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Abstract

In this paper we develop a regularity theory for stationary overlapping

generations economies. ¥e show that generically there are an odd number of

steady states in which a non-zero amount of nominal debt (fiat money) is

passed from generation to generation and an odd number in which there is no

nominal debt. We are also interested in non-steady state perfect foresight

paths. As a first step in this direction we analyze the behavior of paths

near a steady state. We show that generically they are given by a second

order difference equation that satisfies strong regularity properties.

Economic theory alone imposes little restriction on these paths: With n

goods, for example, the only restriction on the set of paths converging to

the steady state is that they form a manifold of dimension no less than one

,

no more than 2n.





Regularity in Overlapping Generations Exchemge Economies

by

Timothy J. Kehoe and David K. Levine*

1 . INTRODUCTION

The theory of regularity developed by Debreu (1970) for static exchange

economies has played an important role in recent studies of the comparative

statics properties of general equilibrium models. In this paper we develop

a regularity theory for stationary overlapping generation exchange

economies.

We begin by studying steady states. We show that generically there are

an odd nimber of steady states in which a non-zero amount of nominal debt

(fiat money) is passed from generation to generation and an odd number in

which there is no nominal debt. Generically, these latter steady states have

price levels that explode either to zero or to infinity. We are also

interested in non-steady state perfect foresight paths. As a first step in

this direction we analyze the behavior of paths near a steady state. We show

that generically they are given by a second order difference equation that

satisfies strong regularity properties. Economic theory alone imposes little

restriction on these paths: With n goods, for example, the only restriction

on the set of paths converging to the steady state is that they form a

manifold of dimension no less than one, no more than 2n.

The regularity theory we develop here can be applied to analyze the

response of an overlapping generations economy to unanticipated shocks.

* We are grateful to David Backus, Drew Fudenberg, J.S. Jordan, Andreu
Mas-Colell, and seminar participants at U.C. Berkeley, M.I.T., U.C.L.A., the
University of Pennsylvania, U.C. San Diego, Yale, the Federal Reserve Bank of
Minneapolis, and the NBER General Equilibrium Conference, Northwestern
University, March 1982, for helpful comments and suggestions.
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Kehoe and Levine ( 1982a) consider the impact of shocks under alternative

assumptions about the types of contractual arrangements existing before the

shock and the process by which perfect foresight forecasts are formed.

2. THE MODEL

We analyze a stationary overlapping generations model that generalizes

that introduced by Samuelson (1958). In each period there are n goods. Each

generation t is identical and consumes in periods t and t + 1 . The

consumption and savings decisions of the (possibly many different types of)

consumers in generation t are aggregated into excess demand functions

y(P4-f Pt+1^ ^ period t and z(p,, P^+<) in- period t + 1. The vector

p = (?,,•., p.) denotes the prices prevailing in period t. Excess demand is
V w w

assumed to satisfy the following assumptions:

(A.1) (Differentiability) y, z: E ->• K are smooth (that is, C )

functions.

(A.2) (Walras's law) P^y(p^, P^^^ ) + P^+^z(p^, p^_^^
) = 0.

(a. 3) (Homogeneity) y, z are homogeneous of degree zero.

(A. 4) (Boundary) ||(y(qj^), z(qj^))
| I

-^ » as q^->- q, q e 5E^ \{o} . (y, z)

is bounded from below, however, for all q e R. .
•

A.1 has been shown by Debreu (1972) and Mas-Colell (1974) to entail little

loss of generality. A.2 implies that each consimer faces an ordinary budget
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constraint in the two periods of his life. As we later show, this is

equivalent to assuming a fixed (possibly zero or negative) stock of fiat

money. A. 3 is standard. As we shall see, A. 4 is used only to guarantee the

existence of interior steady states. Although the theory can be extended to

analyze free goods, we do not attempt to do so here. Muller (1983) has, in

fact, extended the type of results presented in this paper to economies with

general activity analysis production technologies that include free

disposal

.

Note that we consider only pure exchange economies and two period lived

consumers. Ve do, however, allow many goods and types of consumers, and the

multi-period consumption case can easily be reduced to the case we consider:

If consumers live m periods, we simply redefine generations so that consumers

bom in periods 1,2,...,m-1 are generation 1, consumers bom in periods

-m+2,-m+3, • . . ,0 and m,m-1 , . . . ,2m-2 are generations and 2 respectively, and

so forth. In this reformulation each generation overlaps only with the next

generation. (See Balasko, Cass and Shell (1980).)

The space of feasible economies C' are the pairs (y, z) which satisfy

A.1 - A. 5" This is a topological space in the weak C topology described,

11 2 ?
for example, by Hirsch (1976). Roughly, two economies (y , z ) and (y , z )

are close if the functions and their first derivatives are close.

A.1 - A.4 are naturally satisfied by any demand function derived by

aggregating the individual demand functions of utility maximizing consumers.

Furthermore, Debreu (1974) has demonstrated that, for any (y, z) that satisfy

A.1 - A. 3, there exists a generation of 2n utility maximizing consumers whose

aggregate excess demands (3^, z*) agree with (y, z) on any compact subset of

On
E . Since homogeneity allows us to restrict our attention to prices
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q E E that satisfy such a price normalization as Z.^.q =1, this means

that problems can occur only as some relative prices approach zero. As we

point out in the next section, however, this minor technical problem plays no

role in our study of steady states or of equilibrium price paths near steady

states. Consequently, we are justified in viewing A.I - A. 4 as completely

characterizing demand functions derived from utility maximization by

heterogenous consiimers.

3. STEADY STATES

A steady state of an economy (y, z) e L is a relative price vector

p e E and price level growth factor p > such that

(3.1) z(p, pp) + y(pp, p^p) = z(p, pp) + y(p, pp) = 0.

In other words, if relative prices in each period are given by p and the

price level grows at p , the market is always in equilibrium. Since claims to

good i now cost p and claims to good i next period cost Pp , 1/p - 1 is the

steady state rate of interest.

