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1.

If the profitability of production increases with the level of

economic activity, then steady-state rational expectations equilibria

need not be efficient. Diamond (1982) illustrated this point in a model

of search equilibrium in which the rate of meeting trade partners in-

creases with the number of potential partners. The presence of multiple

steady state equilibria in that model suggests that there may be multi-

ple rational expectations equilibrium paths for some initial positions.

This paper provides such an example. For some initial positions, the

belief that others will undertake many production possibilities makes it

privately worthwhile to undertake many opportunities. This optimistic

equilibrium path Pareto-dominates the "pessimistic" path on which agents

correctly believe that others will only undertake a few production pos-

sibilities. There can also be equilibria in which traders correctly

believe that the economy will alternative between optimistic and pessi-

mistic phases. In these "endogenous business cycles," production waxes

and wanes in an otherwise stationary environment. While these cycles

are deterministic, they have more in common with "sunspot equilibria"

than with the Pareto-efficient deterministic cycles occuring in optimal

growth models , as they are based on the market imperfections implicit

in costly search.

Because expectations can so strongly influence the economy, traders

would prefer some way of coordinating on a "good" equilibrium. It is

not unheard-of for governments to issue optimistic forecasts in the hope

of inducing optimistic private forecasts; such forecasts could be self-

fulfilling. The government may also directly intervene to stimulate

demand and launch the economy on an optimistic path. We have not



attempted to model such policies directly, which would require an ex-

plicit treatment of the revision of expectations. However we do intend

our model to be suggestive of the possible expectational role of aggre-

gate demand management.

In Section 1 we briefly review the simple model presented previous-

ly. In Section 2 we consider the dynamics of the willingness to produce

and consider two equilibrium paths converging to steady states. Section

3 shows that our model exhibits the Hopf bifurcation, so that equilibri-

um cycles can exist for some parameter values. Section 4 contains

explicit calculation of some cycles.

1 . Basic Model

All individuals are assumed to be alike. Instantaneous utility

satisfies

U = u - c (1 )

where u is the utility from consumption of y units of output and c is

the cost of production (disutility of labor). Lifetime utility is the

present discounted value of instantaneous utility

V = I e

X

Vt.) (2)

i=1

where t. are the dates at which consumption and production occur. Indi-

viduals are assumed zo maximize the expected value of lifetime utility.

Production opportunities arrive as a Poisson process. With arrival

rate a, each individual learns of production opportunities. Each oppor-

tunity has y units of output and costs c (c > 0) units to produce. We

assume that y is the same for all projects and c is an independent draw
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from the distribution G(c) with support on (c_, + c), where c > £ > 0.

There are two further restrictions. We assume that individuals cannot

consume the products of their investment, but trade their own output for

that produced by others. This represents the small extent to which

individuals consume their own output in a modern specialized economy.

We also assume that individuals cannot undertake a production project if

they have unsold produced output on hand. The fact that all trades

involve individuals with y units to sell implies that all units are

swapped on a one-for-one basis, and promptly consumed. Thus individuals

have or y units for sale. The former are looking for production op-

portunities and are referred to as unemployed. The latter are trying to

sell their output and are referred to as employed.

The trading process is such that for each individual the arrival of

potential trading partners is a Poisson process with arrival rate b(e),

b* > 0, b" <_ 0, and b(0) = 0, where e is the fraction of the population

employed, which equals the stock of potential trading partners. This

lag in the trading process is intended to represent the time needed to

sell goods; when there are fewer potential customers, sales are less

frequent. The average time that consumer goods spend in inventories is

assumed to increase as the rate of sales declines. It is assumed that

there is no money and no credit market, so those with nothing to sell

are unable to buy. The economy is assumed to be sufficiently large that

the expected values of potential production and trade opportunities are

realized. Tne employment rate falls from each completed transaction, as

a previously employed person becomes eligible to undertake a production

opportunity, and rises whenever a production opportunity is undertaken.
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If all opportunities are undertaken that cost less than c*
F

the time

derivative of the level of inventories satisfies

e = -eb(e) + a(l-e)&(c*) (3)

That is, each of the e employed (per capita) faces the probability b(e)

of having a successful trade meeting and being freed to seek a new op-

portunity. Each of the 1 -e unemployed (per capita) has the flow proba-

bility a of learning of an opportunity, of which the fraction G(c*) is

undertaken.

