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ABSTRACT

It has been emphasized that, when some relevant variables are not

contractible, the possibility of contract renegotiation may prevent achieving

desirable allocations which could be implemented otherwise. We analyze a

situation where renegotiation is always possible, but contracts can influence

the renegotiation process ; we show that some flexibility in the choice of

this process allows to achieve efficiency in a variety of situations,

including optimal risk- sharing and investment decisions.





I. INTRODUCTION

This paper analyzes aspects of contract renegotiation in situations

where some information, although observable by the contracting parties, cannot

be included in the contracts. This has been considered for example to assess

the risk of underinvestment in transaction- specific capital by Williamson

(1979) and Klein, Crawford and Alchian (1978). Grossman and Hart (1986) have

extended these insights to formally investigate the costs and benefits of

vertical integration.

In these papers, contracts are assumed ex ante to be very simple. In

their analysis of underinvestment in a buyer-seller relationship, Hart and

Moore (1988) broaden the focus to consider optimal contracts, with verifiable

messages designed to influence the outcome of the relationship. They show

that when the parties cannot precommit to ex post inefficient outcomes, the

unveriflability of specific investment and of the state of nature (valuation

and cost parameters) may lead again to underinvestment.

Hart and Moore deal with renegotiation using a specific extensive form,

which constrains the parties' ability to achieve optimal outcomes. In their

framework, once the parties have invested and learned the state of nature,

there is a phase where verifiable (i.e. contractible) messages are sent,

followed by unverifiable messages that impose ex post efficiency in

equilibrium. Under this set of assumptions, underinvestment cannot be

avoided.

The issue of unverifiable information has also been analyzed in the

mechanism- design literature, with the work on Nash implementation (Maskin

(1977, 1985)) and subgame -perfect implementation (Moore and Repullo (1988)).

The requirement of ex post efficiency through renegotiation has been analyzed

by Maskin and Moore (1988) . Their approach is to add to any mechanism an

exogenous axiomatic renegotiation function which transforms any outcome into

an ex post efficient one that Pareto-dominates it. They derive necessary and



sufficient Nash- and subgame -perfect implementation conditions for two and

more than two agents. Green and Laffont (1988) have recently taken a similar

exogenous renegotiation function approach to analyze the underinvestment

problem. Like Hart and Moore, they derive an underinvestment result. They
t

also provide an example where optimal risk sharing (without investment; cannot

be achieved (in contrast to Hart and Moore who, however, worked with a

no-wealth-effect assumption).

In this paper, we give another look at this problem from the point of

view of renegotiation design . We try to see whether unverifiability is enough

per se to generate inefficient outcomes ex ante, when the parties are allowed

to design optimal renegotiation rules which, while not allowing them to commit

to ex post inefficient allocations, however permit them to influence the

outcome of the renegotiation process. We present axiomatic conditions on

renegotiation design that are sufficient to overcome the problems created by

unverifiability , and we also show how these conditions emerge naturally in the

standard strategic bargaining framework under complete information. In fact,

our general focus is related to Williamson (1985) 's view on the role of

contracts in the design of a governance structure to deal with contingencies

not explicitly prespecified in the original agreement, in part because of

unverifiability.

Our focus on renegotiation design will allow us to derive insights

concerning the underinvestment debate opened in this general perspective, and

to argue that first-best risk sharing and optimal investment levels can be

achieved in a wide variety of situations.

The outline of the paper is as follows. Section II focuses on

renegotiation design per se. After a presentation of the economic problem

under analysis, we first present the three assumptions on renegotiation we use

in this paper: the requirement of ex post efficiency, the ability of the

parties to specify default options which provide lowers bounds on their



payoffs, and the ability to distribute all the bargaining power to either

party in the renegotiation stage (i.e. to maintain the other party on its

default option payoff) . We then show how this set of axioms emerges naturally

when we consider renegotiation as a strategic sequential bargaining process

with default options (as in Binmore, Rubinstein and Wolinsky (1986)). \ In

fact, allocating all bargaining power to one party can be achieved through the

use of "hostages", which take the form of an initial transfer refundable

without interest upon agreement.

Sections III to V then use our assumptions on renegotiation design to

generate positive implementation results. Section III considers pure risk

sharing, and goes beyond the assumption of absence of wealth effects, for

which Hart and Moore have shown the first best to be implementable . It

provides sufficient conditions for which renegotiation design as defined in

Section II can overcome the negative result presented by Green and Laffont.

Sections IV and V then address the case of investment, respectively with and

without risk neutrality. Once again, our assumptions allow us to generate ex

ante efficiency, with moreover a very simple contract in the absence of risk

aversion. In Section IV, we present a discussion of the insights provided by

these results for the general underinvestment problem under ex post

opportunism.

Finally, Section VI provides concluding remarks and directions for

research.

II. RENEGOTIATION DESIGN

1. Basic framework

We consider a trading relationship between two agents. The relevant

trading quantitites are summarized by a (multidimensional) variable r, which

can be chosen within a set of "feasible trades" R. There is a random variable



8sQ whose realization, occurring at date t, , affects the agents' valuations of

r. Trade only occurs once, at date t„ > t. . The trading problem we will

* *
consider is summarized by an allocation r , which associates an outcome r

fl

with every possible realization of the random variable. The two agents will

be called B and S, for in most applications they will be viewed as a buyer

(agent B) and a seller (agent S) of a given good; in this case the trade r

will be decomposed as r = (p,q), with p being the price paid for q units of

the traded good.

To implement the allocation r , at an initial date tn<t, , the agents can

sign a contract which specifies the conditions of trade between them in the

future. The contract cannot be based on the realization of the random

vsariable, which is observed by both agents but cannot be verified by any

third party. The contract can however be based on observable and verifiable

2
messages, as numerous as desired; these messages can be sent at some dates

between t, and t^ and serve as a basis for an "announcement" game.

The timing of the problem is thus as presented in Figure 1:

fc C
2

I 1 l-l-l-l-l-l—hi -I"

contract 8 observed .... , n trade occurs
, - , _, verifiable mess-

si ened only by the ,° J A aees can be ex-
parties ° . ,r changed

Figure 1

time—>

In this simple framework, 6 can serve as a parameter for describing the
exogenous "state of nature"; this might no longer be the case when investment
will be introduced.

2
In the following, it will be sufficient to assume that for each agent the

set of possible messages include 9.



This is a standard implementation problem, as analyzed in particular by

Maskin (1977, 1985) for the case of Nash implementation and by Moore and

Repullo (1988) for the case of subgame perfect implementation: under weak

conditions, mechanisms can be constructed that yield the desired outcomes as

i

unique equilibria. These mechanisms may however rely on out-of -equilibrium ex

post inefficient outcomes: Agents reveal truthfully the state of nature

because they know that a deviation would lead to a suboptimal level of trade.

In the absence of exogenous means of commitment, such a threat is not

credible: through renegotiation, the parties would decide to move to an

efficient level of trade instead at t„ . The next two subsections detail our

assumptions on the ex post renegotiation process.

2 . The Renegotiation Process

In this subsection, we present an axiomatic version of our assumptions

on the ex post renegotiation process, as do Maskin-Moore (1988) and

Green-Laffont (1988). In Subsection 3, we then detail an extensive form which

generates these assumptions as endogenous predictions, and we stress the

robustness of these predictions.

Three main assumptions will be made about renegotiation. The first one

concerns its unavoidable character, while the other two focus on the ability

of the contracting parties to monitor it.

Assumption 0: Renegotiation cannot be prevented, so that trade will be

ex post efficient for all 6's.

Referring to Figure 1, this can be viewed as introducing a renegotiation

stage taking place between the last exchange of verifiable messages and t„

,

the time trade is to occur. Assumption 6 says that the parties cannot



precomrait at t n not to take advantage of renegotiation.

Assumption 1: A contract can specify a default option r that guarantees the

parties at least the corresponding ex post utility level,

U
B
(r,0) and Ug(r,fl).

This assumption means that the initial contract has to be voluntarily

renegotiated, and protects each party against any unilateral violation of the

agreement by the other party. The focus is thus only on Pare to -improving

renegotiation.

Assumption 2- The initial contract can allocate the entire bargaining power

in the ex post renegotiation stage to either of the parties.

Figure 2 visualizes our 3 assumptions about renegotiation. It is drawn

for a particular state of nature 6, which defines a Pareto frontier in

utilities space (U„ for the seller, U„ for the buyer) . Assumption says the

outcome in state 8 will lie on this frontier. Assumption 1 says that if the

initial contract has r as default option (with corresponding utility levels

U„(r,0) and UD (r,0) in 6 , the outcome will lie between S and B on the Pareto

frontier. Finally, Assumption 2 says that the initial contract can make sure

the outcome is S (all bargaining power to the seller) , or B (all bargaining

power to the buyer). Of course, both the default option and the allocation of

bargaining power can be made contingent on messages exchanged by the parties.
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Figure 2

Our approach is thus to assume the existence of a "black box" that with

each outcome associates an ex post efficient outcome (Ass. 0), but also the

ability of the initial contract to influence this black box, through default

options (Ass. 1) and extreme allocations of bargaining power (Ass. 2). In

Section II to V, we show that this amount of renegotiation design is

sufficient in many cases to overcome the problems created by the

univerifiability of 8.

In terms of the existing literature, Assumption is also made by

Hart-Moore (1988), Green-Laffont (1988), and Maskin-Moore (1988). Assumption

1 is made by Green-Laffont and Maskin-Moore, but not by Hart-Moore. They

instead assume trade to be voluntary: it takes place only if both parties

agree to trade (in their framework, the quantity can be only or 1) , and

courts cannot observe who refused to trade if it did not take place.



Consequently, a binding contract in their framework is a pair (Pn.Pi)i i.e. a

price schedule contingent on the level of trade (in Section III we will come

back to the importance of this assumption). In comparison, Assumption 1

implicitly says that courts can observe whether each party has fulfilled its

part of the default option (i.e. whether the buyer has paid p and the seller

has supplied q)

.

Assumption 2 is not made by Green-Laffont or Maskin-Moore , who instead

postulate an exogenous function h(r,0) which selects an ex post efficient

outcome which Pareto dominates r (i.e. an outcome on the Pareto frontier

3
between S and B) . While they assume exogenous bargaining powers in the

renegotiation stage, we allow the initial contract to monitor such powers

partially, by giving all the power to one party.

Assumption 2 is partially made by Hart-Moore (in their extensive form, a

high enough price differential p. -p„ means that the seller will have the power

whenever renegotiation takes place, and a low enough price differential gives

all the power to the buyer) but, as we will show, it is the combination of

Assumptions 1 and 2 which provides the sufficient amount of renegotiation

design which allows first-best outcomes to be implemented.

