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ABSTRACT

This paper considers agents who use the experiences of their

neighbors in deciding which of two technologies to use. We

consider two learning environments, one where the same technology

is optimal for all players and the other where each

technology is better for some of them. In both environments, we

suppose that players use exogenously specified rules of thumb

that ignore all historical data but which may incorporate

a tendency to use the more popular technology. These naive rules

can lead to fairly efficient decisions in the long run, but

adjustment can be quite slow when a superior technology is

first introduced.

JEL Classifications: D8, C7 , N53, 030



1. Introduction

This paper presents two simple models of how economic

agents decide which of two technolgies to use when the relative

profitability of the technologies is unknown. In both models,

agents base their decisions, at least in part, on the experience

of their neighbors; this is what we mean by "social learning."

We believe that social learning is frequently an important

aspect of the process of technology adoption, where "technology"

should be broadly construed: Although our main example concerns

the adoption of agricultural technology in the English

agricultural revolution, we believe that the models may also be

applicable to such choices as parents' decisions whether to send

their children to a public or private school.

There have been several previous models of the role of

social learning in technology adoption. Perhaps the earliest is

the contagion process, which models adoption as a random

matching process in which players switch to the new technology

the first time they meet someone who is using it; this process

yields the familiar "S-shaped curve" for the time path of

adoption that has been widely used in empirical work.

Recent papers by Banerjee [1991a], [1991b], Bikchandari et

al [1991] and Smith [1990] study more sophisticated models of

social learning, in which players must decide which of two

choices is better. The primary question of interest in these

models is whether the social learning is sufficient to prevent

the population from locking on to the wrong decision. These

papers suppose that players observe one another's choices, but

that players do not observe the payoffs that these choices
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generate. In a model where players choose sequentially, later

decision makers may thus be led to make the same wrong choice as

their predecessors, as the late deciders do not observe that the

early ones now regret their choice. Moreover, this can occur

even though the players could identify the optimal choice with

certainty by pooling their information.

The learning environments we study differ from those of

previous work in three ways. First, we believe that, in the

context of technology adoption, it is more natural to suppose

that players do observe their neighbors' payoffs, as well as

3
their choices. Second, our paper differs in supposing that

individuals periodically observe other players' outcomes and

reevaluate their own decision. Third, we consider the

possibility that players may be sufficiently heterogeneous that

4under full information they would not all make the same choice.

In the diffusion of agricultural innovations, for example,

different technologies may be appropriate for different soils

and climates.

In addition to these differences in the learning

environment, our paper also differs from those cited in the

style of its analysis: Instead of assuming that the adoption

process is described by the equilibrium of a game played by

fully rational agents, we suppose that players use exogenously

specified, and quite simple, "rules of thumb." We have several

reasons for proceeding in this fashion. First, in some of the

environments we consider, fully Bayesian learning requires

calculations that may be too complicated to be realistic. A

second motivation for our approach is that, to the extent that

the technology choice may be substantially different than



previous decisions the players have faced, we would be

uncomfortable with the assumption that the technology adoption

process is described by an equilibrium. A somewhat different

motivation is simply technical expediency: we did not see an

easy way to incorporate various considerations we feel are

important into a rational-actor, equilibrium, model.

The paper is structured around two simple models of

learning environments. The first one has a homogeneous

population of players choosing between two competing

technologies, with the payoff to each technology subject to an

aggregate i.i.d. shock. Each period, only some fraction of the

players has the opportunity to revise their choices; these

players make their choices using simple rules of thumb.

Our analysis begins with a particularly "naive" rule • of

thumb in which players ignore all historical data and simply

choose whichever technology worked better in the previous

period. This rule will lead the popularity of the two

technologies to fluctuate unless one of the technologies has a

higher payoff for all values of the shock.

We subsequently consider rules which incorporate

"popularity weighting," a tendency to choose a more popular

technology even if it was somewhat less profitable last period.

Since players observe both the choices and the payoffs of their

neighbors, they would have no reason to use popularity weighting

if they made full use of their information. However, we feel

that real-world decision makers often do pay attention to

popularity, and indeed our results may help provide some

explanation for this phenomenon.

