particular new results of the

paper are

(1) The general conditions for optimal nonlinear taxes derived in Sections 2

and 3

(2) A set of conditions in simple form, depending only on production

prices and consumer preference orderings, which must necessarily hold

for any tax equilibrium which is Pareto-ef f icient among the set of all

tax equilibria. These conditions are stated at their simplest in equation

(2.22).
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(3) The conditions for optimal linear taxes in the presence of optimal

nonlinear taxes, derived in Section 4. These provide a strikingly simple

criterion for assessing the optimal impact of commodity taxation when

there is an income tax.

(4) The form of the condition for optimal income taxation in the presence

of commodity taxes (optimal or not) , also presented in Section 4.

(5) The conditions for optimal provision of public goods in the presence

of an optimal income tax are given a neat and illuminating form, which

has an interesting connection with the commodity- tax conditions just

mentioned.

1 Optimal Taxation in the Linear Case

In the theory of optimal commodity taxation, it has been usual

to consider a finite population of households, whose net demands will

here be denoted by vectors:

12 3 H

These households face prices q for commodities, with

q = p + t

where p are producer prices, and t are tax rates. Thus each household

has the same budget constraint q • x < 0. In the present paper, I

assume that:
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(i) Production available to consumers is constrained by a production

constraint

p • Ex
h

= A (1.1)
h

with p and A constant. This is not a serious restriction.

The linear constraint can be thought of as a linear approximation

to production possibilities in the neighborhood of the optimum,

in which case the producer prices p are to be regarded as

marginal costs and margir il products. So long as first-order

necessary conditions are at issue, it does not matter that p

is constant. A fuller discussion of production is given in

(Diamond and Mirrlees, 1971).

(ii) Pure profits, if any, are paid to the State. This excludes

certain interesting issues that have been discussed in the

literature, but allows us to concentrate on the main taxation

issues without having to deal with producer taxation alongside

consumer taxation.

(iii) An individualistic welfare function

W = Zu
h
(x

h
) (1.2)

h

Is to be maximized. The representation (1.2) is implied by

complete separability of consumption by individuals, but is

not necessary for most of the results of this paper, since

only local changes are considered. (1.2) simply represents

a convenient choice of utility functions representing individual

preferences so that the marginal weights attached to utility

levels are all equal.
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The first-order conditions for optimal choice of the tax rates t

(or, equivalently q) will be derived by duality methods. Let

m
h
(q,u) (1.3)

be the expenditure function for household h, i.e., the minimum expenditure

required to attain utility u when prices are q. Then the (Slutsky)

compensated demand functions for household h are

x (q,u) = m (1.4)

where the subscript here and subsequently denotes differentiation.

The utility level of household h will be denoted by v .

Then the optimal taxation problem can be expressed as

„ ch, h. .

p • Zx (q,v ) = A,

h
h

Max Zv :

q h
m (q,v

n
) = (all h) (1.5)

The second set of constraints here reflects the assumption that households

have no lump-sum income or expenditure.

It is of the first importance to realise why the optimal commodity

tax problem is best set without explicit reference to tax rates. Suppose

q* is the solution to the problem. Then t* = q* - p are optimal

tax rates. But the real equilibrium of the economy is unaltered if

instead we have tax rates

t* = pq* - p (1.6)
P

for any positive constant p. It follows that (except when no taxation

is optimal) there is no answer to the question: which commodities should

be taxes and which subsidised? The 'answer' varies with the arbitrary
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choice of a number p. A specific answer can be given if it is stipulated

that some particular commodity is to have a zero tax rate; but that is

usually an uninteresting device because there is no naturally untaxed

commodity. •

For this reason, one should not seek formulae for optimal tax rates

in the general problem. One can hope to find equations identifying

commodities whose net demand is encouraged, or discouraged, by the tax

system, since these are real properties of the tax system, which remain

invariant under the trivial change .n tax rates described by (1.6).

Having set the problem up as in (1.5) we shall find that such conditions

appear almost immediately. The other advantage of this new way of setting

up the problem is that it is more easily related to the problem of nonlinear

taxation.

To obtain necessary conditions for the optimum in (1.5), introduce

Lagrange multipliers for the constraints, and set the derivatives of

1 H
the following expression with respect to v ,..,v ,q (holding p constant)

equal to zero:

L = Zv - Ap • Zx (q,v ) - Zu,m (q,v ). (1.7)
h h

h

Differentiating L with respect to v , we obtain

1 = Ap • x + u,m • (1«8)r v h v

Differentiation with respect to q, with p and the v constant, yields

Ap Zx
Ch

+ Zuum
h

= 0. (1.9)

h q h
hq

Using (1.4), and the symmetry of the Slutsky derivatives, we obtain

from (1.9)
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- AEx
Ch

• p = Zy ux
Ch

. (1.10)
h q h

h

ch
Now x • q = 0, by homogeneity. Therefore

q

ch ch . . ch-x • p = x • (q - p) = x • t
q q q

= |r x
ch

( P + et)| ; (1.11)
39

0=1

and we can write (1.10) in the form

Zx
Ch

• t - |r Zx
Ch

(p + 6t)| = Z(M,/A)x
Ch

. (1.12)

h q 3e
h 9=1

h

In words, the total substitution effects of a proportional change in

all tax and subsidy rates should be proportional to a weighted sum of

demands. We shall see that u, can be negative for some h. The weights

in (1.12) are obtained from (1.8)

JL =
( X

L
- p . x

Ch
)/m

h
= l/(Am

h
) - p • x

h
(q,0)

A v v v v . m

!

+ t • x
h
(q,0) - 1 (1.13)

, h m
Am

v

x is the uncompensated demand function, and x its derivative with
m

respect to income. In words, the weight is the difference of a term

proportional to the marginal utility of income, and the income-derivative

of the household's income net of taxes.

The above conditions were derived on the assumption that there

is no lump-sum taxation. It is always possible to have lump-sum taxation

(or subsidization) at a uniform rate. If this is done, the constraints

m =0 should be replaced by the constraint m = b, with the subsidy
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b free to be chosen. The analysis is then unchanged, except that differentia-

tion of the Lagrangean with respect to b yields a further condition

Eu. (1.14)
n

X and u, were introduced as multipliers dual to the government's
n

revenue constraint (which is equivalent to (1.1) for given household incomes)

and the constraints on household income. Thus X is the social marginal

utility of income transferred to household h, the production constraint

being unchanged. Since the production constraint is Em - taxes A,

the increase in income involves a ti x change. The social marginal utility

of income, ignoring this tax change, is X + u , . Diamond (1975) calls
h

this the social marginal utility of income, u, can be termed the social
h

marginal utility of transfer .