The trading problem we consider in this paper is quite simple. In a

richer setting, the initial contract might design the renegotiation process in

a variety of ways, as suggested in the conclusion. In our framework however,

Assumptions 1 and 2 are sufficient to generate positive implementation

results, so that more elaborate renegotiation design is not necessary. The

following subsection provides a specific extensive form which satisfies these

3
For Maskin-Moore, one could however reinterpret h(«) as depending not only

on r, but also on allocations of bargaining powers, so that our approach
would be a special case of their general abstract implementation problem, for
which they give general conditions of implementability. In this
perspective, our work highlights the sensitivity of implementability to the
choice of instruments on which h(-) can depend.



assumptions, and argues for their plausibility. Readers interested mainly in

the implementation results derived from these assumptions may skip this

subsection.

The idea of the subsection is to use a standard, infinite horizon

i

sequential bargaining model with discounting to introduce Assumptions and 1,

and to show how Assumption 2 can emerge naturally in this context.

Specifically, complete information and sequential bargaining without default

options insures ex post efficiency (Rubinstein (1982)). The addition of

default options then yields Assumption 1 (Binmore et.al. (1986)). One can

then show that Assumption 2 can be supported by the introduction of

"hostages", sums of money paid initially and to be refunded upon agreement.

Alternatively, monitoring bargaining powers could be done by superimposing an

additional, official sequential bargaining process upon the existing one, and

making sure the official process would be the dominant one. In the Appendix,

we show that the emergence of assumptions 0, 1 and 2 is quite robust to

changes in the extensive form (order of the offers, moments at which the

outside options can be imposed ...).

Note finally that we did not discuss ex ante renegotiation (i.e.,

renegotiation which would take place before the realization of the state of

nature). This is not necessary here, since any (ex ante) Pareto- improvement

could be included in the initial contract. This might no longer be the case,

however, if (non verifiable) decisions were to take place at the beginning of

the relationship. We will come back to this issue in Section V.

3. An Extensive Form

In keeping with most of the bargaining literature we model renegotiation

as a sequential bargaining process. We assume a discrete, infinite-horizon

model, with renegotiation rounds taking place at intervals of length A,



starting at tn . For simplicity, assume there exists an integer n„ such that

t„=t
f
.+n

9
A, and take the verifiable message stages between t. and t„ not to

coincide exactly with renegotiation rounds. Trade takes place only once, and

can take place any date t = t„ + nA , with n any nonnegative integer. Delay is

i

assumed to be costly (the discount factor is S. < 1 for agent i e {B,S}), so

that ex post efficiency requires that trade takes place at t„

.

In this subsection, we model renegotiation as a standard alternating

offer game (as in Rubinstein (1982)). In the Appendix, we show that our

Proposition does not depend on this set of assumptions. Except for the end of

this subsection, we concentrate on the subgames from t» on, for a given

history of the game until t„-A. If one assumes away default option, each

round one party can make an offer r, and the other party can either accept or

reject and wait for A to make an offer. We know (Rubinstein (1982), Binmore

(1982)) that the equilibrium of such a game is unique and ex post efficient,

sot that assumption is satisfied.

What if default options are introduced? The standard way of doing so is

as shown in Figure 3, having the default option available to the player not

making the offer.

accept (game over)

offer
wait (next round)

impose
default
option (game over)

Figure 3

In round t, player i for example can make an offer, and the other player

( j ) can either impose the default option, accept the offer, or wait A in order

10



to make an offer. The game continues only in this last case. Binmore,

Rubinstein and Wolinsky (1986) have shown that the outcome of such an

infinite -horizon game with default option r is unique and as pictured in

Figure 4. Call C the unique outcome of the game without default option, which

lies on the Pareto -frontier. If it Pareto dominates r, it is also the outcome

D of the game with default option; if instead, U
s
(C,0) < V„(x,8)

(respectively, UR (C,0) < U
R
(r,0)) then the outcome with default option is B

(respectively, S)

.

U,.

D=S (C ex post efficient above S)

D=C (C ex post efficient between B and S)

U
s
(r,0)

D=B (C ex post efficient below B)

Pareto frontier in

-» u r

U
B
(r,0)

Figure 4

Two elements follow: first, Assumption 1 is now satisfied, on top of

assumption 0, since the outcome is inbetween B and S; second, the default

option is either irrelevant, or fully determines one party's payoff, that is

the other party receives all the surplus from the implementation of C instead

11



of r.

While this takes care of default options, we still have to allow for

distributions of bargaining powers. There are several ways to introduce this

feature. One possibility, investigated in Aghion, Dewatripont and Rey (1988),
i

is to add verifiable bargaining rounds to the above extensive form. These

verifiable rounds will yield the desired result if they dominate the

unverifiable ones, by being more frequent, or by involving "lasting" offers,

that can be accepted and executed at any point in time.

Here, we want to privilege a less demanding interpretation, which relies

simply on the existence of "hostapes "
. represented by a sum of money T paid at

t„ by one party to the other and to be repaid, without interest, when trade

occurs. Moreover, whenever the game ends (cf Figure 3), the hostage is

repaid, but without interest, so that the party who has received it has

enjoyed T from t„ on, having to give it back only at t' > t„ , where t' is the

time of agreement.

In Proposition 1, we show that such an extensive form from t„ on yields

Assumptions 0, 1 and 2, under the following assumption on preferences.

Assumption (I) : Vi^j , i,je{B,S), V (p,q), 3TdR s.t. V0e9,

U
i
(T,0,5), > Max U^p.q.fl)

p,q s.t.U..(p,q,0)>U..(p,q,0),

Assumption (I) says that high enough hostages, involving zero trade, can

in any possible state give utility levels at least as high as the maximum

utility level the party would achieve, having all the bargaining power and the

other party being protected by a specific default option.

Assumption (I) thus means that, for any given default option (p,q),

there exists T such that, for any 8, the situation is as depicted in Figure 5:

the status quo at t„ has moved to S' , which is more favorable than S, the ex

12



post efficient outcome which gives the buyer his default utility level.

Assumption (I) would for example automatically be satisfied for utility

functions such as U„ = U„(p-C(q,0)) and U
R

- U
R
(V(q

,

8) -p) , as considered

below, but may require unbounded utility w.r.t. money (e.g., if U„ = W(p)

C(q,0)).

U,

Zero- trade frontier
\ in 8 -x

N
/

S' ,/

u
s
(T,o,e)

U
s
(p,q,0)

Pare to -frontier
in 8

V-

U
B (p,q,»)

-> U r

Figure 5

Proposition 1: Assume the game until t„-A has yielded a default option (p,q)

and Assumption (I) is satisfied. Then, there exists an

appropriate transfer level such that the unique

subgame-perfect equilibrium outcome from t„ on is ex post

efficient for all 8's and gives one party the utility

associated to (p,q) in each 8.

Proof : Assume we want the buyer to receive UR (p,q,0) for every 8. By

Assumption (I), there exists T s.t. the outcome is as in Figure 5 for

every 8 . This means that the outcome without default option and

13



status quo S' gives the seller more than the utility associated to S,

since he could always refuse any agreement. Consequently, by the

argument in Binmore, Rubinstein and Wolinsky (1986), the outcome with

default option (p,q) is S. Q.E.D.

i

This proposition tells us that the existence of "hostages" allows one to

generate assumptions 0, 1 and 2 in the standard bargaining framework. In the

Appendix, we show that this generalizes to any stationary or nonstationary

distribution of offers (instead of alternating offers), and to the possibility

of imposing the default option just after having made a rejected offer.

(Shaked (1987) shows this feature to be important in the context of the

Binmore et.al. framework. Here, we can extend the result of Proposition 1 by

allowing one party to give the other party a second default option in the last

stage of verifiable messages.)

Let us now discuss the important assumption that, at any date from t«

on, each party can enforce the current defaults option. A possible

interpretation is that, when asked to do so by one of the agents, the court

can (instantaneuously) impose any trade associated with an (unrescinded)

contract, i.e. either: (i) the court can then "decide" in place of the

agents; or: (ii) the court can then fix arbitrarily constraining deadlines

(so that the agents have no chance to rescind the contract before the

deadline) and require very large penalties from any agent who does not choose

the expected trade before a deadline. While the first assumption might not

sound reasonable in most contexts, the second one deserves consideration,

since deadlines are quite often observed, even if several reasons may argue

for limiting their use (there may be some uncertainties associated with the

production technology, or some unexpected events may arise, etc.), thereby

decreasing the constraining capabilities of the court.

14



Another possible interpretation is the following; suppose that the court

cannot force the agents to trade, but can only observe the agents' choices

(this is a rather weak assumption, given the previous assumptions on

technology; one may even suppose that the court observes the choices only

i

after some delay, without altering the argument), and impose large (e.g.,

monetary) transfers in case of unilateral defection. Suppose moreover that,

although the default option is not ex post efficient, each party can take an

action which makes it ex post efficient given that action. This is quite

natural for the seller, who could just decide to produce q. For the buyer,

one could assume he has to combine the good produced by the seller with other

inputs to make a product to be sold in turn; buying specific inputs may then

make q ex post efficient. Then, in order to enforce the default option, the

agent only has to take this specific action and threaten the other agent to

alert the court: since no different trade is then mutually preferable, the

other agent has no choice left but complying with the default option before

the court can observe both choices.

In this formulation, although renegotiation is available, both agents

are thus supposed to have access to some form of commitment and can

4
potentially take irreversible decisions leading to inefficient outcomes.

This corresponds to the technological assumptions of Hart-Moore (1988) and to

natural interpretations of the analysis of Green-Laffont (1988) and

Maskin-Moore (1988).
6

4
Except in some trivial situations, it is impossible to design a contract
such that all possible outcomes are ex-post efficient in all states of
nature.

There the agents have to choose, at a given - and unique - date, whether to
push a button or not. Even if it is efficient, trade can feasibly only occur
if both agents push the button at this date.

Since renegotiated outcomes Pareto dominate initial outcomes, it is natural
to interpret these initial outcomes as outside options that the parties could
have imposed.

15



Finally, let us describe the game between t, and t„ . Parties can make

renegotiation offers involving default options and allocations of bargaining

power, as well as how to play the message stages which have not yet been

reached. In each renegotiation round, the identity of the party making the

i

offer is exogenous ly given. Since trade cannot yet occur for technological

reasons, the other party can only accept or refuse the offer, then go to the

next stage.

The crucial point is that, from t, on, the parties are playing some kind

of generalized constant- sum game since, by Proposition 1, each subgame

starting from t„ which allocates all bargaining power to one party has a

unique ex post efficient outcome. Therefore, if between t, and t„ (possibly

after some exchanges of messages) the parties agree on a default option and on

the allocation of bargining powers, this agreement will not be renegotiated.