Specifically, in our model the appropriate use of



popularity weighting leads players to adopt and stick with the

better technology. Intuitively, a strategy which is more

popular today is likely to have done well in the past, so that

the relative popularity of the technologies can serve as a proxy

for their historical performance. Thus is fairly clear that

popularity weighting rules can lead to better decisions; we find

that one particular choice of popularity weights picks out the

better technology in the long run. This leads us to ask whether

there are any reasons to believe that this optimal popularity

rule is either particularly likely or particularly unlikely to

be used. In response, we present a model of players choosing

popularity rules in which the optimal rule is the unique

symmetric equilibrium.

Our second model has a heterogeneous population, with each

technology better for some of the players. Thus the question

here is not whether the better technology will be adopted, but

rather whether the new technology will be adopted by the

appropriate players. We suppose that there is a continuum of

players distributed uniformly over a line, and that nearby

. . . 5players have similar payoffs to the two technologies.

Moreover, we suppose that players base their decisions on the

relative performance of the two technologies at locations that

are within one "window width" of their own. This window width,

which is exogenous in our model, can be thought of as either

the result of an informational constraint- players may not

observe outcomes at far-away locations- or as the result of a

prior belief that players at far-away locations are not

sufficiently similar for their experiences to be informative.

Once again, players revise their technology choices using



simple rules of thumb. In particular, we suppose that players

do not know exactly how location influences relative payoffs,

and thus simply compare the average payoffs of the two

technologies in their window, as opposed to using more

sophisticated statistical methods.

This second model provides a number of predications about

the types and magnitudes of the errors that are likely to be

made. The spatial nature of the process allows some degree of

social learning even without popularity weighting, and the

long-run state of the system is approximately efficient when the

window width is small. However, small window widths imply that

the system converges more slowly, which can be costly if the

initial state is far from the optimum. Roughly speaking,

increasing the popularity weighting in the spatial model has

about the same effect as decreasing the window width.

Before proceeding further, we should acknowledge that our

belief that models of bounded rationality are a useful way to

study social learning does not mean that we are completely

satisfied with the particular rules we consider. In particular,

in the first model use of history does not seem so complicated

as to be unreasonable. Our purpose is not to argue that any

one of these models is particularly compelling, but rather to

identify general properties that seem to occur in some of the

more obvious formulations. One recurrent conclusion is that in

a number of cases the long-run state of the system is fairly

efficient, even though the individual decision rules are quite

naive.



2 . The English Agricultural Revolution

Before developing our models, we would like to use the

example of the English agricultural revolution to introduce some

of the issues that our models are designed to address. The

revolution in question is the improvement in English agriculture

between 1650 and 1850. This improvement is usually attributed

to the spread of new agricultural practices, and in particular

to what is called the "new husbandry," although both the size of

the improvement and its causes have become more controversial in

recent years. The new husbandry refers to a variety of new

crops and new crop rotations which arrived in England from

Flanders in the 17th century, based on the idea of growing crops

such as clover or turnips instead of leaving the land fallow.

These crops could rejuvenate the soil, and the hoeing they

required had the by-product of eliminating weeds. The crops

themselves can be fed to livestock, which allows larger herds to

be carried over the winter, providing further supplies of

manure, which in turn could be used for fertilizer. The net

result is (ideally) increased production of both livestock and

7
grains.

The diffusion of the new husbandry seems to have involved

all of the major aspects of our models that we mentioned in the

introduction. First, it seems likely that farmers were able to

observe, at least roughly, the output of their neighbors, as

well as their neighbors' choice of crops and crop rotations.

Second, the payoffs to various crops were different at different

locations, depending on the soil, climate, and terrain of each

farm. There is not yet a consensus on where the new husbandry

should have been adopted, but it is clear that it was not a



universal improvement: Turnips were most suited to the light

clay soils of Norfolk, and were unprofitable in wet clay soils

like those of the Midland Plain, where the crop had limited

growth, and was so difficult to harvest it was often left to

rot in the field . Third, a crop of turnips could be ruined by

excessive rain or severe frosts, leading us to incorporate the

weather as an annual stochastic shock complicating the learning

9
process.

Moving away from the physical description of the situation

to our (harder to verify) assumptions about the agents'

behavior, it seems clear that the final adoption decisions

resulted from decentralized learning, as opposed to a

pronouncement from a central authority (although there were

attempts made along this line, as we discuss below.) And, it

seems plausible that the farmers may have been less

sophisticated in their use of past observations than Bayesian

learning would suggest. Moreover, with capital markets poorly

developed or nonexistent, and starvation a potential concern, it

seems plausible that farmers' technology decisions were

determined primarily by short-term considerations, and that

farmers would be unlikely to experiment with a technology with a

lower expected return.

