








working paper

department

of economics

PERFECT BAYESIAN AND SEQUENTIAL EQUILIBRIA:

A CLARIFYING NOTE

By

Drew Fudenberg and Jean Tirole

No. 496 May 1988

massachusetts

institute of

technology

50 memorial drive

Cambridge, mass. 02139





PERFECT BAYESIAN AND SEQUENTIAL EQUILIBRIA:

A CLARIFYING NOTE

By

Drew Fudenberg and Jean Tirole

No. 496 May 1988





PERFECT BAYESIAN AND SEQUENTIAL EQUILIBRIA:

A CLARIFYING NOTE^

By

Drew Fudenberg^^

AND

Jean Tirole^^

May 1988

^ Research support from National Science Foundation Grants SES-8609697 and

SES-97619 IS gratefully acknowledged. We thank David Kreps for prompting

us to write this paper.

*^ Department of Economics, Massachusetts Institute of Technology



Digitized by the Internet Archive

in 2011 with funding from

Boston Library Consortium IVIember Libraries

http://www.archive.org/details/perfectbayesiansOOfude



ABSTRACT

We introduce a new and more restrictive notion of perfect Bayesian

equilibrium (PBE) . A PBE is a specification of strategies and beliefs such

that (P) at each stage the strategies form a Bayesian equilibrium for the

continuation game, given the specified beliefs, and (B) beliefs are updated

from period to period in accordance with Bayes rule whenever possible, and

also satisfy a "no-signaling-what-you-don' t-know" condition that for all

players i and j, the conditional distribution over i's type given j's type and

the observed history is independent of player j's actions. This condition can

be verified without constructing the sequences of beliefs required to show

that an equilibrium is sequential. PBE is equivalent to sequential

equilibrium in multistage games provided that each player has only two

possible types; the concepts differ when the number of types per player is

larger.





1 . Introduction .

Kreps-Vilson' s [1982] notion of consistent beliefs and sequential

equilibria provide one answer to the question "what are reasonable inferences

for a player to make if he sees an opponent play an action that has zero

probability according to the equilibrium strategies?" Roughly, their answer

is that following a deviation players infer (1) that all players will

continue to follow the equilibrium strategies and (2) that the deviation was

the result of a random mistake or "tremble," where the trembles are

independent between information sets, and a player's probability of trembling

is measurable with respect to his own information. Beliefs are "consistent"

if they can be derived using Bayesian inference from arbitrarily small

trembles. A combination of a strategy selection and a system of beliefs is a

sequential equilibrium if the beliefs are consistent, and if the strategies

are "sequentially rational" in the sense that at every information set the

player's strategy maximizes his expected payoff given his beliefs and the

strategies of his opponents.

In several applications of dynamic games of incomplete information,

economists have used the weaker and vaguer equilibrium concept "perfect

Bayesian equilibrium" or "PBE" instead of sequential equilibrium. In a PBE,

the strategies are required to be sequentially rational given the beliefs, but

the restrictions on beliefs are expressed less formally, and in particular

without reference to the sequences of trembles required by the definition of

consistency. In the weakest version of PBE, no restrictions at all are placed

on the beliefs off of the equilibrium path. While this weak version is

sometimes appropriate, in other situations economists may prefer a more

restrictive version of PBE that is closer to the sequential equilibrium

concept. This paper develops such a version.

The idea behind the restrictions we impose is that a player's deviation

should not signal information that the player himself does not possess. (More



iormally, tne conditional disLribution over plavea' i's type £;iven playei j's

type and the observed history is independent of player j's choice of actions.)

