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Abstract

The simulation result of Nunes, Kuan, and Newbold suggests that it is possible to

estimate a spurious break for a regression model with 1(1) disturbances. In this note,

we provide a rigorous proof for this phenomenon. We also show that their finding

applies to integrated regressors, so that a spurious regression may lead to a spurious

break. However, if two integrated processes are cointegrated with a structural change

in the cointegrating relationship, the break point can be consistently estimated. The

consistency is in terms of the integer index rather than in terms of the sample fraction.

This rapid rate of convergence is not attainable for stationary or, more generally, for

1(0) regressors. Furthermore, the consistency holds even when magnitudes of breaks

are small but do not converge to zero too fast. These consistency results are also

obtained for a broken trend model.

Key words and phrases. Spurious break, spurious regression, change point, cointe-

gration, broken trend.

Running head: Spurious Break



1 Introduction

Recently, Nunes, Kuan, and Newbold (1995) pointed out that when the disturbances

of a regression model follow an 1(1) process there is a tendency to estimate a break

point in the middle of the sample, even though a break point does not exist. This

phenomenon is called a "spurious break" by the authors and was discovered by a

simulation experiment. In this note, we provide a rigorous proof for this phenomenon.

Furthermore, we show that a spurious break occurs for 1(1) regressors as well, so that

a spurious regression may lead to a spurious break.

We then consider the problem in which the dependent variable and the 1(1) re-

gressors are cointegrated but the cointegrating relationship undergoes a shift. This is

a more general notion of cointegration because the cointegrating vector is not time-

invariant. We ask the question whether the break point can be consistently estimated.

It is shown that the estimated break point converges quickly to the true break point.

The rate of convergence is faster than the corresponding result for 1(0) regressors,

given the same magnitude of shift.

A structural change in a cointegrating relationship can be a useful model in em-

pirical applications. Cointegration describes a long-run-equilibrium condition. An

equilibrium may be disturbed by policy regime changes, resulting in a new equilib-

rium, so that a different cointegrating vector may be needed to characterize this new

equilibrium. A special case is a shift in the mean level of the long-run equilibrium,

which can be expressed as a shift in the intercept of a cointegrating-regression model.

This shift is exhibited graphically as a change in the "gap" between two cointegrated

series.

Although not a concern of this paper, we point out that testing for cointegration

which allows for a structural change has been studied by a number of authors; see, e.g.,

Hansen (1992), Quintos and Phillips (1993), Gregory and Hansen (1996), and Campos,

Ericsson, and Hendry (1996). One implication of a structural change in a cointegrating

relationship is that one may not be able to reject the null of no cointegration if

conventional tests are used, even though a long-run relationship between two series



does, in fact, exist. This situation calls for use of the test statistics proposed by the

aforementioned authors.

2 Spurious Break

Consider the model:

( x'tPi + et t = 1,2,...,*

Vt = {

{ x'
t/32 + et t = k + l,...,T

Let $\{k) be the least squares estimator of f3\ based on the first k observations, and

$2(k) be the least squares estimator of #2 based on the last T — k observations, i.e.,

k

Pi(k ) = {J2 xtx't) (J2 xtyt),

T
. _, . T

&(*) = ( E **<)'
( E *&)•

t=k+l t=k+l

Define the sum of squared residuals for the full sample as

k
2

T

sT (k) = Y,(yt-x'Mk)) + E (yt-x'Mk))
t=\ t=k+l

and define the break point estimator as

k = argmin
1 < fc<TS

,

T (A:).

Finally, let

AT = min{A : A = argmin
ue[AiI]

5T ([Tu])

where < A < A < 1. The behavior of Aj is considered for two cases: 1(0) and 1(1)

error processes.

For an 1(0) error process, let Q(X) and R(\) be defined as in [Al] and [A3] of Nunes,

Kuan, and Newbold (1995, hereafter NKN), respectively. More specifically, Q(X) is

the limit of Dj (Y/t=i x tx't)D^ for an appropriate scaling matrix Dj, and R(\) is

1 In Xrp \ 1

the limit of DT 52t=i xt^t- The matrix Q(X) is assumed to be positive- definite and

strictly increasing. The process R(X) is Gaussian. When x t
is stationary, Q(X) = \Q

for some Q > and -R(A) is a Brownian motion.



