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Abstract

In this paper we analyze Generalized Method of Moments (GMM) estimators for time series

models as advocated by Hansen and Singleton. It is well known that these estimators achieve

efficiency bounds if the number of lagged observations in the instrument set goes to infinity. However,

to this date no data dependent way of selecting the number of instruments in a finite sample is

available. This paper derives an asymptotic mean squared error (MSE) approximation for the

GMM estimator. The optimal number of instruments is selected by minimizing a criterion based on

the MSE approximation. It is shown that the fully fesisible version of the GMM estimator is higher

order adaptive. In addition a new version of the GMM estimator based on kernel weighted moment

conditions is proposed. The kernel weights are selected in a data-dependent way. Expressions for

the asymptotic bias of kernel weighted and standard GMM estimators are obtained. It is shown that

standard GMM procedures have a larger asymptotic bias and MSE than optimal kernel weighted

GMM. A bias correction for both standard and kernel weighted GMM estimators is proposed. It is

shown that the bias corrected version achieves a faster rate of convergence of the higher order terms

of the MSE than the uncorrected estimator.
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1. Introduction

In recent years GMM estimators have become one of the main tools in estimating economic mod-

els based on first order conditions for optimal behavior of economic agents. Hansen (1982) established

the asymptotic properties of a large class ofGMM estimators. Based on first order asymptotic theory it

was subsequently shown by Chamberlain (1987), Hansen (1985) and Newey (1988) that GMM estima-

tors based on conditional moment restrictions can be constructed to achieve semiparametric efficiency

bounds.

The focus of this paper is the higher order asymptotic analysis of GMM estimators for the time

series case. In the cross-sectional literature it is well know that using a large number of instruments can

result in substantial second order bias of GMM estimators, thus putting limits to the implementation

of efficient procedures. Similar results are obtained in this paper for the time series case. In addition,

fully feasible, second order optimal implementations of efficient GMM estimators for time series models

are developed.

In independent sampling situations feasible versions of efficient GA'IM estimators were implemented

amongst others, by Newey (1990). In a time series context examples of first order efficient estimators are

Hayashi and Sims (1983), Stoica, Soderstrom and Friedlander (1985), Hansen and Singleton (1991,1996)

and Hansen, Heaton and Ogaki (1996). Under special circumstances and in a slightly different context,

Kuersteiner (2002) constructs a feasible, efficient GMM estimator for autoregressive models where the

number of instruments is allowed to increase at the same rate as the sample size. More generally

however, such expansion rates do not lead to consistent estimates. In fact, to this date no analysis of

the optimal expansion rate for the number of instruments for efficient GMM procedures depending on

an infinite dimensional instrument set has been provided in the context of time series models. In this

paper a data dependent selection rule for the number of instruments is obtained and a fully feasible

version of GMM estimators for linear time series models is proposed.

Several moment selection procedures, applicable to time series data, were proposed in the litera-

ture. Andrews (1999) considers selection of valid instruments out of a finite dimensional instrument

set containing potentially invalid instruments. Hall and Inoue (2001) propose an information criterion

based on the asymptotic variance-covariance matrix of the GMM estimator to select relevant moment

conditions from a finite set of potential moments. Both approaches do not directly apply to the case

of infinite dimensional instrument sets considered here. Linton (1995) analyses tiie optimal choice of

bandwidth parameters for kernel estimates of the partially linear regression model based on minimizing

the asymptotic MSB of the estimator. Xiao and Phillips (1996) apply similar ideas to determine the

optimal bandwidth in the estimation of the residual spectral density in a Whittle likelihood based re-



gression set up. More recently Linton (1997) extended his procedure to the determination of the optimal

bandwidth for an efficient semiparametric instrumental variables estimator. Donald and Newey (2001)

use similar arguments to determine the optimal number of base functions in polynomial approximations

to the optimal instrument. They analyze higher order asymptotic expansions of the estimators around

their true parameter values. While the first order asymptotic terms typically do not depend on the

estimation of infinite dimensional nuisance parameters as shown in Andrews (1994) and Newey (1994)

this is not the case for higher order terms of the expansions.

In this paper we will obtain expansions similar to the ones of Donald and Newey (2001) for the

case of GMM estimators for models with lagged dependent right hand side variables. This set up is

important for the analysis of intertemporal optimization models which are characterized by first order

conditions of maximization. One particular area of application is asset pricing models.

Minimizing the asymptotic approximation to the MSE with respect to the number of lagged in-

struments leads to a feasible GMM estimator for time series models. The trade of is between more

asymptotic efficiency as measured by the asymptotic covariance matrix and bias.

Full implementation of the procedure requires the specification of estimators for the criterion func-

tion used to determine the optimal number of instruments. It is established that a plug-in estimator

for the optimal number of instruments leads to a GMM estimator that is fully feasible and achieves

the same asymptotic distribution as the infeasible optimal estimator. We also propose a new kernel

weighted version of GMM. It is shown that the asymptotic bias and MSE can be reduced if suitable

kernel weights are applied to the moment conditions. For this purpose a new rate-adaptive kernel

that adjusts its smoothness to the smoothness of the underlying model is introduced. In addition, a

data-dependent way to pick the optimal kernel is proposed.

Finally, a semiparametric correction of the asymptotic bias term is proposed. The bias corrected

version of the GMM estimator achieves a faster optimal rate of convergence of the higher order terms.

The paper is organized as follows. Section 2 presents the time series models and introduces nota-

tion. Section 3 introduces the kernel weighted GMM estimator, contains the analysis of higher order

asymptotic MSE terms and derives a selection criterion for the optimal number of instruments. Section

4 discusses implementation of the procedure, in particular consistent estimation of the criterion func-

tion for optimal bandwidth selection. Section 5 analyzes the asymptotic bias of the kernel weighted

GMM estimator and introduces a data-dependent procedure to select the optimal kernel. Section 6

discusses non-parametric bias correction. Section 7 contains a small Monte Carlo experiment. The

proofs are collected in Appendix A. Auxiliary Lemmas are collected in Appendix B which is available

upon request.



2. Linear Time Series Models

We consider the linear time series framework of Hansen and Singleton (1996). Let yt € R^ be a strictly

stationary stochastic process. It is assumed that economic theory imposes restrictions in the form

of a structural econometric ecjuation on the process yt- In order to describe this structural equation

we partition yt = [y(,i,J/( 2'i't s]- Here, y^j is the scalar left hand side variable, y^g are the included

and yt 3 are the excluded contemporaneous endogenous variables. The vector Xt is defined to contain,

possibly a subset, of the lagged dependent variables yt_i, ...,yi_j. where r is known and fixed. The

structural ecjuation then takes the form

(2.1) yt.i=ao + P'oyt,2 + P'i^t+£t-

The structural model also imposes restrictions on the innovations Ct- More specifically, £t is strictly

stationary with Eet = and follows a Moving-Average (MA) process of order m — 1 for m > 1, where

again, m is assumed known and finite. We denote the autocovariance function of £< by Yj = EetSt-j

with 7^ = for Ijl
> m.

Letting /3 = [/3o,/3x] G K'^ and collecting all the regressors in X( where x't = [yj2j^^(] we can

write (2.1) as y^j = ao + /3'x( + £f An alternative representation of (2.1) is obtained by setting

a{L,/3) = ao + a\L + ... + arU with 1 x p vectors a^ such that a{L,fi)yt = ao + £(. Note that a; are

subject to exclusion and normalization restrictions imphed by /?.

In addition to the structural equation (2.1) we also assume that the reduced form of yt admits a

representation as a vector autoregressive moving average (VARMA) process A{L)yt — A{l)i.iy + B{L)ut

such that there exists an infinite moving average representation

(2.2) yt = ^iy + A-\L)B{L)ut.

Here, /x G M^ is a constant and Ut is a strictly stationary and conditionally homoskedastic martingale

difference sequence.

In order to completely relate model (2.1) to the generating process (2.2) we define additional p—1 xp

matrices of lag polynomials Ai{L) and B\{L) such that A\{L)yt = B\{L)ut + a\- The matrices A\{L)

and Bi{L) satisfy [a'(L,/3), ^'i(L)]' = .4(1), \b' [L) . B[{L)]' = B{L) and [cvo,a'i]' = A{\)iiy. It follows

from this representation that the structural innovations St are related to the reduced form innovations

by St = b{L)ut where b(L) = 60 + biL + ... + bm-iL'^~^ and 6, G W are I x p vectors of constants.

We assume that A{L) and B{L) have all their roots outside the unit circle and that all elements of

A{L) and B{L) are finite order polynomials in L. Economic theory is assumed to provide restrictions on

the polynomials a{L,0) and b{L) such that their degrees are known to the investigator. No restrictions



are assumed to be known about the polynomials A\{L) and Bi{L). In particular their degrees in

L are unknown, although assumed finite. The investigator is concerned with inference regarding the

parameter vector /? = [Pq, I3[) while b{L),Ai{L) and B\{L) are treated as nuisance parameters.

The economic model (2.1) implies moment restrictions of the form

(2.3) E{et+myt-j) = for all j > 0.

These moment restrictions are the basis for the formulation of GMM estimators. Alternatively, the

moment restrictions (2.3) are often implied by economic theory and then lead to the formulation of a

structural model of the form (2.1). A well known example is asset pricing models.

In addition to the structural restrictions of Equation (2.1) we impose the following formal Assumf>-

tions on zit and A{L),B{L) and b{L).

Assumption A. Letut G W be strictly stationary and ergodic, with E {ut\lFt-i) = 0, E {utu[\J^t-i) =

T, where E is a positive definite symmetric matrix of constants. Let ul be the i-th element of ut and

cumij_...^j^(ti, ...,ifc_i) the k-th order cross cumulant oful]^^^, ...,u\'' . Assume that

oo oo

^ •• ^ |cum,j,,..,,Jii,...,^fc_i)| < oo for fc < 8.

£l
—— oo £fc_i=^—oo

Assumption B. The lag polynomial C{L) with coefRcient matrices Cj is defined as C{L) = A~^{L)B{L)

where A{L) and B{L) are p x p matrices of finite order polynomials in L such that detyl(z) ^

and det B[z) ^ for \z\ < 1. Moreover, assume b{z) ^ for \z\ < 1. Let pa he the degree of

the polynomial A{L) and let Ai be the root of maximum modulus of det{zP'^A{z~^)) = 0. Let

f,{X) = (27r)^^6(e''^)'i;5(e-'^) which can eqiiivalently be written as f,(X) = (27r)~^ ct^
|g,(giA)|2 f^^

some constant a^ and lag polynomial 6 (L) = 1 — 9\L — ... — 9m-\L^~^. Let p^ be the degree of the

polynomial B{L) = 6{L)B{L) and let Ai be the root of maximum modulus of det{zPbB{z~^)) = 0.

Define A = max(Ai,Ai). Assume that A G (0,1). Define the infinite dimensional instrument vector

zj,^ = (2/j,yj_j, ...)' and let P' = Cov {xt+rm ^t^oo)' Assume that P has full column rank.

Remark 1. The column rank assumption for P is needed for identification (see Kuersteiner (2001)

for an extensive discussion of this point). Assumption (B) guarantees that /^(A) ^ for A 6 [— tt, tt].

Then l//e(A) exists and corresponds to the spectral density of an AR(m-l) model.

The fact that ut is a martingale difference sequence arises naturallj' in rational expectations models.

In our context it is needed together with the conditional homoskedasticity assumption to guarantee that



the optimal GMM weight matrix is of a sufficiently simple form. This allows us to construct estimates of

the bias terms converging fast enough for bias correction and optimal number of instruments selection.

The conditional homoskedasticity condition E{utu[\J-t-i) = Eutu't is restrictive as it rules out time

changing variances. Relaxing this restriction results in more complicated GMM weight matrices of the

type analyzed in Kuersteiner (1997, 2001). In principle the higher order moment restriction implied by

conditional homoskedasticity could be used in addition to the conditions (2.3). The resulting estimator

is however nonlinear and will not be considered here.

The summability assumption for the cumulants limits the temporal dependence of the innovation

process. Andrews (1991) shows for /c = 4 that the summability condition on the cumulants is implied

by a strong mixing assumption for Ut- The cumulant summability condition used here is similar but

slightly stronger than the second part of Condition A in Andrews (1991). What is needed both in

Andrews (1991) and here are restrictions on the eighth-moment dependence of the underlying process

Ut.

Infeasible efficient GMM estimation for /? is based on exploiting all the implications of the moment

restriction (2.3). In our context this is equivalent to choosing all lagged observations cis instruments.

An infeasible estimator of (3 based on zj.ooj where 2t,oo is defined in Assumption (B), is used as a

reference point around which we expand feasible versions of the estimator.

For this purpose let Q. = Ylh=^m+i Ij^iO ^^'^''^ fl.{l) = Cov{zt^oo, z[_i ^) and D = P'Q~^P where P

is defined in Assumption (B). A detailed analysis of these infinite dimensional matrices can be found

in Kuersteiner (2001) and Appendix (B.2). The infeasible estimator of is given by

.. n~Tn

/3„,^ = D-'p'Q-'- J2 {yt+m.i - a4) (-t.oo - 1,0 ® ^iy)

t=i

ywhere Iqo is an infinite dimensional vector containing the element 1 and /uj is the first element of i^i

Let do = P'n~^-^ Yli^t,rx — loo ® m)^( almost surely such that s/n (/?„ ^o
~ 0o) ~ D~^do. It can

be shown that D~^do —+ N{0,D~^) as n —> oo under the assumptions made about yt and et-

For any fixed integer M, let Zi^m = {y't^y't-i: yt-M+iY be a finite dimensional vector of instruments.

An approximate version /3„jv/ of Z^n.oo i^ then based on Dm = P'^jQ^^Pm and zt^M where Pm and Q.m

are defined in the same way as P and Q with z^oo replaced by Zt^M- It then follows that ^/n {^fi^ ^ — /3)
—

D~^do —> as n, Af —» oo. The last statement is no longer true, at least not without specifying the rate

at which AI goes to infinity, once i3„ j^f
is replaced by a feasible estimator /3„ m where $ri.M is defined

in the same way as (3„ ^ but with Pj\j and fi/i/ replaced by estimates Pm and fi/i/. We call 0^ ^-y a

fully feasible estimator if M is a function of the data alone. A more detailed definition of /?„ ^j is given

in Equation (3.2) while data-dependent selection of AI is discussed in Section 4.