We show that this more restrictive definition of PBE is equivalent to

sequential equilibrium for the class of multistage games of incomplete

information provided that each player is one of two possible "types;"

sequential equilibrium imposes additional restrictions when the number of

types is three or more. We are agnostic about the plausibility of these

additional restrictions given that the PBE restrictions are judged to be

reasonable. Our work can be viewed either as proposing a new and less

restrictive equilibrium concept or as providing further explanation of what

the sequential equilbrium concept implies. Intuitively, sequential

equilibrium requires that at every period there be a consistent ranking of the

probability of each player's zero-probability types, i.e. some of the

zero-probability types are "infinitely more likely" than others. This

restriction follows from the requirement that beliefs be consistent with the

"trembles" explanation of deviations, as in the games with the trembles the

zero-probability types B. are assigned positive probabilities c. that converge

to zero. These e. define the "infinitely more likely" relationship as

follows: 6. is infinitely more likely than 6'. if £? / (.^ -> 0. The fact that
1 -^ -' 1 1 ' 1

the infinitely-more-likely relationship is an ordering has implications for

which beliefs are consistent that are not captured by our PBE concept. These

additional restrictions may or may not be reasonable, but they seem different

in kind and spirit from the desiderata Kreps-Wilson used to motivate the

sequential equilibrium concept.

In the games we consider, play takes place in a number of "periods", with

each period's play revealed before proceeding to the next. The only asymmetry

of information is that, following Harsanyi [1967-68], each player has a "type"

that is chosen by nature at the start of play and revealed only to him. While

this is certainly very restrictive, it is a broad enough class to include the



literatures on bargaining, limit pricing, and predation, to name but three of

the topics to which the theory of games of incomplete information have been

applied.

Section 2 describes multistage games of incomplete information, and

section 3 derives our equivalence result when the types are independent.

Section 4 generalizes the model and results to correlated types.

2. Multi -Stage Games of Incomplete Information .

We will consider only a restricted class of games; that of multi-stage

games of incomplete information. This class was first analyzed by

Fudenberg-Levine [1983]. Players are denoted by iel . Each player i has a

type 6. which is drawn from a finite set 6.. The prior distribution over the

types, denoted p(6), is assumed to be common knowledge. Ue assume for the

moment that the types are independent, so that p - \\p ,
where p. is the

i

marginal distribution over player i's type. At the beginning of the game,

each player is told his own type, but is not given any information about the

types of his opponents. That is, player i's partition of when his type is

e. is 9. {6.) = [B' \e'. - e.]. For notational simplicity we identify the set of

player i's partitions with the set B. of his types. As the types are

independent, player i's initial beliefs about the types of his opponents are

given by the prior distribution p . -= W p.(e.).

The game is played in "periods", with the property that at each period

t, all players simultaneously choose an action which is then revealed at the

end of the period. (This specification is more general than it may appear,

because the set of feasible actions can be time and history dependent, so that

games with alternating moves are included.) Ue assume that players never

receive additional observations of 6. For notational simplicity, we assume

that each player's possible actions are independent of his type. Let h =0,



and let A.i,h } be the set of player i's possible iirsL-period aci-ioiis.. 11 the

history of moves (other than Nature's choice of tj'pes) before t is h , then

player i's period-t action must belong to A.(h ); if a G X A.(h ) is
^

iel
^

played at time t, we set h =(h ,a )• We assume that the action sets are

finite, and that every player always has at least one feasible action. Since

each player i knows 6 . but not S . , the information set corresponding to

player i's move in period t is identified with an element of H x 6. .

A strategy n. for player i is a sequence of maps 7r.(a.|h ,&) from

H X e. to S.(h ), where S.(h ) is the space of mixed strategies over

t-

1

T T
A. (h ). Player i's payoff u.(h ,6.,S .) depends on the final history h

,

his own type, and the types of his opponents ff .. (Note that the payoffs need

not be separable over periods.) In a Bayesian Nash equilibrium (Harsanyi

[1967-68]) each player's strategy maximizes his expected payoff given his

opponents' strategies and his prior beliefs about their types. To extend the

spirit of subgame perfection to these games, we would like to require that the

strategies yield a Bayesian Nash equilibrium, not only for tlie whole game, but

also for the "continuation games" starting in each period t after every

possible history h . Of course, these continuation games are not "proper

subgames," because they do not stem from a singleton information set. Thus to

make the continuation games into true games we must specify the player's prior

beliefs at the start of each continuation game. A priori it is not obvious

that these beliefs must be common knowledge, but in accordance with most work

on refinements we will assume that they are. (One exception to this

common-knowledge requirement is the notion of a "c-perfect equilibrium," which

is developed in Fudenberg-Kreps-Levine [1987].) Under the common knowledge

assumption, the beliefs at the beginning of period t can be represented by a

single map p from H to A(9), the space of probability distributions over G.