In this section, we assume there is no break, i.e. j3\ = /?2- NKN show that (see

their Theorem 3.1b)

\e[A,A]

where M(X) is a stochastic process given by

AT -i argmaxAe[A TiM(A) (1)

M(A) = R{\)'Q{X)- X R{\) + [i?(l) - R(X)]'[Q(1) -Q^m) - /2(A)]. (2)

For an 1(1) error process e t ,
we assume that T~ 2

J2 t=i £
2

=>• c/A
W^2

(u)g?u with

W(u) being a standard Wiener process, and c > a constant. Further assume (see

[A3'] in NKN 1
), for some a > 0,

[XA]

T-*/2/^
1 /2 £> <£t ^ G(A) (3)

where G(A) is Gaussian process. NKN prove that

AT -i argmax
Ae[AjX]

M*(A) (4)

where

M*(A) = G(A)'g(A)" 1 G(A) + [G(l) - G(X)]'[Q(l) - ^(A)]-
1^!) - G(A)]. (5)

Examining (2) and (5) we find that, whether the error process is 1(0) or 1(1), the

results are essentially the same. Namely, in the absence of a break, the estimated

break point At is a random variable with support in [A , A] . Not much further can be

said on the compact interval [A, A]. However, for /(0) error process e t , NKN further

prove that M(A) —> oo as A —> or 1, thus At — {0, 1}, if A — and A —> 1; also see

Andrews (1993). In their Remark 1 (p. 742), NKN pointed out that they were unable

to characterize the limiting behavior of M*(X) for A near or 1. Through simulation,

they find that M*(A) behaves differently from M(X). More specifically, M*(X) does

not diverge to infinity as A decreases to zero or increases to 1.

1 Their original assumption is stated in terms of yt rather than et, which applies to yt being 1(1).

The current form allows j/< to depend on deterministic regressors as well as on an additive 1(1) error

process.



In the following, we shall prove that M*(X) is a well defined process on [0, 1] and is

uniformly bounded in probability over [0, 1]. Note that M*(X) is the limiting process

of T' aMT ([TA]), where a is defined in (3) and

k
,

k _j k T
,

T -1 T

M£(k)= (J2 £ tx t) (E x <x {J2 x t£t) + { E e tx t) ( E x *x
( E x <e <)

t=l <=1 t=l t=k+l t=k+l t=k+l

(6)

We shall assume that a > 2 because this is true when x t contains a nonzero mean

regressor (e.g., a constant, or a trend). When x t is a 7(0) process with zero mean, it

is possible that a = 1. This case is not considered in this paper.

Theorem 1 For the a defined in (3), assume a > 2. We have

sup M*(A) = Op(l). (7)
Ae(o,i)

Proof of Theorem 1. For an arbitrary vector z and an arbitrary projection matrix

P, we have z'Pz < z'z. Apply this inequality to Mj{k) to obtain

T

MT(k)<J2 £
t

forallJfc€[l,T]. (8)

Since a > 2, we have T~aM$(k) < T~ 2

£f=1 e] for all k E [1,T]. Moreover, because

T~ 2
J2t=i £

t
has a hmit, T~aMj{k) is uniformly bounded in probability. Thus its limit,

M*(A), is uniformly bounded in probability for A £ (0, 1).

To rule out the possibility that Xt —> {0,1}, we need to further examine the

behavior of M*(A) for A near and 1. Strictly speaking, M*(A) is not defined yet at

A = and A = 1. As the limit of M*(X) when A —> 0, M*(0) should be defined as

M*(0) = GilYQil^Gil) (9)

which is obtained from (5) by taking G{X) = 0,Q(A) = 0, and C(A)'g(A)- 1 G(A) =

for A = 0. Note that the term G(A)'Q(A)- 1 G(A) is the limit of the first term of (6) on

the right hand side divided by T~a
. Now

HEWE^r'E^) < r^e? < r- 2^ £t
22

i=l i=l t=l t=\ 4=1



which converges to zero in probability for any given k, or for k = [TX] with A —> 0. It

follows that G(A)'(5(A)- 1 G(A) -> in probability as A -> 0. Thus the definition of (9)

is the limit of M*(A) as A —* 0. Similarly, we can define, as the limit of M*(A) when

A —» 1, M*(l) = M*(0). We next show that the maximum of M*(X) is not attained

at or 1.

Theorem 2 (i) With probability 1,

M*(0) = M*(l) < M*(A), /or every < A < 1. (10)

fiij If G{X) has a nonsingular covariance function, then with probability 1

M*(0) = M*(l) < M*(A), /or every < A < 1. (11)

To prove Theorem 2, we need the following lemma.