3. Kernel Weighted GMM

In this paper a generalized class of GMM estimators based on kernel weighted moment restrictions is

introduced. Conventional GMM estimators are based on using the first M of the moment restrictions

(2.3). More generally one can consider non-random weights k{j, M) such that

k{j,M)Eet+myt-j-i = 0.

The function k{j,M) is a generalized kernel weight. For the special case where k{j,M) = k{j/M),

k{j, M) is a standard kernel function. The truncated kernel is k{j/M) = {\j/M\ < 1} where we use {.}

to denote the indicator function. The general kernel weighted approach therefore covers the standard

GMM procedure as a special case when the truncated kernel is used. In Section 5 it is shown that many

kernel functions reduce the higher order bias of GMM and that there always exists a kernel function

that dominates the traditional truncated kernel in terms of higher order MSE.

We now describe the kernel weighted GMM estimator /3„jv/- Define the matrix

kM = diag(fc(0, M), ..., k{M ~ 1, Af ))'

having kernel weight k{j — l,Af) in the j'-th diagonal element and zeros otherwise. Let Km =

{km 'S' Ip) where Ip the p-dimensional identity matrix. An instrument selection matrix 5m (0 =

diag({t > 1} ,....{t > M]) is introduced to exclude instruments for which there is no data in the

sample. The vector of available instruments is denoted by zt^M = (5'm(0 ® Ip) [zt^M " 1m ® v) where

?/ = " 2^t=iyt-

An estimate of the weight matrix Qm is obtained as follows. We define Qi\i(l) = - '^^ zi^^^'t-l hi-

The optimal weight matrix is then given by

m— \

(3.1) hM= Y. 7"(0^A/(/)

where 7^(Z) = ^ Xl"=r"^m+i ^t^t-i and et — a{L, f^n,M)iyt+m — y) for some consistent first stage estimator

PnM- For M fixed and possibly small, it is well known that such an estimator can be obtained from

standard inefficient GMM procedures where Q^ = Imp-

Let Zm be the matrix of stacked instruments Z^ = [2inax(i,r-m+i),Mi -) ^n-m,M]' and X =

[xniax(m+i,7-+i) ~ x,...,i„ — x]' the matrix of regressors. Also, Y is the stacked vector of the first

demeaned element in y<. Then define the d x Mp matrix P]^,; = n~^X'Zf,; as well as the Mp x 1 vector

^M ~ n~^Zi^jY. Let Em = Km^~\}Km- Assuming that M is such that M > d/p, where d is the

dimension of the parameter space, the estimator /?„ m can now be written as

(3.2) K,M = (P'm^mPm)
"'

P'm^mP'm-

7



For the truncated kernel with Km = Ihip, (3.2) is the standard GMM formula. The effects of using

kernel weighted moments can be inferred from (3.2). The kernel matrix A'a/ distorts efficiency by using

Hjv/ instead of the optimal hjj as weight matrix. As is shown below, these effects are second order

for suitable choices of the kernel function k{j, M) and bandwidth M. It is also shown that the second

order loss of efficiency is more than compensated by a reduction of the second order bias for suitably

chosen kernel functions.

We now turn to the formal requirements the kernel weight function k{.,.) has to satisfy. We first

define the constant s which plays a role in determining the rate of convergence of /3„ ^^ to /3„ ^.

Definition 3.1. Let \\ and Ai be as defined in Assumption (B). Let si be the multiplicity of Ai and

si the muhipUcity of Aj. Define s = 2si — 1/2 if Aj > Ai, s = 2s\ + 3/2si — 1/2 if Ai = Ai and

s = 3/2si - 1/2 if Ai < Ai.

Assumption C. The kernel function k{j,M) is regular if k{j,AI) = k{j/M). Then k{.) satisfies k :

Mh^ [-1, 1] , A:(0) = 1, k{x) = k(-x)\/x G M, k{x) = for |x| > 1. k{.) is continuous at and at all but a

hnite number of points. For q e (0, oo) there exists a constant kq such that kg = lim3;_o(l — ^(i'))/ 1^1'

We distinguish: i) kq = for all q € (0, oo), ii) kq ^ for some q 6 (0, oo).

Assumption D. The kernel function k{.. .) is rate-adaptive if it satisfies \k (x, y)| < c < oo V (x, y) £

K X 1R+, k{-x,y) = k{x,y), k{0,y) = 1 for all ij eR+ and k{x,y) = for \x\ > 1. Fiirtfiermore, for A

defined in Assumption (B) and cq = — log(A), limy_»oo (1 — k{x/y. y*"A^)) /y^X^ = CqCj |x| for all x &M.

and some constant ci

.

Assiimption (C) corresponds to the assumptions made in Andrews (1991) except that we also

require A:(x) = for |x| > 1. This assumption ensures that only a finite number of moment conditions,

controlled by the bandwidth parameter, are used in estimation. The assumption could be relaxed at the

cost of having to introduce additional bandwidth parameters to estimate the optimal weight matrix.

This seems unattractive from a practical point of view and is not pursued here.

Assumption (C) rules out certain parametric kernel functions such as the Quadratic Spectral kernel

but is satisfied by a number of well known kernels such as the Truncated, Bartlett, Parzen and Tukey-

Hanning kernels.

In the case of regular kernels the constant kg measures the higher order loss in efficiency induced by

the kernel function which is proportional to 1 — k{i/M) = kqM~'' |i|' for large M and some q such that

kq ^ 0. For rate-adaptive kernels we obtain an efficiency loss of 1 — k{i/M,M^X ) = M^X CQ\i\'^ kq

which, as will be shown, is of the same order of magnitude as the efficiency loss due to truncating the



number of instruments. The kernels are called rate-adaptive because their smoothness locally at zero

adapts to the smoothness A of the model. In Section 4 it is shown how the argument M^\^' in k{.,
.)

can be replaced by an estimate.

Kernel functions that satisfy Assumption (D) can be generated by exploiting the chain rule of

differentiation. Consider functions of the form

(3.3) . 4^{v,z) = {2~z{-\og{z)Y)v + {z{-\og{z)f-l)v'

for V 6 [—1,1] and some non-negative integer q. Then 0(1,2) = l,(f>{Q,z) = 0,9(jf)(u, z)/9u|^^j =

z(— log(2))'' for all z. It thus follows that z parametrizes the partial derivative of (j) with respect to v.

The constant q is chosen in accordance with a kernel k{x) to which ^(u, z) is applied and for which

kq 7^ 0. The rate adaptive kernel /c(j, M) is then obtained as

(3.4) k{3,M) = cl){k{j/M),NF\^)

for any kernel k{j/M) satisfying Assumption (C). It is shown in the proof of Proposition (3.4) that

\imM-*oc {I - 4>{H^/^^)^ M'\^'')) /M'X'^' = \i\''kqcl. Also note that ^ 4>{k{x),NP\'^^'fdx < oo uni-

formly in M G (0,oo] as long as A 6 (0, 1) and J k{x)'^dx exists. The latter is the case for all kernels

satisfying Assumption (C). We use the short hand notation / (j){x)'^dx = \im.j[j^^ J (p{k{x),M^\ )'^dx.

The bandwidth parameter M is chosen such that the approximate MSE of a weighted sum of

the elements of /3„ ^/ is minimized. We use the Nagar (1959) type approximation to the MSE used in

Donald and Newey (2001). Let ^„ f^j
be stochastically approximated by bn,M such that n^'^(^„ m~P) =

bn,M + Tn^M where rn,M is an error term. Define the approximate mean squared error (/?„(M, i, k{.)) of

P^M as in Donald and Newey (2001) such that for I gW^ with £'l = 1,

e'D'/^E {bnMb'nM) D^'^'^ = 1 + "PniM, ^, k{.)) + i?„,M

and require that the error terms r^ jv/ and Rn,M satisfy

(3.5) -———— = Op(l) as M^oo,ri^oo, VAf/n^O.
(/j„(M,£,fc(.))

The only difference to Donald and Newey (2001) is that in our case (/j„(M, £, /c(.)) is an unconditional

expectation. As noted by Donald and Newey, the approximation is only valid for M -^ oo. Given the

efficiency of /?„ ^ this is the case of interest in the context of this paper.

Proposition 3.2. Suppose Assumptions (A) and (B) hold and i eM'^ with i'l = 1. Let T^^^ = EetXs

and define f,,{X) = ^ Ej" -oor^'e-^^i. Define

(3.6) Ai=piAn)-' r /,,(A)7-i(A)dA.
J —n



Let A =eD-^/'^X^AiD-^'-i. and Bx = limM^oo (1 - (Jim) I (M'^A^^^) with

Also, 5(9) = \ix^M^^02Ml{M'^'y?^^) where a2M = i'D-y'%;nMbMD''/'-l, b\j = Qm{Imj, ~

Pm [P'm^iIPmY' P'm^m) ^nd Qm = P'^i {Imp - Km) n^j + P'.p-Jihip - Km)- Then,

i) for k{.) such that Assumption (Ch) is satisfied it foUows that

^„{MJ,k{.)) = 0{M^ In) + 0{M-^'').

ii) for A:(., .) defined in (3.4) such that Assumption (D) holds, n,M -^ 00 and Ap-^~~X" n —> 1/k with

< K < CO,

\imn/M^^„{M.l,k{.)) = -^ ( I (p{x)'^dx\ +cl'^k^^B^'^^ /k + Bi/k.

Hi) for k{x) = {|i| < 1}, n, 7\/ -> 00 and M~-'-'^ X^^' n -» 1/k with < k < 00,

Yimn/M'^ip^iM,e,k{.)) = AA + Bi/k.
n

This result shows that using standard kernels introduces variance terms of order 0{M~'^'^) that are

larger than for the truncated kernel. Using the rate-adaptive kernels overcomes this problem, leading

to variance terms of the same order as in the standard GMM case. Nevertheless, kernel weighting

introduces additional variance terms of order A/'^'A . Intuitively, the kernel function distorts the

optimal weight matrix resulting in an increased variance of higher order terms in the expansion. As

will be shown, this increased variance can be traded off against a reduction in the bias by an appropriate

choice of the kernel function. Since any kernel other than the rate-adaptive kernels lead to slower rates

of convergence, only rate-adaptive kernels will be considered from now on.

An immediate corollary resulting from Lemma (3.2) is that the feasible estimator has the same

asymptotic distribution as the optimal infeasible estimator as long as M/ ^/n -^ 0.

Corollary 3.3. Assume that the assumptions of Lemma (3.2) hold. If n. A/ —> oc and Mj^/n ^ as

n — 00 then s/ii iPnj^j - P) — D^^do = Op(l).

Because B^''' and Bi are difficult to estimate we do not minimize ifjj{AI,l,k(.)) directly. Instead we

propose the following criterion.

Proposition 3.4. Let M* mimmize (p„{MJ.k{.)). Then, as n -» oc. M*/M* —^ 1 where

(3.7) i\/* = argminMIC(A/) = argmin^

—

A\ / (i)(x)'^dx] -logaM
M€l Me I " V./-00 /

10



with I = {[d/p] + l,[d/p] + 2, ...} and [a] denotes the largest integer smaller than a. Here gm =

0"1M — cr2M with aiM, cr2M defined in Proposition (3.2). If in addition, for some constant ci, logaiM =

ciM^^A^^ + o{Xl^) where A, satisfies < A, < A^/^ then M*/M* - 1 = 0(n-i/2 (logn)^/^).

Remark 2. By construction, fi^^M' -"^ higher order efEcient under quadratic risk in the class of all

GMM estimators Pn,M> Mel.

Remark 3. For the truncated kernel f^ 4>{x)'^dx = 2 and C2m = 0. Note that aiM measures the

second order loss of efficiency caused by a finite number of instruments. This result follows from the

fact that (P'j^^jQ.^Pm) is the asymptotic variance matrix of the estimator based on M instruments.

Then aiM has the interpretation of a generalized measure of relative efficiency of (3^^. It corresponds

to N-'^a'^H-'^f'{I - P'')fH-'^ of Donald and Newey (2001, their notation). The term a2M measures

the additional loss in efRciency due to the kernel. The constant A measures the simultaneity bias

caused by estimates of the optimal instruments. When rn = 1 such that Et is serially uncorrelated,

Ai= ^a~^i' D~^''^airx. Noting that here Mp is the total number of instruments, it can be seen easily

that when m = 1 the penalty term essentially is the same as in Donald and Newey (2001).

Remark 4. It is shown in the proof of Proposition (4.3) that M* = logn/ (2co) +o(logn) and asymp-

totically does not depend on A, B^'^\ B\ or k up to order o(logn). If the result M*/M* — 1 = o(l) is

sufficient then it is possible to replace MIC(M) by the simpler criterion n~^ (Mp) — loguiM where

Mp is the total number of instruments. Note that this simplification is allowed only for models where

logaiM decays at an exponential rate. This is the case for the ARMA class.

Remark 5. A further simpUfication is available if the deBnition of(pj^(M,i,k(.)) is based on

ixD^''^EhnMb'n,MD^''^

instead of £'D^^^E{bn^Mb'^ j^^)D^^^'£. Then the approximate MSE depends on tiaiM = log|CTiM| =

log \P'j^Q'^Pm\ - log |D| where a\M = D~^/'^P'j^^W^PmD"^/^ . The simpUfied criterion for this case is

n~^ (Mp) + log |P|v^fi^ Pm\ ^^d knowledge of the variance lowerbound D~^ is no longer required.

Note that this formulation ofMIC(M) is quite similar to Hall and Inoue (2000) except for the penalty

term {Mp)~ /n.

4. Fully Feasible GMM

In this section we derive the missing results that are needed to obtain a fully feasible procedure. In

particular one needs to replace the unknown optimal bandwidth parameter M* by an estimate M*. In
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order to have a fully feasible procedure we need consistent estimates of the constants A\,D and (Jm,

converging at sufficiently fast rates.