The form of the first-order conditions (1.12) differs from those

derived in (Diamond and Mirrlees, 1971) . The other form is readily derived

from (1.8) and (1.9) by eliminating u, : after some manipulation one has

X f- Et • x
h
(p + t,m) = Ex

h
/m

h
. (1.15)

3t
h h

V

In words, the revenue effects of tax changes should be proportional

to welfare-weighted demands.

Of the two forms, (1.12) and (1„15), for the first-order conditions,

we shall see that (1.12) corresponds best to the conditions for optimal

nonlinear taxation.

Equation (1.12) is appealing chiefly because the left hand side,

ch
Ex • t, is a measure of the extent to which the tax system discourages

a commodity. If the tax system is intensified, in the sense that all taxes
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and subsidies are changed proportionately, demands for commodities are

subject to both income and substitution effects. The income effects,

-xx • t, are simply the income-derivatives of demand times taxes
m

ch
paid. The total substitution effect is Ex • t (as can be seen

q

from (1.12)). Since the income effect has nothing to do with the way the

tax system bears on commodities individually, it should be ignored in

assessing the effects of optimal taxes. Thus, we can reasonably introduce

the definition:-

Under a tax system, the index of discouragement of commodity i,

. ch

d. = IE r-^- t./Zx (1.16)
1 u • 9q- j t i

hj 3 h

The first order conditions for optimal commodity taxation can then

be expressed as

E(y, A)x?
, h l

d. = £ (1.17)
Zx

h

h
L

where y /A is given by (1.13), and satisfies Z(p, /A) = 0.
n n

2 Optimal Nonlinear Taxation

Linearity of the tax system plays an essential role in the previous

section, because linearity defines control variables (q) for the optimiza-

tion problem. With nonlinear taxation, the government can, in effect,

impose any budget constraint it wishes on the members of population,

the only restriction being that the constraint is the same for everyone.

When policy options are extended in this way, it is best to consider a
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continuum population of households. Then one may avoid having as optimum

policy an awkwardly shaped budget set with many corners. It is very

restrictive, despite appearances, to describe the population by a single

parameter n. Nevertheless we must usually do so to get neat results.

The analysis will be carried out for the one-parameter case, n being

distributed with density function f(n)o The many-parameter case is

outlined in Section 3.

For the nonlinear case, it is useful to identify a numeraire commodity.

The notation is now that household n, with utility function u(x,z,n),

chooses a vector x(n) of net demands for nonnum£raire goods and a net

demand z(n) for numeraire, u is a nondecreasing function of all variables.

We have to consider allocations in which

x(n),z(n) maximizes u(x,z,n) subject to (x,z)eB (2.1)

where B is the budget set, describing the effect of taxes' and subsidies

in combination with producer prices. It should be noted that the consumption

set, of net demands feasible for the consumer, may vary with n. This

will be ignored in the following, where the set of definition of u is

supposed the same for all n.

To reduce (2.1) to a more manageable form, the method of Mirrlees

(1971) is generalized. The idea is that, if we define

v(n) = u(x(n) ,z(n) ,n)

,

(2.2)

(2.1) implies that

v(n) - u(x(n) ,z(n) ,n) = < v(m) - u(x(n) ,z(n) ,m)

,

(2.3)

i.e., m = n minimizes v(m) - u(x(n) ,z(n) ,m) . Consequently,

v'(n) = u (x(n),z(n),n) (2.4)
n
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When x and z are dif f erentiable with respect to n, differentiation

of (2.2) shows that (2.4) is equivalent to

u • x'(ri) + u z'(n) = 0.
x z

which we can write more neatly, if we introduce the marginal rate of

substitution

s(x,z,n) = u /u , (2.5)

as

z'(n) + s(x(n) ,z(n) ,n) • x*(n) = (2.6)

We also have a second order condition from the minimization of

v - u:

v"(n) > u (x(n),z(n),n). (2.7)- nn

This is equivalent (when x and z are dif f erentiable) to ,

s (x(n) ,z(n) ,n) • x'(n) > (2.8)
n -

To deduce (2.8) from (2.7), differentiate (2.4) with respect to n:

v"(n) = u • x'(n) + uz'(n) + u
nx nz nn

Applying (2.5), we have

unv • x'(n) + u z'(n) > (2.9)
nx nz -

(2.6) alows us to replace z'(n) in this inequality:

u
u - u — • x'(n) > 0. (2.10)
nx nz u -

z

Since
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. u u u
as _ nx nz x

3n " u " 2 '

z u
z

(2.10) is in turn equivalent to (2.8) (since u > by assumption).

In an appendix to this paper, it is shown that (2.4) in conjunction

with a condition a little stronger than (2.8),

s (x(n) ,z(n) ,m) • x'(n) > 0, all m,n (2.11)
m —

together imply that (2.1) holds for some budget set B. When there are

only two commodities, this is a very satisfactory situation. Then s >

is a sufficient assumption to ensure that (2.1) is equivalent to (2.4)

and z'(n) > 0. It is this circumstance that makes the income-tax problem

studied in Mirrlees (1971) manageable.

In the many-commodity case, we can replace the consumer constraint

(2.1) by the weaker condition (2.4). If the solution of that problem

satisfies (2.11) , then it is a solution of the basic problem. This gives

us an easy check on a computed solution, but it is perfectly possible

that s • x'(n) will vanish for certain ranges of n in the optimum.

In that case a more detailed analysis than the one below would be required.

We shall now obtain necessary conditions for the problem

/[p • x(n) + z(n)]f(n)dn = A

Max /v(n)f(n)dn : (2.12)

v'(ri) = u
Q
(x(n) ,z(n) ,n)

Notice that production prices are based on z as numeraire. If labour

is numeraire, z(n) should be a negative number, being supplied by

households, not demanded. Recollect that

v(n) = u(x(n),z(n),n) (2.13)
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and f is the density function describing the composition of the popula-

tion, n is assumed distributed between and °°. In what follows,

subscripts denote partial derivatives.

Having formulated the problem in this way, it will obviously pay

to invert the utility function, writing

z(n) = c(x(n),v(n),n). (2.14)

In effect this transformation is a 'duality trick', as we shall see in

Section 4. Since (2.14) is derived from (2.13) , we can calculate the

derivatives

z, = - u /u = - s.
X x z

5 = 1/u
V z

(2.15)

Converting (2.12) into Lagrangean form we set equal to zero the

derivatives of

L = /[(v - Xp • x - X?)f + yv'(n) - uu
n
(x,?,n) ]dn.