Notice that any steady state price vector (p, pp) is a special case of a

price vector q e E that satisfies z(q) + y(q) = 0. ¥e are now in a

position to argue that, for our purposes, A.I - A. 4 completely characterize

excess demand functions derived from utility maximization, and that we need

On
not worry about problems near the boundary of E : If (y, z) satisfies

A.I - A. 3, then there exists a (y*, z*) , derived from utility maximization by

2n consumers, 1;hat agrees with (y, z) on S = {q e E |q'e = 1, q > e} for
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any c > 0. Here e = (l,..., 1). If (y, z) satisfies A. 4, then as q, - q,

q e BR \Jo} , e'( z(q) + y(q)) - " • Consequently, S can be chosen large

enough so that e'[ z(q) + y(q)) > for all q e S^XS . This obviously implies

that we can choose S large enough so that every steady state of (y, z) lies
e

in its interior. Mas-Colell (1977) has further demonstrated that, for any

e > and any (y, z) that satisfies A.1 - A.4 and the condition that

e'( z(q) + y(q)) > for all q e SJXS , there exists (y*, z*) , derived from

utility maximization by 2n consumers, that agrees with (y, z) on S and also

satisfies e'( z*(q) + y*(q)) > for all q e 3^X5 • Consequently, the only

steady states of (3?*, z*) are those of (y, z). Furthermore, S can be chosen

large enough so that (y, z) and {y* , z*) agree on any open neigborhood of

these steady states in S«.

The nominal steady state savings for the entire economy is

\i = -p'y(p» pp)' There are two kinds of steady states: real steady states

in which ^ = and monetary, or nominal , steady states in which ^ ^^ 0. Gale

(1975) refers to real steady states as balanced . By Walras's law,

p' (y + pz) = 0, which implies Pp'z = -p'y = \i' By the equilibrium condition,

p'(z + y) = 0, which implies p'z = \i. Consequently, (p - 1 )n = 0, and in a

monetary steady state the interest rate must be zero. Ve shall see that a

real steady state has p = 1 purely by coincidence. ¥e therefore refer to a

steady state with p = 1 as a nominal steady state. Gale refers to these as

golden rule steady states since they maximize a weighted sum of utilities

subject to the steady state consumption constraint.

¥e now examine the number of steady states. We first separate the

nominal and real cases. If both p = 1 and ^ = -p'y = at a steady state,

then
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z(p, p) + y(p, p) =

(3.2)

-p'y(p. p) = 0.

By virtue of Walras's law, the first n equations may be viewed as a system of

n - 1 equations while, by homogeneity, p constitutes n - 1 independent

variables. 3-2 may therefore be regarded as n equations in n - 1 imknowns.

Let us assume that

(E.1) System 3-2 has no solution.

The importance of this regularity assumption is that it is satisfied by

almost all (y, z) e E • Here "almost all" means an open dense subset of £- .

We call a property generic if it is satisfied by an open dense subset of a

topological space. Note that we can easily show that genericity in c- is

equivalent to genericity in the space of excess demand functions derived from

utility maximization (see the discussion of the boundary condition above).

This has implications for economies parameterized by utility functions and

endowments (see Mas-Colell (l974)). The principal tool that we use to prove

genericity is the following result from differential topology (see Guillemin

and Pollack (1974, pp. 67-69))-

TEMSVERSALITY THEOREM: Let M, V, N be smooth manifolds where dim M = m and

dim N = n. Let y e N. Suppose that f:MzV-»-IfisaC map, where

r > max [o, m - n] , such that for every (x, v) that satisfies f(x, v) = y,

rank I)f(x, v) = n; then the set of v e V for which f(x, v) = y implies
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rank D. f(2, v) = n has full Lebesgue measure. In other words, if y is a

regular value of f, then, for all v e V in a set of full Lebesgue measure, it

is a regular value of f .

Since a set of full Lebesgue measure is dense, we can use this theorem to

prove the density of sets that satisfy some property. Openness usually

follows trivially from definitions. Notice that, since Df = [D.f Do^] t i't

suffices to demonstrate that rank Dpf(z, v) = n to prove that, for almost all

v E Y, Df (x) has rank n whenever f (x) = y.

PROPOSITION 3-1: The set of economies that satisfy R.I is open and dense in

PROOF: Openness is obvious. To prove density, we let v. e E , v^ e R and

construct the perturbation

(3.5) ^j=1 ^1 ^1

z""" = z^ - v„.
V 2

A check shows that, for v small enough, (y , z ) e £. ; in other words,

A.1 - A. 5 are satisfied. To show the set of economies that satisfy E.1 is

dense, it suffices by the transversality theorem to show that the derivative

of the system in 3«2 with respect to v has rank n at any solution: The only

way can be a regular value of f^(p) = z^(p, p) + y^(p, p) , -p'y^Cp, p) is
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for there to be no p for which f (p) = 0. Writing out this derivative, we

have

ep' - I

-1

for any p e S • This matrix has rank n as required.

Q.E.D.

Nominal steady states are characterized by z(p, p) + y(p, p) = 0. Since

z(p» p) • y(p» p) has the formal properties of the excess demand function of

a static exchange economy with n goods, the theory of nominal steady states

carries over directly from the static theory. For the sake of completeness

we prove the following proposition:

PROPOSITION 3«2: Every economy (y, z) e £• has a steady state in which

P = 1-

PROOF: Let S now denote the set {p e R |p'e = 1, p > e} . Choose e small

enough so that e'(z(p, p) + y(p, p)) > a for all p e S^S and some a > 0.

S is obviously compact, convex, and, choosing e < 1/n, non-empty. For any

p E S , define f(p) as the vector in S that is closest to

p + z(p, p) + y(p, p) in terms of euclidean distance, f : S ->• S is

obviously continuous and, hence, by Brouwer's fixed point theorem, has a

fixed point.