The following analysis shows that estimation of ^i can be done nuisance parameter free in the sense

that consistent estimates of Ai do not depend on additional unknown parameters. Unfortunately the

same is not true for D and a^- We use an approximating parametric model for C{L) to estimate D

and a^.

We first consider the simpler estimation problem for the constant ^i where

j= — oo

Note that C are the coefficients in the series expansion of f~^ (A)

.

Consistent estimates of the MA(m-l) representation of €t can be obtained by using consistent

estimates of the parameter P to obtain estimates it- An MA(m-l) model is then estimated for it- This

can be done by using a nonlinear least squares or pseudo maximum likelihood procedure as described

in chapter 8 of Brockwell and Davis (1991). This procedure is outlined in the proof of Lemma (4.1).

Because of the exponential decay of Cj and the fact that m is finite, F" can be replaced by a simple

sample average based on estimated residuals F^^ = n~^ St^minf '+'"1/ ^t+m^t-j- Using these estimates

one forms ^1 by

(4.1) -^1 = 1 E '^j'^T-m-

j=-n+l

To summarize, we state the following proposition.

Proposition 4.1. Let Assumptions (A) and (B) be satisfied. Let A\ he defined in (4.1). Tlwn

^{Ai--Ai)=Op{l).

We use a finite order VAR(h) approximation to C{L)~^ = C{L) with C{L) = YLT=o CjL^ to estimate

the parameters D and G^]. It follows that yt = Cq C{\)^y + X^jlj TTjyt-j + vt where ttj = Cq^Cj and

Vt = Cq Ui. Let 7r(L) = I — YI'tLi ""j-^ and Evtv[ = Ei,. The approximate model with VAR coefficient

matrices tti/j, ...tt/iM is then given by

(4-2) yt = fiyj^ + TTi^hyt-i + ... + nh.hVt-h + Vt.h

where T,yh = Evt^h'u't h '^ ^^^ mean squared prediction error of the approximating model. VAR ap-

proximations in a bandwidth selection context was proposed by Andrews (1991). There however, h is

kept fixed such that the resulting bandwidth choice is asymptotically suboptimal. We let h —> 00 at a
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data-dependent rate, to be described below, leading to the approximating model being asymptotically

equivalent to 7r(L).

It was shown by Berk (1974) and Lewis and Reinsel (1985) that the parameters (tti /i, ...,7r/j_/i) are

root-n consistent and asymptotically normal for 7r(/i) = (tti, ...,7r/i) if h does not increase too quickly,

i.e. if h is chosen such that h /n —
> 0. At the same time h must not increase too slowly to avoid

asymptotic biases. Berk (1974) shows that h needs to increase such that n^^'^'}2i=h+i''^j ~* as

h, n -^ DO. Ng and Perron (1995) argue that information criteria such as the Akaike criterion do not

satisfy these conditions and can therefore not be used to choose h. Moreover, the results of Hannan

and Kavalieris (1984, 1986) imply that if h is selected by AIC or BIC then h ~ h = Op{\/logn) and h

fails to be adaptive in the sense of Ng and Perron (1995).

To avoid the problems that arise from using information criteria to select the order of the ap-

proximating model we use the sequential testing procedure analyzed in Ng and Perron (1995). Let

nih) ^ (tt'i, ...,<)' , Ft,,, = {y[ - y'
, ...,y[_^+, - y')' and A^ = Et=/z+i i'*-!,'.^'/-!,/. and define Mf;\l)

to be the lower-right p x p block of Mf[^. Let Ffc be the kp x kp matrix whose (m,n)th block is T^_^

and r'j ^ = [r^^j, ...,r^''^] where F^^^ = Cov {yt-i,y[_j). The coefficients of the approximate model

satisfy the Yule-Walker equations {ni^h, ,'^h,h) = ri,/,r^^ Let fi,/, = (n - h)"-^ J2t=h ^t,h ivt+i - y)

and F/, = (n — h)~ Y^=h ^t,hYth- '^^^ estimated error covariance matrix is S„ /^ = n~^ Y17=h+i ^t.h^'f ^

where vt^h = Ut — 7i"i,/i2/t-i — ••• — ^h,hyt-h with coefficients Tr{h)' = Fj ^^F^ . A Wald test for the null

hypothesis that the coefficients of the last lag h are jointly is then, in Ng and Perron's notation,

J{h,h) =n{vecnh,h)' \ty^h^Mf^^{l)j {vecjTh^h)

We adopt the following lag order selection procedure from Ng and Perron (1995).

Definition 4.2. The general-to-specific procedure chooses i) hn = h if, at significance level a, J{h, h)

is the first statistic in the sequence J{i, z), {i = ftmax, -•^ l}i wliich is significantly different from zero or

ii) h„ = if J{i, i) is not significantly different from zero for all i = /i-max; •••: 1 where /imax is such that

^max/"- -* ^"cf n^/2 Ei=h„,,< + i IKjII -^ as n ^ do.

In order to calculate the impulse response coefficients associated with (4.2) define the matrix

Ah
I •
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with dimensions hp x hp. The j-th impulse coefficient of the approximating model is given by Cj^h =

E'l^Aj^Efi with E'l^ = [/p,0, ...,0] . The autocovariance function F^ is then approximated by F^^ =

Yl'iZo^i+jA'^y.h^'i h f^"^ ^^' ^ ~ 1)2,.... Likewise we approximate the optimal weight matrix by the

infinite dimensional matrix Sl^ = Y7P=-m+i^^ (J)^h{j) where the infinite dimensional matrix 0/i(j)

has typical k, l-th block Tf^f._- 1^. We denote the k, l-th block of fi^^ by -dkj^h- We define Dh by letting

Estimates Cj^h — E'/^Aj^Eh of Cj^h are obtained by substituting n{h) for 7r(/i) in A^ such that A/,

is defined in the obvious way. Substituting estimates Cj /, for Cj_h in D^ leads to an estimate D^. A

fully feasible version Z)^ is obtained by replacing h with /i as defined in Definition (4.2). In the proof

of Proposition (4.3) it is shown that -yn-consistency of n{h) implies D: — D = Op{n~^^'^). Next, amh ^ ~ ^P\

is approximated by aM,h in a similar way. We use the approximate autocovariance matrices F^^ to

form the possibly infinite dimensional matrices P^;;, = ^\\^ ^^x; t,
where P^) h '^ defined in the

obvious way. We then form the matrix QM,h = P'm^h i^Mp ~ ^m) ^a/,/i + ^MM^M'^h (-^^p ~ ^m) ^^^

^M,h = QMAihip - P'mm {P'M.h^MjiPM.hj KjjP-'hIh) '
The parameter aM,h is obtained from

(4-3) (JM,h = (^\M,h - (^-ZM.h with CT2A/,ft = i'D^ bM,h^M,kb'MjiD^ £

where Dh = P^j,^^ Poo,/i and ctim./i = ^'D,^ P'M,h^M,hPM,hDh ^- ^'^ estimate of aiA/.h is based

on Ti{h) in the same way as described above and i/n-consistency uniformly in M is implied by the result

for Df^. In practice, infinite dimensional matrices such as P'^ ^ and 0.^ have to be replaced by finite

dimensional matrices. The resulting approximation can be made arbitrarily accurate by an appropriate

choice of the relevant dimensions without affecting the convergence results.

We now define the estimate ^j^^j^ where we replace K\j in b./i//, by Km with typical element

4>{k{i/M), .. /logCTjyj^^). Moreover, we replace all elements in (4.3) with corresponding estimates based

on fr(/i). In Proposition (4.3) we establish that (a^^j-^- om\ / [M'^'X^^^] = Op{n~^/'^ {\ognY^'^+'')

uniformly in M where s' is defined in Proposition (4.3). Establishing this result requires a stronger

form of uniform convergence of the approximating parameters fr{h) than was needed to show D; — D =

h

is defined in (4.1). Define M* as

Op(n ^'•^), thus explaining the slower rate of convergence. Also let ^ = .f'L'f A.-,A\Dt ^ where >1i
h h

^/2 . / TOO \2
(4.4) A/* = argmin A[ / (f){x)^dx\ -loga^^^.

The following result can be established.
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Proposition 4.3. Let M* be defined in (4.4) and M* as in (3.7). Tlien (m*/M* - l) = Op{l). If in

addition logaiM = ciM^'X^^''+o{X^/'') with < A^ < A^/^ ^^jg^ (m*/M* - l) = Oj,{n-'^/^ (logn)'/2+'')

with s' = si |Ai > Ai| + Si |Ai < Aij .

Remark 6. It is always the case that \oga\M = cjM'^^A +o(A^ ) for some Xj- such that < A^ < A.

Here we require that Xr is not too close to A, ie. that the remainder term disappears sufficiently fast.

Ultimately, one is interested in the properties of a fully automated estimator /? ,>. where the data

determined optimal bandwidth M* is plugged into the kernel function and the data-dependent kernel

<p{k{i/M*), . /log<7jy^;y. ^) is used. In order to analyze this estimator we need an additional Lipschitz

condition for the class of permitted kernels.

Assumption E. The kernel k{j/A4) satisBes \k{x) — k{y)\ < ci \x'^ — y'^\ Vx, y £ [0, 1] for some ci < oo

and q > 1.

Assumption (E) corresponds to the assumptions made in Andrews (1991). Using the previous

results we are now in a position to state one of the main results of this paper which establishes that

an automated bandwidth selection procedure can be used to pick the number of instruments based on

sample information alone.

Theorem 4.4. Suppose Assumptions (A) and (B) hold and ether i) fc(., .) is defined in 3.4 and satisfies

Assumptions (D) and k{.) used as an argument in (p{., .) satisfies Assumptions (Cii) and (E) where (p{., .)

is as defined in (3.3) or ii) k{., .) = {|xi < 1}. Assume that logaiM = ciM'^^X^^' + o(A^") with <

A^ < A3/2. Let M*be defined in (4.4) then for case i) n/^/W0„
a/-

- K.M^) = Op((logn)™^''(^''"«'"^))

and for case ii) n/VM*(/3^ ^;^,
— fin.M') — Op(l)- Also, if i) and s' — q < or ii) holds then

Remark 7. Under the conditions of the Theorem, M* can he replaced hy M* in the last display as

well as in Proposition (4.3).

Remark 8. Although the constant s' is typically unknown it is often reasonable to assume that s' = 1

which requires that Aj 7^ Ai and there are no multiplicities in the largest roots.

Theorem (4.4) shows that using the feasible bandwidth estimator M* results in estimates j3^ ^^j,

that have asymptotic mean squared errors which are ecjuivalent to asymptotic mean squared errors of

estimators where a nonrandom optimal bandwidth sequence M* is used. An immediate consequence
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of the Theorem is also that P^ j^,j,
is first order asymptotically equivalent to the infeasible estimator

D~^do. The theorem however shows in addition higher order equivalence of P^j(,j. and P„,M'- In this

respect Theorem (4.4) is stronger than Proposition 4 of Donald and Newey (2001).

5. Bias Reduction and Kernel Selection

In this section we analyze the asymptotic bias of /3„ n,j
as a fimction of the sample size n and the

bandwidth parameter A'l.

Theorem 5.1. Suppose Assumptions (A) and (B) hold and k{., .) satisfies Assumption (D). IfM -^ oo

and M/n^/'^ -^ then

lim ^/^IME[bn m - P) = D'^A[ f <p'^{x)dx.
n^oo '

J

Remark 9. This result also holds for kernels satisfying Assumption (C) if f (p {x)dx is replaced by

j' k'^{x)dx.

A simple consecjuence of this result is that for many standard kernels the asymptotic bias of the

kernel weighted GMM estimator is lower than the bias for the standard GMM estimator based on the

truncated kernel.

Corollary 5.2. Suppose Assumptions (A) and (B) hold and fc(., .) satisRes Assumption (D) with

^ (f{x)dx < 2 or Assumption (C) with [ k'^{x)dx < 2. If n, M -» oo, M/n^/"^ -> then

lirn^ ||v^/ME(5„,M -
,5)11 < Jim^ \\V^/ME{bl,, -

/3)||

where b^ f^ is the stochastic approximation to the GMM estimator based on the truncated kernel.

It can be shown easily that substituting well known kernels such as the Bartlett, Parzen or Tukey-

Hanning in 4>(v,z) leads to j (p {x)dx being equal to 16/15, 67/64 and 1.34 respectively.

We now turn to the question of optimality in the higher order MSE sense of the choice of kernel

function. Let k* = Hml/ ( A^^^7'Af^2s-2
J
^here M^ is optimal for the truncated kernel. Note that

by optimality of il/^, < k* < oo. From Proposition (3.2) it follows at once that any kernel for

which A (
[ [_^ (f>{x)~dx) - 4

|
+ c^k'^B^''^

/

k* < dominates the truncated kernel. In Theorem (5.3)

a simple variational argument is used to show that we can always find a kernel k{., .) such that this

inequality is satisfied imiformly on a compact subset of the parameter space. This result raises the

question of finding an optimal or at least dominating kernel. When g = 2 is fixed this problem has been

solved for standard kernels by Priestley (see Priestley, 1981 p. 569). In our context of rate-adaptive
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kernels with fully flexible q it is not known whether closed form solutions of the associated functional

optimization problem exist. In any event, such solutions most likely depend on the constant B^"^^ which

is difficult to estimate.

To avoid these complications we propose the following data-dependent solution to the optimal kernel

selection problem. Let <f>{k{x), M^X^) be as described before. Because (p (•, •) enforces adaptiveness of

the kernel we only choose k{x), which by the Weierstrass Theorem can be approximated by polynomials.