We will denote this distribution by ^(^1^ "
), and also use the alternative

notation ^i(h ). Since each player i knows his own type, player i's beliefs



about the types of his oppionenls are given by the conditional distribution

H{$ .|^.,h ). (In the independent case, this conditional probability is

simply the product of the marginal distributions over the types of all players

but player i.) Later we will require that the strategies following history

h should yield a Bayesian equilibrium relative to the beliefs ^i(^|h ) for

all histories h , including those which have zero probability according to

the equilibrium strategies.

3 . Reasonable Beliefs .

VJhich systems of beliefs are reasonable? A minimal requirement is that

beliefs should be those given by Bayes rule where Bayes rule is applicable,

i.e. along the equilibrium path. [This weak requirement plus a twist similar

to the no-signaling condition defined below corresponds to the definition of

perfect Bayesian equilibrium given in our [1983] paper.] However, as

Kreps-Wilson point out, it may often be natural to impose further restrictions

on the beliefs.

One additional restriction is that at any date t with beliefs ^i , the

beliefs at date (t+1) should be consistent with Bayes rule applied to the

given strategies and the beliefs ^i. , even if those strategies assign

probability zero to history h "
. To motivate this restriction, consider a

game where player one has two types, 6 and 6. Fix an equilibrium where no

type of player 1 plays a certain action a., in the first period. Since Bayes

law does not determine player 2's beliefs when this occurs, we can specify

that following this deviation player 2 thinks player 1 is type 6 . Now let the

equilibrium strategies predict that if player 1 does play action a., in the

first period, he will play b.. in the second period regardless of his type. It

might then seem natural that player 2's beliefs at the start of period 3 when

player 1 has played a^ and then b.. should be the same as his beliefs at the

start of period 2, i.e that player 1 is type 6. However, since player 2's



corresfionding iniormation set is oil oi the equilibrium path, other beliefs

for player 2 would not violate Bayes law. For example, we could specify that

player 2 is now certain that player 1 is type S . To rule this out this

reversal of beliefs, we need to require that each player's beliefs in each

period are consistent with Bayes law applied to his beliefs of the previous

period and the equilibrium strategies. This restriction is related to

Kreps-Wilson' s notion of structural consistency and also their conditions

(5.3) and (5. A).

A more subtle condition is that no player i's actions be treated as

containing information about things that player i does not know. This

condition is obviously satisfied along the equilibrium path; its role is to

constrain the out-of -equilibrium inferences. If deviations from equilibrium

are thought of as "random errors," the condition corresponds to the assumption

that each player's probability of error depends only on factors known to that

player. In a multistage game with independent types, the condition is

equivalent to the requirements that the beliefs about different players' types

are independent and that each player's deviations are taken as signals only

about that player's type. (Section A treats the case of correlated types,

where one player's deviation can signal information about the type of

another.

)

Definition : An assement (/i,7r) is believable if

(1) Bayes' rule is used to update beliefs wherever possible:

For each a. e A. (h '
), if 3^. e support u.(^.|h''' ) such that

1 1 1 ^^ ^1 1

1

7r.(a. ^'. ,h ) > 0, then for every a with a. - a.,
1 1 ' 1 J 11'



MiUj_| kh- ))

n.(a. \e. ,h^''^)fi.(e. \h^''^)
1 ^ 1

1 1 111
t-1, t-1,

Y n.(a. 1^. ,h^ )^i. (e . Ih )
L 111 1 '^i 1

1

?.ee.
1 1

(2) The posterior beliefs at each date are that types are independent:

/.(e|h^) = n/^.(5.|h^).