At any p e S f(p) is the vector that solves the problem of minimizing

1/2|lf - p - z(p, p) - y(p, p) 1 I

subject to the constraints f > ee and

f'e = 1. By the Kuhn-Tucker theorem such a point satisfies
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(3-5) f - p - z(p, p) - y(p, p) - X^ + ^26 -

P.

and (f - ee)'\. = for some X. e E^, Xp ^ ^' •^''' ^ fixed point f = p. Pest-

nultiplying 3-5 by (p - ee)' yields (I - te)X- = -e'( z(p, p) + y(p, p)) ;

^ A

> -tBt, > (1 - ne)\„ = (1 - nE)p'\. > 0, which is impossible. Consequently,

since any fized point p lies in the interior of S , \. = 0, which implies

X,_ = 0, and 3'5 is the steady state condition.

Q.E.C.

Following Debreu (1970), we impose the regularity assumption

(R.2) D^z(p, p) + D2z(p, p) + D^y(p, p) + D2y(p. p) bas rank n - 1 at

nominal steady states.

Since the map from & to static exchange economies with n goods is a

continuous open map, E.2 is generic in S

.

We can use the fixed point index theorem developed by Dierker (1972) to

prove that R.2 implies that there are an odd number of nominal steady states.

Let J = D.z + DpZ + D.y + D^y, evaluated at a nominal steady state p. If we

define index (p) = sgn( det[ -j] ) , where J is the (n - 1 ) x (n - 1 ) matrix

formed by deleting the first row and column from J, then index theory implies

that Zindex(p) = +1, where the sum is over all nominal steady states. For

example, if (y, z) exhibits gross substitutability, which implies that

det [ - j] > 0, then there is a unique nominal steady state.

Real steady states are characterized by the equations
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z(p, pp) + y(p, pp) =

(3.5)

-p'y(p, pp) = 0.

Walras's law implies that p'z(p, pp) = at the steady state and,

consequently, that (p, p) solves 3'5 if and only if it solves

(I - ep')(z(p, ^p) + y(p, pp)) =

(5.6)

-p'y(p. Pp) = 0.

PROPOSITION 3 '5: Every economy has a steady state in which

^ = -p'y(p, Pp) = 0.

PROOF: The proof of this proposition is similar to that of Proposition 3.2:

We find a non-empty, compact, convex set whose interior contains all steady

states that satisfy 3.6. We then define a continuous mapping of this set

into itself whose fixed points are steady states.

We begin hy putting hounds on p: A. 4 implies that there exists some

e > such that e'[ z(p, pp) + y(p, pp)) > a > for all p e S>»S and all

P > 0. To see why, suppose instead that there exists a sequence

(Pjj. Pj^) e Sq X E_^^ such that e'( z(pj^, ^^^) + y(pj^, Pj^j^)) < a and

p, -> p e QS-. How there is either a subsequence of (p, , p.) for which p,

converges or one for which 1/P^ converges. In the first case, the associated

subsequence (p, , Pi^P^) provides an example of a price sequence that converges

to a point on the boundary of E and violates A.4« In the second case,

( (l/Pv)Pi^> pO provides such an example. Consequently, we can find an e >
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such that all steady states (p, p) have p e S . It is now easy to put bounds

on p : A. 4 implies that for any p e S p'z(p, p, p) - « as p -» and,

similarly, p'y((l/P,)p, p) ->• " as p, ^ <»
. Since S is compact, we can find

some p > such that -p'y(p» Pp) > for b.11 P > p and all p e S and some

< §_ < p" such that -p'y(p, pp) < for all p < §_ and all p e S .

Consider now the set S x [g_, p] . It is non-empty, compact, and convex.

Furthermore steady states that satisfy 3-6, if any exist, lie in its

interior. For any (p, p) e S x [§_, p] we define f(p, p) as the vector in

S X [g_, p] that is closest to [ p + (l - ep')(z(p, pp) + y(p, Pp)}] ,

P ~ P'y(p> Pp)} ^ terms of euclidean distance. Again using the Kuhn-Tucker

theorem to chartacterize f(p, p), we establish that any fixed point

(p, p) = f(p, p) must satisfy

-d - ep')[z(p, pp) + y(p, pp)} - \^ + \^e =

(3.7)

p'y(p, pp) - \^ + \^ =

(p - ee)'\^ = 0, (p - ^)X = 0, and (p" - p )\ = for some X e E^, ^2 ^ ^»

and \_, \ . e R . The choice of p and p implies that X_ = X . = 0. An
^ 4 + i^ 5 4

argument identical to that in Proposition 3»2 implies \, = and Xp = 0.

Consequently, a fixed point of f, which necessarily exists, is a steady state

in which \i = -p'y(p» Pp) = 0*

Q.E.D.

The relevant regularity condition is
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(R.5)
(I - ep*)(D^z + PD2* + D^y + pD^y) (l - ep')i'D^z + D^^^P

-y* - p'CD^y + pD^y) -p'DjTP
has rank n.

Since S z [g_, p^ is compact, a standard argument implies that economies that

satisfy R.3 at every real steady state have only a finite number of real

steady states. Define index(p, p) to be +1 or -1 according to whether the

sign of the determinant of the negative of the above matrix with its first

row and column deleted is positive or negative. Another standard argument

then implies that Sindex(p, p ) = +1 when summed over all equilibria. This

implies there is an odd number of real steady states, and indeed a unique

real steady state if index(p, p) = +1 at every possible steady state.

PROPOSITION 3'A: Given R.I, R.5 is also generic.

PROOF: The openness of R.3 is immediate from the stability of transversal

intersections and the continuity of the derivatives of (y, z) . To prove

density, we use the same perturbation as that used in the proof of

Proposition 3*1 • Differentiating the system in 3 '6 with respect to v, we

obtain

ep' - I (I - ep')(p - l)e

-p

at a steady state (p, p). Since this matrix has rank n, the proposition now

follows from the transversality theorem.

Q.E.D.