Differentiating in turn with respect to v(«) and x(*)> we obtain

(noting that u +u • (- s) = u s )° nx nz z n

(1 - £-)f - u — - y'(n) = (2.16)

z z

X(s - p)f » uu 8 . (2.17)
z n

The last term in (2.16) is obtained by first integrating by parts the

term uv' in L. This leaves an integrated part lim y(n)v(n) - u(0)v(0)

Differentiation with respect to v(0) and v(°°) (this can be checked by

a more careful analysis) , yields the further conditions
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u(0) = 0, p(») = 0. (2.18)

Equation (2.17) holds only when (x(n),z(n)) is not up against the

consumer's supply constraint. For example the possibility of a zero

labour supply is not allowed. Though this point must be considered

for numerical calculations, it will be ignored here as not being of

great importance.

The first, simplest and most exciting, feature of these first-order

conditions is the set of equations (2.17), which are statements about

marginal tax rates. If the numeraire is untaxed, and t, is the marginal

tax rate on commodity i, the marginal price facing the consumer is

p. + x., which he will equate to s., the marginal rate of substitution

between that commodity and numeraire. (2.17) says that

T
i

=
?3rT> - = ^V X (2 ' 19)

To fix ideas for the moment, let n describe ability or willingness

to work. Mathematically, this says that as n increases, individuals

find it easier to do additional work of the same productive value, so

that, for most goods s. should be an increasing function of n. The

exceptional goods are those whose marginal utility falls faster than

the marginal disutility of labour. (Remember that labour is measured

not in units of time but in units of equal marginal productivity.)

Normally it is thought right that the tax system should bear more heavily

on the more able. Thus marginal tax rates are expected to be positive

on most commodities. This being so, the numerical factor in (2.19)

ought normally to be positive. In that case, our condition says that

marginal taxes should be greater on commodities the more able would

tend to prefer.
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More explicitly, (2.19) implies that

T . T . .— - -1 = |f- (s./s.), v = mu A (2.20)
s . s . r 3n l j z

So that the question which commodity should be taxed more highly is answered

by reference to the effect of an increase in n upon the slope of the

individual's indifference curves.

This prescription is most agreeable to common-sense; but it should

be remembered that it is not true when only linear taxation is allowed.

In that case, as we saw, more awkward statements about the effect of

general tax changes on aggregate compensated demands must be made. It

is the extra scope for policy allowed by nonlinearity that restores the

'common-sense' result.

Perhaps the most surprising feature of (2.17) is the strong implica-

tions that are independent of the welfare function assumed, or even the

population distribution, namely (dividing the equations for different

commodities)

s .
- p . s .

_i i = JLn
( 2.21)

s . - p . s .

Whether these equations hold can be tested by reference to indifference

curves alone (and the way they vary with n) . Therefore these equations

must hold (for all i and j) as a condition of Pareto-ef f iciency . If

they do not hold, there exists a tax system which would make everyone

better off.

"\

g
Since — t. = — (s. - p.) = s. , (2.21) takes an even neater

3n l 3n l l in

form:

f- — - (2.22)
dn x

.

J
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Thus it is necessary for Pareto-ef f iciency (relative to the set of tax

equilibria) that the ratios of marginal tax rates are locally independent

of n . (2.22) is simple but mysterious. The x. are to be regarded

as functions of x, z and n. We ask what t' would make an n-man

choose the demands of an (n + dn)-man. The ratios of these x
1 have

to be the same as the ratios of the marginal tax rates the (n + dn)-man

actually faces. This is a strong requirement. No intuitive explanation

of the result has occurred to me.

Returning to equation (2.20), we see that the marginal tax rates

on commodities i and j should be the same for all individuals if

s./s. is independent of n. This means that x. and x. enter the
i J i j

utility function through a subutility function which is the same for

everyone. More generally, if a subset of commodities, represented by

a vector x , enters the utility function in the following -way,

u = U(a
1
(x

1
),x

2
,z,n) (2.23)

all the commodities in x should be taxed at the same rate. In particular,

when utility has this form with no commodities in the second group, it

is optimal to have a tax schedule for the numeraire alone, with no taxes

on other commodities. This notable result generalizes that obtained

by Atkinson and Stiglitz (1976) for the additively separable case. It

is true also when n is multi-dimensional.

The remaining task, in interpreting the optimality conditions, is

to use equation (2.16) to get more precise information about the sign

and magnitude of the multipliers u(n). Let us first, to encourage

intuition, assign a special symbol to the marginal utility of numeraire
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(e.g., the marginal disutility of labour-value) which plays in the model

much the role of the marginal utility of income in one- and two-good

models

:

B = u (2.24)

B is to be regarded as a function of x, z and n; and B , for example,
n

means the partial derivative of 8 with respect to n; but 8(n) and

8 (n) mean g(x(n) ,z(n) ,n) and 8 (x(n) ,z(n) ,n) respectively,
n n

There are two convenient ways of integrating (2.16) for y. Integrating

as it stands, and using the boundary condition y(0) = 0, we get

n . m
y(n) = / [1 - —] exp[/B(m')/S(m') • dm']f(m)dm (2.25)

e(m)
n

n

The alternative equation for p is obtained by rewriting (2.16)

in the form

|- (8u) - s^ • x*(n) • By - (B - A)f = (2.26)
an z

The derivation of (2.26) is based on the calculation

|- B = Bn + Bv
• x'(n) + B z'(n)

an n x z

= B + u • x 1 + u (- u • x')
n zx zz x

B + u — (u /u ) • x'
n z 9z x z

= B + Bs • x' (2.27)
n z

Integration of (2.26) yields the formula

$M = j [B(m) - X] exp[/ s • x 1 (m')dm' ] f (m)dm (2.28)

m
Z
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(2.25) and (2.28) suggest two special cases that should be easy to

handle, namely B =0 (which simplifies (2.25)) and s = (which
n z

simplifies (2.28)). Take the latter case. s is independent of z

if and only if utility can be expressed in the form.

u = U(a(x,n) + z,n) (2.29)

This is the case where income effects vanish in ordinary consumer theory.