(3) The beliefs p.((9.|h ) about player i at period t+1 depend only on

^.(6.\h ) and on player i's period-t action a.:

p.(5.
I

(h^'-'-.a^)) - ^.{6 .\(h^''^,a^)) if a^ -= a!^.
^x 1^ ^1^ 1' ^

' '

'

1 1

Conditions (2) and (3) combined are the "no-signalling-what-you-don' t-

know condition."

"Believability" allows the beliefs about player i's type at time t+1 to

be completely arbitrary following a move by player i that has zero conditional

probability according to (^,7r)(h ). The only constraints are that player

i's actions not change the beliefs about player j's type, and that, after

player i's first zero-probability move results in some new beliefs about his

type, subsequent beliefs are determined by Bayes rule and the strategy -n until

player i deviates again. Thus it is easy to check whether an assessment is

believable.

Definition : A perfect Bayesian equilibrium (PBE) is an assessment (^,7r)

satisfying:

(B) (p,7r) is believable, and

(P) For each period t and history h , the continuation strategies are a

Bayesian equilibrium for the continuation game given the beliefs



M(h*"^).

While believability captures the three criteria we have discussed, those

three do not exhaust the implications of sequential equilibria in general

games. Kreps and Wilson say that an assessment (h,t^) is consistent if there

is a sequence of totally mixed behavior strategies n ^ tt such that the beliefs

fi computed from n using Bayes rule converge to /i. We will say that (/j ,7r )

"justifies" (^,7r). (A strategy is totally mixed if at every information set

the associated behavioral strategy puts strictly positive probability on every

action. Thus the beliefs associated with a totally mixed strategy are

completely determined by Bayes rule. Note that in our context a totally mixed

strategy is one in which at each period t for every history h every type of

each player i assigns positive probability to every action in A. (h ).

Remember also that in a totally mixed behavior strategy the randomizations by

different players are independent, as are the randomizations of a single

player in different periods.)

Proposition 1: Suppose that each player has only two possible types, that

both types have nonzero prior probability and that types are

independent. Then an assessment (/i,7r) is consistent iff it is

believable.

Corollary : Under the hypotheses of Proposition 1, the sets of perfect

Bayesian equilibria and sequential equilibria coincide.

RemarV: : The condition that both types have positive prior probability is

necessary because PBE would permit a type with zero prior probability to have

positive posterior following a zero-probability action. This is not possible

in a sequential equilibrium, as Nature's moves are not subject to trembles.



Tnis IS related to thie Icict th^it the set oi sequential equilibi ia can change

discontinuously when a type is added whose prior probability is arbitrarily

small (Fudenberg-Kreps-Levine [1987]).

Proof : If (^,7r) is consistent, fix a sequence of totally mixed strategies

7r -¥ Tz with associated beliefs /j -> M • Since the n correspond to independent

randomizations, each player's strategy w. depends only on his type 6. and the

public history h , and the types are independent, the fi satisfy (1) and

(2). Since these properties are preserved in passing to the limit, consistent

beliefs are believable.

Conversely, imagine that (Ai,7r) is believable. We establish the

following claim by induction on T, the number of periods:

Claim : In a T-period game with initial beliefs ^(^1^ ) = ^^(h ), if {i^,tt) is

believable then for any strictly positive prior assessment ^i (h ) ^ ^i(h )

there exists a sequence of totally mixed strategies tt ^ tt such that the

beliefs ^I computed from (^ (h ) , tt ) using Bayes rule converge to the

specified beliefs /^ at every information set. Moreover, if /i(h ) is strictly

positive (i.e., has full support), we can take ^"(h ) = /i(h ).