Let r be a finite integer. Define k{x) = 1 + X][=i '^i^^ ^'^^ ^ ^ [0, 1), k{x) = k{\x\) for x < and k{x) =

if |x| > 1. Let ip = (i/'j, ,ip^) Then for j = 1, ..., r define U^ c M'^, such that C/1 is compact and for

ip^ = [ip-^^, ..,tpj_i,0,ipj^i,..,tpT.), it follows ili^ ^ C/^. Also let IC^ = {|x| > 1}. The permissible class

of kernels is ICj= K.^ U fC^ where for j > 1, /C^ = h{x)\k{x) = 1 + J^'^^^ ipiX', k{x) e [-1, l],ipe C/^|

and it is understood that k{x) also satisfies the restrictions outlined before. The optimal kernel k*{x)

with (f){k{x)) = 2k{x) — /c(x)^ satisfies

(5.1) a( r (f){k*{x)fdx] +k*?B^'^'^/K* <a(
I

(l>{k{x))^dx] + A;2b('?)/k*, all k{.,.)eICg
\J-oo J \J-oo J for all q>q' ,q'>l

Note that optimality is pointwise in A and B''' which means that in general k* depends on A and

B^'^'. It will be shown that (5.1) is a reasonable optimality criterion because one of the main objectives

in this section is to construct kernel functions that dominate the truncated kernel. To see why (5.1)

implies dominance note that the particular choice of k* guarantees that k* has the same variance term

B\/k* as the truncated kernel when evaluated along the sequence M^. Once the kernel k* is selected,

its MSE, when evaluated under its own optimal M* sequence, can be no worse than under the M^

sequence. A data-dependent optimal kernel is defined as k* where

(5.2) k* = argmin a( T <p(k(x)fdx] +^^(2-^) a,^,-,. r.

The notation o^^., -, is used to emphasize that the A'M-matrix used to construct ct2a/ contains diagonal

elements 0(/c, /ctj ^^. ) depending on k and M^ is the optimal bandwidth for the truncated kernel. We

estabhsh the following result.

Theorem 5.3. Let k*{x) be defined as in (5.2). Then for any q' 6 [1,t], r < oo,

sup (k*{x) - fc*(x)) = Op{n-^^^ (logn)^/2+.')

Let Pn,M'{k'),k' ^^ ^'^^ kernel weighted GMM estimator with iiernel k* and let /3^ M'(k') k'
^^ ^''^ GMM

estimator based on k*. Here, M*{k) = argmin^M^n"^ — loga. r where for AJ{k*) we use a'l^j with
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^^Mh ^^^^^ (t>{^* : \/1oS'^im/i) -"^ used as kernel weight. Then,

Furthermore, let = {Ai, ..., Ap^, Bi, ..., Bqi^;pa,qb finite] be the set of all reduced form models that

satisfy Assumption (B). Let Go be a compact set Go C O such that sup^^j fi''?' < oo and infeo -4 >

0. Then, for some collection of sets U^, each sufficiently large, there exists a A: G IC^' with kg' =

lim^r^o (l - ~k{x)^ I |x|'' for any q' 6 [l,r],T < oo such that siipe^ ^
( (f^^^{k{x)fdxj - 4

j
+

^2,6(9')/^* < 0.

The second part of the theorem imphes that the truncated kernel is always dominated by k* . This

is the case because the truncated kernel {|.r| < 1} 6 /C and there is an element in /C that strictly

dominates it.

6. Bias Correction

Another important issue is whether the bias term can be corrected for. The benefits of such a correction

are analyzed first. It turns out that correcting for the bias term increases the optimal rate of expansion

for the bandwidth parameter and conseciuently accelerates the speed of convergence to the asymptotic

normal limit distribution.

Using the result in Theorem (5.1) the following bias corrected estimator is proposed

(6.1) Pl,i = hnM - ~ [p'm^mPm)'' a j 4>Hx)dx.

Note that for standard GMM (truncated kernel) the bias correction term is simply 2-^ ( P'j^jQ'^JPm ) A\ .

The bias term Ai can be estimated by the methods described in the previous section. The quality of

the estimator Ai determines the impact of the correction on the higher order convergence rate of the

estimator. If Ai — Ai is only Op(l) then the convergence rate of /3„ j^^ is essentially the same as the one

for fin,M- If -Ai— A\ = Op{n~^) for r] 6 (0, 1/2] then the convergence rate of the estimator is improved.

The mean squared error of the bias corrected estimator is defined as before by

nD'/^£'Eb';,^„bl,/(D'/^ = 1 + ^^(M.^.fc(.)) + JR^,M

where ^/ri. (/3„jv; ~ /^j =^n M +'n m ^^'i^h the same restrictions imposed on the remainder terms /?^ ^^

and r^jv^ as in (3.5). We obtain the following result.
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Theorem 6.1. Suppose Assumptions (A) and (B) hold and k{., .) satisfies Assumptions (Ci) or (D).

Then for any i eR"^ with f^ = 1, (fiUMJ, K, .)) = 0{M/n) - logCTM- The optimal M* can he chosen

by
Mp

,M_ = argmm logcTM-
n

IfM* = argmin^ - log^M, then (m*JM; - l) = Op(n-i/2 (logn)''^^/^) and

n/y/W* (^pIjCi,
- K^i + ^D-'A[

I
hHx)dx^ = Op(l).

RemEtrk 10. The result remains valid if $^ j(^. is replaced with P^ M^/k') y J^ T^J) as long as q' > s'

.

•" C

It follows from Theorem (6.1) that for f^n^M* the higher order MSE is 0(logn/n) compared to

0((logn) /n) for the GMM estimator without bias correction.

7. Monte Cctrlo Simulations

A small Monte Carlo experiment is conducted in order to assess the performance of the proposed

moment selection and bias correction methods. For the simulations we consider the following data

generating process

(7.1) yt,i = Pyt,2 + ut- Out-i

yt,2 = <Pyt-i,2 + vt.

with [ui, I't] ~ N{0, E) where S has elements o"j = cr^ = 1 and ai2- The parameter P is the parameter to

be estimated and is set to /3 = 1 in all simulations. All remaining parameters are nuisance parameters

not explicitly estimated. The parameter ai2 is one of the determinants of the small sample bias of

both Ordinary Least Squares (OLS) and GMM estimators and is set to .5. The parameter (p controls

the quality of lagged instruments and is chosen in {.1, .3, .5} . Low values of (p imply that the model is

poorly identified. The parameter 9 finally is set to {— .9, —.5, 0, .5, .9} .

We generate samples of size n = {128,512} from Model (7.1). Starting values are yo = and

[uqiWo] = 0. In each sample the first 1,000 observations are discarded to eliminate dependence on

initial conditions.

Standard GMM estimators are obtained from applying Formula (3.2) with Km — Im- In order

to estimate ^m we first construct an inefficient but consistent estimate /3„ ^ based on (3.2) setting

Km = fu and ^m = f-M- We then construct residuals St = yu — Pn.iVit and estimate Q.m as described

in (3.1). Kernel weighted GMM estimators (KGMM) are based on the same inefficient initial estimate
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such that the estimate for (Im is identical to the weight matrix used for the standard GMM estimators.

In the second stage we again apply (3.2) with Cluf and the matrix K^j based on the optimal data-

dependent kernel k* defined in Equation (5.2) with /C, = /Ci.

The estimated optimal bandwidth M* is computed according to the procedure laid out in Theorem

(5.3).^ For each simulation replication we obtain a consistent first stage estimate /3„ j to generate

residuals it- We estimate 9 by fitting an MA(1) model to it using the Matlab procedure arimax. We

then estimate the sample autocovariances F^^ for j = 0, ...,n/2 where n is the sample size and form an

estimate of Ai based on Formula (4.1). Next we use the procedure of Definition (4.2) to determine the

optimal specification of the approximating VAR for yt = [yu, y2t]' allowing for a maximum of 2 * [71^/^]

of lags. Based on the optimal lag length specification we compute the impiilse coefficients of the VAR

which are then used to estimate the remaining parameters D and a^j needed for the criterion MIC(M)

as well as for optimal kernel selection.

In Tables 1-3 we compare^ the performance of feasible kernel weighted GMM with optimally chosen

kernel, KGMM-Opt, to feasible standard GMM, GMM-Opt, with truncated kernel. In addition to

automatic selection of M* we consider both estimators, KGMM-X (with optimally chosen kernel) and

GMJVI-A", with a fixed number of X — 1, 20 lagged instruments. We also report the performance of the

corresponding bias corrected versions BGMM-Opt and BKGMM-Opt where M* is selected according

to the procedure described in Theorem (6.1).

In order to separate the effects of selecting M from the properties of using weights for the moment

conditions we first consider GMM and KGMM with a fixed number of instruments. Tables 1-3 show

that for (p small relative to the sample size there is little difference between the two estimators. They

are also not verj' different from OLS. As the identification of the model improves, KGMM starts to

dominate GMM both in terms of (median) bias eis well as MSE and mean absolute error (MAE). This

effect becomes more pronounced as more and more instruments are being used which can be explained

by the predominance of bias terms in this case and the bias reducing property of the kernel weighted

estimator.

Turning now to the fully feasible versions we see that the same results remain to hold. For poorly

identified models the choice of M does not affect bias that much and all the estimators considered

have roughly the same bias properties. Especially for poorly identified parametrizations optimal GMM
is much more disperse than optimal KGMM. The reason for this lies in the fact that optimal GMM
tends to be based on fewer instruments which results in somewhat lower bias but comes at the cost

of increased variability. As identification, parameterized by (p, and/or sample size improve, optimally

The Matlab code is available on request.

'Results for 9 = { — .9, .9} are available on request.
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chosen kernel weighted GMM starts to dominate standard GMM for most parameter combinations.

The bias corrected versions of both estimators attain further improvements both as far as bias

as well as MSE and A4AE are concerned when the model is well identified. In these circumstances

the kernel weighted and bias corrected GMM tends to have a somewhat larger MSE than the non-

weighted version. On the other hand the non-weighted version tends to overcorrect bias in some cases.

A clear ranking is thus not possible. The bias corrected estimators tend to perform relatively poorly

compared to GMM-Opt and KGMM-Opt when identification is weak or when \6\ is large. Overall,

their performance is more sensitive to the underlying data-generating process.

In the theoretical development of the paper we have maintained the assumption of conditional

homoskedasticity of the innovations. While the strongest results concerning higher order adaptive-

ness and optimality of bias correction in Theorems (4.4) and (6.1) are not expected to go through

without the homoskedasticity assumption it is still expected that the optimal M* — log n/ (2 log A)

asymptotically. In this sense it is plausible that the criterion MIC(M) performs reasonably well

even with heteroskedastic errors. We investigate this question by changing the first equation in

1 /2
Model (7.1) to Hit = /3y2i + £t - ^^t-i where St follows the IGARCH(1,1) process St = inht with

ht = ao + ai£^_i + ^i^t-i- We set 6i = .2, uq = .1 and ai = .8. The innovations [u(,i;t] are defined

as before. Since heteroskedasticity of this form is easy to detect in the data we assume that GMM
estimators are now implemented with heteroskedasticity consistent covariance matrix estimators ^m.

For simplicity we use the procedure of Newey and West (1987) with a fixed number of lags.

The results are reported in Table 4 for the case of ^ = .5. Results for other parametrizations

are available on request. For a fixed number of moment conditions KGMM still dominates GMM in

many cases for the larger sample size n = 512. The estimator GMM-Opt continues to perform well

while KGMM-Opt now does worse when identification is weak but performs at least as well when

identification is strong and/or sample sizes are large. As expected, bias correction is no longer effective

in reducing bias. Moreover, when combined with kernel weighting, it produces severe outliers resulting

in inflated dispersion measures. For this reason only inter decile ranges (IDR) are reported.

8. Conclusions

We have analyzed the higher order asymptotic properties of GMM estimators for time series models.

Using expressions for the asymptotic Mean Squared Error a selection rule for the optimal number of

lagged instruments is derived. It is shown that plugging an estimated version of the optimal rule into

the estimator leads to a fully feasible GMM procedure.

A new version of the GMM estimator for linear time series models is proposed where the moment
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conditions are weighted by a kernel function. It is shown that optimally chosen kernel weights of the

moment restrictions reduce the asymptotic bias and MSE. Correcting the estimator for the highest

order bias term leads to an overall increase in the optimal rate at which higher order terms vanish

asymptotically. A fully automatic procedure to chose both the number of instruments as well as the

optimal kernel is proposed.
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A. Proofs

Auxiliary Lemmas are collected in Appendix B which is available upon request. They are referred to

in the text as Lemma (B.XX). Before stating the proofs a few commonly used terms are defined.

Definition A.l. Let ^t^ = Ext- Define wt,i = {xt+m — Mx) {vt-i-i^i — jJ-y)
,
T^^ = Ewt^i and F^^ =

Ew[i and let wt,i = Wf^i - T^^. Next define wl^^^ = {yt-i - Hy) {yt-j - My)' with Ew\-_^ = TjV.

Define vt^i = et+miyt-i+i — i^y) ^nd Est+mys = ^l-s- ^^^ ^^^ j,k-tli element of Q, Q~^ and Q^ be

^j,k,'&j,k 3.nd 'djf. respectively. For a matrix A, \\A\\ = tr AA'.