Lemma 1 For arbitrary positive-definite matrices A and B with A > B (p x p), and

arbitrary vectors x and y (p x 1), we have

x'A~ x
x - y'B~ x

y - (x - y)\A - B)~ l
(x - y) < 0. (12)

Proof of Lemma 1 : Define the matrix

(
(A-B)-i-A-* -(A-B)-* \

^ ~
^ -(A-B)' 1 {A-By' + B- 1

J'
[l6)

It suffices to prove H to be positive-semidefinite because the left hand side of (12) is

equal to -z'Hz for z' = (x',y'). Let D = (A - B)' 1 + B' 1 > 0. Let C be a matrix

with the first p rows (/, (A — B)~ lD~*) and second p rows (0, /). Using the identity

-l{A - B)- 1 - A- 1 = (A- B)- 1D~ 1 {A - B)

to obtain

C'HC = diag(0, D) > 0.

Thus C'HC is positive-semidefinite, so is H because C has full rank. This proves the

lemma.



Proof of Theorem 2. The inequality M*(0) < M*(A) is equivalent to

G(l)'g(l)-
1 G(l)-G(A)'g(A)- 1 G(A)-[G(l)-G(A)]'[Q(l)-Q(A)]- 1 [G(l)-G(A)]<0.

Clearly, part (i) of Theorem 2 follows from Lemma 1 by letting A = Q{1), B = Q(X),

x = G(l), and y = G(A). Next, consider (ii). Let A = Q(l) and B = Q(X) and

let H be defined in (13). Then M*(0) < M*(A) is equivalent to -£'#£ < 0, where

£ = (G(l)', G(A)')'. Let T be an orthogonal matrix such that T'HT = diag(A l5 ..., A 2p )

with Ai > A 2 > • • • A 2p , where X^s are the eigenvalues of H. Since H > and H ^ 0,

the maximum eigenvalue of i/ is positive. It follows that

-?Ht = -(rO'diag(A 1 ,...,A 2p)r^ < -r)
2^

where rj is the first component of T£. When G(X) has a nonsingular covariance matrix,

so does £. Thus T£ is a vector of normal variables with a nonsingular covariance matrix,

implying —
/;

2 A 1 < with probability 1 because P(rj
2 = 0) = 0. That is, —£'H£ <

with probability 1.

The above analysis applies to 1(1) regressors as well, which is not considered by

NKN. Let

y t = x'
tfi_+ e t

where both x t and ef are 1(1), so that we have a spurious regression. Assume

[TX]

T- 2

J2x tx't ^Q(X) (14)
t=i

where Q(X) is a stochastic matrix with Q(X) > (a.s.) and Q(X) is strictly increasing,

i.e. Q(u) — Q(v) > with probability 1 for v < u. Also assume

[TX]

T- 2
J2x te t ^G(X) (15)
t=i

where G(-) is a vector of random processes, and for each A, G(X) possesses a density

function and a nonsingular covariance matrix.

Theorem 3 The results of Theorem 1 and Theorem 2 apply to 1(1) regressors satis-

fying (14) and (15), so that spurious regression leads to a spurious break.



Proof of Theorem 3. First, (14) and (15) imply (3) with DT = T2I and a = 2. The

proof of (7) under the new setting is identical to the previous proof because inequality

(8) is a pure mathematical inequality and holds for arbitrary x t . To prove (10), we

only need to note that if A, B, and A — B are stochastic matrices that are positive-

definite with probability 1, then inequality (12) holds with probability 1. The rest of

the proof is virtually identical to that of Theorem 2. .
It remains an open question whether a spurious break arises when y t and x t are

cointegrated. We conjecture that a spurious break will not occur because an 1(1) error

process is responsible for its occurrence.

3 Regime Shift in Cointegrating Relationships

In the previous section we show that two integrated processes that are not cointe-

grated may give rise to a spurious break. What happens when the two processes are

cointegrated but the cointegrating relationship undergoes a shift? Can the shift point

be consistently estimated in the presence of 1(1) regressors?

The issue of a structural change in cointegrating relationships is of considerable

interest. Cointegration describes a system's long-run equilibrium condition. A system

may have multiple long-run equilibria with an occasional shift from one equilibrium

to another. A structural change model allows us to describe such a system. Consider,

{ai+jix t + e t t= 1,2, ...,k

(16)
C*2 + 72Z< + £t t = fc + l,...,T

where x t
= Xt-i + e t with x = and Var(e t ) > 0. We assume e t are e t are 1(0) linear

processes such that e t = Yl'jLo Q-jVt-j and et = Y^jLo^j(,t-ji where rjt and £t are i.i.d.

sequences with finite 4 + 8 (8 > 0) moments, and X2jj| aj| < oo and J2jj\bj\ < co. In

addition, we assume that fc = [Tr ] for some r G (0, 1). When 71 = 72, but «i ^ a2 ,

there is a shift in the mean of the long-run equilibrium. This intercept shift is often

visualized as a change in the "gap" between two cointegrated series. When 71 ^ 72,

there is a shift in the cointegrating relationship. Let f3i = (0:1,71)' and /32 = (02,72)'

and 8 = (ati - a2 ,7i - 72)'. Let Xt = (l,xt )'.