Note that proving this claim is sufficient for our result as the prior

distribution is assumed to put positive probability on all types in d. The

reason we consider sequences p (h ) converging to ^(h ) as opposed to simply

fi(h ) itself is that we will proceed by induction: First we will construct

first-period trembles, then second-period trembles, and so on. In this

process we will wish to treat h as the initial history in a continuation

game, and in so doing we will need to use the beliefs corresponding to

trembles in earlier periods.



rrool: of. Claim :

I. We begin with a 2-period game, where each player i has two possible types

6. and 6,. Here the only beliefs which are relevant are those following the
- 1 i

-^

first period's play h
, ^(^1^ )• Because ^l is believable, the beliefs about

player i depend on h •= (a-,,a„) only through player i's choice of action a

In the obvious notation, we let |U.(a.) = ^{S.\a.); we define /i^, tt^, and tt^

analogously.

Choose a sequence e -> and let /i (h ) -> /i(h ) be such that

H (^-|h ) > e . Without loss of generality we assume that /i.(h ) > for all

i. For each player i we define the sets P. of actions in the support of tt .
,

and 0. of actions that tt . assicns zero probability; the sets P. and 0. are
1 1 '^ ^ -' - 1 -

1

defined analogously. We will now construct totally mixed strategies n -^ -n

such that the associated posterior beliefs ^ (h ) computed from /i (h ) and tt

using Bayes rule converge to the specified posterior /i . To do this we

construct tt . separately for each player i, beginning with those pairs (a., 6.)

for which tt (a., 6.) = 0. That is, we first construct the "trembles" for type11 -^

6. and actions in 0. and type 6. and actions in 6.: the strategies tt . for
-1 -i-'^i i' '^i
other action-type pairs are constructed by substracting the "trembles"

assigned to the "zero-probability" actions.

(a) Let us specify the probabilities that player i uses action a. G 0. n 6.

If /i.(a.) is positive, we choose 7r"(a.) -> and 7r'?(a. ) h> so that11 11 -11

/-\ /1\ /" /1\ -[ n,,0. n.l. ,-n,,0. -n,l.
(i) M^(a^) / M^(a^) = lim fj^(h ) 7t^(a^) / /i^(h ) 7r^(a^).

n->«>

If ^^s(s.. ) - , we choose the tt . so that

(ii) /:.(aj)/p.(aj) - lim ;:J(h°);^(aJ)//.5^(h°) ^^(a}) .

nH«»

(b) Now we consider actions a. 6 P. n 6. and construct tt . but do not yet1-11 1

10



specify ti'.'. If fj {h ) > 0, tlien (,^,7i) believable implies LhaL ^.(,at) = 1.

Let 7r.(a.)-* 0. and note for future reference that as lone as 7r.(a.) -> 7r.(a.)1^1 ^ -11-11
the beliefs p corresponding to action a. will converge to a point mass on 6.

as desired. If /i.(h ) - 0, then we have two cases depending on whether /j.(a.)

is nonzero or zero. If it is nonzero, we choose 7r.(a.) -> so that11

,..., , 1, , - , 1, ,. n .,0, n, 1, , -n,,0,-n, 1.
(ill) ^^(a^) / /i^(a^) - lim /i^ (h )?j_(a^) / M^(h )7r^(a^).

n^ro

If u.(a. ) -= , we choose the tt . so that11 1

/•\ "/^N/ /1\ n- "i^/i-0\"n, 1, , n,,0, n, 1.
(iv) ^i(a^)//i^(a^) - lim ;i^(h )7r^(a.) / /i^(h )7r^(a^).

n-^

Note that as long as n. ^ n . equations (iii) and (iv) guarantee that

Tl/ In / In
u . (a.) -> u.(a.).^1^ 1^ ^1^ i'^

For actions a. in P. n 0. we know that u.(a.) = 1. For these actions
1 1-1 ^11

let TT . be any sequence converging to zero; then as long as tt . -> tt . > the

posteriors will have the appropriate limit.

Finally we specify 7r?(a.|^.) for actions in P.(^.).

^>l\'i^ - -i(4i^i) -

Y. --(^j.^) Ai(^).
a^ e 0.(6 .)
1 11'^

where #P. (^.) denotes the number of actions in ?.(6.). That is, we subtract11 1^1^

the trembles on "zero-probability actions" from the positive probabilities.