Proof of Proposition (3.2). Consider a second order Taylor approximation of D'^f around D~^

such that for d-M = ^m = PM^M^Mn"^^^ Y17=r ^t+mZtM^M,

MPnM -P) = D-'[I - {Dm - D)D-' + {Dm - D)D'\Dm - D)D-']dM + Op{M/V^)

where for M/n^^'^ —* the error term is Op{M/ y/n) by the Taylor theorem, and the fact that detl? ^ 0,

Dm - D = Op{MI-n}/~) as shown in Lemmas (B.14)-(B.23) and dM = Op(l) by Lemmas (B.24) to

(B.33). We decompose the expansion into Dj^; — D = Hi + ... + H4 where Hi = P'j^jKm^m ^mPm —

P'n-'P, H2 = P'mKm^mKmPm - P'mKm^mKmPm, H3 = -P'^^Km^m{^m - ^mWmKmPm
and Hi is defined in (A. 14). Also, (Im — d^ -\- di -\- ... + dg with dj defined in (A.L5)-(A.24) such that

Vn{Pn,M ~ P) = bn,M + Op{M/y^) with

9 4 9

7=0 i=l j=0

The terms H3, and H4 contain a Taylor series expansion of Qjj around ^^j given by

(A.l) nil = n-} - o^/(Om - ^mWm +B + op ^M - ^M
2

)

where B has typical element k,l given by vec(Qjvf — ^M)' ovecriavecn' vec(r2;v/ — ^m)- The term
2

Op{ CIm — ^M ) = Op(l) by Lemma (B.9). Let gk{M) = M~'^ for regular kernels k{j/M) and

gk{M) = M^X for rate-adaptive kernels k{j, A/). The notation gk indicates the dependence of the rate

on the kernel used. Define the constant Ck = 1 for regular kernels and Cjt = — log A for rate adaptive

kernels. In Lemmas (B.14) to (B.16) it is shown that Hi = Hu + H12 + Hi^ + H14 is

(A.2) Hu = P'Mn-JPM-P'^~^P = 0{M'^'X^'^')

(A.3) H12 = P'M{I-KM)^l,j{I-KM)PM = 0{gk{Mf)

(A.4) Hn = -P;;0^/(/-A-A;)PM = O(5fc(M))

(A.5) Hi, = -Pl,{I-KM)n-,}PM=0{gk{M))
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where = means 'equal by definition'. In Lemmas (B.17) to (B.20) tiie term H2 = H211 -\- H212 + H221 +

H222 is analyzed to be

(A.6) H2U ^ -[Pm-Pm)' KMn-jKM{PM-PM) = Op{M/n)

(A.7) H212 = P'MKMni}KM{PM-PM) + {PM-PM)'KM^''^KMpM = Op{n-^'^)

(A.8) H221 = -{PM-PM)'KMni.}K'M{PM-PM)=Op{M/n)

(A.9) H222 = P'MKMnilKM{PM-PM) + {PM-PMyKMnjlKMPM = Op{M/n'f^).

where Pm is defined in Section 3 and P'j^j = [t^^

,

..., TYj] with f^^ = n"! Er=maxO+i,r-m)+i '^tJ-

Lemmas (B.21) and (B.22) show that Hr^ = H31 + Hs2 + ^33 + H3A is

(A.IO) //31 = {pM-PM)'KM^li{^M-^M)^MKM{PM-PM)=Oj,{M/n)

(A.ll) H^2 = -P'MKM^M{^M-^MWMKM{pM-PM) = Op{M/n)

(A.12) Hyi = -{pM-PMYKMn~J{ClM-nM)^MKMPM = Op{M/n)

(A.13) Hm = -P'j„KMn-^l{hM-nM)^-^KMPM = Op{n-"^)

and Hi which is a remainder term defined as

(A.14) Hi = P'l^KMinjI - n-J + nilih^ - ^uWm)KmPm = Op{M/n)

where the last equality follows from Lemma (B.23).

Next we turn to the analysis of d^; which is decomposed as dfc = ^ dj. Define

-V2^,;^^,...,,-i/2^,; M
t t

with V = Voo such that it follows from Lemmas (B.24) to (B.33) that

do = P'n-^v = 0pii)

di = Pi,njlVM-p'n-'v = Op{APx")

P'm{I - KM)nj}{I - Km)Vm = Op{gk {Mf)

-P'j,,{I - Km)Qi}Vm - P'^njlil - KmWm = Op{gk (M))

[Pm - Pm)' RmQ-IKmYm = Op{M/n)

{Pm - Pm)' Km^IJKmVm = Op{M/v}'^)

[Pm - Pm) Km^m{^m - ^mWmKmVm = OpiM/n)

P'mKm9.i}{^m - hM)^-^KMVM = Op(n-i/2)

P'i^KmBKmVm + Op {M/n) = Op{M/n)

n-'/^Z^tpM^MnilKM [1m ® (y - My)] = Op{M/7i^^-).
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(A.15) do

(A.16) di

(A.17) do

(A.18) dz

(A.19) di

(A.20) d5

(A.21) dg

(A.22) dj

(A.23) ds

(A.24) dg



We first focus on regular kernels where <7fc(M) = M~'. We consider the terms in the expansion

D~^ X)t=o ^i " ^~^ St=i £7=0 H^D~^dj of the estimator which depend on M and n and are largest

in probability. Prom the results in Equations (A.2) to (A. 24) it follows that the largest such terms are

^12; -^^13, -f^i4i -f^222, do, d2, ds and d^. Of those terms we examine cross products of the form Edid'-,

Edid'^D-'^Hi and EH^D-^dod'^D-'^Hj. Letting 6^^^ = c^'^k'^ hniM^oo {Hn + Hu) /gk{M), the largest

terms vanishing at rate M~^ as Af —» 00 are Edod'^ = —M~''kqB^ + o{M~'^) as shown in Lemma

(B.39) and -Edod'^D-'^iHis + Hu) = M-^/c^B^^^ + o{M-i) by Lemmas (B.24) and (B.42). The two

terms cancel because they are of opposite sign.

Now define B^"^ = k'^ limM-00 P'm{I-Km)^m{I-Km)Pmlgk{Mf. Terms of order M^^? include

£^0^2 = M-29fc2B^9) + o{M-''-i) by Lemma (B.38) and -Edod'^D'^H'y^ = -M'^'^k'^B^^^ + o{M-'^i)

by Lemma (B.35). Since Edod'2 and —Ed^d'^D'^ H'12 are of opposite sign these terms cancel. We are

left with E{dz - {Hn + Hu)D'^do){d3 - {Hu + Hu)D~'^doy = 0[M-^'i) by Lemmas (B.16), (B.24),

(B.39) and (B.43).

Terms that grow with M and are largest in order are if222-D~^do and ^5. It follows by Lemma (B.41)

that the cross product term i?i^222-C~^rfo'^5 is of lower order. We ai'e left with EH222D~^dQd'QD~^ H'222 =

0{n-^) by Lemma (B.40) and Edr^d'c, = 0{M'^/n) by Lemma (B.44). Then (/;„ {MJ, k{.)) = 0{M^/n)+

OiM^^").

Next we turn to the case of the rate-adaptive kernel where gk{M) = NPX . Now H\\, H12, H13,

Hu, H222: do, di, d2, ds and ds are largest in probability. In Lemmas (B.34) and (B.36) we show

that Edod'QD~^Hii = Ed^d'^ such that these terms cancel out. Because Edod[ = Hu + o{n~^) by

Lemma (B.36) it follows that Edod'^D^^ {H13 + Hu) is of lower order. The largest terms remaining

are therefore Edid[ = M^'X'^'^^Bi + o {gk{M)^) where Sj = liniA./^oo -Hu/9k{M)'^ and £(^3 - {Hn +

Hu)D-'^do){d3 - (//i3 + Hu)D-'^do)' = 0{M'^'\^'^') by Lemmas (B.16), (B.24), (B.25), (B.39) and

(B.43). The largest term growing with M is not affected by the kernel choice and is therefore Ed^d'^ =

0[M'^/n) as before.

For part ii) and iii) we only need to consider the terms An = Ed^d'^ and Bn = E{d3 — {H13 +

Hu)D-'^do){dz - {Hi3 + Hu)D-'^do)' + Edid[. Since for all n > 1 we have An > and B„ > it

follows that lim inf„ A^ > and lim inf„ Bn > such that A, S^''^ and B\ are nonnegative.

From Lemma (B.44) it follows that

El'D-^'^d^d!^D-^/^l = mV" ( 1 4?{x)d:^ (.'D'^'-A^^AiD-^'-l + o{M^/n).
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From Lemma (B.39) it follows that M^\^' Ed^d-i = -kqB[''^ + o(l) and from Lemma (B.24) it follows

that Edod^ = D + o{l) such that

M^'X^^^E{Hy3 + Hu)D-'dod'oD-\Hn + Hu)' = c^''fc2g(9)^-ig(9)' + ^^i^_

This implies that

E{Hu + Hu)D-^dQd!^ - E{Hn + Hii)D-Uod'^D-\Hn + H^i)' = o{Af~'X'")

or in other words B„ = Edsd'g - E{Hn + Hu)D-'^dod'oD-'^{Hn + H^) + o{M'^'X-^^). Here Ed^d'^ =
^j2s;^2A/g(g)

j^ o(Af2^\2W) ^ ^^^^^,^ -^^ Lemma (B.43) where ^"^ is defined in (B.19).

Proof of Proposition (3.4): First note that by Lemma (B.25)

1 - au-r = l'D''/^{D - P'm^-^Pm)D-^I'^1 = i'D-^^^Edid[D-^/^£ + o{max{n-\M^'X'^^''))

= A'f'X^^'Bi + o(max(n-\ 7\/2^a2^')).

Since D — P'j^,jQjj Pm > by standard arguments it follows that 1 — a\M | as M —» oo. Also,

QajPm = -^13 + -^14 such that

bM^MbM = QMnMQ[„-{H,3 + Hu){P'Mni}PMy^{Hi3 + Hu)'

where the last line follows from b[''^ = c^'^k-^ \im{Hu + H14) /gk{M) and the fact that b!^^ =

Cq '^k^~\imQMQi\[Q',^i/gk{M)~ by similar arguments as in the proof of Lemma (B.43). More specifi-

cally, consider for example, Qa/Pa/ = Hn+Hu with Hn = A/'A'" E'/.j,=i
^"'

IJiI" ]J^\^jft^^n,h^-\-

We use the chain rule of differentiation to write

,. 1 - k(i, M) ,. 1 - <p(k(t/M).APX'^^) 1 - k{i/M) 1
lim TT- = hm -

"m \i\'^AP^X^' M l-k{i/M) (|i|/Af)' MU'PX^''

Because d<t){v,z)/dv = 2 — z[— log 2)^ + 2{z[— logz)'' — \)v is continuous in v and z ] 0, it follows that

I - (P{k{i/M).ciAPX^\\ + {om{1)))
lim M

= hm —— h (fc - 1) —
1- log A +

A/-00 \ M '
' M * M J {i/M}''

W ,;„ /
logCl

, r,.
,^-logA/

, ^ ,

- log(l + Oa/(1)) ^ ^

= A:,(-logA)« lim 777^ + {k - 1)
, ^T + 1 + (1 + oa/(1))^ M^<x>\M\ogX A/logA A/logA '

= A;,(-logAr
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Here, om(1) is a term that goes to zero as M —
> oo. Define um = cr\M — (^2M- It follows that

(JM = 1 + 0{M'^^>?^). Let X = 1 — aiM + cf2M such that — log(l - x) = x -\- o{x). Then, - logaM =

1 - o-iM + 0-2M + o{x) = M'^'X^^ {kqB^'^^ +Bi) + o(M2^A2^0- Since M* ^ oo as n ^ oo it follows that

iPn{M*,£, fc(.)) = MIC(M*) (1 + o(l)) . The result then follows by the same arguments as in Hannan

and Deistler (1988, p.333). If in addition log aim = ciM2^A2^^4-o(A^^) with A^ such that < A^ < A^/^

then 1 — CTiM = ciM^^A^^ + o(A^^) and the same holds for a2M by construction of k{., .). Then, it

follows that (p^{M*,i, k{.)) = MIC(M*) (l + 0{-n}l'^ {\ognf^)\ by the same arguments as in the proof

of Proposition (4.3). .

Proof of Proposition (4.1): Since xt contains elements of j/j it is enough to show without loss

of generality that ^ C,jj^rrS''^j^-k ^^ v^'^onsistent. Let /? be a y^-consistent first stage estimate. The

estimated residuals £t = {yt — y) — ^ (xj — x) are used to estimate (j. Let g{X,0) = |i9(e^'^)| with

9{z) = l-9iz-...9rn-iz'^''^- Define the parameter space 01 c M"*"^ such that ^ = (Bi, ...,em-i) e 0i

if 9{z) 7^ for \z\ < 1. By Assumption (B) 3 ©2 C int Gi, 02 compact such that ^o G 02-

The periodogram of st is InW = ''^^^
IZt s

etEsC''^**"*^- The maximum likehhood estimator for 9 is

asymptotically equivalent to

(A.25) ^ = argminAf,(6l)

with Ai{9) = n-iE,^n(Aj)/5(Aj,0) for A^ = 2nj/n, j = -n + 1, ..., 0, ...,n - L Define F^X) =

""'
Et,s ^tese'^^'-'\ /r (A) = n-i

Zt,s ^t{xs - l^,)e'^^'-'\ /^ (A) = n"! (do - ao) EtM - ^Je'^^*-^)

,

/^-(A) = n-i(do - ao) Zt,s ete'^^'-'^ and /°(A) = n'^a^ - ao)^ Et,. e'^^*"^) for do - ao = y - My
"

/3 (x — Mx)- It follows that

/^(A) = 4(A) + (^ -/?)'/;? (A) (^-^) + /;?(A)

+2 (^ - /3)'/r (A) + 2/r(A) + 2(do - ao)(^ - /?)'/,?" (A)-

Note that /-(A,) = /^ (A,) = /^°(A,) = for j # and /-(A,) = n(do-ao)2, /^"(A,) = (do-ao) Et £*

for j = 0. We now have

A^„(0) = A-„(e) + 2(/3 - (3)'K^{9) + (/? - /3)'A^(^)(/3 - /3)

2(do - aQ)n ^ ^(cf + (xt - Mx)) + ("o - ^o)^ /5(O,0).

From standard arguments (see Brockwell and Davis 1991, ch. 10) it follows that K'^{9) °^ A°''{9)

with A''''{9) = 2n j f^b{X)/9iX,9)dX and d'^hf {6)189 "4- d^A''^{9)/d9 for /t < oo such that Ai{9) -^

2n f fi.ir[X)/g{X,9)dX uniformly in 6* 6 02- Consistency of 9 follows from standard arguments.
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To establish y^-consistency note that ^yn^A^^{9o)/^6 = Op{l), n ^^'"^^t^t — ^p(l) ^i^d

Therefore

(A.26) V^dAi{9)/d9 = V^dA'„{9)/de + ^iQi - (i)'dh.'^ [9) /d9 + Op (1)

.