2. Multiple Equilibria

The only decisions made by the agents in our model are which pro-

duction opportunities to undertake. Their choices will depend on how

they expect the economy to evolve, because inventory is more valuable

when there are more potential trading partners. We make the "rational

expectations" (or "perfect foresight") assumption that all agents cor-

rectly anticipate the economy's future trajectory.

Let us denote the optimized expected present discounted value of

lifetime utility for employed and unemployed by W and W respectively.

Along a fixed equilibrium trajectory ¥ and ¥ are functions of e.

Each of these values satisfies the condition that its level times the

utility discount rate equals the expected value of the flow of instan-

taneous utility plus the expected capital gains from a change in status

and from a change in the employment rate:

rV = b[u - ¥ + W ] + W'e* (4a)
e e u e

r¥ = a / [W - ¥ - c]dG + W'e (4b)-
u



With probability b, an employed person has a trade opportunity giving

rise to instantaneous utility u and a change in status to unemployed.

Each unemployed person accepting a production opportunity has an instan-

taneous utility -c and a change in status to employed. Since individ-

uals will accept any project that raises expected utility, the unemploy-

ed accept any project costing less than c* = ¥ - ¥ .

Taking the difference between the equations in (4), and noting that

(¥'-¥' )e is c* we have the equation
e u

c*

re* = b(u-c*) - a / (c*-c)dG + c* (5)

Equation (5) gives a necessary condition for the optimal willingness to

produce along a path. For optimality we also have a transversality

condition, that c* be uniformly bounded in t, and that it not reach zero

when e (and so b(e)) is positive. That is, beliefs about willingness to

invest must be asymptotically correct as well as instantaneously justi-

fiable. Recognizing that b is a function of e and that the e is deter-

mined by (3) we have a system of two differential equations in two vari-

ables, e and c*. A solution path to these two equations is a rational

expectations equilibrium if e satisfies the initial condition and c*

satisfies a suitable transversality condition.

To analyze these equations in a phase diagram, we begin with the

locus C* = 0. This corresponds 10 the willingness ~o invest of someone

with naive expectations. From (5) we have the equation for the locus c*

= 0. The locus passes through the origin. Differentiating implicitly

we have
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dc*
| m (u-c*)b'(e)

de ' •*_ r+b(e)+aG(c*)
>

,- - , , -^-aG"^ 2 (6 >

d c*
i .

de de,2„» (u-c*)b"(e)-2b' (e) 5£_ . aG - (g,)'

2 •« -
" ~~~

r+b(e)+aG(c*)
<

de c*=0

We note that the locus c* = is increasing and concave in e, and bound-

ed above by u. We show it in Figure 1 along with the locus e = and

the directions of motion. The curve e = rises along the vertical axis

to £, increases up to the maximum sustainable inventory level and is

again vertical above c. For convenience, Figure 1 is drawn so that

there are precisely three stationary points, at (0,0), (e,,c*), and

(e
?
,c*) with c* < c. (in the next section, we present an example in

which this is so.)

In Figure 2 we have added the trajectories going to (0,0) and

(e
?
,Cp). It is necessarily the case that the trajectory to (0,0) lies

below e = at e , while the trajectory to (e ,c*) lies above e = at

this point. It is natural to call the trajectory going to (0,0) the

pessimistic path, and the one going to (e„,c*) the optimistic path.

Both paths are rational expectations equilibria. Since they lie on

either side of-e = at e , there is necessarily a nondegenerate inter-

val of initial conditions for which both paths are rational expectations

equilibria.

Since trading opportunities are better the higher the employment

rate, the optimistic path Pareto-dorainates the pessimistic one. That

is, if everyone is optimistic (i.e., believes the economy to be converg-

ing to e„) the economy will converge to e_ and trading opportunities

will be good. However, if everyone is pessimistic (i.e., believes the

economy to be converging to 0) , the economy will converge to and
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trading opportunities will be poor. All agents would be better off if

they could coordinate their expectations on the "good" equilibrium.