4 . Preliminary Analysis

The actual game played by the agents of course depends on the initial

contract. Moreover, given the renegotiation assumption, the natural

equilibrium concept is (subgame) perfect equilibrium; accordingly, we will say

that an initial contract implements an allocation r — (r.). . if and only if

all perfect equilibrium (expected) payoffs coincide with the payoffs

associated with r.

We will focus here on a particular form on implementation. First, we

will concentrate on contracts which, possibly contingent on messages sent by

the parties, assign all bargaining power to one of the parties; we will denote

by U.(a,r,0) the agents utility level in the corresponding ex post efficient

outcome, where ie(B,S), r is the default option and q£(B,S) is the allocation

of bargaining power. Second, we will require that at least one equilibrium of

the game generated by the initial contract involves pure strategies only. It

16



should be stressed that allowing for a richer class of contracts, or for

implementation in mixed strategies, would only strengthen the positive

implementation results presented in the following sections.

We first state a proposition characterizing the implementation

possiblities when mixed strategies are not allowed, and showing that attention

can in this case be restricted to somewhat simple mechanisms. We then discuss

a proposition, given in Appendix, which asserts that allocations which are

implementable in this case are still implementable when mixed strategies are

allowed. These two propositions rely on the ex post efficiency of the

renegotiation process, and builds much on the work of Maskin and Moore

(1988):
7

*
Proposition 2' An ex ante allocation r is implementable in pure strategies

(i.e., when mixed strategies are not allowed), using extreme

bargaining powers, if and only if for any possible pair of

states of nature {6,6') there exists a game (a..,,r.., ) such

that all a 's <=(B,S) and:

\J
s
(a

eg
,,r

ee
,,6) < U

s
(r*,0), (2.1)

U
B
(a^,,r^,,0') < U

B
(r*,r), (2.2)

The allocation can moreover be implemented using a

one-stage direct mechanism which asks both agents to reveal

the state of nature and assigns the game (a.„,,r„„,) to

announcements (6,8').

The main differences are that here renegotiation is allowed between stages
of the announcement game and that the (endogenous) renegotiation process
which is applied after the announcement game can be contingent on the
messages sent by the agents.

17



Let us provide some intuition for this proposition. Suppose first that

an allocation r is implemented in pure strategies; consider the subgames

starting after the realization of the state of nature, and denote by (b„,s
fl

)

the pair of equilibrium strategies associated with state of nature 8. Then

for any (9,8'), the game a la Rubinstein associated with the pair of

strategies (b-,s
fl
,) clearly satisfies conditions (2.1) and (2.2), since by

assumption , in state 8 the seller prefers the game associated with (b a ,s.)

-which implements v.- to the game associated with (b.,s.,), and similarly in

state 8' the buyer prefers (b.,,s.,) to (b. ,s.,).

Conversely, once the state of nature is known, truthfully announcing the

state of nature corresponds by construction to equilibrium strategies for the

mechanism presented in the proposition. But the standard property of

constant- sum games carries over to the present context: if only pure

strategies are allowed, all equilibria have the same payoffs. Therefore,

after the realization of the state of nature, the proposed mechanism

implements the ex post efficient outcome r . . If the allocation r is also ex

ante efficient, then this mechanism would not be renegotiated before the

realization of the state of nature, and therefore would indeed implement this

allocation.

Proposition 2'
,
presented in the appendix, provides a formal proof of the

above proposition and extends it to the possibility of mixed strategies. It

is shown that the introduction of mixed strategies can only help: any

allocation which is implementable in pure strategies is still implementable

when mixed strategies are allowed, using the same revelation mechanism as

above, except that the state of nature is sequentially announced by the

agents; on the other hand, some allocations might be implementable only in

mixed strategies (i.e., conditions (2.1) and (2.2) are not necessary).



From now on, an (ex ante) allocation will thus said to be implementable

if, for any states of nature 8 and 8'
, there exists a game (a..,,r..,) such

that conditions (2.1) and (2.2) are satisfied. By ex post efficiency, they

are respectively equivalent to:

\(a
ig

,,x
e9

,,0) > U
B (rJ,#),

''

(2.1")

V
s
(aegi ,r

ge
,,6') > U

s
(r*,r), (2.2')

These two sets of conditions are also equivalent to:

V(M0', U
s (<*00, ,r

gg
,,0) =S U

s
(r*

g
,0) * V

s
(a

gg
,,v

gg ,
,8'), (2.3)

or:

V0*6' , V
E
(a ggi ,r

gg
,,8) > U

fi
(r*,0) >

fi
(a^

,

,rggi ,

8

'

) . (2.3')

These necessary and sufficient conditions call for two remarks:

First, no state 8" different from 8 and 8' interferes with states 8 and

8'; this remark allows us to restrict our attention to the two-state case: an

"it

allocation r is implementable if and only if, considering any pair of states

*

of nature 8 and 8' , the restriction of r to these two states would be

o

implementable if 8 and 8' were the only possible states of nature.

Second, a pair of identical messages (8,8) never interferes with any

other 8'; the associated game (a..,r..) only appears in conditions which all

together are equivalent to:

V
s
(a

gg
,r

gg
,8) = U

s
(r*,0) (2.4)

There is thus no loss in generality in taking r..=r
fl

, which clearly

satisfies this condition (oc.. can moreover in this case be arbitrarily

chosen)

.

Q ^
In terms of announcement games ; the restriction of r might be ex ante
inefficient if these two states were the only possible.
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III. Risk sharing without investment .

This section addresses risk-sharing Issues. Risk-aversion may affect the

parties' objectives in various ways. The first subsection considers the

natural case where both parties exhibit risk-aversion in their net payoffs (as

in Hart-Moore [1988]). In this case, efficient risk-sharing involves

co-insurance (both parties' payoffs increase with respect to the total

surplus) ; we show how to implement this efficient risk-sharing using simple

revelation schemes which assign no trade (q=0) as default option in the case

of conflicting messages. In the following subsection, we analyze the more

complicated case where both parties exhibit risk-aversion in their monetary

revenues (as in Green-Laffont [1988]). In this case, there is no co-insurance

with respect to the buyer's valuation (i.e., efficient risk-sharing implies

that when this valuation increases, the buyer's net payoff must increase

whereas the seller's net payoff must decrease). We show how the first best

can still be implemented, using revelation schemes which involve either no

trade or high trade as default options for ex post renegotiation. Our results

are in sharp contrast with Green-Laffont [1988] where the choice of

renegotiation rules is a priori restricted by an exogenous specification of

bargaining powers.

1. The "co- insurance" case .

In this subsection we analyze the case where the objective functions of

the seller and buyer are respectively defined by:

U
B
(p,q,/S) = u

B
(v(q,/3)-p) (Bl)

and

UgCp.q.'7 ) - u
s
(p-c(q,a))

,
(SI)
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where p is the monetary transfer from the buyer to the seller and q the

quantity produced by the seller at cost c(q,o); = (ct,/3) is the state of nature

and, given the preliminary analysis of section II. 4, without loss of

generality we can assume that there are only two states: 0,=(<7, ,^..) and

\

g =(an ,P ) ; both u_ and u are increasing and concave. (Risk neutrality
2 2 z -D o

corresponds to the borderline case where u£*=u"=0
.
) We shall also assume:

c >0, c >0, v >0, v <0 and V/3,ct, c(0 ,a)=v(q,
)
8)=0.

q qq q qq

St St St St St St

Let ( (p-i ,q-i ) , (Po ,qo) ) be the first-best outcome, where (p»,q«) belongs to

the Pareto-frontier in state 8 p . This first-best allocation satisfies the

following first-order conditions, for some Lagrange multiplier X:

c
q
(qr CT

£
}
= V-V^' L = 1>2 (3-1)

St St St St

Ug(p
£
-c(q

£
,£7

£
)) - Au^(v(q

£
,/3

£
)-p

£ ) , (3.2)

(3.1) defines the {ex-post) efficient levels of trade q„ independently

from the sharing-rule agreed upon ex-ante, i.e., independently from the price

•it

structure p „ . This price structure only enters (3.2), to achieve optimal

risk-sharing. Furthermore, efficient risk-sharing implies co-insurance. Let

*Jc St St St St St St St St

us define for t - 1,2: B^ = v(q^,^)-p
£

, S^ - p^-c(q^,CT^), and W^ - B£+S £-

St St St St St ")t

Then from (3.2), W,<W« if and only if B,<Bj, and S, <S
f , with at least one

strict inequality. In other words, the two agents have the same ranking

9between states of nature in terms of the first-best outcomes in these states.

We shall use this property in order to construct a simple mechanism G

that implements the first-best outcome. Without loss of generality, assume

9
This "comonotonicity" property underlies Hart-Moore's Proposition 2(c)
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* * * *
S,<S„ and B,<B

9
. Consider the direct mechanism G defined hy Figure 1:

Seller

'l
6
2

uyer

B
2

* *
P l' q i

t
•

<• —

>

p' .0

s

> buyer's
preferences

1

•

V
P,0

B

* *
p 2 -q

2

• • •> seller' s

preferences

Figure 1

* *. * *.
This mechanism specifies the first-best outcomes (p-i.q-i) and (p 9> q 9 ) on

the diagonal and zero-output default options off the diagonal, with full buyer

power below it and full seller power above it. There is no need to specify

~k ~k

the bargaining power ex-post on the diagonal since the outcome (p/),°,o) ls

relevant only in state I, where it is efficient and therefore not renegotiated

ex-post . For truthtelling by both agents to be a Nash equilibrium of the game

associated with G, in state 9, we must have:

u
B
(B

]
_)

>
B
(B,(p,0),*

1
) (3.3)

u
g
(S

1
) > U

s
(S,(p' ,0),^) (3.4)

* *.
Since (p-i.q-i) is efficient in state 8-., (3.3) is equivalent tc

u
s
(S

1
) < U

s
(B,(p,0),tf

1
) - u

s
(p)

or:

S, < p. (3.5)
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Similarly, inequality (3.4) is equivalent to:

B
x
< -p' (3.6)

In state 6 9 , we must have:

u
fi
(B*) > U

B
(S,(p' ,0),e

2 ) (3.7)

u
s
(S*) > tJ

s
(B,(p,0),«

2 ), (3.8)

which can be rewritten as:

B* > -p' (3.9)

S* > p (3.10)

It suffices to choose p such that S,<p<S„, and p' such that B,<-p'<B
?

.

Such a choice is always possible due to the comonotonicity between the S„'s

and B.'s; hence:

Proposition 3: In the coinsurance case, the first-best outcome can thus

always be implemented through a direct mechanism G of the form

described in Figure 1.