We also define dA'{9)/d9 = 2n J f,{X)dg~'^{X, 9)/d9d\ such that

(A.27)
dA'[9)

09
<

dA%9) dAi{9)

89 89
+

8Ai{9) 8Ai{9o)

89 89
+

dAU0o
89

where ||(9A^(6'o)/56'|| = Op{n-^/-) by (A.26). Definition (A. 25) for 9 implies that

dAi{9) OAiieo)

Finally

89

dAi{9) dA'{d)

89
< 2

dAi{9o)

89
= 0p(n-i/2)

80 89
= dA'„{9)/89-

I
27Tf,{X)dg-\\,9)/89dX

+20-l3nd{A'-{9o)))/d9 + Op{l)

/here the second term is Op{n ^/^) since [p — j3) = Op{n ^^^). The first term can be written as

8A'^{9)/d9 - j 2TTf,{X)8g-\X,9)/d9d\

= n-i
Y. \^n{^3) - 2^A(A,)1 dg-\X,:9)/de

+ n-'Y.27TMXj)8g-\Xj,9)/d9- i 2^f,{X)dg-'{X,9)/89dX

where the second term is 0{n-^). Now define e,^{e) = (27r)-i / ^^-^(A, 9)/0ee'^^dX such that ^^"^(A, 9)/8e

Ej^jWe-'^^and

n-'Y. !^n(^^) - 2^A(^i)] dg-\X,r0)/O9

n CO

J t,s=l /=-oo

n n-|min(/,0)|

= n-' Y E {et£t-l-Est€t-i)U0) + Op{n-')

l——n t=max(/,l)

< Ei'i"'(""'E,(^*^'-'-^-^'^^-')

MO

/ n \ 1/2
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where the second equahty follows from n ^ ^ e''^^^* ^) = for i 7^ s and the inequality follows from

the Cauchy-Schwarz inequality. Then note that n"^ Ylt i^t
~ ^^t) = Op{n~^^^),

E
l= —n l= — n

and Yl?=-n I'l ^K^)'^ is uniformly converging for 9 with \9 — 6o[ < 5 for some 5 > such that 6{z) has no

zeros on or inside the unit circle. Consistency of 6 then implies X^JL-n Kl q(^)^ = Op{l). These results

establish that
dA%{9) _ dA^0)
09 00

Op{n~'^l'^). From (A.27) it then follows that
09

Op(n-i/2)

such that by a continuity argument y/n{9 — 9) = Op{\).

To show consistency of Y^- C,j+m^Y-k ~ Jlj ^j+rrJ'^-k + ^ J2j Cj-i^nS'^-k ^^ consider without loss

of generality YljCj+m^]^k since xt is composed of elements of yt,yt-i, ,yt-r- We next show that

y-n-l 7 fyy __ yn-1 A -pw _Q fn-l/SN Write

7)-l n-1 n-1

7 > Cj+mrj_fc 2^Cj+mrj_fc— 2^ Cj+m (^r^-fc r^-fcj Z^ (Cj+m Cj+m j r^-fc-

j=—n+1

First consider

-^^^ E ||c.-c,

j=-7T+l

rj!.

j=-n+l

r!-l

<ni/2sup c,-c,| E If,-/

where P(supj Cj ~ Cy > C''^ ^
) goes to zero for some C large enough by the previous result.

For any S such that \9 — 0q\ < S implies 9{z) has no zeros on or inside the unit circle consider

(„l/2^J-
71+1 J-k ^ j-k >ri << p ui/2 En-l

(^)l ^ j-k ^ j-k >T)

+p{J9-9o\ >S

We use the triangular inequality r^_^ — r^_^ <

^n-l
nV2 sup E \J0WI

ryy _ ryj'1 j-k ^ j-k

-pyy __ ryy
' J-k ^ J-k

+ ryy _ -pyy such that

Op{l)

by Equation (B.9) and the fact that supi^.g^ji^^ XI":=i„+i |Cj (^)| = 0{1) uniformly in n. In the same

way it follows from Equation (B.IO) that

^r^-l
ni/2 sup E" ,JC,(^)I^ S-fc 'j-k 0(1).

This establishes that Ai — Ai = Op{n ^/^). The result then follows by Lemma (B.47).
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Proof of Proposition (4.3): Let L^iM) = -log(j^,^^ + ^A (j'^^(l){x)'^dx) and L„(A/)

— log (Tm + —A ij^ (p{x)^dx] . We first show that uniformly in M,

(A.28) L„(M) = Ln{M) (l + Op{n-^/^ (logn)'/2+5'

j

with s' = si < Ai > Ai > + si < Ai < Ai I . Consider

L„(M) - Ln{M)

Ln{M)
<

^°g'^Aa-i°g'^M
log 0-2M

+
(^-I)

.4

because L„(Af) > M'^/nA (j^^(p{xfdx') and cr^; > 1. By Proposition (4.1) and Lemma (B.47) it

follows that A-A = Op{n-^^'^). Next, note that logcr|^ = ciM'^'X-"' + o (A/^^A^^) and loga^^^ =

1). Let g{M) = \M\' X^^^^, g'{M) = |Af I'-'+^'Z^ a'^^I, gr{M) = |A/|''-^ a'^^' and
M.h 1 + °p(^L,h

gi){A4) = |Af |'^~^ a[^' . First show

(A.2^(A//)-2Af-^' (<7^Aa-^?A0 = giMy'M-^' \e'D7'^^H,^jDl'^^£ - fD-'/^HuD-'^-'e

= Op(n-i/2 (iogn)i/2)

n.h = Kuh^llh^Mh-h- I* >^ ^^°"gl^ *° ^'^°''' ^hat ^n.A-^n = Op(n"i/2 (iog„)i/2^/(M)2)with //

First we analyze individual components oi H^^ j^
— Hu. Note that

by Lemma (B.46) such that <

= Op(n-V2(logn)^/2j5r(j))

pyx = 0(.gr(j)). To(1 + Op{n~^/'^ (logn)^/^ j) because

analyze terms involving -dj^j^+M ^'^ use the expansion Qy^—Q~^ = Q~^ iO. — Qf^] Q~^+Op (n~^/^y/\ogn)

such that

(A.30)
^^:...H

Note that

'^k.iA
- ^k.z

m—

1

/=-m+l

= Op(n-i/2 |z - k\ gr{i - k) [logn)'/'')

by Lemma (B.46). It then follows that

^n,n+M:h - ^n^n+AfW = Opin^'/^ (logn)^/^ M^^X'')

where S2 = 2.si — 1 if Aj < Ai, S2 = si + 2.si if Xi = Aj and S2 = si if Aj > Aj. This can be seen by

noting that X]w=i^ji.t i^kih ~ '^k.i) '^i.j2+M is of the same order as the A/-th autocorrelation of a
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AR process with lag polynomial (1 — AiL)^'"*"^ ( 1 — AiL 1 . Consider now the largest order element of

H,,r- Hn, namely P' - ffi"^-11." ^^'
•' M,h \ MJi "r ^MA ~ P'm {^m - [^ ^]m) ^^^- ^^^^ largest order terms

in this difference are of the form

OO /

J1,..,J6= 1
Ji,J2,nh

" '^h,J2 I
{'^J2J3+Ml^j3,j4'^J4+ M,j5)'dji,je^^-jJ6

and taking into account (A. 30) we need to consider

j:,...,J8=l
Jl JT.J2 ^ J2,]3,h J2J3 '^33

,J4 ('^J4 ,35+ M'"35 ,36^J6+M,h )^J7 .js
^yx

-3a

Op{n-^/^^/I^M''X^^)

where S3 = 4si — 1 if Ai < Ai, S2 = 5si + 4si — 1 if Aj = Ai and S2 = 5si — 1 if Ai > Ai where

S3 = 2s + s'. The remaining terms of H^^ ^ — Hu are of smaller order. This establishes (A.29).

^2M h
~~

'-'^2M /g'i^I)^ = C)p(l). We focus on a typical term in cr^j^f^, theNext, show that \/nsup

matrix

Sm = P'M,h yM - Km) U~^ ^ (Im - Km) PM,h

with population analogue Sm- Other terms of cr^.,f^ can be handled in a similar way. Let sm =

VlogCTiM, 5A/ = J'^oga^j^jj^, (t>j
= (f){k{j/M),SM) and (/)j = <p{k{j/M),SM). The matrix A'm con-

M
tains diagonal elements ^j. Note that 1 — (j){v, z) = (1 — i;)(l — u + vz (— logz)') such that

|1 - kU/M)\ \SM (- logSM)^ - SM (- log sm)"! . Also let A,,,, = Tj^^,^- 'r^4 and Af^^.^ = t^'f^^Z^'mr':.

<
1

-32,h

Now,

E ((1 - '^.0 (1 - ^2) - (1 - <p3.) (1 - <^.J) ^'L

= E { (^.: - <^.0 {^2 - <^..) + (<^.. - ^.0 (1 - <l>32) + (1 - ^3^) {<P32 - h^) } ^j!,.

3\,32

31,32

such that

Sm - Sm l9{Mf

< 2 sup
A/

SM /-logs/

+2 sup
M
M

9'{M)

M SM

g'{M)

M J g'{M)

logSA/V SM

log SM
M

2 M

M
log SM \

'^

M J

3132

M

1 - k{n/M)

E
J1J2

l-HkUi/M),SM)
9'{M)

9'{M)

l-<P{k{n/M),SM

1 - kin/M)

g'{M)

E
\32

M

E
3\32

aM _ A

31 ,32 ^Jl J2

1 - k{j2/M)
^31 ,32

[Ji/Mf

{J2/Mf

l~4>ik{J2/M),SM)

9{M) ^3i ,32

lM
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/here

sup
M

SM ( - log SM SM ( - log SM
g'{M) V M ) g'{M) \ M

< Ci sup
I

(sM - Sm) /g'{M)\ +C2SUP
log SM
M

log SM
M Op(7l-l/2 (logn)i/2)

here ci = supyi,; (— log [M^X
)
/M) and C2 = 2 sup \criM/g'{M)\ The result then follows because

(log (AFA^^) /M) is uniformly continuous in'M and sup |(sa./ - sm) /9'{M)\ = Op{n~'^'^ (logn)^' ) by

(A. 29). Also note that J]
py:c

-J2,h
= Op{l) with probability going to one. By the

arguments in the proof of Proposition (3.4) it follows that [(l - (p{k{ji/M), ^/iogaiM)) /g'{M)\ —>

as M —> oo. By the same arguments as in the proof of (A.29) it can be shown that

M
EiJii'iJ2

J1J2

-1

,

pxy^M-'py^:
"Jl JlJ2 n

= Op(n-i/2(iogn)V2)

such that the third term of the bound for

that 5a/ — 5a/

5a/ - 5a/

.1/2

lg'{Mf is Op(n-i/2(iogn)^/^). It thus follows

lg'{MY = Op{n~^'^ {\ogny''-) uniformly in M. We have therefore established (A.28).

Let Ln[M) = Ln{M)+g(M)^+logaM v-'here g{M)^+]ogaM = 0{\l'^^) with A^ < A by Hannan and

Kavalieris (1986, p.47). Since \l^/g{Mf = {K/Xf' M~-' ^ as M ^ oo it follows that L„(M) =

L„{M) (1 + 0{gr{M)^) with gr{M) = AF (A^/A)^^ . Let M* minimize L„(A/). By the same arguments

as in Hannan and Deistler (1988) it now follows that M* /M* - 1 = Op(l) and Ln{M*)lL„{M*) =

1 + Op(l). This establishes the first part of the Proposition.

Moreover, optimality of A/* implies that — logcrA/- + i +logCTA/- +
"'"^

c > for some constant c.

This leads to

log n + 2s log (A/* + 1) + 2 (A/* + 1) log A < log (2M* + 1 + o{g{M'f-))

or

logn ^ log (2Ar + 1 +o(g(Ar)2) - 2s log (A/* + 1) - 2 log A
- < ^ —_ 2 log A ^- —2 log A.

M* - M*

In a similar way we note that — logUM' + logcrA/--i + ^' ~^
c < such that

logn log(2Ar-l + o(5(Ar)2) - 2s log (A/* + 1)

M*
>

A/*
21ogA -> -2 log A.

Thus, logn/A/* = 0(1). This implies that M* = - logn/(21og A) + Op(logn). Optimality of M*

then implies that Ln \M*j = Op((logn) /n) and logo-^^-^. ^ = Op((logn) /n). We have seen before

that log (7^^.^ = logcTyiY. (1 + C)p(7i~-'/-^ (logn)^''^'''* ) such that logaj^-j, = Op((logn)^ /n) which in
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turn implies that ^(M*) = A**M*^ = Op(logn/ni/2). Substituting for M* = - logn/(21og A) + e^.

with e^. = Op(logn) in X^' M*^ shows that A'^m* = Op(logn) if s = and Op(l) otherwise. Since

A,-/A < A^/^ by assumption it follows that {K/Xf''" = Op{y/\ogn) if s = and Op(l) otherwise. Then,

consider

v-logn/21ogA ( log"'

gr (m*) = (A./A)^M- (A,/A)-
-2 log A

+ OT,[gr{M*)).

Note that (A,/A)^M- (logn)^ = Op((logn)^^+^/2) for all s such that 5, (m*)' = Oj, ((A,/A)
l°s"/l°g^

(logn)2^+^

where

(AjA)-'°*^"/'°^^ = ('(A^/A)-'°s"/'°=(^'-/^))
log Ar/log A-l ^^-(logA./IogA-l)^

But (log A^/ log A - 1) > 1/2 if A^ < A3/2. Then g, (a/*) = Op(n-V2 [Xognf^) and

Z„(M*) < L„(M*) = Ln{M*) (1 + o(g,(M*)2)) = L„(M*) (l + Op(n-i/2 (iogn)i/2+^'))

where the last equality follows from (A. 28) and the fact that M* = Op(logn). Also, Ln(M*) <

Ln{M*) = L„(Af*)(l + Op(n'-i/2 (logn)^/^"^^')) by similar arguments as before. It follows that

(A.31) Ln{M*)/Ln{M*) = l + Op(n-i/2(iogn)i/2+^').