3. The Hopf Bifurcation and the Existence of Business Cycles

The fact that for some initial positions both optimistic and pessi-

mistic beliefs are rational expectations equilibria suggests that there

may also be equilibria with "endogenous business cycles," in which trad-

ers correctly believe that the economy will alternate between expanding

and contracting phases.

We explore the possibility of cycles in this section by more tho-

roughly analyzing the dynamics of the system for the special case in

which b(e) = e and production costs are uniformly distributed on

[c_, c_ + 1J. Examining the system's behavior near its steady-states

reveals that it can exhibit the Hopf bifurcation, so that cycles do

indeed occur for some parameter values.

Consider then the following specialization of the equations for e

and c*.

e c* _< _c

e =^ -e 2
+ a(l -e) (c*-c) £ i.

c* i. £ + 1

-e
2

+ a(l-e) c* >_ c + 1

(r+e)c* - ue c* <_ _c (7)

c* =<( (r+e)c* - ue + a(c*-c_)
2
/2 _c _< c* _< c_ + 1

(r+e)c* - ue - a/2 + a(c*-_c) c* >_ £ + 1

The loci along which e and c* equal zero and the saddle point paths are

depicted in Figures 1 and 2 for the parameters a = 1, r = .1
,

_c = .?,

u = 1.2. We restrict attention to parameter values with u < c_ + 1.



Thus intersections of the two stationary loci (other than at (0.0))

occur on the middle section of the two curves in (7).

In accordance with equation (6), the c* = locus is concave;

moreover in this special case the e = locus is convex for _c < c* < c.

Thus there are either one, two, or three steady-states. Increasing r,

holding the other parameters constant, the c* = locus shifts down

monotonically while the e =, locus does not move. If the interest rate

r is too high, the only steady-state is the trivial one (0,0). As

agents become more patient, the c* = locus rises, until for some

r > 0, there is exactly one steady-state in which production occurs.

For lower interest rates there are two steady states with positive pro-

duction and inventory levels, e (r) < e„(r). As r approaches zero,

e (r) decreases monotonically to zero, while e increases monotonically

to a level e < 1. We can invert these relations. With other parameters

fixed, for every e strictly between and e there is a unique value of

r, r(e), which is consistent with a steady state at e. Direct

computation shows that

a(u-c)O-e)
2

+ e
5
/2 - e

2

r(e) = [e/(l-e)J [
~

] (8)
e + ao (1-e)

This curve is depicted in Figure 3 for the parameter values a = 1
,

_c = -5. u = 1 .2.

From the relative slopes of the stationary curves, the phase dia-

gram, Figure 1 reveals that (e„,Cp) is a saddle point, while (e.,c*) may

be either a spiral or a node. Moreover, (e, , c*) can be stable or
1 i

unstable (i.e., a sink or a source). The saddle point paths converging

to (e ,c*) and (0,0) are the optimistic and pessimistic equilibria

discussed in the previous section. Any paths converging to (e. ,c*) are



additional equilibria. When the paths spiral in, we have a continuum of

equilibrium paths for initial values near e.. The same result holds

when we have a spiral out converging to a limit cycle, with the station-

ary cycle being another equilibrium.

If, as the interest rate varies, the paths through e. vary contin-

uously from spiral in to spirals out, then one might expect that at

intermediate values of r there would be paths which are closed cycles.

For example, in purely linear systems, all paths are cycles at the "bi-

furcation point" where the spirals switch direction. This observation

is extended to non-linear second-order systems by the Hopf Bifurcation

Theorem [see for example Chow-Hale [ 1 982] ) . Using Hopf, we will examine

parameters for which cycles occur in the neighborhood of e,. (The phase

diagram shows that there cannot be cycles centered at e , for if c* > c*

and e < e„ then c* would grow without limit.) Cycles should be expected

near steady-states that are spirals, such as e. , and not those which are

saddle points, like e
?

.

To determine the system's behavior near e„ , we linearize the system

(7) around (e,.,c¥). Setting c. = c_ + ef/a.(^-e^) , the resulting system

is:

L -I

- e70-e) a(l-e)

c - u + e /a(l-e) r+e+e /(1-e)
2/..

e - e.

