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ABSTRACT

Stahl, Dale 0., and Fisher, Franklin, M. — On Stability Analysis With

Disequilibrium Awareness

Most models of general equilibrium stability require agents stupidly

to believe that prices are Walrasian and transactions will be completed.

This paper considers models where agents, while naive about prices, are

fully informed about tranaction difficulties. Agents fully understand

the workings and outcome of a deterministic trading mechanism mapping

expressed demands into actual trades. They have rational expectations

(perfect foresight) about the outcome of that mechanism. Prices respond

as long as actual trades differ from notional demands. The result is

shown to be an Edgeworth process and hence globally stable, converging

to a Walrasian equilibrium. J. Econ. Theory,

Stahl: Duke University, Durham, North Carolina; Fisher: Massachusetts

Institute of Technology, Cambridge, Massachusetts.

Journal of Economic Literature Classification Numbers: 021, 022



1. Introduction,

Most of the existing literature on the stability of general

equilibrium suffers from a common problem - the assumption that

individual agents are unaware of the fact of disequilibrium. Under

tatonnement, agents take current prices as given and report their

demands as though the economy were in Walrasian equilibrium. In "non-

tatonnement" , no-recontracting models (such as the Edgeworth process and

the Hahn process), agents formulate demands again taking prices as given

and paying no attention to the fact that they will often not be able to

complete their planned transactions. In both types of models, the

agents act as though they were in Walrasian equilibrium and simply fail

to notice either that prices are not Walrasian and may change or that

2
transactions may not be completed.

Plainly, it is desirable to allow agents to have some idea of what

is happening in disequilibrium, and this paper attempts to do so in one

3
particular way, by allowing them to recognize that notional demands

4
may not always be satisfied. Indeed, in one sense, we go to the other

extreme, permitting agents fully to understand the mechanism through

which expressed demands are translated into actual trades.

We consider a wide class of deterministic trading mechanisms for a

pure-exchange economy. Each such mechanism takes the demands expressed

by agents and produces actual trades which clear all markets. We assume

the trading mechanism is common knowledge. Hence, agents take the

mechanism into account when formulating their expressed demands.



Indeed, agents do wore that that, for we assume that they understand not

only how the trading mechanism generally works but also what Its outcome

will be in each instance. Therefore, given the prices, the expressed

denands of all agents when transformed by the trading mechanism clear

all markets, and agents get what they expect. Considering each trading

moment as a game in which agents choose expressed demands as' strategies

and the market fine-tunes the trading mechanism as its strategy, agents

and the market reach a Nash equilibrium at each moment of time.

Nevertheless, there is "disequilibrium" in the sense that the trading

mechanism distorts the opportunity sets from the usual price-taking

budget sets, and agents end up with trades different from their notional

demands

.

The agents are required to have a large amount of information. In

effect, they have momentary rational expectations of trade outcomes in

this deterministic model. Note however, that while we allow the agents

to have full information about current transaction difficulties, we

leave them naive about the future. Specifically, agents think nothing

will change in the future, so the current period may as well (from their

viewpoint) be the last. Agents do not expect prices to change and hence

do not speculate in this model (unlike that of Fisher, 1983).

Prices do change, nonetheless, reacting to signals given by the

trading mechanism (the length of queues, for example). Hence, even

though agents complete the transactions they expect, the economy does

not stop moving until the trading mechanism ceases to produce

disequilibrium signals, and notional demands, expresses demands and



actual trades all coincide. This feature of our model rules out non-

Walrasian rest points.

Our principal result is that such a model is an Edgeworth process

and hence globally stable. Naturally, given the way we have set it up,

5
the equilibrium to which the model converges is Walraslan.

