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1 . I n t roduct ion

The Folk Theorem for repeated games asserts that any feasible,

individually rational payoffs for a one-shot game can arise as Nash

equilibrium average payoffs when the game is infinitely repeated.

In our [1986] paper, which extends this result to subgame perfect

equilibrium and discounting, we assumed that the players can

condition their play on the realization of a publicly observed

random variable. We asserted, however, that abandoning the

assumption would lead to only a slight weakening of the results;

viz., any feasible, individually rational payoffs can be

approximated by a perfect equilibrium where there is sufficiently

little discounting. This note shows that, in fact, our extension of

the Folk Theorem holds in a strong sense even without public

randomization: all feasible individually rational payoffs can be

exactly attained in equilibrium.

Although this stronger result is of some interest by itself, its

true significance appears in connection with mixed strategies.

Early analyses of repeated games with little or no discounting

(Aumann-Shapley [1976], Friedman [1971] and Rubinstein [1979])

restricted players to pure strategies, or equivalent ly , assumed that

a player's choice of a mixed strategy in any period is observable by

his fellow players. The assumption of pure strategies is restric-

tive because typically the range of individually rational payoffs is

greater when players are allowed to use mixed strategies to punish

their opponents. The alternative hypothes is--that a player's

randomizations are ex post observable— is, likewise, strong.

Section 6 of our [1986] paper showed how to extend the Folk

Theorem to allow for mixed strategies when only a player's realized



actions, and not his choices of randomizing probabilities, are

observable. The key was the observation that a player can be

induced to use a mixed strategy to ininimax an opponent by making her

continuation payoff depend on her current action in a way that

renders her exactly indifferent among the various choices in the

mixed strategy's support.

Our argument relied on public randomization to ensure that any

individually rational continuation payoffs can be exactly attained.

If, without public randomization, the continuation payoffs could

merely be approximated, a minimaxing player might not be exactly

indifferent over the support of his mixed strategy, and our

construction would fail. Thus, if we obtain only an approximate

version of the Folk Theorem without public randomization, our

construction cannot accommodate unobservable mixed strategies.

Attaining payoffs exactly is also essential for the argument in

our [1987a] paper, which provided sufficient conditions for the sets

of Nash and perfect equilibrium payoffs to coincide for discount

factors less than one. Although the body of that paper assumed the

possibility of public randomization, our results here imply that

this assumption, as in the Folk Theorem paper, is unnecessary.

2. The Model

We consider a finite n-player game in normal form:

g: A-R n
,

where A=A,x...xA and A. is player i's action space. Let Z. be the
1 n 1 i

set of player i's mixed strategies, i.e., the probability



distributions over A. , and set Z=Z, *. . . *Z . To simplify
l In

notation, we will write g , ( o ) for player i's payoff given the mixed

strategy vector o€£.

In repeated versions of g, each player's probability mixture

over actions at time t can depend on the actions chosen at all

previous times. More formally, let h(t) e A - H(t) be the

realized actions from time zero through time t-1. Player i's

strategy is a sequence of maps (one for each period) from H(t) to

Z. . Note that, at any time t, player i's strategy does not depend

on the past randomizing probabilities of his opponents, but only on

their realized actions.

In the infinitely repeated game G , each player i's payoff is
o

the average discounted sum -n-^ of his per-period payoffs, with common

discount factor 6:

T,.= (1-5) Z £
t_1

g.(a(t)),
1

t = l
X

where a(t) is the probability distribution of actions chosen in

period t

.

For each player j, choose "minimax strategies" m =(m,,...,m ) so

that

and

m . e arg min max g.(o.,o .),
-J J J "J

a a .

-J J

v. = max g.(a.,m .) = g.(m ).
J „ J J "J J

J

(Here "m^." is a mixed strategy selection for players other than j,

and g . (a . ,m J
. ) =g . (m^ , . . . , m^ . , a . , m J

.^ 1 mf ) ) . We call v. player
' j j ' - j j 1 j-1' j' j+1'



j's reservation value. Clearly, player j's average payoff must be

at least v . in any equilibrium of g, whether or not g is repeated.

Henceforth we shall normalize the payoffs of the game g so that

t t
( v ...... v ) = ( , . . . . ) . Call (0.....0) the mi n imax point . Take

1 n

v . =max g.(a). Moreover, let
l l

a

U = {(v.,...,v ) | there exists a€Z with g( a) =( v .,..., v )},

and

V = Convex Hull of U,

V = {(v.,...,v )€V
| v.>0 for all i}

1 n ' l

3 . The Folk Theorem without Public Randomization

Our [1986] paper showed that if public randomization is allowed

and either n=2 or the dimension of V equals n, then for any payoff

vector veV , there exists a discount factor S_<1 such that, for all

Se(_S,l), there is a perfect equilibrium of G with payoffs v. We
6

now demonstrate that public randomization is inessential for this

resul t

.