If utility were to take this form, we should have

n

Bu = / [B(m) - X]f(m)dm (2.30)

and, from (2.27), -r- 6 = B • Consequently B < implies that 6(m)
an n n —

is nondecreasing. Let B(n..) = X. Then (2.30) implies that y >

when n < n
1

. But y = when n = <=°. Therefore By is equal to
CD

- / [B(m) - X]f(m)dm; and it follows- that y > for n > n.. also,
n

What we have found is this. In the no-income-effects case ,

<

B < (2.31)
n -

is a sufficient condition for

y(n) > (2.32)

It will be recollected that the tax rules (2.17) then have their natural

interpretation, for A, f, and u = B are all nonnegative.
z

Condition (2.31), stating that the marginal utility of numeraire

is a decreasing function of n, for fixed x and z, expresses the

assumption that consumers with larger n are less deserving. We have

now shown (cf. the discussion of equation (2.19) above) that in the

no-income-effect case, it is indeed implied that the tax system should
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bear more heavily on those with greater ability. But in general, it

seems that one cannot establish the result; for the last term in equation

(2.27), (3s • x', is quite likely to be positive. There are other
z

special cases, notably the two-commodity case with normality, for which

a theorem can be established (cf. Mirrlees (1971)). Also, cases where

u is negative for some n are odd in other respects. Consider (2.17)

again,

A(s - p)f = uu s
z n

and multiply by x'

:

yU
2

IF '"n
(s - p) • x' = —- * • x' (2.33)

We know that s • x' > (equation (2.8)); and that s • x' = - z'
n —

(2.6). Therefore

u < implies p • x 1" + z' > (2.34)

If the numeraire is not taxed, - z is the consumer's expenditure, and

the total tax paid by an n-man is

T(n) = - z(n) - p • x(n). (2.35)

It follows that

]i < implies T'(n) < 0. (2.36)

In words, p is negative only if the tax system does not bear more heavily

on consumers with greater n.

A number of economists have examined, usually for special cases,

the implications for marginal tax rates of the boundary conditions that

y = at the ends of the skill distribution. Equation (2.17) suggests
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that marginal tax rates should be zero when n = or <», provided that

f does not tend to zero too rapidly. Phelps (1974) and Sadka (1974)

have followed this idea for n = °°, and more recently Seade (1975) has

noticed a similar result for the lower end of the distribution. When

the result holds at both ends, the tax system is neither progressive

for all n, nor regressive. Calculations suggest to me that these end

results are of little practical value. When the conditions for their

validity hold, it is usually true that zero is a bad approximation to the

marginal tax rate even within most of the top and bottom percentiles.

3 Multiple Characteristics

In the previous section, the population was described by a single

parameter. The power of this assumption is shown in the conclusion that

marginal tax rates are proportional to 3s. /3n. Matters are not quite

so' simple when the population is described by a vector n. Let us suppose

there are I + 1 commodities, and J parameters describing the population.

It will be recollected that, in the one-parameter case, consumer

utility-maxamization implies that

v'(n) = u
n
(x(n),z(n),n). (3.1)

The argument leading to this conclusion is valid also for many parameters,

and we have therefore

t— = u (x(n) ,z(n) ,n) (3.2)
3n, n.

J J

for each parameter. Thus we can read (3.1) as a vector equation. Similarly

we obtain from second-order conditions the implication that the matrix
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3x
[-— • s (x(n) ,z(n) ,n) ] is nonnegative definite. (3.3)
3n

j \

(This matrix is in fact symmetric, as one can deduce by differentiating

(3.1) with respect to n.) The question then arises whether, as in the

one-parameter case of (3.1), in conjunction with a condition similar to

(3.3), implies utility maximization subject to some budget constraint.

Fortunately it does so, as I shall establish elsewhere. This allows

an argument that in a large class of cases the constraint (3.3), or rather

a stronger form analogous to (2.11) can be neglected in deriving the first-

order conditions for constrained maximization.

In that case, we have to consider a Lagrangean

L = J[{v(n) - Xp • x(n) - Xs}f + {v'(n) - u (x,?,n)} • p(n)]dn (3.4)
' n

where integration is over the whole nonnegative orthant in the space

of parameter vectors n, and u(n) is, for each n, a vector of multipliers

commensurate with n. As before, t, is the function of x, v and

n defined by v = u(x,£,n). Before differentiating L, we want to replace

the term

fv'(n) • u(n)dn = f../Z -r-— u (n)dn . ..dn
. <3n . 1 i J
J J

by something more convenient. This can be done by using a standard

theorem in multidimensional calculus, which states that, for nice functions

v,u..,...,ij defined in a closed region D
J. J

3
3y

.

Jz. 4r~ P.dn + fvE -T-
2- dn - f vy • ds (3.5)

D J 8n
j

J D
3n

j 3D

where 3D is the boundary of D, and ds is outward normal to this

surface. This theorem allows us to write
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L = /[{v - Xp • x - \£}f - v7 • vi
- u • y]dn + / vy • ds (3.6)

D
3D

with 3D the boundary of the nonnegative orthant, and 7 • u a standard

notation for the divergence E3u./9n..
j J 3

Setting the derivatives of L with respect to x(n) and v(n)

equal to zero as in the one-dimensional case, we get

u
(s - p)f = j* s

n
• u (3.7)

u .

7 • y +-S . y - (1 - £-)f (3.8)

z z

(Note that s • u is a vector with components Z(3s ./3n.)y . , and u • yn r
. l j y zn
3

is defined similarly.) These equations are supplemented by boundary

conditions on y obtained by considering variations of v on the boundary

of the orthant:

y. = when n. = 0,« (3.9)
3 3

No doubt a thorough analysis of these conditions would be quite

complicated. The basic ideas are tolerably clear. First one should

consider the system of equations

v = u(x,z,n)

v' = u (x,z,n) (3.10)
n

u

(s - p)f =^s
n

. y

There are I + J + 1 of these equations. Consequently one can hope

to solve for J variables y./X, the I variables x., and z, as functions

of v,v' = (3v/3n,,. . . ,3f/3n ) , and n. Substituting in (3.8), one has
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u (x(v,v' ,n) ,z(v,v' ,n) ,n)

E — u.(v,v',n) + E J
y (v,v',n)

J z

= (1 " ~)f. (3.11)
z

This is a second-order partial differential equation in v. It is to

be associated with boundary conditions upon v and v 1 on the boundary

of the nonnegative orthants which are defined by (3.9). For this to make

sense, (3.11) should be an elliptic equation. Methods for computing

the solution of such partial differential equations with given boundary

conditions are available. Once (3.11) has been solved for v, x(n)

and z(n) can be obtained from (3.10), thus defining the desired budget

set.