This mechanism is quite simple in that it specifies the same zero output

level as default option for renegotiation above and below the diagonal. This

relates to the coinsurance property, it will not hold in the general case

where the objective functions UR and U„ allow for "wealth effects": we will

then have to consider more sophisticated mechanisms, where the starting points

for renegotiation off the diagonal may involve a positive (possibly high)
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level of output.

2. Allowing for wealth effects : the case of separable utility functions .

We consider the following utility functions which are separable in prices

and quantitites:

U
B (p,q,£)

- u(q,0)-v(p) (B2)

U
s
(p,q,a) - w(p)-c(q,a) (S2)

where = (cr,/3) is the state of nature (again, w.l.o.g. we shall assume two

states of nature 0.=(ct.. ,/?, ) and 5„=(ct„ ,/3~) ) Risk neutrality corresponds to

the case where v"=w"=0. We shall assume that both the buyer and the seller

are risk averse in terms of their monetary revenues : v">0 , w"<0. As before:

c >0, c >0, u >0, u <0 and Vfl,a,c(0,a)-=v(0,fl)-0. Furthermore, we shall
q qq q qq

r ' '
v ' x ,rl

assume u„>0 , u„ >0 , c <0 , c <0 (that is, a higher P corresponds to a higher

valuation for the buyer; and the higher the level of trade q, the more an

increase of jl affects the buyer's valuation. Similarly, a higher a

corresponds to a more efficient technique of production available to the

seller, and the higher the q the bigger the cost reduction induced by an

increase of a)

.

a. Uncertainty on the seller' s side .

We first analyze the case where all the uncertainty lies in the cost

parameter a, that is 8 ,=(o, ,/3) and ^
9
=(ct„,^), and w.l.o.g. we assume o,<o~,

St Sr St St

The first-best outcome ((p, ,q, ) , (p« ,q«)) satisfies the following

first-order conditions, for some Lagrange multiplier A:
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v'(p*) = v'(p*) = A (3.11)

un (q f ,p) = Ac n (q £
,a^) (3.12)

Equation (3.11) implies that p-|=p^=p since the buyer is risk-averse with

respect to monetary payoffs (i.e., v">0) . On the other hand, equation (3.12),

together with the assumptions c <0 , c >0 , u <0 , implies that:6 r qer qq qq
r

q^ < qj. (3.13)

The first-best outcome thus involves a level of trade q„ in state 9 „

*
which is greater than the level of trade q, in state 9, , where production is

more costly (a,<a„). Unlike in section III.l, the ranking between state 9,

and state 9~ (in terms of the corresponding first-best outcomes (p»,q»)) is

not necessarily the same for the buyer and the seller. The buyer will always

A" •*

rank state 9~ above state 9-. since in 0„ he obtains a bigger quantity q„ > q,

for the same price p ; but for state 0„ to be also preferred by the seller, it

must be the case that:

(S) c(q
2

,cr
2

) < c(q
1
,a

1
).

In case this condition is met, we know from section III.l that the

first-best outcome can be implemented by the following simple mechanism (see

Figure 2) which has zero trade as the default option and allocates full

bargaining power to one party (seller or buyer)

.

Here we use our assumption that c(0,a)=0. The case where there are fixed
costs of production is analyzed in Aghion-Dewatripont-Rey [1988]: we show
that the first-best outcome can still be implemented although through a
non-extreme allocation of bargaining powers.
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Seller

Buyer

(p .q
1

)

(P,0)

(p' ,0)

(P 2 .'32 )

Figure 2

Therefore, the above condition (S) is sufficient for the first-best to be

implemented through simple renegotiation schemes. It turns out that (S) is

also necessary for the first-best to be implemented through renegotiation

design that allocates full bargaining power to the buyer or the seller . The

reason is the following. Suppose there exists a revelation mechanism which

implements the first-best allocation, and consider the negotiation process to

be played when the buyer announces 8~ and the seller announces S-, . whoever

has the bargaining power, the seller's ex-post payoff associated with this

renegotiation process necessarily increases when a increases from ct, to o~:

the buyer's default utility level remains constant, and the total surplus

increases. But the incentives constraint requires the seller to prefer

(p ,q ? ) to this ex-post payoff in state ff~, and this ex-post payoff to (p , q )

in state 9-, .

11

* *.

This property may not generalize to renegotiation processes in which no party
has all the bargaining power. In a previous version (Aghion-Dewatripont-Rey
[1988]), we provide an example where condition (S) is not satisfied and the
first-best is however implemented, using a renegotiation process in which the
two parties share the bargaining power.
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b. Uncertainty on the buyer' s side .

The choice of q=0 (no- trade) as the default option for renegotiation

would remain appropriate as long as both contracting parties have a

i

"comonotonic" ranking of the states of nature (in terms of the corresponding

first-best outcomes) . This comonotonicity property directly follows from

co-insurance in section III.l, and is implied by condition (S) in the case of

separable utility functions with uncertainty on the seller's side. It however

turns out to be violated when introducing uncertainty on the buyer's side. As

a consequence it may become necessary for the initial contract to specify

default options which involve positive trade (q>0) , hence the importance of

our Assumption 1 introduced and discussed in Section II.

More precisely, let us consider the case where L = (a,l), 0„=(<7,/9„) with

/3,</9„. The first-best outcome ( (p. , q. ) , (p„ ,q„) ) will again involve full

insurance in monetary terms, i.e.: P-|
=Po=P • Furthermore, the first-best

level of trade will be higher in state 9~ where the buyer's valuation for the

good is bigger: clo>cIi • However, the ranking between 0, and 8~ cannot be the

s ame for the buyer and the seller: the seller prefers 0, to 0„ since in 0, it

produces the lowest quantity q, for the same price p ; conversely, the buyer

prefers 9~ to 6, since he gets a higher quantity q„ for the same price p in

state 0^, which is furthermore the state where he values the good most.

Since comonotonicity is violated here, the above type of mechanism with

no-trade as default option will not be appropriate to implement the first

best: with such a mechanism the seller would have an incentive to lie in

state 6„ and take advantage of the fact that the buyer is willing to pay a lot

more for moving away from no trade in that state. However, choosing a large

q„ as default option will implement the first-best outcome, provided that:

(B) u.(q,/?) is unbounded above when q -> +°°.

To prove our claim, let us consider the mechanism depicted on Figure 3.
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'l
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2

Buyer

P .qi

-T-i

* *
p -q

2

v
(P ,q ) <

>
* *

p ,q
2

Figure 3

Off the diagonal this mechanism allocates full bargaining power to the

12
seller, " and it specifies the outcome (p^.q,,) as a default option for

renegotiation below the diagonal. For the above mechanism the first-best

St St St St

solution (p ,q-,), (p ,q ? ), it suffices that:

u(q
2 ,^

2
)-u(q0>y9 2

) < v(p ) -v(p
Q

) < u(
q;L

,P X ) -u(q Q ,0^ (3.14)

Given that /?„ > /L and q„ > q, , it suffices to choose q„ sufficiently

large and use the assumption that u„(q,/3) is unbounded above. This assumption

does indeed guarantee that for q large enough the LHS of (3.14) will become

strictly less than the RHS . It then suffices to choose p„ appropriately.

Notice that no further assumption on U
R

or U„ is needed.

The reason why choosing a higher level of trade as default option solves

the implementation problem can be explained as follows. Let q« (respectively,

p») be the final trade level (respectively, the final price) in state 6p -

12
Allocating full bargaining power to the buyer would not work in this case,

since the seller would then always have an incentive to deviate in state 0, :

by doing so he would increase his profits from p -c(q„,a) to p -c(q ,a)

.
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(o,Pp) after renegotiation under default option (p.,,q,,) and bargaining power

to the seller. Since the buyer values the good more in state 0„ than in state

0. , we must have: q-, < q2 (see Figure 4).

if 13 = px

-> q

A A
qx q 2

if P - P2

Figure 4

By choosing q„ sufficiently large, we can at the same time prevent the

buyer from lying in state 8, and the seller from lying in state 0„. A

deviation from truthtelling in state 8* will typically be unprofitable to the

buyer if p, is "large" and q- is "low." Symmetrically a deviation from

A
andtruthtelling in state 8~ will be unprofitable to the seller if p~ is "low"

q« is "large." We already know that q, < q„ . Now if we choose qn

sufficiently large, we can also have p.. much larger than p„ . The reason is

that, even though q ?
is larger than q-, , decreasing the level of trade from a

large quantity q~ to q„ in state 8„ will be more harmful to the buyer than

decreasing the level of trade from q„ to q, in state 8, . (/3„ > /?, and V „ >

0) . The final price p« will then have to be much smaller in state 8 „ than in

state 8-. so as to guarantee the buyer his reservation utility level

u(q ,y3) -v(p„) (which is moreover larger in state 8„ than in state 0-,).

c. Uncertainty on both sides .

Consider the case where 6,-(o-,,f3,); 8^~(a^ ,(}„) , and where ct,^<7~, /3,^/3„.

We distinguish in fact two subcases. The first one is defined by 8~ = (,o, ,f3,)
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^_=(cr„,^„), with P~>P-, and a„>o, , that is, state 2 is more favorable both in

terms of buyer valuation and of seller's cost. In that case, the first-best

•k ~k

(P >q-i)>(P .q?) can be implemented through the same mechanism as in (b) . (The

starting point q may have to be chosen even larger than in (b) , since the

efficient quantity increases more between the two states 9-. and 9„.)

The second subcase is defined by 9 ,=(fi-. ,o~) \ # 9 =(/?„ ,a, ) , with /S~>/3-. and

CT„>a, , that is, state has higher buyer valuation, but also higher seller cost.

* * * *
Let q 1

=q
/5

and q 9=q fl
be the corresponding first-best quantity

P\a2 ^2a\
"it "$C ^C "$C "it ^t

levels. Then, either q 9>qi or q 9 <q-i (the case q^q-i is trivial, since we also

have p 9 =p-| ) . If q^>q, , we can implement the first-best (p ,q,),(p ,qJ

through the same mechanism as in (b) , using again the assumption that the

~k "k

function u is unbounded. If q-.>q 9 the mechanism used in (b) will not work:

with full seller power above the diagonal and a default option r.„=(p
, q~),

the seller would always have an incentive to lie in state 9-. , and thereby

produce a smaller quantity (q 9<q-< ) for the same price p . We can implement

the first best, however, through the mechanism depicted in Figure 5, which

allocates full bargaining power to the buyer:

Buyer

Seller

'l
6
2

* *
p .q

2

* *
p .q-i

B

p.o
B

* *
p -qx

Figure 5

A sufficient condition for implementation is then:

c(q 9 ,<7 ,) > c(q. ,ct 9 )l2'"V i l
,w

2' (3.15)
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It turns out that (3.15) is implied by the following conditions:

*
< § > : c(%^1

'
ff
l

> > C(%
2 fi l

'°2 ) and c(t
»a
1
/J
2
- ff

l ) > cC%
2
/?
2

'
a
2 )

which generalize the above condition (S) to the case of two-sided uncertainty.