Let S- be the subset of ,£. that satisfies E.1 - R.3« 'We can summarize
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the discussion with the following result.

PROPOSITION 3.5: g. is open dense in t . Every economy in c- has an odd

number of real steady states and an odd number of nominal steady states. No

real steady state has p = 1. Furthermore, the number of steady states of

each type are constant on connected components of ^ and vary continuously

with the economy.

Suppose we want to show that for a generic economy certain properties are

satisfied at all steady states. Mathematically, it is more convenient to

prove that for a generic economy these properties are satisfied at a

particular steady state. A useful fact about regular economies is that the

latter property implies the former. To formalize this let

e
3" d ^ X S X [g_, p] be the set of (y, z, p, p) for which (p, p) is a

steady state of (y, z) • Let 3 "be open dense in 3 • Define i. to be the

subset of S such that, if (y, z) e E and (y, z, p, p) e 3 . then

n

(y, z, p, p) e £^ . It follows directly from Proposition 3.5 and the fact

>* G
that finite intersections of open dense sets are open dense that C is open

dense in 5 • Consequently, in the sequel, we prove all theorems about

genericity in 3*
i with the understanding that this carries over into C'

.

4. RESTRICTIONS ON DEMAND DERIVATIVES

We are interested in discovering the properties of the demand derivatives

D.y, D y, D z, and D z evaluated at steady states (p, p). The most

convenient way to do this is to introduce the jet mapping d: 3"-* JJ where

is a subset of the space of six-tuples (D.y, D_y, D.z, DpZ, p, p) and the
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mapping d applied to (y, z, p, p) yields the excess demand derivatives

evaluated at (p, p).

What restrictions should we place on the elements ofD "? Differentiating

Walras's law, we see that

(4.1)

y' + p'D^y + Pp'd^z =

z' + p'D^y + ^v"^2^ " °°

But the steady state condition says that z + y =0. Consequently, we can

rewrite Valras's law as

(4.2) p'(l)^y + D2y + PD^z + f>Ji^z) = 0.

Differentiating the homogeneity assumption, we can rewrite it as

(4.3)

(D^y + pD2y)p =

(D^z + pD2z)p = 0.

Now let us restrict attention to economies with steady states in

S z [g_, p] . ¥e define i© to be the six-tuples that satisfy 4.2 and 4.3 and

for which (p, p)e S z[§_, p]. The following theorem implies that the space

oJ captures all the important restrictions on demand derivatives.

T3

PROPOSITION 4.1: The jet mapping d is a continuous open mapping of ^ onto

an open dense subset of cO
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PROOF: Continuity of d is obvious. To prove the remainder of the

proposition we need to know how to convert elements of (Jj into elements of 3^

.

Suppose d e ^ . Let us renormalize prices q e R^_^ by setting q = 1 . Let X

,

be the matrix of demand derivatives with first row and column deleted. Using

4.1 , we see that we should define y' = -p'(D.y + pD. z) and

z' = -p' (Dpy + pDpz). Let q be the vector (p, pp) with the first component

deleted, and let x, (q) be the vector (y, z) with the first component deleted.

Let q, be an arbitrary 2n - 1 vector. ¥e define the linear affine function

X,: E •* B. by the rule x,(q,) = 2j(q) +
^d^'^t

~ ^' Suppose that

X c £ and that x is the last n - 1 components of x viewed as a function of

2n-1 ^ ^^. 1

E++
by setting q = 1 . We define x. to be the vreighted average

(4.4) 2^(q^) = X(q^)x^(q^) + (1 - \(q^))x(q^).

Let B C E_^_^ be the open ball of radius e > around q. ¥e can construct

\'. E ~ -» R so that it is C and satisfies < \(q,) < 1, X(q} = 1, and

X.(q,) = for q^ pf B. Furthermore, we can choose \ so that I^Cq) - and

||l^(q,)|| < 3/e (see Hirsch (1976, pp. 4I-42)). Consequently, x coincides

with X outside of B, but \(q) = 3c,(q) and Dx ( q) = X,. There is a unique

extension of x to x : R * R that satisfies Walras's law and homogeneity.

Furthermore, for e small enough, the boundary assumption is satisfied.

Consequently, we may assume x. z o . Finally, a direct computation shows
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that d(x
, p, p) = d.

Let us first use this construction to show that d is open. Let

d = d(x, p, p), let d -•• d, and let e = maz{
| |q - ql j, | h^iq. ) - xQ II ,

I
|X7 - Dx(q)||} . Then e -> 0. Furthermore, a computation using the mean

value theorem shows x •• x. Since o is open in c- , x^ is eventually in

^ R
O • This implies that d is open.

Next we show d(^ ) is dense in t- . Indeed, suppose &^ d(^ ).

>• k k tf R
Since z. e 6 , there is x -> x^ with x e c- . By construction, however, the

steady state (p, p) is itself a regular steady state of x in the ball B of

fixed radius e. Thus, the x must have a steady state (p , p ) -^ (p, p).

Therefore, (x
, p , p ) e 3^ and d(x

, p , p ) ^ d = ^i\t P» P)'

Q.E.D.

This result says that any generic set in J) corresponds to a generic property

in t- . Furthermore, any open set in X) corresponds to a non-void open set in

C^ . It enables us to restrict our study entirely to the spaced.

It is of interest to see what R.I to R.3 mean in ot). 4.1 implies that

p'y = if and only if p' (D.y + pD.z)p = 0. R.1 is therefore equivalent to

the assumption that p' (D.y + D^z)p = implies p ^ 1. Let us define

J = D. z + pLpZ + D.y + pEpy. Homogeneity implies that Jp = 0. At steady

states where p =1 R.2 is equivalent to the assumption that J has rank n - 1 .

At steady states where p ^ 1 Walras's law implies the matrix in R.5 equals

(I - ep*)j (I - ep')(D2Z + D^y)?