Note that, for all 6

.

,

1 ^(a^l^) - I ^i(aj,^.) - 1.

;L T
1 1 1 -^,111

a. eA. a. eA.11 11

Since tt (a 6.) -^ for all a. e . ( i9 . ) , tt? ^ tt . . By construction, the111 1 111 1
-^

11



I
. ] r n

posreriors ^i' (,h ) obLained bv updating /j '(li ) using 71 conve;rge to /x

.

Finally, note that if /i(h ) assigns positive probability to both types of 6 .
,

we can take /j (h ) - ^(h ). This proves our claim for two-period games.

II. Now we extend the claim to games of arbitrary finite length by

induction. Assume that the claim is true for all games with T or fewer

periods, and consider a game G with T+1 periods along with a believable

assesment (/i,7r). Let G , be the game from period 1 through period (T-I). By

inductive hypotheses, there exist initial beliefs /^ (h ) and totally mixed

strategies tt .. of G .. such that the associated posterior beliefs /i converge

T 1

to fi at every information set through period T-1. Given the beliefs p (h )

at the start of period T, we must show how to choose the period-T strategies

7r.(a.|h ,S.) so that the posterior beliefs at the start of the period T+1
1 1 ' 1 ^ ^

T T T- 1 Tconverge to /j(h ) for each h = (h ,a ) If we then specify that players

follow ?:„ , in through period T-1 and 7r.(a.|h ,8.) at period T, we will have
T-l or L^ii 1 "^

constructed strategies n for the T-period game G such that the beliefs

computed using prior /j (h ) and strategies n converge to n at every

information set.

Since the beliefs ^ (h ) in part I were an arbitrary sequence of

strictly positive vectors converging to fi(h ), we can construct the period-T

trembles exactly as above.

4 . Correlated Types .

When the players' types are not drawn from independent distributions,

player i's actions in general signal not only his type, but also those of

players whose types are correlated with his. We now generalize the definition

of PBE and the equivalence result of section 3 to this situation.

As before, let n(6\h ) denote the joint probability distribution at the

Y Zbeginning of period t. For each two-element partition (6 ,6 ) of S , \]e will

12



V -7 ^ _ 1

let ij($^\6^,h^ ^) denore the coiidi t icnial probability of 6'' gi\'en t- " . We will

also use the marpinal distribution fi(6.\h ) over a given player's type.

Our generalization of the no-signaling-what-you-don' t-know condition is

that the beliefs about a set of players at the beginning of period t

conditional on the types of the other players depend only on (i) the beliefs

at the beginning of period t-1 and (ii) the date (t-1) strategies and date

(t-1) actions of this subset of players. For instance, when one player

deviates from his equilibrium strategy, he does not affect the probability

distribution on the other players' types, conditional on his type. More

precisely, an assessment (/i,7r) is believable if for all subsets of types

Y Z(r,r):

A
(1' ) (Bayes rule): If there exists a vector of types 9 such that

Y , 7 r 1 V V ''^V t- T

M(r|e^,h^ ) > and 7r^(a^|r,h^"^) >

(that is, when the history is h , there is positive probability that the

\ Ytypes e will play a at date t.)

/.(^^|e^(aY,h^-l)) - M(^^>^h^-^).^'(a^>^',h^-l)

V ,^Y|^Z ,t-ls Y, Yi-jY , t-1,
l^

^i{S \8 ,n )7r(a|^,h )

and

^Y

(2') ^l(e^\e^,h^) depends only on fi(e^' \e^ ,h^''^) , a"^'^ and tT^ ' ^
, where a''''^

Y , t
J- ,

TT rerer to the actions and strategies of the players in subset Y.

A perfect Bayeslan equilibrium is an assessment (/i,7r) that is believable,

and such that the continuation strategies from any date t and history h on

form a Bayesian equilibrium relative to beliefs /j(h
"

).

Note that equations 1' and 2' simplify to equations 1 and 2 respectively when

the types are independent.