2. The Deterministic Disequilibrium Awareness Model

The central feature of our model is the specification of a wide

class of deterministic trading mechanism. We assume pure exchange. Let

z denote the vector of expressed demands (net of current stock) by the

i agent. Then a trading mechanism is a pair of functions (h,c). The

function h: R * R -> R is the final trade function , which for an

arbitrary parameter t € R takes expressed demand z and assigns final

trade y = h(r,z ). Typically, the trading function might reduce the

absolute value of the expressed demands. Given a price vector p, the

function c: R * R -» R gives the additional deadweight cost imposed

by the trading mechanism, so the total net costs of final trade y is

C(T,y ;p) s p«y + c(f,y ;p) . (1)

Typically, purchases will have a "marginal cost" ac/3y. > p., while

sales will have a "marginal revenue" ac/ay. < p., where by marginal

revenue is mean the marginal reduction in net costs. We require the

functions h() and c() to be Lipschitzian continuous (hence
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differentiable almost everywhere). When applicable, we assume the

deadweight costs are paid in a numeraire commodity (say n).

Given a price vector p and initial stock t» , each agent is assumed

to choose an expressed demand z that maximizes a twice-differentiable

,

7 i i i
strictly increasing, strictly quasi-concave utility function u (u> +y ),

i i i
subject to two constraints: (1) C(x,y ;p) < 0, and (2) y = h(x,z )

>

-w , where the last inequality corresponds to a non-negative consumption

set.

An important concept is the "virtual price" of trade. Our .

."
.

assumption that c(x,';p) is Lipschitzian means that left and right hand

derivatives always exist. We define virtual price as 3C/ay plus the

shadow price of the quantity constraint [y = h(x,z ) > -u ]. Let l'&
;
H

P.j(T,p,y ) denote the virtual price of commodity j obtained by

approaching y. from the positive direction; and let y.(x,p,y ) denote

the virtual price of commodity j obtained by approaching y . from the

negative direction. The Kuhn-Tucker conditions require X. Y.(x,p,y )
<

.

3u /aw . < X p.(x,p,y ), where X is the Lagrangian multiplier associated

with i's budget constraint.

We shall assume orderly markets: that only one side of the market

is "rationed". A buyer is rationed in commodity j if y . > and £. >

i i 8
p.. A seller is rationed in commodity j if y . < and Y. < p.. If

some buyer (seller) is rationed in some commodity, then no sellers

(buyers) are rationed in that commodity.



We adopt the convention that x > (<) whenever buyers (sellers)

of commodity j are rationed. Consequently, t. < implies Y. < p «= p ;

T. > implies Y < p. < B . ; and x. «= implies Y < p. = B.. Further,

when x. > and i has positive stock of j (u> > 0), then Y. p..

Let B(t,p) denote the opportunity set: the set of feasible trades

(y ) for agent i which satisfy the budget and quantity constraints

imposed by the trading mechanism. We assume that B( - ,-) is non-empty,

9
compact-valued, convex-valued, and continuous for all p >> 0.

Under these conditions, by standard proof, there is a unique

continuous "target trade" function 4> (x,p) which gives the trade y that

maximizes u (w +y ) subject to the constraints embodied in B(x,p).

Moreover, any expressed demand z such that h(x,z ) = 4> (x.p) is

optimal. Let Z (f.p) = {z | h(x,z ) = 4> (x,p)} denote the expressed

demand correspondence. When t = 0, the opportunity set is just the

usual price-taking budget set, so <£ (0,p) = £ (0,p) is the notional

demand.

We now aggregate trade behavior. Define

N
i

4>(f,p) = I 4> (t,p) , and
i = l

(2)

N
^(T.p) H I C^T.p) .

i = l

Note that when x = 0, we have <£(0,p) =£(0,p), the aggregate

notional demand. If, in addition, for some p*, = 4>(0,p*) = 2(0, p*),
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then p* is by definition a Walrasian equilibrium price. Let W denote

the set of Walraslan prices .

For those trading mechanisms which impose deadweight costs when x x

(direct costs as in queue-rationing in contrast to simply utility

losses), there will be a positive aggregate deadweight cost:

c(T,p) = £ c[T,4>
1
(T,p);p] . (3)

i :

In such cases, it is too much to ask that final trades 4>(x,p) = 0, since

this condition is incompatible with Walras' Law and the payment of the

deadweight costs: p'4>(x,p) + c(x,p) = 0. The most we can require is

that <t>.(T,p) = for all j x n (where n is the numeraire in which

deadweight costs are paid), implying via Walras' Law that p •<$> (x,p) +

c(t,p) = 0. That is, <Mx,p) = (0 ,-c(T,p)/p ), where is the zero

r-.