Indeed, (3.15) can be rewritten: c(q „ )>c(q
ft

>^ 9 )- But the first
a
\ 2

'

°\
a
2 1

order conditions (3.12) implies that:

^t ^t "Je

q„ a < <\„ a < <\„ of (3.16)
a\P\ alP\ a2^2

and thus (3.15) results immediately from (S)
, (3.16), and the fact that c >0.

We have thus proven the following proposition:

Proposition 4: When the utility functions of the buyer and the seller are

defined by (B2) and (S2) then, provided the u„(q,/J) is

unbounded when q -> -H», a sufficient condition for the

"k "k

first-best outcome (p»,q«), ( - 1,2 to be implemented is:

(S): V/J = pit fi2
, c(q*^,a

1
) > c(q*

2/g

,a
2
),

where q . is the first best quantity in state 6=(o,fi).

IV. INVESTMENT UNDER RISK NEUTRALITY

We now switch our focus from risk sharing to investment. A number of

authors (Klein, Crawford and Alchian (1978), Williamson (1979) and, more

recently, Grout (1984), Tirole (1986) and Grossman and Hart (1986)) emphasize

that the fear of ex post breach or renegotiation of the terms of a

relationship may induce underinvestment in assets which are specific to this
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relationship. Hart and Moore (1988) and Green and Laffont (1988) have

provided an analysis of this problem in an optimal-but- incomplete contract

setting with risk-neutral agents. In this Section and the following one,

using the same framework as before, we show how renegotiation design can be

useful in inducing the right incentives to invest. In this section agents are

assumed to be risk-neutral; efficient investment decisions and levels of trade

can then be achieved with a somewhat simple contract, which does not require

any exchange of messages: the agents only agree initially on a default option

(price, quantity) and renegotiate ex post giving all the bargaining power to

one party. The next section discusses how this efficiency result can be

extended to the case when one or both parties are risk-averse.

Let us first introduce investment in our framework. Investment will be

assumed to be specific to the relationship: the associated costs have to be

sunk before the realization of the state of nature, and the level of

investment only affects the parties' valuation for their specific trade.

As in the Hart-Moore framework, assuming risk-neutrality and ruling out

direct externalities, the objective functions of the seller and buyer now

become respectively:

U
s
(p,q,i,0) = p - c(q,i,a) - <p(i) (4.1)

U
B
(p,q,i,0) -v(q,j,0) - p - V(j) (4.2)

The investment cost functions are assumed to be convex (ip' and xj)' > 0, <p"

and ip" > 0) , and investment is assumed to raise the amount of quasi-rents from

the relationship (v. > 0, c. > 0, but v. . < and c. > 0) , the more so the
J J JJ JJ

higher the amount traded (v . > 0, c . < 0)

.

The goal of the parties is to design a contract to achieve the

first-best allocation. Assuming a finite number of states of nature,
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1=1,..., N, and denoting the probability of state 6
f
by II„ (assumed w.l.o.g. tc

~k -k

be positive), the first-best allocation is a pair of investment levels (i ,j

*}c *&e St *j(*

and a vector of trade levels q = (q., q^ q„) such that:

c
q
(q*,i*,a

£
) = v

q
(q*,j*,^) V£ - 1 N (4.3)

£ tt
£

c
i
(q £

,i ,a
£

) + <p' (i ) = (4.4)

t

[ n
t
v^q^.j ,p

t
) - V'(j ) = (4.5)

Condition (4.3) characterizes for each state 8„ the ex post efficient

level of trade q „ ,
given (i ,j ), whereas (4.4) and (4.5) characterize the ex

ante efficient investment levels.

Bilateral risk neutrality makes the price structure irrelevant: only the

average price matters, which determines how the surplus is divided between the

parties. Conversely, for given investment choices, the state of nature

uniquely determines the ex post efficient output level, which will therefore

be achieved ex post through renegotiation, whatever the starting point of the

bargaining process and the relative bargaining power of the parties. Thus, if

the parties choose efficient levels of investment, renegotiation by itself

13
guarantees the implementation of the first-best allocation.

The agents' problem thus becomes: Does there exist a contract which

induces (i ,j )? The answer to this question is here surprisingly simple:

13 More precisely, it guarantees that given the investment levels, the ex ante
surplus (considered at some date before the realization of the state of
nature), will be equal to the optimal one. This surplus can then be correctly
divided through adequate lump sum transfers.
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14
Proposition 5: The following contract implements the first best outcome:

Give all renegotiation power to the seller and choose a

starting point (p,q), where q is defined by

I

and p correctly divides the efficient surplus, according to

ex ante individual rationality.

Proof : In this mechanism, the seller is made residual claimant. He will

thus choose i=i
,
provided the buyer chooses j = j . But the buyer,

without bargaining power, knows that his payoff will be v(q
, j ,/L) -p

in state 6p for investment j. By the definition of q, j—j is thus a

dominant choice for the buyer (remember that v.. < 0, and V" > 0)

.

Q.E.D.

This mechanism is quite simple, since the starting point of the

bargaining process is not contingent on any messages exchanged by the agents.

One party has all the bargaining power, and is thus made residual claimant,

whereas the starting point is determined so that the other party has in the

average the correct incentives to invest.

In our framework, avoiding underinvestment is thus possible, which is in

sharp contrast with the incomplete contract literature on this topic. Let us

first compare our framework with that of Hart and Moore. Theirs differs from

ours in several respects. First, of course, they do not allow for

renegotiation design as freely as we do. As discussed in earlier Sections,

their unofficial offers "have the last word", so that the starting point of

bargaining (a pair of prices (p-i,pn ), contingent on trade or no trade)

14
After having written the previous version of this paper, it happened to us

that Chung [1988] has independently provided a similar result.
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completely determines the relative bargaining power of the parties given

(i, j ,fip,Op) . Second, trade is a zero-one decision, instead of our continuous

output level. Third, and this is the key to underinvestment, their

assumptions on the enforcement technology imply that renegotiation, if any,

15 i

takes always place from a no-trade default option. This introduces a downward

bias in the distribution of default options, which disappears only when a pair

(Pi >Pn) can ^ e f°und such that it is renegotiation-proof whatever i and j , or

when one party's investment is irrelevant (so that the other one can be made

residual claimant)

.

In contrast, our scheme works because the default option can be set at

an "average" trade level. The key difference is thus the ability of the court

to verify that each party has done his part of the trade (i.e. the seller

provided q and the buyer paid p)

.

Hart and Moore are in keeping with the literature on underinvestment,

where the key factor is the threat of no trade, whether bargaining is not

modeled explicitly, modeled cooperatively, or non cooperatively. In that

case, renegotiation is such that for each state of nature both payoffs

(weakly) increase with the total surplus; therefore, no expected return from

an increase in investment can be higher than the corresponding expected

increase in surplus and moreover the expected return is smaller for at least

for one party, hence the underinvestment effect. Once the default option can

be freely chosen, the return from an increase in investment can in some states

The combined assumptions that "it takes two to trade" and that the court
cannot observe who refused to trade, imply that bargaining occurs only when
trade is efficient and would not take place at initial prices, in which case
it starts from (p=Pf>,q=0). Bargaining thus never starts from (p-=p»,q-l).

For example, Grout (1984) assumes generalized Nash bargaining, and Tirole
(1986) investigates several bargaining mechanisms. In both cases, the
no-trade outcome is the inefficient default outcome.
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of nature be higher than the corresponding increase in surplus; indeed, if one

party has no bargaining power, his payoff increases less than the surplus if,

as before, the default level of trade is lower than the efficient one, but it

increases more than the surplus in the converse case: when the default trade

q is higher than the efficient level of trade q(i,j), the increase in the

default utility level (measured by v. (q,j,/3) or c.(q,i,a)) is higher than the

increase in surplus (measured by v. (q(i, j ) , j ,/3) or c. (q(i
, j ) , i ,a) , using the

envelop theorem) . In our mechanism the buyer has no power whatsoever in the

bargaining game. With a no- trade default option, j=0 would be optimal,

because cutting j involves no loss of quasi-rents at all for the buyer.

Instead, for this "average" q, the buyer is ex ante "locally" residual

claimant: by cutting j, the buyer's loss of utility in terms of outside

option (p,q) equals the loss in total expected quasi-rents, so that j=j is

optimal

.

Since choosing a higher default level of trade would give the buyer

incentives to overinvest, it is possible to deal with one-sided direct

externalities as well. Let us for example replace (4.1) by:

U
S
= P£ " c ( cl£' i 'J '°i> - <P(i) (4.1')

with c. < 0, c. > 0. In the first-best outcome, i would have to be
J JJ

J

introduced in the cost components of (4.3) and (4.4), while (4.5) would

become

:

In the framework of Hart and Moore, depending on the realization of the
state of nature and on the price differential, one of the parties has all the
bargaining power. Since trade is assumed to be voluntary, the parties have
therefore for each state of nature either the correct incentives to invest,
or no incentives at all. If "no trade" was assumed to be voluntary (i.e., it
"takes two for no trade"), then for each state of nature both parties would
have either the correct incentives, or too high incentives to invest; this
would then lead to an overinvestment effect.
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[ *
£

(v.(q
£
,j ,0t

) - Cj(qj,i ,j ,a
t
)) - +' (j ) (4.5')

The optimal mechanism would remain exactly as in Proposition 5, but with

j redefined as above. The impact of this direct externality on the contract

is thus simply to raise the level of trade associated with the default option.

Let us close this Section by noting that Green and Laffont (1988) do

allow, like us, the parties to freely choose starting points of the bargaining

process. They however introduce a separability assumption between investment

and the level of trade (v . = c . = 0) , so that the choice of starting trade
qj qi &

level does not affect incentives to invest. The reason why the possibility of

renegotiation leads to underinvestment only comes from the threat of

disagreement, which provides a stronger bargaining position for the buyer the

higher the seller's investment (relative bargaining powers are moreover

exogenous). In this sense, while granting the parties the ability to freely

choose prices and quantities as starting points, Green and Laffont exogenously

place themselves in the framework of the underinvestment literature.