13



I'Toposition 1: With two types per player, tlie sets of perfect Bayesian and

sequential equilibrium strategies coincide.

Remark : Note that this is weaker than the assertion that all believable

assessments are consistent. The difference is that we will not show that a

believable assessment can be justified by trembles at information sets where

two or more players have deviated simultaneously.

Proof of Proposi ti on "1:

First note that a consistent assessment is necessarily believable. The

point is that because of the independence of trembles, a player in subset Z

can only signal something about a player in subset Y only to the extent that

his action signals something about himself. A player's signaling about

another player is indirect rather than direct.

To prove the converse, that a perfect Bayesian equilibrium strategy is

sequential, we note that the set of equilibrium paths of sequential equilibria

is not enlarged if we weaken the consistency requirement to allow the

posterior beliefs to be arbitrary at all information sets reached after two or

more players deviate simultaneously. This is because in testing for

sequential rationality, we ask only if any single player would gain by

deviating if his opponents all follow the equilibrium strategy. Thus, an

assessment (/i,7T-) which is sequentially rational, and for which there exist

independent trembles on the strategies that justify the beliefs at information

sets associated with histories involving at most one player's deviating from

his equilibrium strategy per period has the same path as a sequential

equilibrium. In the following, we show that a perfect Bayesian equilibrium is

sequential in this weaker sense, and therefore its strategies are part of a

sequential equilibrium.

14



To do so, we need to define trembles that justify the specified beliefs,

which we do by using the marginals ^{6.\h ) to construct trembles as in

Proposition 1. Suppose that we have proved inductively that those trembles

justify the beliefs through period (T-1).

Consider a vector of actions a by all players which has positive

probability of being played at (T-1) given the equilibrium strategies and

beliefs. Using Bayes rule and the period (T-1) trembles, we can compute the

beliefs at the start of period T as follows.

Tr\ . X i- X

[p"(?ih^-^)n .;;(a.|?.,h^-^)
i

Now ^ {6 \h ) converges to ;j(^|h ) by the induction hypothesis, and

7r"(a. U. ,h'^'^) ^ TT. (a. U. ,h'^'^)

from the construction of the trembles. (From now on we will suppress the

T-2dependence of the strategies on the history h to simplify notation.)

Finally, by assumption, we are considering an action a which has positive

conditional probability given the history, so that the numerator of the

expression is strictly positive. Thus /j (^|(h ,a)) converges to

I
T-2

M(^|(h ,a)) as n goes to infinity.

Next, consider an a = (a ,a.) where only player i deviates from his

T-2equilibrium strategy. That is, given the history h , a. has zero

probability but the vector of actions chosen by the other players a has

positive probability. Let n^.ia'^le'^) = fl 7r"(a . U . ,h'^"^) . Then
j^i J -J -J
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n.„|,T-2, n , -i|„-i< n, i. ,T-2,
„ ^i (e\h )i^ .{a \e )>< (a \6 h )

T-2,T^ n,-;:, II , -i|7--i, n,
I
-^ ,1-/1,

or

(3)

;i'^(e|(h'^"2,a))

'^/fl ! I fl i,T-2, n , -1
1
.-1,

n , . |, T-2, n , i ^ , T-2,

K
n

;.^rip.,hT-2).^.(a-^irS
u (^.n )7r.(a.^.,h )

K
n

where K max [u (^.h )7r.(a.e.,h ) From our assumption that a. has

1

,,n
zero probability, K converges to as n tends to infinity. However, each of

ttie sequences
LL (t'.lh )7r.(a.^.,h )

1 ' 1 I ' 1
lies in the compact set [0,1], so we

can extract convergent subsequences that we will also denote by n. Note that

at least one of these subsequences converges to a strictly positive number, so

that the denominator of (3) converges to a strictly positive limit.

Furthermore, the ratio

n,. iv,T-2, n, , . , T-2,

[I;.^^.|h^-^).5^(a.|^.,h^-^)

1.