.*.. ' -*.-

vector in R

More generally, we say that (h.c) is an effective trading mechanism

if for every price p >> 0, there exists a x*(p) such that 4>[x*(p),p] +

(0 ,c[x*(p) ,p]/p ) = 0. In other words, for any arbitrary positive
n

price there is a parameter x* such that final trades "clear" (subject to

deadweight costs). These are really the only interesting trading

mechanisms. If final trades do not clear, the trading mechanism is

incompletely defined. Should expressed demand exceed supply in some .

':"

commodity, what is the final outcome? The resolution of such .
'

•

discrepancies by definition yields a deterministic vector y for each

agent such that the aggregate final trades "clear"; hence, the total

process would be an effective trading mechanism.



Further, we say that (h,c) is a regular effective trading mechanism

if (a) T*(p) is a Lipschitzian continuous function, (b) f*(p) «= iff p

€ W, and (c) t (p) = independent of p. Condition (c) says that the

numeraire commodity is unrationed, which is a typical result in the

rationing literature. Regularity is a technical condition that ensures

"nice" behavior and should hold for a large class of "smooth" trading

mechanisms

.

To summarize, agents know the trading mechanism, and take p and t*

[= T*(p)] as fixed. [Note that we have implicitly assumed that t* is

perfectly observable by all consumers; otherwise, the optimization

problem involving h(x*,z ) would be incompletely specified.] Agents

choose an optimal expressed demand, £ (t*,p), while they expect to get

4> (t*,p) = h[T* ,Z (x*,p)] less the deadweight costs. Then the trading

aechanism determines final trades such that all markets "clear": ^(T'.p)

= (0 ,-c(T*,p)/p ), so every agent get what he or she expects.
n

Further, T*(p) = iff p is Walrasian, in which case notional demands,

expressed demands and final trades all coincide.

It is important to recognize that whether or not actual final

trades $ (T*,p) are the same as expressed demands Z (t*,p), all agents

correctly foresee their final trades, and hence satisfy their budget

constraints and realize their anticipated utility u (w +y )

.

Consequently, utility is not declining out of Walrasian equilibrium, and

since this is the crucial step in showing that the Hahn process is

globally stable, the reader may begin to suspect that global stability
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does not hold. On the other hand, trade is voluntary so in a sense

utility «ust be increasing which is a crucial step in showing that the

Edgeworth process is globally stable.

3. Dynamics

.

In general, we may want to use information about both the trading

mechanism's signal (t*) and aggregate expressed demand (£) . However,

since T*(p) = iff p is Walrasian, it will suffice for our purposes to

assume prices respond to t* only. To this end, let dp/dt = f("r), where

f() is continuous and f(-r) = iff t = 0. Then, the set of stationary

points are exactly W. Given orderly markets and our sign convention on

t, it is natural to assume that f() is sign preserving in the sense that

f .(t) has the same sign as t . , which we henceforth do. [A special case

would be to have f .() depend only on t. and to preserve sign.]

Furthermore, we assume a minimum speed of adjustment (o > 0) such that

|fj(T)| > o\r.\.

In the static analysis of section 2, the endowments of agents were

suppressed from the notation. We must now incorporate them into the

1 N
notation. Let u = {u> ,...,« } denote the distribution of stock holdings.

For every u, the static solution in more explicit notation is T*(p,u).

Regularity now entails that t*( <, ,°) is jointly Lipschitzian.

With trade in stocks, we must consider the dynamic path of u as

kZl

(: ,



well. Interpreting y as instantaneous trade, du> /dt - y - 4> (t.p.u ).

Define G(p,w) = (<*> [t*(p,w) ,p,u ] , . . . ,4 [T*(p,w),p,w ]) to be the vector

of instantaneous trades expressed as a function of (p,«o) alone.

Next define F(p,w) s f[x*(P .<•>)] • Our general dynamic adjustment

process is then

dp/dt = F(p.a)
dy/dt •= G(p,w) .