Lemma 1 establishes that, for 5 sufficiently large, all points

in V are feasible and can be obtained without using mixed

strategies. That is, for any veV there is a deterministic sequence

of actions {a(t)}"_. for which v is the payoff vector. This is not

sufficient to establish the Folk Theorem, however, because, even if

1. Of course, for low discount factors, public randomization
does make a difference. If & is near zero, the payoff vector for
the sequence {a(t)} is approximately g(a(l)), and so, quite apart
from equilibrium considerations, many payoffs in V are not
f eas ib le

.



veV , the sequence { a ( t ) } might have the property that, for some

period T , the continuation payoffs beginning at t do not belong to

V . In that case, some player would prefer to deviate from the

sequence, even if so doing caused his opponents to minimax him

thereafter

.

Building on Lemma 1, Lemma 2 shows that payoffs in V can be

generated by a deterministic sequence in such a way that the

continuation payoffs always lie in V . Following Lemma 2, we

explain how our results allow us to do without public randomization

in the proof of the Folk Theorem.

Write A={a ,...,a } and, for each j, let w = g( a ) . Thus,

{w ,...,w } is the set of payoff vectors corresponding to pure

strategies .

Lemma 1 : If <S> 1— , then for any v€V there is a sequence {a(t)}

of pure strategies whose average payoff is v.

m .

Proof : Let v=Ix J w J
, where 0<x J <l, and £ x J = l. We construct

j = l

(a(t)} as follows. Let I (t) be an index variable, which

is 1 if a(t)=a J and otherwise. Set N J (1)=0 for all j, and

t-1
let N J (t) = I (1-S)ST a

I
j (t) for t>l. N J (t) is the "average

T=l

discounted weight" given to strategy vector a before time t. Let

J vJ t-1C(t) = (j|xJ -N J (t) > 5 (1-6)}. Now define

j*(t) = arg max {x J - N j (t)},
2

jec(t)

ft)and set a(t)=a J
. This defines an algorithm for computing a(t)

2. If there is a tie, make a deterministic selection.



Claim 1 : The algorithm is well-defined, i.e., the set C(t) is

never empty.

To prove the claim, assume to the contrary that at some time(s) t,

s-1 j

C(t) is empty, and let s be the first such time. Then 5 (1-6)>X

N (s) for all j. Summing over j, we have

_, m. ms — 1 _,.
(1) m(l-5)SS l

ll- Z N J (s) = 1-1 Z (1-S)5T
I
J (t)

j = l j=l T=l

s-1 _, _.
= 1- Z (1-«S)5

T l
= S

S L

But (1) contradicts our assumption that m(l-S)<l, establishing the

claim

.

Let N J
(oo) = lim N J (t). (Because N J (t) is increasing and

t ~*00

bounded, this limit exists.)

Claim 2 : For all j, N J (<»)=\ V

m
To establish Claim 2, note first that, by construction, Z N (<») = 1.

j = l

Moreover, N («) cannot exceed x , because N increases

(by S
t-1

(l-S)) only when N J
( t )<

x

J - S
t ' l

( 1- 5) . Thus N j („)ix J

m .

for each j, and, since Z x =1, N («)=x ,
proving the claim.

j = l

Now, by construction, the payoffs corresponding to {a(t)} are



(1-S) I 6
l X

g(a(t)) =

t = l

(1-5) Z S
t_1

[ Z I
J (t)w J ]= Z w J (l-5) Z 6

t_1
I
J (t)-Zw j N j (co)=Zx j w J

= v

t = l j = l j = l t = l

Q.E.D.

Roughly speaking, the algorithm of Lemma 1 works as follows. By-

definition, v is a convex combination Zx w of the pure strategy

payoff vectors w , . . . ,w . To generate v as a discounted average

payoff over time, choose that pure strategy vector a at time t for

which the difference between x and the fraction of times a has

been used up until t (suitably weighted for discounting) is largest.

The continuation payoffs at time s associated with the sequence

t — S
(a(t)} are simply Z 5 g(a(t)), i.e. the discounted sum of

t = s

per-period payoffs starting at time t and discounted to time s.

Lemma 2 : For every £>0 and closed set VcV with

min v.>5£, there exists _S< 1 such that, for all £€(_£, 1)

i.vev

and every v£V, there is a sequence {a(t)} of pure strategies whose

discounted average payoffs are v, and whose continuation payoffs at

any time t are at least € for each player.