A second order mean value expansion of L„ [M*] around M* leads to

ia2Z„(M*) .-
L„ (m*) = L„ (m*) + M* - Ar

where M-M" < M* - M*

d^ (Ln{M)) I [dMf . Then,

2 (9A/2

and we have used the fact that dl^ (A'P^ jdM = 0. Let 0{M) =

M*

M*
1=0.

Ln{M*) - Ln{M*]

Ln{M*) 2M*^~e{M*)
14^ I

=0p(n-V2 (log n)V2+^')

follows from (A.31), Z„(Af*) < L„(A?') and

Ln{M*)l (2Ar2^(Af *)) = Op(l).

This result implies that M* - M* = Opin'^'^M* (log 72)^/^+''/^) = Op(l). Similarly, we note that for

M* maximizing Ln{M) we have

(A.32)
AT

- 1

Ln{M*) - L„{M*) Ln{M*)
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since L„(M*) < Ln{M*) = L„(M*) [l + o{gr{M*)^j) and L„{M*) < Ln{M*) = L(Ar) {l + o(gr{M*)^))

where ^.(M*)^ = 0(7i-i/2 (logn)^/"). We have thus shown that lil* - M* = Opin'-'^/'^M* (logn)^^'^).

We use this result to sharpen the convergence result for M*. By the same arguments as in Hannan and

Deistler (1988, p.333-334) optimality of M* implies that

LniM") < Ln{M*) < L„(Ar )(1 + Op(n-i/2 (iogn)'/^+''))

or, by rewriting the inequalities as < L„(A"/') - Ln{M*) < Ln{M*)Op{n-^/^ (logn)^/'^"^*'),

(A.33) < 1^ - 1 + A _ L- < j^^i^ + 1
j
OAn-^^^ (logn)V^-^

)

where by a mean value expansion

[giM*f-g{Arf)n _ Qg^j^rf/dM^ ( NT _ \

with M* - M* < M* - M* Note that g{M*fn/M*'^ = 0(1) by optimality of A/*. Further-

more, dg{M)'^/dM = c/(i\/)2 (2s/M + 21og A) . By the first order condition for M* it follows that

dg{M*f/dM + 2M* /n = 0, or n/M*dg{l\rf/dM = -1/2. From

dg{M*Y/dM \M'
j

[2s/M* + 2 log A)

since M* - M* = Op(l) by previous arguments it follows that n/M*dg{M*)'^/dM -^ 1/2. We now

rewrite (A.33) as

IF + '+ .7- ")

such that the result follows.

Proof of Theorem (4.4) The decomposition v^ (h^^M- - K,M-) = Aw- {^M- " ^m-) ^}IJm--
D'j^j.{dj^j. — dM') is used. Note that Dm- = Op(l) and di\f = Op(l). The following calculations

also establish D^-j, = Op(l) and dj^-j. = Op(l). It is therefore enough to show that %/n/M*{DM' —

D,;,.) = Op((logn)"^^'<(^'-'?'-i)) ^j^j ,/^{/M~*{d^;. ~dM-) = Opi{\ognr^^^'' -"•-''>). Define hf =

dia.g{(f){k{0).M'\'"), ..., <p{k{{n - m - 1)/Af ), Af^A'^^))' and Km = {Jcm ® Ip)- We write K^^,. for ma-

trices with elements <P{k{{j)/M*),s^-j.) where s^-j. is defined in the proof of Theorem (4.3) and note
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that for the truncated kernel K^^^. is a matrix where the first pM* diagonal elements are one and all

the other elements are zero. Let Pn-m = '^"^-^'^n-m and

fi*AM
Qm
" J-n-M—m

,nM
^M

•n-M-Tn

with h\j and ^\j^ defined in the same way replacing fi^ and Q,jJ by Q.m and ^n}- Using these

definitions we can rewrite d-M = '^^^ P'n-m^m^*m ^MZ^-m^- First consider

z:
yf^lW*{d^,-dM') = V^W{K-mKM^n*7}k^.^^^-p'^_^kM'9rj^}kM'^

= .MM~*{Pn-. ^M-^*M>M. + ^M-n^->^,. + A,^.fi;r;^M.

+kM'(p-*^}-^M')kM'
n

with A^. = kj^, —Km' From Assumption (E) it follows that for some constant ci , k{j/M* )
— k{j/M*]

ci br [{l/M*y - (l/M*)") . Then,

<P{k{j/Ar),Sj^.) - 4>{kU/M*),SM')

< 2C2 |5^. (-logS^^.)' - SM' (-logSM.)'l + |2 - SM' (-logSM-)"! \KJ/M*) - k{j/M*)

+ \SM' {-logSM.y -
1| \k{j/M*f - k{j/M*f

< 2c2 |s^^, (- logs,^.)' - SM' (- logSA/01 + C3 br l/M*" ((AfVM

for some constants C2 and C3 because

*\2
fcOYM*)^ - k{j/M*) <2 /c(j/M*) - A:(j7Ar)| < 2ci bf 1/M*' ((a/VM*)' - 1

and SM- (— log SM-)' ~* for A/^* ~* °o- Now note that

(5M (- log SM^ - SA, (- log sm)'') / (g(M)M^+^')
I

|5(M*)M*^+^'< sup
M
4-|s.>. (-logS£,.)''-SA/. (- log SM'

<

By the proof of Proposition (4.3) it follows that sup^ [hi (-logSA/)'^ - sm (- logSA-/)'^) / U(M)M9+'''/^

is Op{n'~^''^ (logn) '
) and g{M*) = Op{n~^^^ logn) such that the first term in the previous inequality

is Op{n-'^ (logn)^/^+''+'''''^) = Op{n-^/'^logn^/'^/M*). For the second term we write

\^M' {-'^OgSj^.j.y -SM' (-logSA/-)'| ^mAzMIm^
SM' (-logs A/*

SM' {-logSM-y
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where sm = M'X" + o {APX'^'^) . Then (- logs^-^.)' / (- logSM')' - 1 = Op(n-i/2 (logn)^/2+//2-, ^^^

Sm'/sm' - 1 = (m7M*)' a(^^'-^^*) - 1 = Op(Ti-i/2 (logn)^/2+^''/^) by Theorem (4.3) and the delta

method. Since .sa/. (- log sm-)' = ^(tz'^/^ (log 71)''"'""^)
it follows that |s^j. (- logs^;^.)'' - .sa;- (-logSA/.)'| =

Opin-^l"^ \ogn^'"^/M*). From Theorem (4.3) we also have l/Af*" {(m*IM*X - l) = Op[n-^''^ (logn)^^^^'' /M*")

such that

4>{k{3/hnrsM.)'<t>{H3lM*),SM.) =Op(|j|7T-V^(logn)a/2+max(5'-i7,-l) )•

> 1 ) = with probabilityFor the truncated kernel A^-^- = unless M' f- M* . But P ( M* - M*

tending to one. So the rest of the proof is trivial for the truncated kernel and we only consider the more

general case. Denote the /c,j-th element of fi'^^.^ by 'd*j^^,j^- Then, letting fc(ji, A/*) = (f){k{j/M*),Sp^-j.)

y;VA^p;_A^.r2;ri/?A,.^j^ = ^Rm*^Y. E fjf [fc(ji,Ar)-fc(ji.Ar)]^;'^->(j2,Ar)t;,,,

'=iii.j2=i

= sJnlKPC2 [fif +4 + c^e" + ^f + rf^ + 4 + '^'^]

where d^ = ^ ^^=1 E"Xi ^7. [Mji, A/*) - Mji, M')] ^;fi/c(j2/Ar)7;,,„

n n—rtj

< = ^Y. E (rjf-fjf)[A:(j:,Ar)-/c(ji,Ar)]^;fJ;fc(j2,Ar)t.,,,,

(=1 Jl.J2= l

and similarly for d^, ..., dg corresponding to Definitions (A.20-A.24) for cZ.5 dg where we replace Km
by A.-,, and Qa/ by $1]^^ in the same waj' as in d,f. We consider the largest term ^5

^n/hPd^ <C,
1

n n—m
i^.OJn^/.1/2-P

-1/2
(log n)

1 /2+max(s' —q. — l)

t=l JlJ2= l

By the same arguments as in the proof of Lemma (B.29) it follows that

'E E i^ir||(f;r-r;r)^;5>(^2,Ar)., J2

(A.34)

n —m

E l^ili(flf -rjf)n'J>02,Ar)X:;^^t'u.|| = Op(Ar)

Jl-J2= l

where we have used that ^ |ji|'' ^^1 y^ < oc uniformly in j2 since i^l^-j has the same summability

properties as ^j^.j^- Also note that k{J2,M*) = for |J2| > A/*. The bound (A.34) implies that

y/n/M*d^ = Op{n~^/^ (logn)
+"'^''(* ~i~

•'). Using similar arguments based on the proofs of Lemmas

(B.28,B-30-B.33) it can be shown that the remaining terms df,d^...,d^ are of smaller order. For d'^

note that E" ,_ , Ijil" F'^t?
jl J2 0(1) such that

jlJ2= l

yxy „*M-
]\ n J2

/ II n 2\V2
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and thus ./f^jM^d^ = Op((logn)'"'*''(^'-'''-'')

For vWM^^n-mAM.^;^>M-%^ = ^AVM^C2 [<^ + ... + d^^ + d^^] we define

n n—m

d^^ = JlJ2
^*) ^n,2 Hj2,Mn-k{J2,M*] Vt,i;n

£^iiEr=i^M2/x^ii'

1/2

and similarly for the other terms. From YT]^^=\ \\h\'\hV

0{\) it follows that ./WJWd^^ = Oj,{n-^'^ (logn)i+2'"^''(^'-'?'-i) M*-i/2) = Op(l). For ^f^^^JWd^^

note that for some Ci

max(Air',M*)

114^11 < CrO,[n-' (logn)^+2--(^'-'--^)) J] l^'il" l^^l'
|| [^T.

' ^^') ^tn E"=i "^^^nl^
jlj2= l

such that for any finite e > and some C consider

\M'+t]

32 >C +P{M* > M* + e).

where \M* + e] denotes the smallest integer larger than M* + e. Using the Markov inequality it follows

that

jl J2=

1/2
a*M'
ji J2 (^||E"=i^*j=/^

1/2

= 0{n-'/^)

by similar arguments as in the proof of Lemma (B.29). Therefore y/n/M*d^'^ = Op{n ^ (logn)-^"*"
™'"'^^ '''

The remaining terms are of smaller order by the same arguments as before.

Finally, for ^/^^JM^P^.^Km- {p*j^}
-

^IJ.^) A'm-^^ we expand n*r} around Q*'} and n*-}

around ^*j^]} as in (A.l) leading to

^;> - ^M' = ^mH^Ii' - ^*M,)%7' + OpM ^A/.
~ ^W(A.35)

and

(A.36) hi',} = n*^j} - nij}{nij, - ni,. )nij} + o^i

Note that ft*- ,
- Q^j. = if M* ^ M*. Because M* and M* are integer valued by definition it also

^M' " ^M'

follows that M* + M*

M* - M*

M* - M' > 1. We thus note that for any e > 0, ^}j. - ^\i' > e ^

> 1. Using the fact that P(

pU'^

M* - M* > 1) tends to zero it follows that

^*M'
~ ^M- >s)<P{
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in fact n*- ^
— n^^. converges to zero in probability at arbitrarily fast rates. Also note that 0^,|. — (l'A/-

Op{n-'^'^{\ogny''^) by Lemma (B.9). Combining (A. 35) and (A. 36) then leads to

^*^} - ^11' = OM-{nij. - hl^.)OM. + Op(j^, --M- - "• \--Jw - M'

-)*— 1 o* — ^ let* o* ^n*—

1

' * A / • ~ ' *
/I'A/ A/*

with Om- = n;7.' - 0*7/ (Q^,;. - Q^;.)^M- I^' t'^us follows that

Next consider

First, we analyze P;_„A^,. j^^;;A';,.F„_^ = H^+H^ + H^ where //.-^ = //2I1 + ^.n2 + ^2li + ^222>

H^ = H^^ + //g^ -\- H^^ + H^^ and the definitions follow from the definitions in (A.6)-(A.13) with

the appropriate substitutions for ^*^} and Aj^-^.. Furthermore let H^ = '^^^QY7i=o^^^i^i'^/^P)
~

^A/.f^;-;>A> + K^rK^!^^> + ^m-^I^^^m-

Pn-

,/^^*\\H^\\ < y;i7AFOp(n-i/2(logn)^/2+max(.'~,,-i)) ^ |jil||r^f^*f;5;fc02/M*)r

= Op(M*'"^^(^'-'''-^))0(l).

J2

Now consider ^^^222

^ 71 — 771

Jl-J2=l

and by the proof of Lemma (B.20) it follows that E T,]~J!^=i \ji I"
(f

Jf
- T^^) ^;fj>(i2/A^*)fr^, =

0{n-^/'^M*) such that y^n/M* \\H^22\\ = Op(n-i/2 (logn)^^"'^''*''"''-"^^). Using the results of Lemma

(B.22) we can show in the same way that y/n/M* \\H^
||
= Op(l). All the remaining terms are of lower

order by Lemmas (B.17-B.21).

Next, we turn to P;,_„A^^.fi*r;A^^.P„-77z = H.^^ + Hi'^ + H^^ where Hi-^,H^^,H^^ are

defined in the obvious way. It follows immediately that

y;VM^I|//^^|| < y;V^Op(n-i(logn)i+2'"^''('^'-''--i)) ^ \n\\j2\

JlJ2 = l

= Op(n-i/2 (logn)-^/2+2max(.'-9,-i)^_

pxy n»A/"pyi
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For H^^^ we note that E E",X=i \h I" 1721' '^T.-^tn^^-n = ^(1) such that again ^^/M^ WH^^^ \\

=

Op(l). The same type of arguments also estabhsh ^JnjM* ^Hy^^ = Op(l). All the other terms are of

lower order.

Finally, we turn to ^JnlM*P'^_^KM* (^t-7. ^ ^m*^ ) ^M'Pn-m = Op(l) by the same arguments

based on (^^4, — ^t;,.) as before.