It is interesting to note that the budget set so obtained will in

general be of dimension min(I,J). So long as J < I, there is no reason

why consumers of different types should not be choosing different consumption

plans in the optimal equilibrium. Then the budget set defined as

B = {(x(n),z(n)) : n > 0} (3.12)

is of dimension J.

But if J > I, this set has dimension I. This has to be true because,

for any given vector x, any consumer would choose the largest z with

(x,z) in B. Therefore B may be restricted to vectors (x,z) with

a unique z for each x, and that is a set of dimension I. It can

be confirmed that (3.1) implies (x(m),z(m)) = (x(n),z(n)) for all m

such that

s(x(n) ,z(n) ,m) = s(x(n) ,z(n) ,n) (3.13)
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so that a (J - I) -dimensional set of consumers chooses each point

of B. To prove this, one uses the symmetry of the matrix v" - u ,r nn

which is equal to

3s. 3x

v"-u = u Z ^T-1 (3.14)nn z , 3n. 3"
i

dn
j

d\

The details are left to the reader.

When J < I, the budget set B can be extended to an I-dimensional

set without introducing new consumption vectors that any consumer would

wish to choose. Then it can be expressed in the form

z = c(x). (3.15)

In the case J = 1, where B is 1-dimensional, it is often possible

to describe the optimal budget set in the 1-dimensional form

x
i

= a
i^

z ^» i = i'*-' 1 ' (3.16)

which may be preferable administratively. This requires, of course,

that x. and z are monotonically related in the optimum. It is only

when J > 1 that some cross-dependence of tax rates is generally necessary

for optimality.

The most important aspect of the conditions developed in this section,

from the point of view of the previous section, is that the attractive

simplicity of the marginal-tax-rate equation (2.19) has to some extent

been lost in its generalized form (3.7). The signs of marginal tax

rates can no longer be determined without prior knowledge of the multipliers

y.. Correspondingly, the conditions for Pareto-ef ficiency come from

Iu, — (t, It. ) = (3.17)
J on. i

x
i
2
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and say that the J x (I - 1) matrix [-— (t./t.)] has rank no greater
on . 1 J.

J

than J - 1. This condition is empty when J > I. A principal purpose

of this section has been to warn that the results of the previous section

depend for their relative simplicity on the one-parameter assumption.

At the same time, it should be remembered that only models with a small

number of parameters are likely to be of any use for the practical im-

plementation of optimal tax theory.

4 Optimal Mixed Taxation

The results of the nonlinear approach to the theory of optimal taxa-

tion are interesting and promising. What should be emphasized is the

contrast with the linear results, that the nonlinear conditions say some

rather clear things about tax rates, whereas the linear conditions say

something about demand changes. It is hard to resist the appeal of condi-

tions where tax rates appear explicitly. But this is achieved at considerable

cost. The form of budget constraint the government is supposed to be

able to impose is extremely general, allowing progression or regression

in the taxation of all commodities, at rates which can depend upon the

consumption of different commodities. That is to say, the satisfaction

of the first-order conditions must be expected to be inconsistent with

a simple tax system, with constant tax rates, or even tax rates dependent

upon the consumption of the commodity taxed alone. What worries me about

this is not the difficulty of persuading government to adopt complicated

tax systems, but the serious neglect of tax avoidance possibilities (by

trade among consumers) which the comparison of these very general tax

systems commits us to. In this section, I derive conditions for an optimal
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tax system in which some commodities (i.e., one at least) are subjected to

nonlinear taxation, while the others are subject to constant tax rates.

Thus, in particular, nonlinear taxation can be restricted to commodities in

which retrading is impossible or perfectly observed.

The notation to be used in this section is:

x: vector of net demands for commodities subject to proportional

taxation

p: Producer prices for these commodities

q: consumer prices for these commodities

z: vector of net demands for commodities subject to nonlinear

taxation

r: producer prices for these commodities.

The population is described by a single parameter n.

" Define an expenditure function

m(q,z,v,n) = Min[q • x : u(x,z,n) = v]

.

(4.1)

Then we can define a compensated demand function, in this case for the

goods subject to proportional taxation only, with demand for the other

goods given:

x (q,z,v,n) = m (q,z,v,n). (4.2)
4

We are contemplating allocations in which, for each n,

x(n),z(n) maximize u(x,z,n) subject to (q • x,z)eB, (4.3)

where B expresses the nonlinear taxation. For example, in the case

where one good only is subject to nonlinear taxation, B would be described

by q • x < wz - t(z) , w being the price of that good.
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As in the case of completely nonlinear taxation, we want to express

(4.3) in a more readily manipulated form. To this end, define a partially

indirect utility function

u*(q,y»z,n) = Max{u(x,z,n) : q • x < y} (4.4)

(4.3) is equivalent to

y(n) = q • x(n),z(n) maximize u*(q,y,z,n) subject to (y,z)eB (4.5)

x(n) maximizes u(x,z(n),n) subject to q • xy(n) (4.6)

We know already from Section 2, and the appendix to the paper, that

(4.5) is equivalent to

v'(n) = u*(q,y(n),z(n),n) (4.7)

where v(n) = u*(q,y(n) ,z(n) ,n) (4.8)

along with inequality constraints which can be neglected in a large

class of cases. (4.6) is equivalent to

x(n) =x (q,z(n) ,v(n) ,n) , y(n) = m(q ,z(n) ,v(n) ,n) (4.9)

As a result of these transformations, we address ourselves to the

following problem

Max Jv(n)f(n)dn subject to J[p • x (q,z,v,n) + r • z]fdn = A

(4.10)

v'(n) = u*(q,m(q,z,v,n) ,z,n)

From this simple form, the first-order conditions for optimal mixed

taxation are readily derived. The Lagrangean is

L = /{ [v - A(p -x + r • z)]f + yv' - yu*(q,m, z,n) }dn

= f{[v - A(p • x
C
+ r • z)]f - u'v - uu*}dn - u(0)v(0) + y(°°)v(<=°) (4.11)
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The derivatives of L with respect to q, v(«), and z(«) are to

be set equal to zero.