It is evident that the larger the magnitude of a shift, the easier it is to identify the

break. The rate of convergence for the estimated break point depends not only on the

magnitude of the shift in the coefficients, but also on the magnitude of the regressors.

For stationary Xt , the rate depends on the "effective magnitude of shift", 8'Q6/cr^,

where Q = E{XtX[). In this case, it can be shown that k = k + Op (l). This is the

best rate that can be achieved for stationary regressors; see, e.g., Bai (1994, 1995).

Furthermore, k itself is not consistent for ko, although in terms of the sample fraction,

k/T converges at a rate of T to r . With 1(1) regressors, we shall show that even

k becomes consistent for A: - This follows because the "effective magnitude of shift"

converges to infinity. More specifically, if 71 ^ 72, then a(t) = 6''E{XtX[)8
/

' o~\ —> 00,

as t —» 00. In particular, a(ko) —> 00 as T —* 00. Consequently, one can estimate the

break point more precisely than with 1(0) regressors. In particular, k = ko + Op (l);

see Bai, Lumsdaine and Stock (1994) for a proof. Based on this fact, we can establish

a more interesting result. Namely, P(k = k )
—> 1.

Theorem 4 Let k denote the least squares estimator ofko- Assuming that ko = [Tto].

For the shifted-cointegrating relationship of (16) with 71 7^ 72, we have

P(k = k ) -> 1.

Proof of Theorem 4. Because k = ko + Op (l), for any e > 0, there exist an M < 00

such that P(\k - k
\
> M) < t. Thus

P(k + ko) = P{\k-ko\>M) + P(\k-ko\<M,k^ko)

< e + P(keDM ) (17)

where Dm = {k : \k — k
\
< M, k / k }. By definition, Srik) < J2t=i £t- ^ follows

that the event {k £ Dm} implies that {mmkeDM Sj(k) < YlJ=i £?}- Thus

T

P(k e Dm) <P( mm ST(k)<J2tf)- (18)
v ' \ keDM j '

We show that the right hand side of (18) converges to zero for every given M. Since Dm

is a finite set, it is sufficient to show that for each k G Dm, P{ST(k) < Ylt=i £t)
~~* 0-

8



We prove this for k < kQ . The case of k > ko is similar. Define

Y1<k = (yi,...,yk)', Ykj = (y*+i,-,w)'

Xi,k = (Xi,...,Xk)', Xk,r = pGfc+i,...,Xr)'

£i,fc = (ei, .-., £*:)', £k,T = (£fc+i,...,£x)'

^*:,A:o = (Xk+l,..-,Xk )', X^ T = (Xk+l,...,Xko ,0,...,0)'.

Furthermore, let Mx = I -X^X^xjk)^

X

1Je and M2 = I - X'KT{X'KTXk
,
T )-

1Xk
,
T .

Then for k < k , we have

The sum of squared residuals Sr(k) is given by

Sr(fc) = n'^F!,, + yfc

'

iT
M2n,T

=
£i, fc
Ml£l

,
fc + e^Maejb.T + 2^'X

fc

*

T'M2 e,,T + 8'X^'

M

2Xt<T8

T

= E e
t
~ ei,*-xi,*(^J,*-xu)~ ^i,fc£i,fc

_ £fc,T^
r

fc,T(-^it,r^A:,T)~ X'kTek,T

k

+28' J2 Xtet-28X'kM Xk,k (X'ktTXk,T)~
1
Xk,Te k ,T

t=k+l

ko

+S'( E XtXt)t - $'X
'k

<ko
XWo(Xk,TXk,T)~

1X'kjCo Xk,k 8

t=k+l

T

= Yl
£2

t + aT + ir + cT + dT + eT + /x
t=\

We have used the fact that XkT'e k ,T = EtU+i xt£t and XkT'Xk,T = X'kMXk ,k
=

J2t=k+i xtXv F°r each k G Dm, it is easy to see that ax, 6j, dx, and /x are all p (l).