Proof of Proposition (5.1): We consider Edi and EHiDdj. First, Edi = for i < 3. The

terms d^.d^, ...,dc) are of lower order by Lemmas (B.28,B.30-B.33). The terms EHzD~^dj are all of

lower order. The largest order term is therefore Ed^. By the proof of Lemma (B.44) it follows that

Eds = M/VnAiJ(t)'^{x)dx + o{M/y/n). m

Proof of Theorem (5.3): By Proposition (4.1) it follows that Ai - Ai = Op{n~'^/'^). By the

same arguments as in the proof of Lemma (B.47), sup;^^ '^2Mh
~ "^^M = Op{n~^^'^). Note that (T2m

is uniformly continuous in /c G /C^ for each j — 0, 1,...,t. It is not uniformly continuous in fc 6 /Cg,

however. Note that ijj ^UL => ijjj ^ ^ such that for k{x) € K.j it follows that kj ^ and fc^ = for all

i < j. We therefore analyze the problem of finding y* for j fixed, where A:-'* = argmin(5n,j(^) and

Q^^j{k) = A(j (}>{k[x)fdx

Also define and Qj{k) = A f/^ (t){xfdx\ +k]B^^yK. Then, uniformly for k e /C^ \ima2M^n/Mf =

k'^B'-i'i/K* such that (7^ - . -n/Mf - k'^B'^^^K* = Opin''^/'^ (logn)^/^+''). Next, note that
-^ ^ l\'lr-p ,n. -'

log n log n \ M^ j log n

where M*/ logn = (-2 log A)" Vo(l).We have shown that sup;,g^, \Qn,j{k) - Qj{k)\ = OpipT^I'^ (logn)^/^+^')

because Qj is uniformly continuous in k for each j. It then follows from standard arguments that

sup^ y* - k'i* = OpiyTT^I'^ (logn)^''^+*'). To find the optimum in /C, we now define k* = U* with q =

argmaxq>,' Qn.qik'^*)- But now, q is countable and finite and for each g, Qn,q{k''*) converges to a fixed

value. Thus, q converges. For the second part note that M* (k*j /M* (fc*)-l = Op (n"^/^ (logn)^/^"^*'

j

because it can be checked easily that the proof of Proposition (4.3) still goes through when k is replaced

with A:*. Then, if g' = 1,

<P (k[i/M* (r)), ^\oga,^j.^^.y^ -
<J> (k*{ilM* (r)), yiogaj,^.(

= (V'l - V'l) i/M* {k*) + Op (l/M* (fc*'

= Op(n-i/2(logn)i/2+ma.x(.'-g.-i)y
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When (f > 1 the error is Op{n~^^~ (logn) '
+™^^(« -9,- J-j g^(,|-^ ^j^g^^ ^j^g same arguments as in the proof

of Theorem (4.4) go through. For the last part of the theorem first consider (/ = 1 and let k{x) = l — x^

such that f h?{x)dx = 64/45 < 2 with A:2 = 1- Now consider a perturbation to A;(.), say ^^(x) = 1 — ex —

x^ such that fci = e. In other words, for k^ the approximate MSE is A ( f^ /j.£(x)^dx ] -\-e^B'^^^ /k* +

B\/k*. We need to show that by choosing e this can be made smaller than the approximate MSE for

the truncated kernel, which is iA + Bi/k*. Note that J h'^{x)dx = J li^{x)dx + 5 {e) where 5 {e) =

-e + 8/2l£2 + 4/3e2 + 2/5£l Choose e such that (e^ supe^ B^^V^l^^ ) + ^{s)) /-^ < 4 - (64/45)^ which

is possible because of the properties of ©o- This shows that k^ dominates the truncated kernel when

M^ is used as a bandwidth choice. But then clearly, if M is chosen optimally for k^ it can not do worse

than with M^. Similar arguments can be used to handle the case where g' > 1.

Proof of Theorem (6.1) We consider the expansion of ,/n {Pn.M " 0)^^ before. The analysis of

the MSE of \/n (,8^ m ~ 0) '^ then the same as the analysis for ^/n {13^^^^ — /?) where we replace d^ by

db = d^ 7=-4i / <f)
{x)dx

Vn J

and the additional term dis = M/^{A[ - A\) j (fp'{x)dx = Op{M/n), where the order of magnitude

follows from Proposition (4.1), needs to be considered. First note that Ed^ — -^A'j j (}P'{x)dx = o(l).

Then Edc^d'r, = E{d5- Edc,){dz- Ed^)' + o{\). From the proof of Lemma (B.44) it follows that Ed^d'^ =

0{M/n). Also E('H222D-'^dod'r,D-'^/'^£ = o{M/n) by Lemma (B.41) and du = Op{M/n) together

with Lemma (B.40) shows that all remaining terms are at most of order M/n. By Remark (4), to

first order, M* does not depend on the constants of the M/n terms. Thus it is possible to minimize

Mp/n-logCTM- Then, M*/M* - 1 = Opin''^''^ (logn)^/^+^') follows by Proposition (4.3). Finally, note

that jM*(M;/M*-l\b~}^Aij(l)'^{x)dx = Op{n-^^^ {\ogny^^-^'' ^/M;) = Op{l) by Proposition

(4.3) and Lemma (B.47). In light of Theorem (4.4) this establishes the last part of the Theorem.
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Table 1: Performance of GMM Estimators with =

n = 128 n = 512

Estimator 4> Bias I\LA.E MSB Bias MAE MSE
OLS 0.1 0.51652 0.51672 0.52458 0.5174 0.52002 0.52203

GMM-1 0.54524 1.3457 2.5025 0.5095 1.0594 1.653

GMM-20 0.4481 0.45146 0.47529 0.43876 0.44586 0.4726

KGMM-20 0.44917 0,47111 0.53162 0.44736 0.46461 0.52371

GMM-Opt 0.48439 1 0699 2.1788 0.47735 0.8655 1.4054

BGMM-Opt 0.39075 1.0655 3.6218 0.33739 0.69265 0.99113

KGMM-Opt 0.48483 0.75581 1.1466 0.46242 0.66349 0.92119

BKGMM-Opt 0.4259 0.85469 1.3366 0.38961 0.77809 1.0823

OLS 0.3 0.52227 0.52425 0,53233 0.52319 0.52238 0.52433

GMM-1 0.37319 0.92571 1.7589 0.19208 0.64946 2.8861

GMM-20 0.4699 0.47633 0.49813 0.4479 0,45124 0.47233

KGMM-20 0.45252 0.46546 0.51769 0.40358 0.41276 0.4601

GMM-Opt 0.41832 0.8571 1.6191 0.2193 0.60238 2.8213

BGMM-Opt 0.1965 0.84522 1.6398 -0.01157 0.48039 0.64576

KGMM-Opt 0.40261 0.65701 0.93193 0.26319 0.46613 0.68559

BKGMM-Opt 0.26391 0.71097 1.0397 0.063104 0.50435 0.80424

OLS 0.5 0.46675 0.46775 0.47616 0.47121 0,46856 0.47072

GMM-1 0.064923 0.36801 0,63065 0,012124 0.17127 0.22942

GMM-20 0.4193 0.42041 0,44244 0.2859 0,28971 0.31147

KGMM-20 0.33826 0.35308 0,40205 0.18586 0.19964 0.23394

GMM-Opt 0.076623 0.36358 0.6227 0.01198 0.17069 0.2287

BGMM-Opt -0.20138 0.52444 0.70699 -0.17292 0.27818 0.37291

KGMM-Opt 0.085374 0.32911 0.52499 0.013643 0.16615 0.21996

BKGMM-Opt 0.021164 0.36326 0.55213 -0.02036 0.17825 0,24791
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Table 2: Performance of GMM Estimators with 6 =

n = 128 n = 512

Estimator Bias MAE MSE Bias MAE MSE
OLS 0.1 0.49705 0.49725 0.50385 0.49483 0.49372 0.49516

GMM-1 0.49461 0.98011 1.8786 0.48621 1.1214 5.2146

GMM-20 0.50373 0.50334 0.52432 0.49198 0.49328 0.51224

KGMM-20 0.49943 0.51901 0.58448 0.48642 0.49693 0.55721

GMM-Opt 0.51603 0.82588 1.5626 0.48211 0.95272 5.0932

BGMM-Opt 0.48989 1.1095 2.8016 0.45823 1.326 12.9356

KGMM-Opt 0.50207 0.69179 1.1779 0.48339 0.66513 0.89137

BKGMM-Opt 0.52045 0.76303 1.1456 0.46361 0.74174 1.0006

OLS 0.3 0.45384 0.45547 0.4613 0.45384 0.45403 0.45568

GMM-1 0.28972 0.66679 1.2017 0.1072 0.47244 0.90049

GMM-20 0.44322 0.44483 0.46525 0.40133 0.40931 0.4302

KGMM-20 0.43339 0.4501 0.51347 0.34142 0.35464 0.40636

GMM-Opt 0.36738 0.622.56 1.1651 0.2135 0.48551 0.87465

BGMM-Opt 0.28444 0.66182 1.101 0.11745 0.35947 0.49946

KGMM-Opt 0.36569 0.52213 0.7151 0.20702 0.39769 0.57164

BKGMM-Opt 0.28996 0.57883 0.84856 0.11337 0.40762 0.66559

OLS 0.5 0.38046 0.37889 0.38487 0.37494 0.37593 0.3775

GMM-1 0.042111 0.29423 0.54636 0.015656 0.13132 0.1768

GMM-20 0.32936 0.32894 0.35015 0.21703 0.21913 0.23704

KGMM-20 0.2695 0.28151 0.32307 0.15066 0.1643 0.19171

GMM-Opt 0.08868 0.31714 0.58005 0.030298 0.14035 0.18463

BGMM-Opt 0.04296 0.27811 0.41247 0.016908 0.13559 0.18328

KGMM-Opt 0.090384 0.28488 0.44025 0.02436 0.13273 0.17765

BKGMM-Opt 0.054996 0.28023 0.42958 0.015666 0.13461 0.18303
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Table 3: Performance of GMM Estimators with 9 = .5

n = 128 77 = 512

Estimator Bias MAE MSE Bias MAE MSE
OLS 0.1 0.4708 0.47223 0.4798 0.46821 0.47019 0.47208

GMM-1 0.52711 1.1213 2.0323 0.52264 1.1775 2.20,54

GMM-20 0.39267 0.39842 0.42841 0.36723 0.37541 0.40458

KGMM-20 0.40082 0.42934 0.4976 0.37235 0.40024 0.45747

GMM-Opt 0.41931 0.80943 1.357 0.41969 0.86022 1.5581

BGMM-Opt 0.32466 1.2808 13.0744 0.30929 0.60111 0.88186

KGMM-Opt 0.43155 0.67594 0.9787 0.40402 0.67063 0.97716

BKGMM-Opt 0.35219 0.70706 0.98258 0.32216 0.76215 1.232

OLS 0.3 0.38604 0.38641 0.3945 0.38685 0.38754 0.38952

GMM-1 0.19769 0.82882 1.6984 0.087729 0.496 0.87353

GMM-20 0.27067 0.28668 0.31713 0.24542 0.25758 0.28589

KGMM-20 0.26555 0.30311 0.36346 0.22235 0.25503 0.30632

GMM-Opt 0.23217 0.62133 1.0808 0.13734 0.41268 0.70857

BGMM-Opt 0.098508 0.57105 1.1184 0.018366 0.29295 0.46272

KGMM-Opt 0.24356 0.50607 0.742 0.16227 0.35728 0.54694

BKGMM-Opt 0.13393 0.53538 0.84079 0.025493 0.35742 0.59875

OLS 0.5 0.27857 0.28049 0.28786 0.28095 0.2819 0.28394

GMM-1 0.011779 0.3225 0.67531 -0.00211 0.11246 0.15008

GMM-20 0.15784 0.16854 0.19507 0.1009 0,10759 0.12591

KGMM-20 0.13523 0.16429 0.20386 0.065555 0.09014 0.11271

GMM-Opt 0.058289 0.253 0.46363 0.01898 0.10532 0.14026

BGMM-Opt -0.01254 0.21014 0.33764 -0.02236 0.095026 0.12984

KGMM-Opt 0.065003 0.22165 0.34951 0.012326 0.10667 0.13995

BKGMM-Opt 0.003854 0.22473 0.42831 -0.01114 0.094756 0.13116
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Table 4: Performance of GMM Estimators with = .5 and Heteroskedasticity

n = 128 n = 512

Estimator -^ Bias IDR Bias IDR

OLS 0.1 0.36203 0.39565 0.37789 0.22017

GMM-1 0.50136 5.22 0.51375 8.5451

GMM-20 0.36409 0.9079 0.43471 1.163

KGMM-20 0.36288 0.99398 0.43279 1.2035

GMM-Opt 0.37306 1.8038 0.44232 2.2475

BGMM-Opt 0.35293 1.0481 0.42576 1.1657

KGMM-Opt 0.41278 2.0442 0.49196 2.7351

BKGMM-Opt 0.38757 1.931 0.48469 2.158

OLS 0.3 0.28962 0.29852 0.31254 0.19993

GMM-1 0.19565 2.991 0.039369 2.5622

GMM-20 0.24842 0.65978 0.28085 0.9905

KGMM-20 0.248 0.78716 0.26538 0.93733

GMM-Opt 0.22376 1.2064 0.22999 1.1617

BGMM-Opt 0.24336 0.73583 0.27032 0.97506

KGMM-Opt 0.2297 1.4793 0.24377 1.62

BKGMM-Opt 0.23773 1.37 0.25496 1.5437

OLS 0.5 0.21107 0.26352 0.22779 0.15279

GMM-1 -0.00746 1.0207 -0.00346 0.60612

GMM-20 0.12121 0.50708 0.08675 0.5928

KGMM-20 0.11991 0.54298 0.076 0.47081

GMM-Opt 0.082524 0.57197 0.072163 0.4773

BGMM-Opt 0.1116 0.49428 0.084331 0.57169

KGMM-Opt 0.077325 0.67164 0.057138 0.46211

BKGMM-Opt 0.086783 0.65593 0.06762 0.50118
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