[
'

Since T*(p,w) is jointly Lipschitzian, F() and G() are Lipschitzian, so

there will exist a unique solution path p(t,p ,w ) and w(t,p ,« )

continuous in (P ."
Q

) such that (i) 6p(t,p ,« )/at =

F[p(t,p ,w ) ,w(t,p0> w )] and 8w(t.p .« )/at = G[p(t,p ,u> ) ,w(t .p^i^)

]

for all t > 0, and (ii) p(0,p0> w ) = p
Q

and u(0,p ,c£ ) = w
Q

.

The central question is whether such a process is globally stable;

i.e. starting at arbitrary (pn ,<»> ) does the process always converges to

some Walrasian point?

We assume agents myopically maximize u (w +y ) with respect to y

subject to B(t,p). Without loss of generality, we choose an ordinal

utility function that is bounded above to represent an agent's

preferences.

Given strictly increasing utility defined on the non-negative

orthant, it is reasonable to assume that agents always hold positive

stocks of every commodity, so the short constraint (y > -u ) is never

binding. We henceforth assume that u(t) is bounded away from zero in
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every component for all t > 0. Then, given twlce-dlf f erentlable utility

functions, along this strictly positive path of u>(t), the first and

second derivatives of u ( ) are bounded.

Theorem 1

.

In our model of deterministic disequilibrium

awareness and trade in stocks, given a regular effective trading

mechanism that satisifes orderly markets, and given the preceeding

assumptions, the dynamic system (4) is globally stable.

PROOF: At each stage, an agent is fully aware of the trading mechanism

and makes a trade offer which ultimately changes his stock portfolio if

and only if the correctly foreseen change will increase his utility.

Therefore, u is always non-decreasing and is strictly increasing

whenever y x 0. Thus, the temporal sequence of u values must converge

monotonically to a limit, say u . Moreover, given, strictly increasing

utility, the corresponding sequence of y must converge to 0.

Recall the definitions of the virtual prices 8. and Y.. For the
3 3

natural numeraire (commodity n), t =0 and u > 0; hence, Y (x.p.y )
=

n n n

B (T,p,y ) = P for all i and all. (x.p.y ). Thus, au /aw = \ p . Now

let u. = ( au /3u).)/(au /3oj ) for i x n denote the marginal rate of
j j n

substitution evaluated at u , and let Y. = Y ./p and B. = B./p . Then
J j n K

j
K
j

Kn

the Kuhn-Tucker conditions require Y . < u . < B . for all j x n and every
J J J

agent. It is convenient to let p = p/p denote the relative price with

respect to the numeraire.

Define a = max. .{lu. - p.l}. Note that a > and equal to zero
!• J J J .

iff x = 0. To see this, (1) if o = 0, soy.=p. for all i and j, then
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(by strict quasi-concavity of utility functions) the desired final trade

is y =0 which is the same as the Walrasian notional demand [i.e. the

current u is optimal with respect to p*y < 0], so p is a Walrasian

price. But then by regularity of the trading mechanism, t = 0. (2) If

t «= 0, then y . = p. «= 0. = p for all i and J, so clearly o «= .

Further, a(t) is bounded. To see this, let r be a commodity that

satisfies the definition of a. There are two cases in which a can be

positive. (1) a = (y - p ) > for some i, implying that t > 0. [If

T < 0, then Y < u < p .] But since f() is sign preserving, dp /dt >
r r r r r

[recall that since f () is sign-preserving, dp /dt = 0]. Since u ()
n n

has bounded first and second derivatives along the path, the p. . are

bounded, and hence p is increasing, a is bounded above for the first
r

case. (2) o = (p - jj ) > for some i, implying that t < 0. [Recall

that given u
1
(t) > 0, Y

1
< p iff t < 0, and p

1
> p iff t > 0.] But

r r r r r r r

then dp /dt < 0, so again a is bounded above.
r

Since oc(t) is bounded, it has a non-empty set of limit points: the

set of all accumulation points of o(t ) , where {t } is a sequence of

times such that t -» +» as k. -» +». Let a be a limit point, and

suppose a > 0. Again let r be a commodity that satisfies the definition

of a. Suppose a = (p - p ) > for some i, so t > £ > [the £

depending on a]. Since f() is sign preserving, dp /dt > 0. Since u ()

has bounded first and second derivatives, dp /dt converges to zero. It

follows (given the minimum speed of price adjustment) that there is a t 1

such that for all t > t 1

, da/dt < -aZ/2 < 0. Similarly, if o « (p -
r

jj ) > for some i, so t < -£ < 0, then dp /dt < 0; hence, again da/dt
r r r

< -a£/2 < for all t > t 1

. But da/dt bounded below is incompatible

with a > being a limit point. Therefore, a = must be the only limit
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point.