V. INVESTMENT AND RISK AVERSION

Let us now introduce risk- sharing issues as an additional concern. Is

it still possible to implement the first-best allocation ? A natural idea is

to adapt the previous mechanism to this new situation. Let us denote by

U
R (q,p,j,/3)

and U (q,p,i,cr) the buyer's and seller's VNM utility functions;

suppose for instance that there exist a quantity q and a price p such that:

E^[U
Bj (q lPl

j*
t ^)] - (5.1)
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E^UgCq.p.j ,/J)] = U
B

(5.2)

and suppose that the agents agree on using this pair (p,q) as a default option

and on giving all the bargaining power to the seller. If this agreement is

not renegotiated, the buyer's expected utility level associated with

investment j is given by E„[U (q,p , j ,/3) ] . Therefore condition (5.1), combined

with a concavity assumption of the objective function with respect to the

level of investment, guarantees that the buyer will choose the efficient level

of investment j . Moreover, condition (5.2) asserts that the buyer's expected

level of utility will be equal to its first-best.

This mechanism, however, is based only on "average" considerations, and

is thus likely to induce inefficient risk- sharing; it would therefore be

subject to renegotiation before the realization of the state of nature. This

leads us to be more explicit on renegotiation at that stage (which we will

refer to as interim renegotiation)

.

1. Interim renegotiation design

A possible way is to introduce a renegotiation process at some point

between the investment decisions and the realization of the state of nature.

What assumptions can we make on this interim renegotiation process ? In

particular, is it reasonable to maintain the assumptions 0, 1 and 2 for this

renegotiation stage, as we did for ex post renegotiation ? Let us discuss

these assumptions in turn.

Hypothesis asserts that efficiency is achieved through renegotiation.

It seemed natural for ex post renegotiation, since in that case both agents
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know the efficient outcomes and bargain directly on these outcomes. In the

case of interim renegotiation, the issue is an allocation which specifies an

outcome for each possible state of nature. The parties know the efficient

allocations; however, they do not bargain directly on allocations, but rather

on mechanisms which in fine will implement some allocations. If all efficient

allocations can be implemented in this way (as in the situations analyzed in

Section III) , assumption seems as reasonable for interim renegotiation as

for ex post renegotiation. Otherwise, the natural assumption is that the issue

of interim renegotiation is efficient in the class of implementable

allocations. Remember that this assumption represents a constraint on the

possible contracts, so that relaxing it could only enlarge the class of

situations where the first-best can be implemented.

Hypothesis 1 asserts that if the parties initially agree on some

mechanism (which may lead to inefficient risk-sharing, particularly if one

party shirks on the investment decision) then, in terms of expected level of

utility, no party can loose from interim renegotiation. This assumption,

generally considered as a minimal property of voluntary renegotiation, will be

maintained in the following.

Hypothesis 2, which supposes that the initial contract can give all the

bargaining power to one of the parties, is more problematic for interim

renegotiation. In particular, providing some foundations as we did in Section

1

8

II. 3 for ex post renegotiation may be more difficult. In fact, in the same

lines as in the previous analysis, the ability of concentrating the bargaining

power on one side is indeed very powerful. More precisely, combined with

assumptions and 1, it enables the agents to implement the first-best outcome

18
In particular, the cost of delaying agreement is not as clear as when trade

is at stake. Also, the possibility of (unilaterally) imposing an inefficient
risk-sharing rule, which could not be renegotiated before the realization of
the state of nature, may be more questionable; conversely, the absence of
irreversibility makes it difficult to set up "hostage" mechanisms in the
spirit of those used in section II. 3.
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using the simple mechanism described above:

Proposition 6: Assume that assumptions 0, 1 and 2 hold for both interim

and ex post renegotiation, and that there exist a pair of

price and quantity (p,q) satisfying conditions (5.1) and

19
(5.2). Assume moreover that the buyer's utility function

U (q,p,j,/3) is strictly concave with respect to the

investment level j . Then the following contract implements

the first best outcome: give all renegotiation power to the

seller, both for interim and ex post renegotiation, and

choose this pair (p,q) as the unique default option after

the realization of the state of nature.

Proof : If this agreement is not renegotiated before the realization of the

state of nature, the buyer's expected utility level associated with

investment j is given by E
fl
[U (q ,p, j ,/5) ] . Since the buyer has no

bargaining power before the realization of the state of nature, this

also represents his expected utility level after renegotiation; the

efficient level of investment, j , is therefore a dominant choice for

the buyer, whatever the investment chosen by the seller. Suppose now

that the seller chooses some investment i, and consider the outcome

of the interim renegotiation: it is efficient by assumption and

gives UR (whatever is i) to the buyer. Therefore the seller is ex

ante residual claimant and will thus choose i—i , since the buyer

chooses j — j ,

Q.E.D.

19
In the absence of a separability assumption of the objective functions

between prices and quantities, such a pair (p,q) may not exist. It is
however likely to exist if for instance the objectives are given by a not too
much concave function of the profits.
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Proposition 6 relies on the ability to give all the bargaining power to

one party at the interim renegotiation stage, but does not require to give the

power sometimes to one party and sometimes to the other. It can thus be

extended to situations where, although assumption 2 is not satisfied for

interim renegotiation, one party has naturally all the bargaining power at

this stage. Suppose for instance that the interim renegotiation game is

defined by an extensive form such as in Section II. 3 (i.e., renegotiation

consists of sequential rounds where one party proposes a new mechanism to be

played after 6 , which the other party accepts or refuses to switch to) . Since

there is no cost of delay, one party (namely, the last to make an offer before

the state of nature is realized) has de facto all the bargaining power, and

therefore, although the initial contract may not impose who has the bargaining

power, proposition 6 is valid (reversing the role of the parties, if

necessary, in the proposed mechanism)

.

2 . No interim renegotiation design

The previous analysis rests on one party's having all the bargaining

power for interim renegotiation. Since assumption 2 may be questionable for

this stage of renegotiation, and since no party may have "spontaneously" all

the interim bargaining power, it is interesting to see what can be done such

situations. We have studied the case when, as in section III.l, the

objectives of the two parties depend on their net revenues, i.e. the agents'

VNM utility functions are given by:

U
s
(p-c(q,i,<7)-<p(i)) (5.3)

and

U
B (v(q,j,£)-p-V>(j)) (5-4)
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with U' ,U'>0, U" U"<0, and the same usual conditions as before on the cost andSB b B

valuation functions c and v. In this case, provided assumption 1 is valid,

some mechanisms can indeed implement the first-best allocation, whatever the

parties ' relative bargaining power at the interim renegotiation stage . We

shall briefly discuss at the end of this Section how the introduction of

wealth effects would complicate the analysis.

In order to acquire some intuition on the design of these mechanisms,

which have their own interest, it will be convenient to first address the case

of unilateral risk aversion. But let us first briefly describe the first-best

allocation in the general case; the first-order conditions of the problem

yield, for some Lagrange multiplier \:

U^(p*-c(q*,i*,ap-y.(i*)) = AU^(v(q*
1

j*
I /9

£)-p*-V»(j*))
V£ (5.4)

c (q £
,i ,Og) - v (q £ ,j ,Pf) V£ (5.5)

ESt St St* it St St St

*£ U
s (p £

-c(q
£
,i ,a

£
)-<p(i )) [c^q^.i ,a

£
)+<p' (i )] - (5.6)

I

[ n
t
U
B
(v(q*,j*,^)-p*-^(j*)) [v

j
(q*,j*,^)-V'(j*)] - (5.7)

The last three conditions are identical to (4. 3) -(4. 5). In particular,

the investment levels and the state of nature completely still determine the

ex post efficient output level (condition (5.5)), and ex post renegotiation

will still again yield the ex post efficient surplus. But because of

risk-aversion, the price structure matters (it determines the relatives shares

of surplus in each state of nature, and is characterized by condition (5.4)),

so that ex post renegotiation does no longer guarantee interim efficiency.
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a. Unilateral risk aversion

Assume for example the seller to be risk neutral (the analysis would be

symmetric under buyer risk neutrality). In this case, optimal risk-sharing

requires the buyer's utility to be constant across the states of nature:

•k St St St

v(qn,j ,^,)-p.=B . The mechanism of Section IV would not achieve that since,

st

at least for a positive q, v(q,j ,/?,,) is not constant across states of nature.

If we assume v(0,j,/?)=0 (zero buyer valuation at q=0, whatever the prior

investment in the relationship and the state of nature) , a unique starting

point (pn ,0) with (ex post) full seller power, would provide the buyer with a

*
constant payoff across states of nature. Choosing p.-.-=-B would set this

st

payoff at the first-best level. This mechanism would however not induce j=j ,

since the buyer would reap none of the surplus generated by his investment.

One could however introduce the threat of another starting point in case

of buyer underinvestment. The next proposition illustrates this idea:

20
Proposition 7_: Call ^ the lowest /3. If v(0,j,/S)-0 for any j and any /3, and

if v.(q,j,/3) is unbounded when q increases, then there

exists a quantity q' such that the following contract

implements the first best for any interim renegotiation

process satisfying assumption 1: after the realization of

the state of nature, give all the ex post bargaining power

to the seller, and let him choose between (pn ,0) and (p' ,q')

as starting points, where p„ and p' are given by

v(q' ,j*,£)-p'—

P

— B*.

20
This proposition and the following one rely on having a finite number of

states of nature, or more precisely on having bounded values for /? and a, and
positive probabilities for the extreme values. If it is not the case, it may
be possible to use a similar kind of contracts as those used here to
implement "almost first-best" allocations; this however deserves further
research.
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Proof : Ex post renegotiation always yields ex post efficiency. Suppose

j=j , and consider the seller's investment decision. If the scheme

is not renegotiated at the interim stage, then for any investment

level the seller ex post strictly prefers (pn ,0) as starting point

when Pp>@_ (since v_ > for q > 0) , and is indifferent between (p n ,0)

and (p'
,
q' ) for /?»=£: the buyer therefore receives a stable payoff

across states of nature, which means that the proposed scheme yields

not only ex post, but also interim efficiency; moreover, the buyer

exactly obtains U„(B ), which is not affected by the seller's

-£-

investment. Thus if j=j the seller is (ex ante) residual claimant

and chooses i=i , leading to the first best allocation.

Suppose j>j . Then ex post the seller strictly prefers (p^.,0)

as starting point (v.>0 for q>0 , and v.=0 for q=0) . This is interim

efficient, and thus would not be renegotiated before 6; but compared

to j—j , the buyer does not receive any additional quasi-rents from

k
his investment, and therefore prefers j .