Pp'(D^y - D^z) -p'D^yp
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A second application of Valras's law shows that this has the same rank as

J (D^z + D^y)?

pp'(D^y - T)^z) -p'B^yp

It also implies that if Jx = then p' (D.y - D^z)^ = 0. Consequently, R.3

implies that J has rank n - 1. Observe that, if there is a vector x such

that x'j = and x' (D-z + I>2y)p "^ and J has rank n - 1 , then R.3 is

satisfied. It is straightforward to show that the former condition is

generic given the latter.

5. PATHS NEAR STEADY STATES

A (perfect foresight) equilihrium price path is a finite or infinite

sequence of prices { ...,p . , p, , p,^. » • • •} Buch that p, e R_^_^ and

(5-1) 2;(p^_^ , p^) + y(p^, p^^^) = 0.

Our goal is to find generic conditions under which paths near steady states

are well behaved, which means that they should follow a nice second order

difference equation.

Fix a steady state (p, p). The equilibrium condition 5-1 can be

linearized as

(5.2) Diz(p^_^ -
p^-'lp)

+ (D^z + p"''D^y)(p^ - pS) + p-''D2y(p^^^ - p^^''p) = 0.

Here all derivatives are evaluated at (p, pp) and we use the fact that excess
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demand derivatives are hcmogeneous of degree«miAua one. Suppose that the

following condition holds.

(R.4) DpJ is non-singular.

Then the linearized system can he solved to find

(5.3) (q^^^ - P**'q) = G(q^ - p \)

where G = I

G^ G,
, G^ = -^D2y'''D^z, G2 = -D^j'h?^^ + D^y),

7 "z|

q " (p» P p) » and q, = (p, ., Po^) • A direct implication of the implicit

function theorem is

PEOPOSITION 5-1: If E.4 holds, then there is an open cone U C E^^ around q

and a unique function g: U -» E » which is smooth, homogeneous of degree

one, and such that

(a) If { p ,

} . is an equilibrium price path and q, , q,_^. e U, then o.^, - s(q4.)

(b) If {p.} has q , e U at all times and q, = g(q,), then it is an

equilibrium price path. Furthermore, I>g(q) = G.

Our goal is to establish that there are generic restrictions on the

demand derivatives D.y, D^y, D. z, D„z such that E.4 holds and such that G is

a nice matrix, and to prove that under these conditions g is a nice dynamical

system.
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6. RESTRICTIONS ON THE LINEARIZED SYSTEM

¥e are interested in discovering the properties of the linearized system

R
as represented by the matrix G. It is convenient to work in the subset 5D

of ^ for which R.I - R.4 and the following restriction hold:

(R.5) K = D.y + D y + pD^z + PB^z has rank n - 1

Note that Walras's law implies that p'K = 0, so K cannot have full rank.

PROPOSITION 6.1: ^^ is open dense in f) .

PROOF: Openness is obvious. To demonstrate the density of R.4, let us

define D^y^ = D^y + a^ I, 1^2'^^ " ^2^ ~ "^-^^ ^1 ^v " "^1^ " ^•^' ^^

D_z = D-z + vl. Leave p and p fixed. It is easy to verify that

(D^y^, D^y^, H^z^, D^z^, p, p) is an element of ^ if

(D,y, D^y, D. z, D„z, p, p) is. Let X have the smallest absolute value of any

non-zero, real eigenvalue of D^y. Obviously, D^j is non-singular for any v

such that < |v| < \.

To demonstrate the density of R.5, let us define D.y = D.y - v(l - ep')

where p'e = 1. Observe that (D.y , Dpy, D>z, DpZ, p, p) still satisfies the

relevant versions of Valras's law, 4.2, and the homogeneity assumption, 4.3'

Now K^ = K + v(l - ep'). Let p'K^ = 0. Ve know that p'K = 0. If p is

necessarily proportional to p, then K has rank n - 1 . But

(pA - (p^e)p')(K - vl) = 0. Since K - vl is non-singular for v* small

enough, p^ = (pQe)p.

Q.E.D.

R
Our next step is to consider the mapping h: ^ •> ^ where the elements
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of ^ are six-tuples (D.y, D y, G. , G^, p, p) that satisfy the appropriate

conditions. The map h is the identity on the first two and last two

components. G. and G_ are defined as G. = -pD_y D.z and

G = -D^y" (pD z + D.y). Since D y is non-singular on S , h is obviously

continuous. Equally important, it has a continuous inverse on h(^ ) given

by the identity on the first two and last two components and by

(6.1) [D^z D^z] = -(l/p)[D^y E2y]G

where G = I

S ^2
as in 5'3-

Thus, h is a homeomorphism onto ^ = h(^ )• It remains to identify

^ . Walras's law A. 2 holds if and only if

(6.2) p'D^ytl - G^ - G^] = 0.

Note that this implies p'[DpyG. D^y] G = p'[l)pyG. D^y] , and, therefore,

that G has an eigenvalue equal to one. The homogeneity condition A. 3 holds

if and only if

(D^y + D2y)p =

(6.3)
Gq = pq

where q = (p, Pp). Consequently, G has an eigenvalue equal to p. E.4 is

unchanged while R.5 becomes

(6.4) -^ " ^1 " ^2 ^^^ ''^^ n - 1 .
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6.2 - 6.4 and R.4 completely characterize ^ .

Finally, we focus in on G itself, considering y : 3^ * )0 vhere the

elements of^ are three-tuples of the form (G, p, p) and y is the projection

map. Y is obviously continuous; we want to show that it is an open map onto

We examine 6.5 first. Since D. y does not appear except in this

condition, (D.y + PDpy)p = serves only to determine D.y once D^j is given.

Obviously, D.y may be locally chosen as a continuous function of p, D^y, and

p. The second condition is Gq = Pq. Now consider 6.4. Notice that this

condition implies that G has a unit root.