Optimizing first with respect to q, we obtain conditions for optimal

commodity taxation: *

Afp • x
C
fdn + fu(u* + u* m )dn = (A. 12)

' q J nq ny q

As usual, Slutsky symmetry implies that

c c c c
p • x = (q - t) • x. = - t • x =-x • t (4.13)

q q q

To evaluate u* + u* m , we use the fact (Roy's theorem for the situation)
nq ny q

that

u* + u*x(q,y,z,n) = (4.14)

where x(q,y,z,n) is defined as the x that maximizes u(x,z,n) subject

to q • x < y. (4.14) is an identity. Differentiating partially with

respect to n, we get

u* + u* x + u*x = (4.15)
nq ny y n

Substitution of (4.13) and (4.15) into (4.12) yields

(Jxjjfdn) • t = - /v(n)x
n
(q,y(n),z(n),n)dn (4.16)

where v(n) = u*y/X (4.17)

In Section 1, it was argued that - (Jx fdn) • t is a satisfactory

measure of the extent to which commodity taxes discourage consumption

of the different commodities. (4.16) says that discouragement should

be zero when x =0. We shall see that v is normally nonnegative
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in such cases as the model with n interpreted as ability. Then x. >
in

implies that commodity i should be discouraged, while x. < implies

that it should be encouraged.

This surprisingly simple criterion says that commodity taxes should

bear more heavily on the commodities high-n individuals have relatively

strongest tastes for. Notice that the criterion looks at the way in

which demands change for given income and labour supply when n changes.

The spirit of the criterion is more akin to the two-class criterion

(Mirrlees (1975)) than to that of Ramsey (1927). But it is surprising,

and satisfactory, that it is expressed as an integral of 3x/3n rather

than an integral of x.

Turning to the conditions for nonlinear taxation, we differentiate

L (4.11) with respect to z(n) and v(n):

- (p • x
C
+ r)Xf = y(u* m + u* ) (4.18)

z ny z nz

U' + u*
y
m
v
y = (1 - Xp • xjpf (4.19)

y(0) = 0, u(») = (4.20)

These equations correspond in a general way to (2.17), (2.16) and (2.18)

above. The correspondence can be brought out more clearly if we define

the marginal rate of substitution between y and z:

S = u*/u* = - m (4.21)
z y x

Then s = u* /u* - su* /u* = (u* + u* m ) /u* (4.22)
n nz y ny y nz ny z y

c c c
and p • x = q • x - t • x =m - t • X - t • x m

z z z z z y z

= - (1 - t • x )x - t • x (4.23)
y z
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Note also that

m u* = 1 (4.24)
v y

, c c c
and p • x = q • x - t • x = m - t • x mvv vv . y v

= (1 - t • x
y
)/u* (4.25)

Introducing the results of these calculations into (4.18) and (4.19),

and using definition (4.17), we obtain

[(1 - t • x )s + t • x - r]f = vs (4.26)

)

»' + u^ = [1 "u^ (1 - C
• V lf (4 ' 27)

y y

In order better to appreciate these equations, it should be recognized

that (l-t«x)s+t«x - r " is the total marginal tax rates on
y z °

the z commodities, including both linear and nonlinear taxes.

When applying the- theory of optimal income taxation to an economy

with many commodities, one would use a utility function for disposable

income and labour which assumes given prices for commodities. Both in

actual economies and optimized ones, these prices are not proportional

to the social marginal costs of commodities. (4.26) and (4.27) show

how one should allow for the differences. Calculations of optimal tax

rates that have been done (e.g., Mirrlees (1971) and Stern (1975)) do

not allow for this, so it is interesting to consider in which direction

the results have been biassed, and whether these calculated optimal rates

are closer to the optimal income tax or the optimal income tax or the

optimal total tax rate (including commodity tax effects)

.

The interrelations of the various equations are so complicated

that no general answer to these questions seems possible. But it is

instructive to consider the special case
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u = U(a(x,n) + b(z,n)). (4.28)

It will be recollected that, when a = 0, it is optimal to have no
n

commodity taxes (linear or nonlinear) , so long as it is possible to tax

the z-goods nonlinearly (Section 2 above) . That case is therefore

of no interest for our present purpose. Instead take the case where

a is homogeneous of degree one in x (4.29)

It is then easily seen that the functions s(q,y,z,n) and x(q,y,z,n)

used in the theory above have the following properties:

(4.30)

(4.31)

(4.32)

s
y

—

X
y

= x/y

X
z

=

Also, in indirect form, a = ya*(q,n)

We need to know how t • x varies with n:
y

, t-x+t'xy'+t'X'z'
d

<
_ d_ t • x _ n y_ 5 _ t • x ,

dn y dn y y 2
y

t • X
n , t • x . t • x .-y— + -^y -"T-y*

y y

t • X
n

(4.33)

Now from (4.16) we have

fvt • x dn = - ft • x • tfdn
' n ; q

> 0, by Slutsky (4.34)

This suggests that, normally,
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»7"t'i > (4.35)
dn y -

Trying to confirm that v is nonnegative, we use the computation

(following the argument that led to C2.32))

4~ u* = u* + U"(ya* + b)(y'a* + b z')a*
dn y ny J J

z

= u* ,ny

since y' = - s • z' = - (b /a*) • z' . Also, note that

u* = U" • (ya* + b )a* + U 1

• a* (4.37)
ny n n n

A variety of assumptions would make the left hand side of (4.37) nonpositive:

for example, it is sufficient that

^oo t - !• h (a* /b
> t ° < 4 - 37 >

Under these assumptions

4~ u* < (4.38)
dn y -

We also have (from (4.36), and the definition of v, (4.17))

A
U*

T" v = (r
1 - 1 + t • x )f (4.39)

dn Ay
I shall show that, if (4.35) holds, v > for all n. Suppose

that on the contrary, v(n..) < 0. Since v(0) = 0, there exists n„

such that v(n_) < and v'OO < 0. Then, by (4.39), (4.35), and

(4.38),

-r— (-? -r—) < in a neighborhood of n n ,

dn f dn ° 2
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Consequently, v' is nonincreasing in the neighbourhood of n„ , and

v decreases. This must hold, then, for all n > n„, and we conclude

that

v(n) < v(n
2
) < for all n > n

£
(4.40)

This contradicts the condition that v * as n * <=°.

Collecting arguments, we have shown that, on the reasonable postulate

that (4.35) holds,

v > (all n) (4.41)

4~ (t • x ) > (all n) (4.42)
dn y -

Thus the introduction of commodity taxes introduces an increasing term

into the right hand side of equation (4.39). Since v begins and ends

at zero, this seems to mean that v should increase more slowly and

then decrease more slowly than in the absence of commodity taxes: that

is, v should be smaller.