(9)

The trace of this matrix is

tr = r - e ; (10)

its determinant is

d = - [[r+e+e 2
/(l-e)J -[2e+e 2/0 -e) ] + [a(l -e) (_c-u+e

2
/a('l -e) ) ] J (11)

and its eigenvalues are proportional to tr ± ((tr)
2-4d) ' . (See for
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example Coddington and Levinson [l 955 J ) • Equations (10) and (11) also

hold for linearization around (ep.ct)-

To see the types of equilibria we can calculate the trace and de-

terminant for each point with r > on the r(e) curve in Figure 3. When

the determinant is negative the equlilibrium is a saddle point. When

the determinant is positive, it is a node or spiral depending on the

sign of (tr) - 4d. The node or spiral is stable when the trace is .

negative. In Figures* 4a, b, and c we show the locus of trace-determi-

nant pairs for equilibria on the r(e) curve. The three figures show the

three possible patterns of first crossings of the horizontal axis of

this locus. At r = e = 0, the trace is zero and the determinant is

positive. This is the start of the locus on the right. At r = 0,

e = ~e, the trace is negative and the determinant is also negative. This

is the end of the locus on the left. For the parameters resulting in

the case shown in Figure 4a, there is no solution to r = e with e > 0.

In the other two cases, there is necessarily such a solution, although

it may occur at a saddle point (Figure 4c) rather than at a spiral

(Figure 4b)

.

To distinguish between the case in Figure 4a and the other two, we

need to calculate dr/de in (8) evaluated at e = 0. When this derivative

is greater than 1 , we must have a crossing of the horizontal axis.

Straightforward calculation shows that

dr
sien oT

= sign (u-2c) (12)

Tnus, provided u > 2c_, there is a solution to r(e) = e. Because of the

continuity of the locus in Figure 4 to the parameters, we know that

*The Figures are drawn for parameter values a=1 , r= . 1 , c=.5 and
u=1.0, 1.2, 1.4-
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there are such solutions along the e section of r(e) (i.e., with d > 0)

for u - 2 c^ sufficiently small, with a held constant.

Thus we can find parameters such that r(e.) = e. , so that the trace

of (9) is zero, and such that d > 0, so the eigenvalues at e, are purely

imaginary. For r just less than this value of e, the trace is positive,

so the paths spiral out, while for r just above this value of e. the

paths spiral in. This (plus "smoothness") is sufficient for the exist-

ence of cycles. This method of proff shows only that there is a range

of values of a, _c, and u, such that there are cycles for a certain

choice of r. The Hopf argument does not prove that cycles occur for an

open set of parameters; doing so would require more detailed analysis.

Also, it does not give us an idea of how large the cycles can be.

4- Calculated Examples of Cycles

Now we explicitly construct "large" business cycles in the case

where b(e) = e and all projects cost c, i.e., the distribution of costs

is degenerate. In this case the business cycle has a simple form: all

opportunities are accepted in "booms" as inventories grow from e_ to "e,

and all are refused in "slumps" as inventories fall from ¥ to e.

The equations for e and c * are now

2
e = -e e* < c

-e < e < -e + a(l-e) c* = c

e = -e
2

+ a(l -e) c* > c

(13)

c* = (r+ e)c* - ue c* _< c

c* = (r+e)c* + a(c*-c) - ue c* > c
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Solving numerically (as discussed in the Appendix), we have found many

parameter values which yield cycles. Some of these are shown in Table

1 . These examples all set u = b = 1 , then specify a value of a (either

.1, 1, or 10), and values for e_ and e. Our program then solves for

values of r and c which make (e_,e) into an equilibrium cycle. Because

small changes in e_ lead to only small changes in r and c, our results

suggest that cycles exist for a "large" set of parameters. Also shown

in Table 1 is the value of e
? , the level of inventories in the optimis-

tic steady state equilibrium.

TABLE 1

u=b=1

a r c e e e
2

.1 .02 .562 .008 .045 .270

.1 .107 • 512 .090 • 135 .270

1. .052 • 567 .034 .103 .618

1. .057 • 574 .052 .103 .618

10. .063 .582 .025 .153 .916

5- Conclusion

This paper has explored some of the possibilities inherent in a

model of rational expectations equilibrium with trading externalities.