We claim that this is all: 6.3 and 6.4 uniquely characterize x7 , and y

is open. To prove this let x be in the left null space of I - G. - G„. We

think of X as lying in the manifold formed by identifying radially opposite

points on the unit sphere. Since I - G. - G- has rank n - 1 , x is a

continuous function of G. We need to be able to locally map vectors x and p

continuously into non-singular matrices D^y such that p'Dpy = x. This,

however, is obviously possible. We summarize our arguments with the

following proposition:

PROPOSITION 6.2: Let -s^ be the space of (G, p, p) such that G has one unit

root (counting geometric multiplicity), Gq = pq, and I - Cf. - Gp has rank

n - 1 . Then the mapping of ^ taking excess demand derivatives to

coefficient matrices of the linearized system is continuous open and onto^

.

In particular,- G is a coefficient matrix of a linearized system of a steady

state q if and only if G has one \init root and Gq = pq.
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7. RESTRICTIONS ON EIGENVALUES

We now examine the implication of the restrictions on Gf for its

eigenvalues. It is convenient to work in the subspace>c/ offeL/for which

P I - G^ - PG2 = ^1*27" (I'.z + pD^z + D^y + pD^y) has rank n - 1. Since this

condition is already generic in X) , it is generic in yj . Let j be the

manifold of eigenvalues of 2n z 2n matrices: This is the subset of 2n- tuples

of complex numbers in which complex numbers occur only in conjugate pairs and

in which vectors which differ only by the order of components are identified.

The eigenvalue evaluation map a maps 2n x 2n matrices to j and is known to be

continuous. ¥e now consider the set J/C j x [^, p] whose elements (s, p)

have a component equal to one and an additional component equal to p if

p # 1 . We extend a to x : ^ •* J • ^e claim that the only restrictions on

the eigenvalues of G are that one equal unity and one equal p . If p = 1 ,

then there is only one restriction. To justify this claim we use the

following result.

PROPOSITION 7.1: t is a continuous open mapping of "sU onto an open dense

subset of C/.

PROOF: T is obviously continuous. To show t is open, let (s, p) =

t(G, p, p), and suppose (s ,p ) ^ (s,p). Ve construct G -^ G with

t(G^, p^, P^) = (s^, p^). Set G^ = hV(H^)"^ Given C^ can we choose H^

that G has the partitioned structure corresponding to a second order

difference equation? Obviously G is the unique solution of G ii
=' aC .

Writing this out in partitioned form, we see •. V'V.
•'

so
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(7.1)

I '<,
^12 "21 ^22

.

='

=r
.H^, ^22

'^u <a' ^11 ^12 ^1^11 * "21^12

4. 4 ^21 C^C22 •

^11^^12 ^ ^12^22

from which it follows that G has the correct structure if and only if

(7.2)
^21 " ^21^^^' ^r ^2^ ' "11^11 ^ ^12^2'21

H22 = H22(C
,
H^^, H^2) = ^11^12 " ^12^22

^Tl 1

How let H be a basis for E such that C = K GH is in real canonical

form. Obviously, a(C) = a(G) = s. Hirsch and Smale (1973, pp. 155-157) show

how to construct a sequence of real matrices C ->• C with a(C ) = s . Set

k k k k k
H. = H. ., H.""- = H. p and Hp. , H^p as defined above. By continuity H > H and

is eventually non-singular, so G is well-defined and, by construction, has

k k
the proper structure. Furthermore, since components of s are one and p, G

k k k
has them as eigenvalues. Observe that, since G has a unit root, I - G. - Gp

is singular, but, since G -> G, it has rank n - 1. Next, the structure of

k k
G implies that there is an eigenvector corresponding to p that has the form

k /• k k k\
q = Cp I P P ) • We think of this as lying on the unit sphere with radial

k k
identification and thus being unique. Further, since G -> G, p is the

2
unique component in the right null space of p I - G. - pGp and, therefore,

k k k
converges to p. Consequently, (G , p , p ) -»• (G, p, p), and the map is open.
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Finally, we want x (^2^ ) to be open dense in C7 • Only density remains to

be shown; we do this by constructing an open dense subset of Cy, denoted

^ , such that C7 CZt:WJ )• Let(s, p)e07. Arranging diagonal blocks, we

can construct a block diagonal matrix

(7.3) C =

in real canonical form where a(c) = s and where the first diagonal entry of C

is p . We define J to be the subset of 3 for which the above construction

can yield a matrix C such that C. - C_ is non-singular and for which there is

only one unit eigenvalue and one eigenvalue p. Clearly, 0^ is an open dense

subset of Z/ ' Choose p e S , let H. . be a non-singular matrix -vrith first

coliimn equal to p, and let H.p = H, . . Using 7-2, we set H_. = H,.C. and

Hp- = H. pCp. Since C. - Cp is non-singular, so is

(7.4) H =
«11 ^12

^12^2

Assuming that C has only one unit eigenvalue implies that I - G. - G^ has

rank n - 1. Consequently, (HCH~ , p, p) z^ - Similarly, assuming that C

2
has only one eigenvalue p implies that p I - G. - pG. has rank n - 1, and in

fact (HCH""' , p, P) z ^^.

Q.E.D.
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8. NOMINAL DYNAMICS

Until now we have largely combined the study of real and nominal steady

states. The dynamics near each type of steady state are, however, rather

different. Ve begin by studying the nominal case. Here we know only that-

G has one unit root.

It is useful to define the money supply m(q ) = plz(p,_, , p.). This is

homogeneous of degree one. Walras's law implies that this equals

~p' iy(P+ i» P^.)* ^^^ ^^^ equilibrium condition implies

p^z(p^_^ , p^) = -p^y(p^, Pt+1^* Consequently, m(q^) = m(g(q^)); the money

supply is constant along equilibrium price paths. At a nominal steady state

p, = m(q) * 0. The homogeneity condition implies that, if m(q ) = \i

,

I'i'i(q,)q, = n * and, therefore m(q, ) = \i defines a 2n - 1 submanifold

C! R that is transversal to the steady state ray and invariant under g.

We denote the restriction of g to by g .