I
T-2converges to fi(e.\(h ,a)) by the construction of the trembles. This implies

T-2that the right-hand side of equation (3) converges to ^(8\(h ,a)), which was

to be proven. Q.E.D.
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D . Concluding Ren.arks .

We conclude with some examples to show the differences between PBE and

sequential equilibrium. The fragment of a game in Figure 1 depicts a

situation where initially player 1 had three possible types, ff
,'

, ^-i", and $^,

but where at time t Bayesian inference given the previous play has led to the

conclusion that player 1 must be type 6, . The equilibrium strategies at this

point, which are written in curved brackets in the figure, are for type S' to

play a.'. , type 6'.^ to play a^' , and 6, to play a. . Since the first two types

have zero probability, player two expects to see player 1 play a, . Wliat

should he believe if he sees one of the other two actions? The beliefs in the

Figure (given in the square brackets) are that if player 2 sees a'., he

concludes he's facing type ^T, while aC' is taken as a signal that player 1 is

type 6'^ . Since our definition of PBE places no constraints on the beliefs

about a player who has just deviated, the situation in Figure 1 is consistent

with PBE.

However, the situation of Figure 1 cannot be part of a sequential

equilibrium. To see this, imagine that there were trembles tt that converged

to the given strategies n and such that the associated beliefs ^ converged to

the given beliefs fi . Let the probability that fj.^ assigns to type 6' at the

period t be e' and let the probability of type 6'^ be c" . Since n converges to

fi , both (' and e" converge to 0, and tt (a'
|

^'') and -n (a', \8,) converge to zero

as well. Since ^i'^ (e'^\a'^) = p'^Cfip n^ia'^] 6'^/ J^
^i^(B^^) n^ia'^J^), in order to

have fi (B"\a') converge to 1 it must be that c'/e" converges to zero: In
i J- n n "^

order for the beliefs following a^ to be concentrated on type B'-^ when 6', plays

the action with probability one while 6" assigns it probability zero, the

prior beliefs must be that 6" is infinitely more likely than 6'
. On its own

this requirement is compatible with sequential equilibrium. However,

considering the beliefs following a" leads to the conclusion that €"/c'^1 n' n

17
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Figure 1

18



converges to zero, i.e. that 6', is infinitely more likelv thaii t',, and tliese

two conditions are jointly incompatible with the beliefs being consistent.

We believe that in games with only three types per payer and only three

periods, the following additional condition is sufficient for the equivalence

of PBE and sequential equilibrium: For every player i, every pair of types 6'.

A

and S'f , and pair of second-period actions a., a.,

^.(a.|^p^.(r.|a.)^.(2.,q')/i.(()r|a.) - ^. (2. , r. )m. (r.
|
a. )7r . (a .

, <;pp . (^r
|
a . ) .

This condition ensures that the relationship "infinitely more likely than"

which is implicit in the given beliefs and strategies can be extended to an

ordering of the relative probabilities of the three types. Note that it is

not satisfied in Figure I. We have not pursued this line of research because

in games with more types or periods more complex conditions are needed.

We have described a notion of PBE for multistage games that imposes many

of the constraints that Kreps and Wilson argued were desirable. In more

complex games, it is harder to impose these constraints without using the

apparatus of trembles. Figure 2 depicts a game created by David Kreps in

which player 1 moves first, and neither player 2 or player 3 knows which of

them is moving second and which is moving third. Our PBE concept cannot be

appealed to this game, because its information sets cannot be ordered by

precedence, so we can't update the beliefs period-by-period. Sequential

equilibrium imposes constraints on the relationships between beliefs at

different information sets that seem hard to capture with an extended notion

of PBE: The product fx^(a)ti^(h) equals ;j.(c)/j^(d) (which, since ^2^^^ "'' ^2*'^''

= M3(c) + ^i^(d) - 1, implies ^'2(3) - ^3(0) and /i2(b) - n^(d)) .

19
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Fipure 2

(Dotted lines represent information sets, numbers adjacent to arrows the

probability of play. All the actions of players 2 and 3 are not represented)
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