Since the p. are bounded and a(t) is bounded, clearly prices are

bounded, so prices have a well-defined limit set. Moreover, since the

p are strictly positive, and a —> 0, the limit prices are strictly

positive. Since we have a pure exchange economy with fixed finite

stocks, u(t) is bounded and so has a well-defined limit set. Let

(p'.w') and (p",w") denote two limit points, where (p'.p") are derived

from a subsequence of the respective sequences of t which generated

(w'.w").

Now we have u (w * ) = u (w ") = u ; i.e. the final stock allocations

are on the same indifference surfaces. Moreover, since t = 0, total net

costs C(0,y ;p') = p'*y . Letting y = (w '- u "), then by strict

quasi-concavity, p'(u> '- u ") < with strict inequality unless (u '-

u " ) =0 [recall that prices are strictly positive]. But (w '- w ")

summed over all i is identically zero (by virtue of pure exchange), so

(u '- u "
) = for all i. In other words, the stocks converge for each

agent to (say) u .

Given u » and strict quasi-concavity, the p. . must also converge

to a unique limit, which implies (since a -* 0) that the prices must

converge to a unique Walrasian equilibrium price. Q.E.D.
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4 . Conclusion.

We have approached the issue of disequilibrium awareness by

specifying a general deterministic trading mechanism and supposing that

all agents know the trading mechanism perfectly (albeit myopically) . We

defined a regular effective trading mechanism such that final trades

clear for every price and assumed it has the "orderly markets" property.

The observable parameter of the trading mechanism (t) was a natural

signal for price adjustment.

When trade is in stocks, we found that the natural sign-

preserving price adjustment process is globally stable. This result

followed from a regularity condition on the trading mechanism and very

mild conditions on agent preferences.

This global stability result for trade in stocks is an improvement

over the received non-tatonnement results because agents make offers

with perfect awareness of the trading mechanism, rather than blindly

pursuing trade demands in complete ignorance of prices being non-

Walrasian. Thus, the Edgeworth process is compatible with perfect

disequilibrium awareness of this type.

On the other hand, this very result immediately implies that the

Hahn process is not compatible with the kind of disequilibrium awareness

studied here. This is because, with perfect awareness of the outcome of

the trading mechanism, every agent gets what he or she expects.

12
Nevertheless, the system keeps moving out of equilibrium, " but now

r-
•/''-
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there is no reason for every agent to find that prices »ove perversely,

as in the Hahn process. Indeed, there are "favorable surprises"

(Fisher, 1983), although, of course, such surprises disappear

asymptotically.

Evidently, disequilibrium dynamics are quite sensitive to the way in

which agents understand what is going on. We have shown here that, in a

wide class of models, allowing agents fully to understand the way in

which expressed demands result in final trades leads to stability. We

have not allowed agents to foresee the motion of the system, however;

indeed, we have kept them from realizing that prices change, even though

prices react to the very trading mechanism that agents are supposed to

understand so well.

Our agents are thus unrealistically well-informed and sophisticated

in some respects and unrealistically ignorant and naive in others.

Further work in this area is highly desirable if we are ever to

understand how (or if) real economies succeed in reaching equilibrium.
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ENDNOTES

1. For surveys, see Arrow and Hahn (1971), Hahn (1982), and Fisher

(1983)

.

2. There are two ways to interpret goods in non-tatonnement models.

One is that the goods are perfectly durable commodities, but nobody

eats before the process terminates so what matters is the total

accumulated stock. The other interpretation is that the goods are

"commodity consols" that promise delivery of a constant flow of

perishable commodities or services. In both interpretations trade

is in "stocks".

3. Fisher (1981, and especially 1983) gives a more ambitious, but not

wholly satisfactory attempt to deal with the problem of

disequilibrium awareness, permitting agents to expect price change

as well as transaction restrictions.