All interest focuses on g . If sgn |j.. = sgn ^ip then g and g exhibit

the same djmamics except that the price level is increased by a factor of

\iL./\i.^. Examining the linearization, we see that De is G restricted to

I^(i)Q-i. ~ 0' Since is invariant and tranversal to the steady state ray,

it follows that the generalized eigenspace of G that excludes the

eigenvector q spans the space Dm(q)q, = and that G restricted to this space

has the eigenvalues of G excluding the one unit root known a priori to exist.

Furthermore, the results of the previous section imply that the remaining

g
eigenvalues are unrestricted. Let n be the number of these eigenvalues

inside the unit circle. Using standard results, such as those in Irwin

(1980), we can easily prove the following proposition.
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PROPOSITION 8. 1 : There is an open dense set of economies that satisfy the

following conditions at all nominal steady states:

(a) g is a local diffeomorphism; that is, G is non-singular.

(b) g has no roots on the unit circle; that is, g is hyperbolic.

(c) g has an n dimensional stable manifold W of q^ e for which

(d) g has a 2n - n - 1 dimensional unstable manifold V of q^ e for

which gj (qQ) - q;

(e) (Hartmann's theorem) There is a smooth coordinate change c(q) such

that cog oc = G on W , and for a residual set of economies this

On
holds on all of (and thus R^^)

•

One warning should be given about the genericity of these results: They

hold for almost all economies when the only restrictions that we place on

excess demands are A.1 - A.5« Suppose, however, that we restrict our

attention to economies with a single, two period lived consumer in each

generation who has an intertemporally separable utility function. Then both

D^y and D z have at most rank one, and E.4 is violated. Since the set of

economies that satisfy these restrictions is closed and nowhere dense, none

of our previous analysis applies. Kehoe and Levine ( 1982b) analyze this case

and show that it is essentially the same as that of an economy with one good

in every period.

9. REAL DYNAMICS

We now study the neighborhood of a steady state q = (p, 6p) with m(q) =
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and p * 1. In this case prices are not stationary at a steady state, but

grow or decline exponentially. Let b: B.^^ - E be a function that is

homogenous of degree one. ¥e can normalize prices to focus on the

convergence of relative prices. Define g • on Q =
{ q . e Q I ^(q.^) ~ 1} ^7

g (q^.) = g(q4.)/K s(q+)) • if b is monotonicaJLly increasing, then it can be
W u w

naturally thought of as a price index. As it is, it provides a one

dimensional restriction on relative prices. Homogeneity implies

that b( g (qo.)) =1' We say that an equilibrium price path converges to q if

q /b(q. ) - q. This is true of a path beginning at q if and only if the path

under g starting at q^/b(q^) converges to q.

What is the linear approximation to g ? It is (l/p)(l - q'B)G, where

B = Db(q), restricted to Bq, = 0. Choosing b so that Bq, = defines the

generalized eigenspace of G in which the eigenvector q is excluded , we see

that the eigenvalues of g are those of (l/p)G, excluding the unit eigenvalue

that arises from the eigenvalue p corresponding to q. One of these values is

equal to 1/P; the remaining 2n - 2 are unrestricted. Let n be the nimber

of these remaining eigenvalues inside the unit circle. Then g generically

is hyperbolic with an n dimensional stable manifold and a 2n - n - 1

b —

s

dimensional unstable manifold if p < 1 . Similarly g has a n + 1

dimensional stable manifold and a 2n - n - 2 dimensional unstable manifold

if P > 1. Furthermore, g is linearizable by a smooth coordinate change on

the stable manifold.

It is useful also to distinguish between initial conditions with

'^(qn) ~ (real initial conditions) and those with m(q_) * (nominal initial

conditions). Observe that Dm(q) = (-p'pD z, p'Dpy), which, by R.4,
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generically does not vanish. Thus, generically Dm(q ) = defines- a 2i - 1

cone Q^C. E invariant imder g. This is transversal to Q and,

consequently, intersects it in a 2n - 2 manifold Q invariant under g .

Furthermore, a simple computation shows that Q^ is tangent to the

eigenvectors of g except the one having the unit root; thus Q^ is tangent to

the eigenvectors of g except the eigenvector with root 1/p. Since Q is

invariant and, for q, e Q^, m(q, ) = 0, nominal initial q„ (those with

m(q_) ^ O) can approach q only if p > 1; otherwise, if p < 1, nominal paths

cannot approach the real steady state. On the other hand, in Q the

linearized system has all the eigenvalues of (l/p)G except 1 and 1/p. The

real system on the invariant manifold Q^ is, therefore, generically

—

s

**—

s

hyperbolic and has an n dimensional stable manifold and a 2n - n - 2

dimensional unstable manifold. Furthermore, it is linearizable on the stable

manifold.

10. PARETO EFFICIENCY AND FIAT MONEY

Consider an infinite price sequence [p., Pp, p_,...} that satisfies the

conditions (p, , 'P^+^ ) ^ ^++ fi^<^

(10.1) Zq^^I^ * ^^^r ^2^ " °

(10.2) z(Pt_r Pt^
* y^Pf ^t+1^ " °'

In other words, {p., p«, p_,...} is an equilibrium price path for the economy

specified by the demand functions y and z and a demand function z^ for the
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old generation alive in the first period. For such an economy, where each

g'eneration consists of a representative consumer, Balasko and Shell (1980)

have established that a necessary and sufficient condition for pareto

efficiency is that the infinite sumZl/|lp. || diverges. They require that a

certain uniform curvature condition on indifference surfaces be satisfied.

This condition, while restrictive in non-stationary models, is naturally

satisfied in a stationary model such as ours. This result can easily be

extended to economies with many consumers in each generation.

Consequently, steady states with p < 1, with a non-negative interest rate,

are pareto efficient. So are paths that converge to them. An economy always

has a pareto efficient steady state since it always has a steady state where

p = 1. Is there anything more we can say? Can we, for example, guarantee

the existence of a pareto efficient steady state where ^ > 0?