The two models we discuss explore two different aspects of

the adoption process. The homogeneous-population model looks at

a single location in isolation, and focuses on the dynamics of

the adoption process. It has been frequently noted that farmers

as a group are seemingly very hesitant to try new technologies.

These comments do not suggest that all farmers are equally

hesitant; for example, Slicher von Bath (op. cit. , p. 243) notes



that during the English agricultural revolution, "Land tilled in

very ancient ways lay next to fields in which crop rotations

were followed." This observation fits with our assumption of

inertia, meaning that at each date only some fraction of the

population considers changing technologies.

The apparent inertia in the diffusion of the new husbandry

has been criticized by both contemporary and modern authors as

slowing progress, and indeed it does slow the transition from a

dominated technology (one that is worse in all states of the

world) to a new one. However, our analysis shows that inertia

may improve the long-run performance of the process if the

performance of the two technologies is subject to sufficiently

large random shocks. Given our assumption that players do not

keep track of past outcomes, the process without inertia

oscillates between the two technologies, while a combination of

inertia with a tendency to use the most popular technique

permits the learning process to converge to the better of the

two. Our second model examines the idea that players learn from

their "neighbors" when a new technology may turn out to be

profitable for some but not all of the potential adopters. (In

the case of farming, we take this spatial structure literally,

but we also have in mind learning from "neighbors" who are

believed to be similar, but who need not be geographically

adjacent.) One of the most striking and frequently noted

characteristics of the agricultural revolution is the slow rate

at which the innovations spread. Contemporary observers in

England said that the rate was only one mile per year, and

indeed it did take more than a century for the new husbandry to

make its way across the island



Many explanations have been proposed for this slow spread,

including technological factors like pests and diseases,

institutional factors such as the enclosures, and the farmers'

lack of education. While all of these factors may have played a

role, our analysis suggests that the basic fact of a slow rate

of diffusion need not be surprising, as it is can be a natural

consequence of social learning, particularly when the difference

in payoffs is not great, and when farmers pay attention to the

relative popularity of each technology in making their

decisions.

A second and more spirited debate has surrounded the role

of elite landlords and agricultural reformers on the diffusion

process. The classic studies of Ernie [1912] and Mantoux [date]

portrayed the agricultural revolution as the result of valiant

struggle by innovators such as Jethro Tull and Lord Townshend to

overcome the ignorance of the peasant farmers. Revisionist

authors have attacked this view; a main component of their

argument has been that the new techniques were already in use in

some areas of England before many of the so-called innovators

were born.

Our model reinforces the pro-elitist side of this debate by

emphasizing that popularizers can have a significant impact in

promoting the diffusion of a technique even if they are not the

first to develop it. The arrival of the new husbandry in

England is often dated to the publication in 1650 of Sir Richard

Weston's observations of agricultural practices in Brabant and

Flanders . When one examines the spread of the new husbandry as

detailed by Kerridge [op. cit. , pp. 272-279], it appears that

the new husbandry spread out very slowly from a number of



geographically distinct locations. The first adoptions were in

Suffolk, but by 1680 the new husbandry had appeared in several

other locations over a hundred miles away. By providing

information from other counties, the agricultural popularizers

may have promoted such subsequent innovations, and sped up the

rate of the technology's diffusion.

In addition, our theoretical model may shed some light on

another question which has received less attention in the

literature: Was the new husbandry eventually adopted in all of

the areas to which it was suited? As a potential guide to

historical research, we discuss the conditions under which naive

learning processes of the kind we consider tend to generate

efficient long-run outcomes.

Beyond these historical questions, our spatial model, of

learning raises the basic question of how well "naive" learning

rules perform that we investigated in our first,

homogeneous-population, model. Our answers here focus on the

tradeoff between rates of adoption and efficiency of the

long-run equilibrium.

3 . A Simple Model of Homogeneous Populations

Before considering social learning in systems with a

heterogeneous population, it is interesting to consider the

simpler case in which the same technology is optimal for all

players. This model can be thought of as describing behavior at

a single site in the model we consider later on, where the

relative payoffs vary with location. Suppose that there is a

large (continuum) population of players at a single site, each

of whom must choose whether to use technology f or technology g.