The consequences of this for tax rates may be understood most clearly

for the case of a simple income tax, where labour is the only commodity

subject to nonlinear taxation. Taking labour as numeraire, r = 1;

and - z is labour supplied (z being a negative number) . Let the income

tax be 9(- z) . Then the budget constraint is y = - z - 8(- z) , and

the consumer equates s = u /u to 1 - 6'(- z) . Thus the right hand

side of (4.26) ,

(1 - t • x )s + t • x -r
y z

= (1 - t • x )(1 - 9') + t • x - 1
y z

[t - x(q,-z-e,z,n) + 9(- z)

]

H- z)

= - marginal total tax on labour earnings.

= - x, say.
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(4.26) says that

x = - vs (4.43)

and, if ti reoresents ability, s = — (u*/u*) should be negative,
n 3n z y •

°

since n-tnen find it easier to supply labour.

We find, then, that lower v implies lower x: the tax system

as a whole should, it seems, bear less heavily upon labour on the margin

than one would suppose if commodity taxes were not allowed for. From

the calculations above (noting that x = in the special case we
z

are dealing with) we have

t • x

9'(-z)=i ~
-, z

7 (4.44)1-t'X 1-t'X
y y

so that 9' should be yet smaller than x,
c
if commodity taxes are pre-

dominantly positive.

In the above argument it was, first, assumed that individuals had

a special form of utility function; and, second, an unproved (but reasonable)

conjecture was made at (4.35). It would be even harder to push through

a corresponding argument for the general case. Yet the argument provides

some reason for believing that the usual calculations of income tax rates

are too high, not only because the commodity tax system does and should

do some of the work of the income tax; but also because the varying pattern

of demand with ability normally requires a lower marginal total tax on

labour income. It would be interesting to know whether calculations

for plausible cases would support this conjecture. Though strongly suggested

by the equations, it is hard to understand intuitively.

It is worth noting one further feature of the first-order conditions,

namely that they contain within them some necessary conditions for Pareto-
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efficiency, which we can obtain by eliminating v from equations (4.16)

and (4.26):

- (fx
C
fdn) • t = f{(l - t • X )s + t • x - r}s

-1
x fdn (4.45)

; q ; y z n n

These relations are not easy to interpret as they stand. The main point

is that the weighting function v(n) appearing in the conditions for

commodity taxation and for income taxation must be the same. (4.45)

could allow one to calculate optimal commodity tax systems once the optimal

income tax was known, without further reference to the welfare function.

It might be more interesting to use them as a means of identifying commodities

which are affected in a grossly nonoptimal way by the tax system. But

in this form, the efficiency conditions seem not much more than a theoretical

curiosity.

This completes the discussion of mixed taxation. It is interesting

to note that the optimality conditions (4.16), (4.26) and (4.27) contain

within them both the conditions for optimality where full nonlinearity

is possible, and the conditions where only linearity is possible. The

theory of linear taxation is obtained simply by omitting z and ignoring

(4.26). In this case x = — x, and the right hand side of (4.16)
n dn °

can be integrated by parts. The details will be left to the reader.

The conditions for nonlinear taxation are obtained by letting x be

one-dimensional. No control is then lost by setting q = p. Then (4.16)

is irrelevant, and the remaining equations reduce to the theory of Section 3.

5 Public Goods in an Optimal Mixed System

The point to be made in this section is a simple one. Let g be

a public good, entering all utility functions (possibly trivially in
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some cases) and with production price tt. In the Lagrangean (4.11),

x , u*, and m are now all functions of g as well as the other variables;
n

and irg appears as an additional term in the production constraint,

so that one subtracts Xirg from the Lagrangean. Then differentiation

with respect to g yields

\fp • x
C
fdn + Air + Ju(u* + u* m )dn = (5.1)

J g J ng ny g
7

By means of the usual manipulation in tax theory, we have

c c
p • x = (q - t) • x

g g

= m - t • (x +xm)
g g y g

= - t • x + (1 - t • x )m (5.2)
g y g

Furthermore, m = - u*/u*, and we want to define
g g y

• a = u*/u* = - m (5.3)
g y g

as the marginal rate of substitution between income and the public good.

Partial differentiation of (5.3) with respect to n gives

a =
(u * _ u*u* /u*)

/

u *
n ng g ny Y y

= (u* + u* m )/u* (5.4)
ng ny g

y
y

Using (5.2) and (5.4) we can write (5.1) in the form

it = /(l - t x )ofdn + /t • x fdn - Jva dn (5.5)

This says that the supply of public goods should be at such a level

that their marginal costs are equal to a sum of
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(i) individual marginal rates of substitution for the public goods,

reduced by a proportion equal to the derivative of commodity

taxes with respect to income spent on them (for that individual)

,

(ii) the derivatives of total commodity tax revenue with respect

to the provision of the public goods, less

(iii) a weighted sum of terms expressing how the personal value of

the public good varies with n.

The first two parts of this expression give a direct estimate of the

social value of the good, adding marginal rates of substitution in the

usual way, and making allowance for direct revenue effects. The last

part of the expression corrects this estimate for distributional considera-

tions. It uses the fundamental weighting factors v(n) which played

such an important part in the conditions for optimal taxation, and applies

them to the quantities a , which show how much preference for the public
n

good varies with n. This is analogous to the way in which v multiplied

s and x in the optimal tax conditions. In the normal case with
n n

v > 0, the correcting term is negative if the more able have a stronger

preference for the public good, positive if the less able have. Thus

the rule encourages provision of public goods valued by the poor and

discourages those valued by the rich. The existence of optimal taxes

does not eliminate distributional considerations in the provision of

public goods; but it does allow the distributional considerations to

be analysed out and expressed as a separate contribution to (or deduction

from) the marginal social value of the good.

It will be recognized that, in the one-parameter case, v can be

deduced from the optimal taxes themselves through (4.26), and substituted
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in (5.5). Thus we obtain a further set of welfare- independent conditions

which are necessary for Pareto efficiency. In the case of zero commodity

taxes (or fully nonlinear taxation) these conditions take a rather neat

form:

a

ir = /(a - t. -s-)fdn (5.6)
' X s

.

in

where t, the marginal tax on commodity i, is s. - p.. An alternative

form is

a la

7T = fa(l - -~)—)fdn (5.7)

in l

In this form it is plain that the social value of the public good is

enhanced when its value for some individual responds more sensitively

to n than do his marginal tax rates.

6 The Fundamental Principle of Optimal Tax Theory

We have derived necessary conditions for the optimality of various

economic policy variables. These conditions have an essentially simple

common structure, which it is the purpose of this section to emphasize.