The critical role played by expectations in the generation of multiple

equilibria underlines the importance of a fuller understanding of how

expectations are actually formed, and shows that the assumption of

rational expectations on its own need not lead to precise predictions

about how the economy will behave .

In a more positive light, we have shown how to construct rational

expectations cycles on the basis of trading externalities and expecta-

tions. We do not think that actual cycles are triggered by widely
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perceived floors and ceilings that have no role other than expectation

coordination. Nor do we believe that cycles are merely coordinated by

the mathematically similar and somewhat more realistic sounding sunspots

(e.g., leading indicators being good predictors because they are be-

lieved to be good predictors) . Rather, we feel that these simple models

which illustrate expectational feedbacks need to be combined with more

complex models of the economy which incorporate additional interactions

including multiplier and accelerator effects.
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APPENDIX

We describe the calculation of the cycles shown in Table 1 . The

c* = locus is concave as before. The locus e = is the vertical

segments e = 0, for c* < c, and e /(1-e) = a for c* > c, joined by the

horizontal segment c* = c. We consider values for r low enough that

the curves intersect three times: at the origin, on the horizontal

segment, and on the vertical segment. At e = e„, c* exceeds c, so all

opportunities are accepted. At e = 0, c* is less than c and no

opportunities are taken. At e = e , c* = c, so agents are indifferent

between accepting and rejecting projects, and we can specify the

fraction which accept so that e = 0. We now build a cycle along which

employment oscillates between e_ and e , with < e_ < e, and e, < e < e~,

At the the switchpoints _e and e, we must have c* = c_.

Let cf and c* be the reservation value in booms and slumps, respec-

tively. They must follow the differential equation (13), which is easi-

ly solved given a time path of e. The initial conditions are provided

by the requirement that c*(t) = c for each t at which e(t) = _e or e.

Thus, we will have found an equilibrium business cycle if c* is again

equal to c when e has reached e and c* is again equal to c when e has

reached _e.

Pirst consider a boom beginning at t = with e(o) = _e. Solving

(15) for c* > c yields

e^t) = -1/2(a + a ( ct-a) P exp(<rt))/0 - P exp(at))) (14)

where a = (4a + a ) ' and P = (2_e + a + cr)/(2e_ + a - a) . Substituting

this into the resulting linear differential equation for of yields
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t

c*(t) = -Kt) [/ [^(s)]~
1

(ac + e(s)u)ds - -t§J , (15)

where n(t), the integrating factor, is

exp((r + a/2 - o/2)t) - Pexp((r + a/2 + a/2)t) (16)

For a slump beginning at time t = with e(0) = e, we have

e'„(t) = e/(l+et) (17)

Inserting (19) into (1J5) and solving yields

c* (t) = (1 + It) ezp(rt) [c - r "P (-rs)IudB (18)
8

(1 + ¥s)
2

For a business cycle with floor and ceiling _e and e, we follow (14)

from the start of the cycle (with e=_e) until the ceiling is hit (e=e).

Then the economy follows (17), until the floor is reached again. De-

noting the lengths of boom and slump by t, and t , we have

e. (t. ) = e , e(t ) = e (19)
d b s s —

where e, ( ) is defined by (14); and e ( ), by (17).

From equations (17) and (19), we have

t - 1/e - 1 / e (20)
s —

Similarly, t, is uniquely determined from (14) and (19)-

For this path to be a rational expectations eauilibrium, e* and c*

must behave appropriately over the cycle. That is, we need

c*(t, ) = c, c*(t) > c for < t < t (21)
t> b ' b — — — b

c*(t ) = c, c*(t) < c for < t < t
s s s — — — s

where c* and c* are given bv (15) and (18^.
b s *
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The search for an economy that has an equilibrium business cycle

with floor and ceiling (_e, e) , with < _e < e < e < e , is the search

for three parameters, a > 0, r > 0, and c/u, with < c/u < 1 for which

(21) holds. (Computationally, we found this an easier question than the

more natural question of whether there exists a self-fulfilling floor

and ceiling for a given economy.) We claim that if we can satisfy the

equality constraints in (21 ) , the inequalities will be satisfied as

well. This follows from _e < e. < e and inspection of the directions of

motion of the system.
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