10



In each period, all players using the same technology receive

the same payoff. (Given our assumption that players observe one

anothers' payoffs, nothing would be changed if we allowed each

player's payoff to be subject to idiosyncratic shocks.) We

suppose that the payoffs to the two technologies at date t, u.

and u^, are related by the equation

(1) u^ - u£ = 8 + c
t ,

where 8 is a fixed but unknown constant parameter and the c. are

i.i.d. shocks with zero mean and cumulative distribution

function H. (In later sections the constant 9 will vary with

location.) We will assume that p = 1 - H(-6) = Prob [u^ - u. £

0] is strictly between and 1.

In the initial period, denoted 0, a fraction x of the

players are using technology g. After each period, a fraction a

of the players have the opportunity to revise their choice.

Very low values of a might correspond to a system in which

individual player made their choices for the duration of their

effective lifetimes, with the revisions corresponding to an

inflow of replacement players; intermediate values might

describe a system in which the choice of a technology is

embodies in a costly capital good that will not be replaced

12until it wears out.

We suppose that the players who are revising their choice

can observe the average payoffs of both technologies in the

previous period. However, players do not have access to the

entire history of payoff observations. To justify this

assumption, we suppose that individual players revise their

choices too infrequently to want to keep track of each period's

results, and more strongly that the market at this particular

11



"location" is too small for a record-keeping agency to provide

this service.

The simplest behavior rule we consider is the "unweighted"

rule under which all players who revise their choice pick the

technology which did best in the preceding period. Under this

adjustment rule, the evolution of the system is described by

f(l-a)x.+ a with probability p = Prob[u^£ u. ],

(2) x = \t+1
l(l-ct)xt

with probability (l-p)=Prob[u^ < u£] ,

so that

(2') E ( xt+ll
x
t )

=
( 1-a ) xt

+ ap -

Note that this specification is symmetric in its treatment

of the adoption and discontinuance decisions, which corresponds

13
to the case where the costs of "transition" are small. Our

reading about the English agricultural revolution, as well as

studies of more recent innovations cited in Rogers and Shoemaker

(p. 115) suggest that the amount of discontinuance is an

important factor in the diffusion process.

The following result is standard; it follows from e.g.

theorem 10 of Norman [1968]. (It is also a consequence of part

(b) of proposition 2 below.)

Proposition 1

:

The system (2) is ergodic, i.e. the time-average

of x. converges to its expectation with respect to its unique

invariant measure u. Moreover, E (x) = p, and var (x) =

p(l-p)a/(2-a)

.

4 . A Single Location with Popularity Weighting

Proposition 1 says that observing the long-run fraction of

players using technology g reveals the fraction of the time that

12



g has been the better choice. If the distribution H of c is

symmetric, the arm that is more often better is also the arm

with the higher expected payoff. (The same conclusion holds so

long as the amount of asymmetry in H is small compared to e.)

This suggests that if all other players in the population are

choosing whichever technology has the highest current score,

each player could gain by considering the relative popularity of

the two technologies, as well as their recent payoffs.

Intuitively, the current popularity provides some

information about the past history of the process, and thus can

serve as a proxy for it. Although this information is not

complete, the complete history of the process is not needed to

identify the better technology. One way to interpret the

results of this section is that in some cases popularity

weighting is a good enough proxy for the history that the system

eventually converges to the correct choice.

We now develop a simple parametric model of popularity

weighting with a single location. As above, we suppose that

only a fraction a of the population updates its choice each

period. Now, though, instead of choosing the technology which

did best last period, the choice rule is

(3) "Choose g if u^ - u^ i m(l - 2x
fc

)
.

"

Under this rule, the probability that those players who revise

their choices choose g is Prob[ 0+c. 2 m(l - 2x. ) ] = 1 -

H(m(l-2x.

)

-9) ; when all
.

players use rule (3), the fraction using

g evolves according to

... I (l-a)x. +a with probability l-H(m(l-2x.