Suppose j<j . Since v. is unbounded when q increases, for all j

* _ _ _ * -
6 [0 j [, one can define q(j) such that 7r(v(q(j),j ,@) -v(q(j ) , j ,0 )

=

\Kj ) * VKj)- This defines a continuous function q(j) on [0 j I

which moreover has a finite limit at j . Call its supremum on this

interval q, and choose q' > q. When /?»=£, the seller wants then to

start from (p'
,

q'
) . This may not yield optimal risk-sharing but,

denoting by n the sum of all 7i\,'s such that dp involves £ as buyer's

valuation, through interim renegotiation the buyer's expected utility

cannot be higher than U
B
(jr(v(q'

, j ,fy)
-p' ) + (l-5r) (-p

Q
) -\Kj ) ] .

which

corresponds to the situation where the buyer has all the interim

bargaining power (things could become even worse for the buyer for

low j's, as the seller would begin choosing (p' ,q') as starting point

in states where (!*>§_ too). By choosing q'>q, the expected loss in
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terms of quasi-rents in states where /2/,=/3 suffices, by the definition

of q, to more tl

again prefers j

of q, to more than compensate the cut in V"(j ) ! therefore the buyer

*

Q.E.D.

i

As in the previous Section, this mechanism relies on the ability of

enforcing a given level of trade, which is used as a threat to deter

underinvestment. If the buyer chooses j=j , zero trade is used as the unique

starting point, which stabilizes across the sates of nature (B«=B ); the

scheme is thus interim efficient, and moreover the buyer's expected utility is

not affected by the seller's investment, which in turn gives the seller the

right incentives to invest. Zero trade is also used if j>j , which prevents

the buyer to overinvest. For j<j , the seller prefers in some states of

nature to start bargaining from a very high trade level, which is quite

detrimental to the buyer, since each omitted unit of investment much lowers

the value of his default option.

Once again, (i ,j ) is the unique subgame -perfect equilibrium following

this mechanism because j is a dominant strategy for the buyer. While the

mechanism in the next subsection tries to mimic the above one, this feature

will be lost under bilateral risk aversion.

b. Bilateral risk aversion

In this case, a unique starting point with one party as residual

claimant may not suffice to implement the first best. Instead, we start with

a message game G , which implements (p ,q ) if (i ,j ) has been chosen by the

parties. From section III, this game exists under our assumptions. It turns

out that it also prevents underinvestment. In order to avoid underinvestment,

for each party we introduce a threat of starting from a very high output
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level
,

q' and q"

.

Proposition 8 asserts that the first-best allocation corresponds the the

outcome of a subgame -perfect equilibrium generated by such a contract. (There

may however be other perfect equilibria, with different outcomes):

I

Proposition 8: Call ft and /3 (resp. a and a) the lowest and highest values

of /3 (resp. a) ; call dp, the state defined by (f},o) and 9 p„

21
the state defined by (£,a). If v(0,j,/3)=0 for any j and any

fi , and if the derivatives of v(q,j,/?) (resp. c(q,i,a))

w.r.t. j and fi (resp. i and a) are unbounded when q

increases, then there exists quantities q' and q" such that

the following contract yields the first best as a perfect

equilibrium outcome for any interim renegotiation process

satisfying assumption 1: after the realization of the state

of nature, do as follows:

— Stage 1: The buyer can impose to have all the bargaining

power and start from q' and p'-=c(q' ,i ,a)+Sp, .

— Stage 2: If the buyer abstains, the seller can impose to

have all the bargaining power and start from q" and

P"«v(q",j*,£)-B*„.

— Stage 3: If both parties abstain, G is played.

Proof : For (i ,j ), in state 6
f

, the buyer is indifferent between G

and the alternative he can impose in stage 1, whereas in state dp,,

the seller is indifferent between and his alternative. In all other

21
If the two random variables /? and a are not independent, 8

f
, corresponds

to (/J, a) , where /3 is the highest fl that coexists with a; similarly, 6 p„

corresponds to (£,ct), where a is the highest a to coexist with p.
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states, for q' and q" large enough, each prefers G to his own

•k k
alternative. For example the seller obtains exactly S„,>S« in all

states where 0=0 (6p„ is the most favorable among those states) and,

for q" large enough, ^^<v(q",j ,/3^)-p" whenever Pp>@_: playing G is

i

thus again better for the seller.

Suppose that the above contract is not renegotiated before the

k -k

investment decisions, and (i,j)=(i ,j ). The contract would not then

be renegotiated at the interim stage, since without renegotiation G

would be played and would implement the (interim efficient)

first-best allocation. It therefore suffices to show that the above

contract, if not renegotiated before the investment decisions, would

"k "k

lead to (i
, j )

.

•k •*

Any departure from (l,j)— (i ,j ) necessarily leads to an

expected loss of surplus. A party can thus benefit from such a

deviation only if it lowers the other party's expected utility below

its first-best level, which in turn can happen, using Assumption 1 on

interim renegotiation, only if the proposed scheme lowers this other

party's ex post payoff below its first-best level for some state of

nature. We show below that this cannot be the case for high enough

quantities and adequate prices

.

a) Overinvestment: we analyze the case of a buyer's

"k k
overinvestment (i=i ,j>j ); the case of seller's overinvestment can

be treated symmetrically.

If the buyer objects to G at stage 1, he has then all the

bargaining power and his investment has no impact on the seller's

default utility level, which by construction gives the seller at

least Sp. If the buyer abstains in the first stage, in state dp

•k

seller can guarantee himself at least S„ by abstaining too, and
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announcing J, in G . His default utility level is then S„ if the

buyer also announces dp. Otherwise, by construction of G : (i) the

default options involve q=0, so that the corresponding utility levels

are unaffected by the buyer's investment, and one party has all the

*
i k

bargaining power; (ii) If j=j the seller would obtain at least S
f

.

k ~k

Since for j>j the total surplus W is higher than W , the seller's

payoff thus cannot decrease.

b) Seller's underinvestment (i<i and j=j ). For i less than

k
i , in state dp, the buyer will impose (p' ,q'), and reduce the

*
seller's payoff by c(q' ,i,a)-c(q' ,i ,q) . On the other hand, lowering

i has no impact on the buyer's payoff corresponding to the seller's

alternative at stage 2; lastly, lowering i will have a negative

k
impact on the buyer's expected payoff associated with G in states

other than dp, . This latter impact does not depend on q' or q"

.

k
Concerning the definition of q'

, for every i G [0,i [, one can find

q' (i) big enough to allow the buyer to gain in expected term in

comparison to i . Indeed, his loss in states other than dp, is given

and bounded and so is the cut in total surplus in state dp, while,

for q' (i) arbitrarily big as default option with buyer power, the

onseller's payoff in state dp, tends to minus infinity. The functi

k
q' (i) is bounded on [0 i [ and has in particular a finite limit at

*
i . Define q' as the supremum of q' (i) on this interval. It will

deter any seller's underinvestment (if the buyer chooses for some i's

to impose (p' ,q') as starting point with full buyer power in states

other than dp, too, this only reinforces the argument).

k k
c) Buyer's underinvestment (i=i ,j<j ). The only difference

with the case of seller ;s underinvestment is that the buyer could
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impose (p' ,q') in stage 1, instead of letting the seller impose

(p",q") in stage 2 in state 8p„. However, for a given q", this will

not be profitable for q' large enough: imposing (p' ,q') in state 6p„

•k

gives the seller p'-c(q',i ,a); but for (p'
,

q' ) satisfying

•?t ~k St - i

p'-c(q',i ,a)=S„, the higher the q'
, the lower p'-c(q',i ,a) , since

a<a . The procedure is thus to first find a q" high enough so that

j<j would be too costly for the buyer if the seller imposes (p",q")

in stage 2 in state 6p„ . Then, q' is chosen to be high enough to

simultaneously deter i<i in part (b) above and induce the buyer to

let the seller impose (p",q") in stage 2 when 6=6 p„ (instead of

imposing (p' ,q' ))

.

Q.E.D.

The mechanisms described in this Section share a key feature: they

treat underinvestment and overinvestment asymmetrically. Overinvestment is

deterred because with G no player can extract more than the total amount of

quasi-rents generated by any additional unit of his own investment -and in

case of overinvestment the alternatives are not attractive. On the other hand,

underinvestment is deterred by the threat of having to bargain from a very

high output level, at which each unit of investment has an enormous impact on

one's own payoff.

A final remark concerns our assumption on the form of risk aversion

((5.1) and (5.2)), i.e. the absence of wealth effects. It has allowed us to

have only zero-output levels as starting points off-the-diagonal in matrix G .

The only remaining problem was then underinvestment, and that was taken care

of by threats prior to playing G . Instead, as seen in Section III, in the

presence of wealth effects, optimal risk sharing may require very high output

levels as starting points even without endogenous investment. The mechanisms
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described above may thus be unable to achieve the first-best allocation. An

22
analysis of this case is an interesting avenue for further research.

22
An easy case is that of separable investment, i.e. c(q,i,ff) = c(q,cr) - w(i),

and v(q
, j ,/S) - v(q,/?) + z(j), with w',z' > 0, and w" , z" < . It is assumed

that w(i) and z(j) are obtained only once the parties have reached an

agreement, otherwise there would be no problem at all in reaching (i
, j )

.

Note that the mechanism constructed in Section 3 for exogenous investment
still yields the exact same equilibria for any (i,j), since the outside
option gives each party w(i) or z(j) anyway, and since a change in starting
point (p,q) does not affect incentives to invest. There is thus no way in

which for example i ** i can affect the buyer's expected payoff (or vice
versa) . It is thus a dominant strategy for each party to choose his
first-best investment level. This result can be used to deal with the case
of sufficiently convex investment cost functions (<p(i) and VKj)) an£i

sufficiently weak nonseparability (i.e. c . and v . close to zero). Indeed,

consider a mechanism as in Section 3 which implements the first-best solution

for (i,j) - (i ,j ). For a finite number of strictly different states of
nature, it is possible to make truthtelling a strict equilibrium of the
message game in each state of nature. Under nonseparability, a unilateral
investment deviation can prevent truthtelling from being an equilibrium of
this game. However, for "small" unilateral deviations, this will not be
true. But, then small deviations are not profitable: the starting points on
the diagonal give the other party first-best payoff levels. And
renegotiation from these starting points can only raise these payoffs.
Not making your first-best investment choice can thus only reduce your own
expected payoff when the other party chooses his first-best investment level.
Finally, while the above argument relies on "small" investment deviations
(larger ones might violate truthtelling in the original message game) , larger
investment deviations will not be worthwhile for <p(i) and V'(j) sufficiently
convex. The first-best outcome is thus a subgame-perfect equilibrium of this
simple message game.
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APPENDIX A

In this Appendix, we generalize the extensive form of subsection II.

3

in two respects:

i

(i) First, instead of alternating offers, we assume an exogenous function

f(n)e{B,S), specifying the identity of the party making the offer in

each renegotiation round from t~ on (i.e., f(n) determines who can make

an offer at t = t^+nA) .