Remark : To prove that public randomization is inessential for

the Folk Theorem with observable mixed strategies, it would suffice

to show that, for any individually rational payoff v, there exists _£

such that, if 8 exceeds _5, v can be generated by a deterministic
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sequence whose continuation payoffs are individually rational.

Lemma 2 establishes a stronger property; it asserts that a fixed _S

works uniformly for the entire set V. We provide the stronger

result because it is needed to show that public randomization is

inessential with unobservable mixed strategies and in our [1987]

paper .

Proof : Let Z be the polygon corresponding to the intersection

of the set V with the inequality constraints v.23£, and let {z } be

the J vertices of Z. Clearly, V cZ . Let Z be a polygon with

vertices {z } such that (i) each z is within £ of z ; (ii) z =z if

z e{w ,...,w }; and (iii) z can be expressed as a weighted

k k kaverage Zx (j)w , where each weight x (j) is a rational number.

Observe that VcZ

k, .Because the x (j)'s are rational, we can find integers

(r (j))u_i and d such that for all j and k, x (j)=r (j)/d. Let

"cycle j" be the d-period sequence of pure strategies in which a is

1 2 2played for the first r (j) periods; a" is played for the next r (j)

periods; and so on for all k between 3 and m. (Recall that

k k jw = g(a ))• Let z ( S) be the discounted average payoffs

corresponding to cycle j. Note that if z is on the boundary of V,

then z (5) will be on the boundary as well. If we set

R
k
(j) = I r

S
(j), with R°(j) = 0,

s = l

then



. m R
k
(j)-1 , .

z
J (S) Z Z (1-5) 5

S
w
K /(l-S a

) .

k=l Dk-1, .vs=R (j)

Choose S_ so that, for all 5 greater than _5 and all j, z ( 5) is

within E of z . By construction, for all 5>.S, V is contained in the

polygon Z(S) whose vertices are the z ( 5)
'

s

.

We now apply the algorithm of Lemma 1 to generate each v€V by a

deterministic sequence of the z ( 5) ' s for 5>.S, where 5=max (.5, 1-1/J) .

Earlier, when the payoffs w were called for in a given period t, we

set a(t)=a . In our current application, we replace the w s with

the z ( S) ' s . Moreover, when the algorithm calls for payoffs z ( 5)

,

we assign cycle j_ as the actions for the next d periods. The Lemma

1 algorithm so modified guarantees that we can generate each of the

payoffs in V by a deterministic sequence of these cycles- Because

each cycle is of length d and each z ( 5) gives each player a payoff

of at least 2£ , the continuation payoffs starting at any time t give

each player at least £ if S is taken large enough to

satisfy (1-5 )g_+5 (2£)>£, where £=min g.(a) is the lowest possible
i, a

value of any player's payoff.

Q.E.D.

To summarize, the algorithm of Lemma 1 shows how to attain any

veV by a deterministic sequence of w s. Lemma 2 replaces each w

that is not individually rational with a payoff vector z ( 5) that

itself can be attained through a finite cycle of w 's. Hence, to

obtain v€V through a deterministic sequence, (i) apply the Lemma 1



in

algorithm using the z (
5) ' s instead of the w 's; and (ii) whenever

the algorithm calls for z (6), replace it with the corresponding

d-period cycle

To see how Lemma 2 enables us to do without public randomization

in the proof of the Folk Theorem, we first recall the form of the

strategies in our [1986] paper. To obtain the point v£V , we had

players use publicly correlated action (generating v in each period)

as long as no player deviates. If player i deviates, we provided a

"punishment equilibrium" in which, (a) for a certain number of

periods, the player's opponents minimax him and he responds

optimally and then (b) the players revert to a more "cooperative"

mode in which their payoffs are v , where this vector is chosen so

as to induce i's punishers to go through with their minimaxing and

so player i's overall payoff is less than £. Like v, it is

generated by publicly correlated actions. From Lemma 2, we can

replace the publicly correlated actions yielding v and v with

deterministic sequences whose continuation payoffs are greater than

£. Because deviation leads to payoffs less than e, no player will

wish to deviate from such a sequence. In the case where mixed

strategies are observable, this is the only change to the proof

required to eliminate public randomization.

The case where only players' realized actions (and not the

randomizations themselves) are observable presents an additional

complication. If, to minimax player i, player j uses a mixed

strategy, he must must be indifferent among the various actions over
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which he randomizes. Our [1986] proof ensured this indifference by

making j's continuation payoff after the punishment phase contingent

on his actions during the phase. It is important here that

precisely specified values for the continuation payoffs be

attainable; it would not suffice merely to approximate them. Lemma

3
2 shows, however, these exact values can, in fact, be attained.

4
Thus public randomization is inessential in this case too.

3
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