4. "Notional demand" is the traditional price-taking demand with no_

disequilibrium awareness. In contrast, "expressed demand" is the

demand actually expressed (and acted upon) by the agent given his

awareness of what happens in disequilibrium (such as rationing). The

agent may expect to get something different from the demand he

expresses; this expectation is refered to as "expected trade" or

"target trade". Following the expression of demands, we get "actual

trades"

.

5. Whether that result would continue to hold if agents were permitted

to expect price changes is at best doubtful. The Edgeworth process

is not directly suited to situations of speculation and arbitrage.

See Fisher (1983, pp 30-31).

;*'."''.' i

I 7- »V r-
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6. An example of such a deterministic trading mechanism is queue-

rationing [Stahl (1985)]. To transform the queue-rationing model

into this framework, interpret the expressed demand for time (z ) to
n

be the demand for time excluding the requirements of the queues.

Then the only expressed demands that are altered by the trading

mechanism are those for time; final trade in time is z -Q(t,z),
n

where Q is total queue time for trade z. The total net cost

function is p*y+Q(r,y). A coupon-rationing mechanism (e.g. Hahn

,

1978) with tradeable coupons of intrinsic value (as cigarettes in

post-WWII Germany) is formally equivalent to queue-rationing. A

third example is the quantity-rationing mechanism of Drlze (1975)

for which c(x,y ;p) = 0. The quantity limit on purchases can be

defined as B . = L - max{0,T.}, and for purchases S. = L - max{0,
J J J

-t.}, for some appropriately large positive constant L.

7. Strictly increasing utility is commonly assumed [Uzawa, 1960; Arrow

and Hahn, 1971], and rules out free goods. We suspect a weaker

assumption would suffice but not without tedious technical

complications

.

8. Note that if an agent wants to sell j but has no stock, then the

virtual price is less than p., but this is not due to the trading

mechanism, so it is not considered "rationing*.

9. This is an implicit restriction on the trading mechanism. All the

mechanisms mentioned in footnote 6 have this property.

10. For example, the aforementioned queue-rationing and coupon-

rationing trading mechanisms are regular and effective for non-

critical economies. For Dreze quantity-rationing, Lipschitzian

continuity holds everywhere except on a set of measure zero that is
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inconsequential to the dynamics. Lipschitzian continuity is

imposed for convenience only. Since T*(p) is always upper hemi-

continuous, we could employ the extended Liapounov techniques of

Champsaur, Dreze and Henry (1977). Note, however, that a coupon-

rationing mechanism with marketable coupons at a fixed positive

price is not a regular trading mechanism because if p € W and t =

there will be excess expressed demand since everyone will want to

sell coupons and purchase more goods. On the other hand, if the

coupon's market value is endogenized (as in a black market) and if

t is interpreted as the "money" value of coupon surcharges, then

regularity is restored. On the other hand, "deterministic

proportional rationing" (which gives every agent a fraction of his

expressed demand) is not an effective trading mechanism because for

every p £ W and t, the mechanism can be completely undone: there is

an expressed demand z such that h(f,z ) = 4> (0,p) the notional

demand [see Benassy (1977)].

11. Observing that a significant portion of trade in the real world is

in spot flows and not stocks (or commodity consols), it would be

desirable to study economies in which trading is in flows. In such

economies, the income effects that plague traditional tatonnement

theory continue to be troublesome in the presense of disequilibrium

awareness. While conditions for local stability (e.g. eigenvalue

conditions) can be easily stated, the results are far from a

satisfactory answer to stability questions.

12. Fisher (1983, pp. 181-184) points out that perfect foresight about

the ability to transact in disequilibrium (here, perfect awareness

of the trading mechanism) is likely to be uninteresting as it
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implies that the system never moves. That result, however, applies

where the system (prices, in particular) reacts to the difference

between agents ' expected (target) trade and actual trade, and this

difference is identically zero given perfect awareness. It is

avoided here because prices react to disequilibrium signals (namely

t*) stemming from the difference between actual trades, 4 (t*,p),

and notional demands, 4> (0,p), and this difference vanishes if and

only if t* = 0. Hence, prices keep moving even though markets

clear in the sense that the trading mechanism always gives agents

what they expect.
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