(ii) Second, we allow the following extensive form for each renegotiation

round from t„ on.

impose D -

(game over)

/ offer

impose r

(game over)

.accept r

(D
t
=r

t )

reject r

<VD
t-i

>

impose D -

(game over)

/

impose D (game over)

go to round t+1 (with
D -r_ as default)
r t

go to round t+1 (with
"!i D =D_ n as default)
1 t t-1 '

impose D -.

(game over)

Figure 3'

In round t-t^+nA, player i (selected by f(«)) can either impose the

default option relevant at that time (I.e. at the end of round t-1, so call

it D ,), or make an offer r . The other player ( j ) can then either impose

D , or the offer r , or accept r as the new default option (D ) (without

Al



imposing it), or reject r . In the last two cases, i can talk again, and

impose the relevant default option or wait until t+A, time at which the next

round starts. In all cases where an outcome is imposed the game ends with

the utility levels associated to that outcome in this state of nature,

discounted by 8. and S.

.

We could also drop the possibility for j to accept r simply as new

default option D , and/or the possibility for i to impose D - initially,

and/or to talk again after j has decided not to end the game by imposing D ,

or r
t

.

In this more general formulation, assumptions and 1 may not be

satisfied. However, the introduction of renegotiation design allows us to

get a result equivalent to Proposition 1. Specifically, we introduce the

possibility of a transfer T, and also the possiblity for one party to offer

the other one, in the last verifiable message stage, a second default option.

Our assumption on preferences w.r.t. T is somewhat stronger.

Assumption (V ) : Vi^j , i,jG{B,S), V (p,q), 3TdR s.t. V0e9,

Min (1^(1,0,0), 5
i
U
i

( P+p i
T,q,0} ^ Max U.(p,q,^)

where p. is such that e p
i — 5..

'l l

p,q s.t.U..(p,q,0)>U.(p,q,0),

The idea is that T is not only big enough so that the status quo

dominates the best outcome i could get while giving j U.(p,q,0), but also

that i would prefer waiting and receiving (p,q) tomorrow (plus the interest on

T) instead of this best outcome today (without the interest on T thus)

.

Under assumption (I'), we have the following result:
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Proposition 1' : Assume the game until t„-A has yielded a default option

(p,q), and assumption (I') is satisfied. Then, there exist

an appropriate transfer level, and an additional default

option, contingent on the state of nature, so that the unique

subgame-perfect equilibrium outcome from t„ on is ex post

efficient in each state of nature and gives one party the

utility associated with (p,q).

Proof : Assume for example one wants to allocate all bargaining power to the

seller (i.e. give the buyer U
R (p,q,0) V0). Then, find T big enough

so that V0, min{U
s
(t,O,0) , S

s
U
s
(p+p

s
T, q, 9) ) > Max U

s
(p,q,0) s.t.

p.q

U (p,q,0) > U_(p,q,0). Such T exists by assumption I'. T is a

hostage paid by the buyer to the seller at t„ , and refunded whenever

trade occurs. T thus changes the status quo point, and moves it to a

higher utility level for the seller in each state of nature than the

best he can get without lowering the buyer's payoff below its default

option level.

Now, allow the seller to pick a second default option for the

buyer in the last verifiable message stage. Then, the seller can in

fact have full bargaining power: He can offer the buyer an ex post

efficient (p',q') in state 8 such that U (p',q',0) = U (p,q,0)+e,

i.e. making in effect (p,q) dominated for the buyer by (p' ,q'). For

e arbitrarily small, this outcome would give the seller all

bargaining power. Is it the unique subgame-perfect equilibrium from

t„ on? Certainly, the buyer can guarantee himself this utility

level. Moreover, (p'
,
q' ) is the worst that can happen to the seller,

since (p,q) is dominated for the buyer, and the seller can prevent

the buyer from imposing anything worse than (p' ,q') then. Finally,
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he prefers the status quo to (p'
,

q' ) . The optimal strategy for the

buyer is thus to impose (p'
,

q'
) immediately because, by assumption

(I), the seller only gains by waiting. Allocating all bargaining

power to the buyer works exactly symmetrically (and requires T low

enough). Q.E.D.

In terms of Figure 5, we give the ability to seller to give the buyer

an additional default option S' (contingent on 8, since this happens once 6

is known) which is ex post efficient and arbitrarily close but to the right

of S' . This makes (p,q) dominated for the buyer by S' , and allows the seller

to get all bargaining power (instead, in the absence of S' , as shown by

Shaked (1987)), the buyer could in some cases ask for an ex post efficient

outcome slightly to the left of B, and threaten the seller to impose (p,q) if

it is rejected.

The conclusion of this Appendix is thus that assumptions 0, 1 and 2 can

be derived in a fairly general sequential bargaining framework, provided one

allows the parties to impose default options and to make transfers refundable

upon agreement.
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APPENDIX B

Proposition 2' : (i) If an allocation r is implementable , then for any

possible pair of states of nature (6,6') there exists a probability

distribution P ao , over {B,S) xR such that:
V V

Ep [UJa.r.J)] < U (r* 6) and E [U (a,r, 6 '
) ] < U (r*. 6 '

) .

If moreover there exists a perfect equilibrium implementing r in which

equilibrium strategies are pure, then the probability functions can be chosen

degenerate, i.e. for any pair of states of nature (6,6') there exists a game

(a
gg , ,rggt ) such that:

V
s
(aggl ,r

gg
,,6) <V

s
(v*,6) and V

R
(a

gg , ,r
gg ,

,6' ) <U
fi
(r*,(?').

Conversely, if an allocation r is ex ante efficient and if for any pair

of states of nature there exists a game (a. „ , , r ,, „ ,
) which has the above

properties, then:

A"

(ii) if only pure strategies are allowed, the allocation r can be

(truthfully) implemented using a one-stage direct revelation game which

assigns, to any pair of messages (0,0) sent by the agents, the game

(a. . ,r. . ) with the convention that T 00 -=r.

.

Vs Vs ee 6

•k

(iii) if mixed strategies are considered as well, the allocation r can

be (truthfully) implemented by a direct revelation game which is the same as

in (ii), except that the announcements are sequential (one agent first

announces a state of nature, and then the other agent, having observed the

first claim, announces a state of nature); the allocation r can alternatively

be implemented using a one-stage (possibly indirect) game.

I.e, both agents must simultaneously announce a state of nature, announcing
the truth is an equilibrium and all equilibrium payoffs coincide with those
of the allocation r.
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Proof : We first show that probability distributions can indeed be associated

with any implementable allocation as indicated in part (i). We will then

check that the mechanisms described in parts (ii) and (iii) indeed implement

the corresponding allocation if this allocation is ex ante efficient.

(i) Note first that the previous lemma allows us to consider truncated

games, where each subgame starting from t„ is replaced by efficient payoffs

corresponding to some (a,r) in {B,S}xR. Therefore, if an allocation is

implementable, starting from t, there exists such a game and a subgame

perfect equilibrium of this game which leads to the same payoffs as this

allocation.

Consider now the normal form of this game, and let b
fl
and s.

u u

respectively denote the buyer's and seller's equilibrium (possibly mixed)

strategies when the state of nature is 8; then the probability F(8,8')

induced by the pair of strategies (b.,s.,) satisfies the property announced

in the proposition. Moreover, by construction, if the two players

equilibrium strategies are pure, then the probability distributions 7„ 0I are
a a

degenerate, which concludes the proof of the part (i).

(ii) It is straightforward to check that truthfully announcing the state

of nature is an equilibrium of the game proposed in part (ii) . Let r.(0 D ,0„)

denote the payoff associated in state 6 with the pair of announcements

2
(0„,0 S

). By construction in state 8 the buyer (at least weakly) prefers

— * ~ „ •&

r.(0,0)=r. to any other r.(0
R ,0) and similarly the seller prefers f .(0 ,0)=r

.

to any other r.(8,8 „)

.

If only pure strategies are allowed, all equilibria in this game have

the same payoffs. Suppose for instance that in state 8, there exists two

2
I.e. r. (8„,9„) is in state 8 the unique equilibrium outcome of the game
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different equilibria, (8,8) and (0 ,0 ), which implies that the seller

prefers (weakly) r.(6,8) to r
g
(8,8

s
) and r

g
(8

E
,8

s
) to r^B^J), whereas the

buyer prefers r„(0,0) to r.(0g,0) and r„(0 R ,0
s

) to r-(0,0
s
); since all

payoffs are efficient given 8, these buyer's preferences imply reversed

preferences for the seller, which therefore prefers r.(0 0) to r.(0,0) and

r
fl (0,0 c ) to ?/j(^n>^c) : a^ together, this implies that the seller is

^ ^ ~
indifferent between r„(0,0)=r (0) and r.(0 ,0„) -and thus so is the buyer.

Thus if the proposed game is played at some date t after t, , it

implements the allocation r . Between t, and this date t, and conditional on

the state of nature, both agents can guarantee themselves the payoffs

associated with the corresponding efficient outcome r. by "waiting" (i.e.

proposing no new offer and refusing any new offer) until this game is played;

therefore if at date t, the current contract specifies that the above game

must be played at some date between t, and t„ , all equilibrium payoffs from

t, will coincide with those of the allocation r .

Lastly, if the allocation r is also ex ante efficient, then the same

argument can be applied to renegotiation rounds between t„ and t, , and thus a

contract, signed at t~, which specifies that the game proposed in (ii) has to

be played at some date between r, and r„ implements the allocation r .

(iii) Consider now the game proposed in part (iii) , where the buyer,

say, is the first to speak, and allow for mixed strategies. In state 0, if

the buyer announces R , all announcements in the support of the seller's best

3
response are (weakly) preferred by the seller to 0. Therefore, announcing

R
leads to an outcome which cannot be better for the buyer than r-(0 R ,0),

which by construction is weakly worse than f„(0,0) for the buyer.

Conversely, if the buyer announces 8, then by construction is a seller's

3
We implicitly assume that there exists a seller's best response; this would

be for instance be satisfied under some compactness assumptions on the set of
characteristics 9 and the set of ex post efficient payoffs.
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best response : the seller prefers r„(8,8) to any other r„(8,8„). Moreover,

as already mentioned, all possible seller's best responses lead to the same

payoffs. Therefore, by announcing 8, the buyer obtains for sure the payoff

associated with r.(0,0)=r .; 8 is thus a best strategy for the buyer, and by

the same argument as before all buyer's best strategies lead to the same

payoffs

.

This shows that, whether mixed strategies are allowed or not, all

perfect equilibria of the game proposed in (iii) have the same payoffs as the

•k

allocation r . As in (ii), if this allocation is ex ante efficient, then at

t„, a contract which specifies that this game has to be played at, say, dates

t, and t„ , indeed implements this allocation (one can easily check that

introducing renegotiation between the two announcement stages does not not

alter the above reasoning)

.

Q.E.D.
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