Thus

«?r(A;)-E £? = 2^ E **£« + *'( E xtX?)8 + p (l) (19)
(=1 t=fc+l t=k+l

For each A; < ko, the first term on the right hand side of (19) is bounded by Op (y/T),

whereas the second term is P (T) and dominates in magnitude the first term. For

example, for k = ko — 1, the sum involves only one summand, and

T
.2St(*)-E*?

t=l



= 26'Xko eko +S'(X'kQXko )6 + Op (l)

= 28A s ko +282 (^e)e ko +8l + 28l 82(^ e)+ 8l(l2 e
>)

2

+ °v( l
) (

20)
z=l i=\ i=l

0p (62 Y:e l ) + (82 j:e iy

The last term can be rewritten as T£f(-!=Ei_i e,)
2

,
which dominates the first term

and converges to positive infinity with probability approaching 1. This implies that

for any e > 0,

P(ST(k)-^e 2

t
<0)<e

t=i

for large T. Combining with (17) and (18), we have, for every e > 0, P{k ^ k ) < 2e

for all large T

.

.

When only the intercept has a break (at\ / a2 , ji = 72), k is no longer consistent

for ko, even though k/T still converges to To at a rate of T. This is because the

"effective magnitude of shift" stays bounded. The lack of consistency can also be seen

from (20). When 82 = 0, ST(k) - ELi e? = 2<^ £*o + Sl + P (1), which cannot be

guaranteed to be positive.

The underlying reason for k being consistent for ko is not the 1(1) regressor per

se. Roughly speaking, if k = ko + Op (l) holds, then for any set of regressors Xt such

that the second term (19) converges to infinity and dominates the first term, k will be

consistent for ko- In particular, this is true for polynomials regressions. For simplicity,

we consider the following broken-trend model:

{oi +7i< + £t t = 1,2, ..., Ar

(21)
oc2 + -y2 t + e t t = k + l,...,T

where e t is a linear process such that e< = Yl'jLo a
j
r]t-j with r\t a sequence of martingale

differences and sup,- Er\\ < 00, and Y^]LoJ\aj\ < °°-

Theorem 5 For the broken trend model (21), assume 71 =^72- Let k be the least

squares estimator of ko with ko = [Tto] Then

P(k = &o) —* 1, as T —> 00

10
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Proof of Theorem 5. Let Xt
= (1, t)'. Then the proof of Theorem 4 up to equation

(19) can be copied here. The right hand side (19) still converges to positive infinity

(with probability 1) for the newly defined Xt for each k £ Dm- For example, for

k = ko — 1,

StW-^s? = 26'Xko e ko +6'(X'koXko )S + Op (l)

t=i

= 2<5ie feo + 262 k eko + 6\ + 28l 82k + (82k )

2 + P {1) (22)

= Op {62k ) + (82 k )

2

= Op (62Tt ) + (82T)
2
t*

It follows that the second term above dominates the first and converges to positive

infinity. This implies that, for each k <E DM , P(ST (k) - ELi £? < 0) ^ 0.

Although Theorem 5 is not explicitly presented in the literature, it is not unex-

pected. In Bai (1994, 1995), the linear trend is written as ^ and it is proved that

k = ko + Op (l) (but k is not consistent for ko)- If we rewrite the broken trend model

(21) with the linear trend expressed in the format ^r, then the new slope coefficients

become Tji for t < ko and Tj2 for t > k . The magnitude of shift will be T(~/2 — 71).

Thus, if the model is cast in the framework of Bai (1994, 1995), one is essentially

assuming an unbounded magnitude of shift. In this sense, the consistency of k for ko

is not surprising.

The results of Theorem 4 and Theorem 5 still hold even if we allow the magnitude

of shift to converge to zero. Let 82<j = 72 — 71.

Theorem 6 For the cointegrated regression model (16), assume y/T82 ,T —* 00 • For

the broken trend model (21), assume T82<j —> 00. Under these assumptions, even if

^2,T
~~> 0, the estimated break point k is still consistent for ko- That is, P(k — ko) —» 1.

Proof of Theorem 6. Under the assumed magnitude of shift, we still have k =

k + Op (l); see Bai (1994, 1995) and Bai, Lumsdaine and Stock (1994).
2 Consider the

2In fact, the assumed magnitude of shift is stronger than necessary. For example, for the broken-

trend model, 62,t/VT > c > is sufficient for k = ko + Op (l). But the assumption is necessary for

k to be consistent for ko-

11



cointegrating regression (16). All that is needed is to prove (19) converges to positive

infinity with probability 1. As before, we consider k = k — 1. By (20),

X i k i k

ST (k) - £ e? = Op (VT62
,T^=£ e t) + {VT62

,
T~± e^

t=l Vi ,=i Vi i=i

(23)

Because -4= Si=i e i converges to a normal random variable and VT82J —* oo, the

right hand side of (23) converges to positive infinity. The proof for the broken trend

model is similar and thus omitted.
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