If an economic policy is optimal, there is no change in it which

will leave total welfare unchanged and at the same time generate a net

addition to government revenue. Consider a small change in some policy,

5P, and associate with it income transfers to and from individuals which

are designed to keep total welfare constant. These transfers may be

analyzed into two parts. First an income transfer 5y made that would,

if behaviour did not change, leave each individual's utility unchanged:
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this transfer is pure compensation for the initial policy change.

Since it is not in general possible to make these 5y. transfers in

a lump sum manner, individuals would want to change their behaviour

to benefit from the structure of these transfers. We therefore institute

a second set of income transfers 6y„ whose effect is to leave total

utility unchanged, while removing the incentive to change behaviour

arising from the first round of transfers. Specifically, we know that

individuals always adjust their behaviour in such a way that v' = u .

Having chosen 6y, so that 5v = 0, 5y„ is now chosen so that 5v' = <5u .

These income transfers create changes 5y + 5y ?
in government

expenditures, which are partly offset by changes in tax revenue, 5t

arising from the policy change 5P, utility being kept constant, and 6t„

arising from the second-round income transfers 5y„.

If the policy were originally optimal, the net increase in government

revenue does not increase whether the policy change is positive or negative.

Thus

J(5y1
- &t

±
+ 6y

2
- 6t

2
)fdn = (6.1)

6y and 5t.. are easily computed from elementary considerations. Writing

m(v,P,n) = income yielding utility v for n-man

when policy is P (6.2)

t(v,P,n) = tax revenue from n-man when he has

utility v and policy is P (6.3)

we have

6y
i

=
If

6P = v* (6 - 4)

6t
i

= H 5P = v* (6 - 5)
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It remains to estimate 5y„ - 6t„. Remarkably, we find that

/(<Sy
2

- 6t
2
)fdn = - Jv(n)(~ n^) dn (6.6)

m,P

where dl is differentiated with m,P held constant; and the multipliers

v (normally nonnegative) are independent of the particular policy considered

This is what we have been discovering in the previous sections of this

paper. There we also found that v is the solution of the differential

equation (rewriting (4.19))

u* ~- (v/u*) + u* (v/u*) = (1 - Xp • x
C
)f

y dn y ny y
r v

= (1 - Am + At )f, (6.7)
> Y V

with v = at n = 0,°°. The function u*(y,P,n) is related to the

compensation function m by

v = u*(m,P,n)

.

(6.8)

Thus the fundamental principle is that we can assess the value

of a policy by associating with an n-man three numbers :-

(i) nip = pure compensation for the policy

(ii) - t = reduction in taxes, at constant utility

v 3
(iii) - -r (—nip) = distributional and incentive effects.

m,P

The total effect of the policy is measured by adding these numbers for

everyone affected. For the three major policy tools examined in this

paper we have:-
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Policy Instrument "p

Proportional taxes

Public goods

Nonlinear taxes

a = u*/u*
g y

s = u*/u*
z y

3 / c. c— (t • x ) = x t + x
3t q

f- (t • x
C

) = t • x°
3g g

3 , c „— (t • x + p • z)

To appreciate the last row of the table, it should be understood that

the instruments in the case of nonlinear taxes are best taken to be the

demands z(n) for the taxed commodities (marginal tax rates lead to very

complicated equations which can only with considerable labour be reduced

to the simple form)

.

The form in which commodity tax rules appear is also worth attention.

For this case the cost of an increase in a commodity tax rate is

f[x - (x
C

• t + x) - ^ x ]fdn
'

q f n
(6.9)

If there are no nonuniform policies (such as nonlinear taxes) , x = -r~ x ,n an n

and the last term can be integrated by parts, so that we have the form

Jx • tfdn = Jv'(n)xdn (6.10)

which is essentially equations (1.12) of Section 1. In this case v'(n)

is the social marginal utility of income transfer.

In the general case, since v is the multiplier dual to the constraint

= (v' - u )/u
n y

= m v' + m
v n

= (-2-m(v(n),P,n))_,
on r

(6.11)

it is appropriate to call v the social marginal utility of income-

dif f erence.
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The striking feature of this analysis is that the distributional

aspects of policy choice can be incorporated in a weighting function

v; which then defines a simple differential operator to be applied to

nL. nL is the old measure of social value, which ignores revenue effects

and the desirable 'distortions' arising from distributional considerations.

It is easy to see how to supplement it with an estimate of revenue effects;

and we now have a simple general principle showing how the remaining adjust-

ment should be made. The method can be applied without difficulty to other

types of economic policy, such as quantity rationing, wherever the simple

equilibrium model of this paper is thought to be appropriate.
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Appendix

The following lemma will be proved, on the assumption that u(x,z,n)

is a twice dif f erentiable function, increasing in z; and x,z are

dif ferentiable functions of n:

Lemma . If

v(n) = u(x(n) ,z(n) ,n) , v'(n) = u
n
(x(n) ,z(n) ,n) (A.l)

and for all m,n

s (x(n) ,z(n) ,m) • x'(n) > (A. 2)m -

then there exists B such that, for all n,

x(n) ,z(n) maximizes u(x,z,n) for (x,z)eB (A. 3)

If (A. 3) holds , and (A.l) holds and for all n

s (x(n) ,z(n) ,n) • x' (n) > 0. (A. 4)n -

Recollect that s = u /u .

x z

Proof The second part of the theorem was proved in Section 2 following

equation (2.2)

.

For the first part, suppose on the contrary that there exist n ,n

such that

u(x(n
1

) ,z(n
1

) ,n
?
) > u(x(n ) ,z(n ? ) ,n

2
)

.

(A. 5)

If n < n„ (a similar argument works if n > n„) , (A. 5) implies the

existence of n_, n.. < n. < n~ such that

— u(x(n) ,z(n) ,n ) < at n = n_ (A. 6)dn I 3
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This derivative is equal to

u (x(n ) ,z(n ) ,n ) • x'(n) +u z'(n,)

= u
z
[s(x(n

3
) ,z(n

3
) ,n

2
) • x* (n

3
) + z'Cn.^)]

Therefore

s(x(n
3
),z(n

3
),n

2
) • x'C^) + z'(n

3
) < CA.7)

But (A. 1) implies that

s(x(n
3
),z(n

3
),n

3
) • x' (n

3
> + z'O^ = (A. 8)

Since n_ < n„, (A. 7) and (A. 8) imply the existence of n, , n. < n, < n«,

such that

s
n
(x(n

3
),z(n

3
),n

4
) • x'C^) < 0, (A. 9)

contradicting (A. 2). «

This proves that (A. 3) holds with B defined as the set of (x(n),z(n))

as n runs through all values. Thus the Lemma is proved.
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