To answer these questions, let us rephrase the conditions that

characterize a steady state. Consider pairs (p, p) that satisfy the price

no
n-1

rmalization (p'e) = 1. Let f: S x [g_, p] -» R ~ be given by the first
e

n -1 coordinate functions of (l - ep')(z(p, Pp) + y(p, pp)) • In other words,

(10.3) f(p, p) = L(I - ep')(z(p, pp) + y(p, pp))

where L is the projection operator that can be represented in standard

coordinates by the (n - 1) x n matrix.

(10.4) L =

1 ...
1 ...

« • • •

• • • •

• • • •

... 1

¥e work with the function (l - ep')(z + y) because, unlike (z + y)
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itself , its first (n - 1 ) coordinates are equal to zero only if

its last coordinate is equal to zero. This is because

p'(l - ep')(z(p, Pp) + y(p, pp)) = 0. Also, like (z + y) itself,

(l - ep')(z + y) has the property that we can select e > small enough so

that e'(l - ep'X z(p, Pp) + y(p, Pp)) > a > for all p e S. S and any

^ < P < P . To see why, suppose instead that

e'(l - ep^)(z(pj^,
pj^pj^)

+ y (p^^, ^^V^)] < for a sequence (p^^, p^^)
- (p, p),

p E Sq. Since e'( z(pj^, ^-^V-^) + y^Pk' ^k^k^^
* » and z + y is bounded from

below, this implies pjT z(p, , Pj^p)
"• y(Pi,» Pb-Pv^) "*" "• This can only happen

if P ^ 1. Walras's law can be used to rewrite this expression as either

(1 - pj^)p^z(pj^, Pj^pj^) or as (l/Pk)(Pk ' ""^Pk^^Pk' Pk^k^' If P > ^ *i^en

(1 - Pv^Pk-^^Pk' PkPk^ ^^ bounded from below. Similarly, if p < 1, then

(l/Pv.)(Pk - l)pjjy(pi^» P kPk-^ ^^ bounded from above. In either case

^i^^^^k' ^k^k^
"^

^^^k' ^k^k^^
^^ bounded from above, which is a

contradiction.

2
In what follows, it is important that f be C . To ensure this, we assume

1 2 2
that y and z are not only C but also C . We need to assume that f is C so

that we can use the transversality theorem to prove that is generically a

regular value of f . Indeed, for v e E , we define

(10.5) f^(p, p) = L(I - ep')(z^(p, pp) + y^(p, pp)]

where y and z are defined as in the proof of Proposition 3*1 •

Differentiating f with respect to v, we obtain the n x (n + 1) matrix

[L(4-ep' - I) L(I - ep')(p - 1 )e] .

ts P
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Notice that x'( i ep' - l) = implies that x is a scalar multiple of p.
e p

Since u'L =
[ u. u_ . . . u . O] for any u e R , however, this implies

that, for all p e S , u'L(—r-ep' - l) = only if u = 0. Consequently, this

matrix has rank n - 1 , and is a regular value of f for all v in a subset

of R^ of full Lesbesgue measure. It is now, as before, a straightforward

matter to demonstrate that is a regular value of f for all (y, z) in an

open dense subset of C' •

What does the pre-image of under f look like? Obviously, f (O) is

compact since S x [^, p] is compact and f is continuous. Since f(p, p)

cannot equal zero for any p on the boundary of S , the only points in f~ (O)

on the boundary of S x [^, p] are those where p equals g_ or p . We have

argued that is generically a regular value of f on the interior of

S X [g_, p] . Our argument also implies that is generically a regular value

of f restricted to S x {p} for almost all fixed P; in particular, is

generically a regular value of f on the boundary of S x [g_, p] .

Unfortunately, S x [g_, p] is not a smooth manifold with boundary because it

has comers. Since f (o) stays away from these comers, however, it is a

smooth one dimensional manifold with boundary whose boundary is contained in

the boundary of S x [g_, p] . Furthermore, using index theory we can show

that f(p, p) = has an odd number of solutions when P
=

§_ and an odd number

of solutions when p = p

.

Define m(p, p) = -p'y(p, p) for all (p, p) e f~ (O) . There are two

distinct ways for (p, p ) e f~ (O) to be an equilibrium: m(p, p) =0 or



-32-

P
= 1. In either case, Walras's law implies that (z(p, p) + y(p, p)) is

equal to 0.

Consider now the graph of m, ( (p, p , m) e S x [§_, f] x r| f(p, p) = 0,

m = m(p, P )} : It is obviously a smooth one dimensional manifold with

boundary diffeomorphic to f (O). Steady states of (y, z) are points where

the -graph of m intersects either the n - 1 dimensional submanifold of

S X [§_, p] X R where m = or the n - 1 dimensional submanifold where p = 1 .

We can picture these intersections graphically if we project S x [g_, p] x R

onto [§_> F] X R' Under this projection the graph of m need not be an

embedded submanifold, of course, because it may contain points of self-

intersection. It is, however, an immersed submanifold. The self-

intersections are generically transversal, but this is not important for our

arguments

.

Pigure 10.1

R.I says that the graph of m does not pass through (1, O); R.2 says that

it intersects the line p = 1 transversally; and R.2 says that it intersects

the line m = transversally. Considering diagrams like that in Figure 10.1,

we can see why every economy does, in fact, have at least one steady state

where p < 1 and ^ > 0: There are an odd number of points in f (O) where

P = g_. Because of the boiindary condition at all of these m(p, p) > 0. An

even number, possibly zero, of these points are the endpoints of paths that

return to the boundary p = ^. An odd number, at least one, must be endpoints



in(p, e)

Figure 10.1



of paths that lead to the boundary p = p, where m(p, p) < 0. Such a path

must either cross the line m = where p < 1 or cross the line p = 1 where

m > 0. This same sort of argument can be used to demonstrate that every

economy has at least one steady state where p > 1 and ^i < 0.
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