)

-6)
K*) x

t+i "1 c r

[
(l-a)x. with probability H(m(l-2x

t ) -G)

13



The parameter m indexes the amount of popularity weighting;

the case m =0 corresponds to the unweighted case discussed

above. When x. = 1/2, both technologies are equally popular; in

this case players chooses the technology with the highest

current payoff for any value of m. As m grows, players become

more willing to choose the currently popular technology even if

14
its current payoff is lower

We use the linear specification of popularity weighting

primarily for analytic convenience. It combines nicely with a

second simplifying assumption that we make in this section, that

the distribution H of the per-period shocks c. is uniform on

[-cr, <j] . This allows us to explicitly compute the long-run

behavior of the system for any m. It also ensures that the

linear class of weighting rules we consider includes one rule

that leads the asymptotic distribution to concentrate on the

15optimal choice, namely m = cr.

Beyond the presumed linearity in x. , another point to note

about decision rule (3) is that it, and any rule that compares

ft "f

the difference u. -u. to a function of x. , is invariant to

additive transformations of the payoff function, but not to

multiplicative ones: In order to preserve the same decision

rule when the payoff functions are multiplied by a constant A,

the parameter m must be multiplied by the same constant. One

way to see why this must be the case is to note that the

expression (l-2x) is unitless, so the parameter m is measured in

the same units as the payoff are.

Our assumption that the per-period shocks have a uniform

distribution makes it easy to determine the long-run behavior of

the system. Since the lowest possible value of c. is -cr, the

14



lowest possible observation of u^ -u. is 6 -a. Hence, if x. is

sufficiently large that e -a i m(l-2x.) , or equivalently if x.

2 x^ = (m-0+cr) /2m, the fraction using technology g is certain

to increase. Likewise, if x. s x = (m-e-<x)/2m, the fraction

playing f is certain to increase. (Note that cr > o implies x <

x^.) Because the probability of a upwards step is minimized at

x. = 0, this probability must be at least Prob[8+e, s m] =

(cr-m+e)/2cr = -(m/cr)x . Thus, when x < 0, so that the system

cannot "lock on" to downwards steps, the probability of an

upwards step is uniformly bounded away from zero. Similarly, if

x^ > 1, the probability of a downwards step is uniformly bounded

away from .

The above shows that (ignoring knife-edge cases) there are

four possibilities for the long-run behavior of the system:' If

x" < 1 and x <0, the system is certain to eventually make

enough upward jumps that x. > xg , so that from any initial

position the system converges with probability 1 to x. = 1. If

x" > 1 and x > , the system converges to x . = from any

initial position. If < x and xg < 1, the system will

converge (with probability 1) to if x
Q

£ x , will converge to

1 if x. i x ,• for x_ e (x , x") , the system will also eventually

converge to a steady state, but it has a positive probability of

ending up at each of the two steady states of the system. In

the remaining case, in which x < and x^ > 1, the system will

not converge to either steady state. Instead, the fraction x.

will continue to fluctuate, with the long-run distribution

computed following the statement of proposition 2 below.

.

The above observations do most of the work required to

establish the following claims:

15



Proposition 2

:

(a) Popularity weighting m = a is "optimal" in the sense

that from any x the system converges with probability 1 to the

state where everyone uses the better technology.

(b) m > cr is "overweighting", in that the system converges

with probability 1 to a steady state, but which steady state is

selected may depend on the initial condition x_. More precisely,

the system converges to the better technology if |e| 2 m-cr,

while for |0| < m-cr the behavior of the system depends on the

initial condition x_ . If x
Q

2 (m+cr-0)/2m, the system converges

to 1 with probability 1; if x * (m -cr-0) /2m, the system

converges to with probability 1. If |0|< m-cr and

x e( (m-cr-0) /2m, (m+cr-0) /2m) , the system will eventually

converge to one of the steady states , but both steady states

have positive probability.

(c) With "underweighting, " i.e. m < cr, the system need not

converge to a steady state. It does converge (with probability

1) to the better technology if |0| 2 cr-m, but for |0| < cr-m, the

system has a non-degenerate invariant distribution u, with

E x = 1/2 + 0/2 (cr-m), and

var x = acrE xE (1-x) / [ (2-a)cr-2 (l-a)m] .

Proof:

(a) If m= cr, then xg = (2m-0) /2m is less than 1 iff © > 0, and

x = -0/ 2m is greater than zero iff < 0. The conclusion now

follows from the argument in the text.

(b) It suffices to check that if > m-cr > then then x <

and xg < 1, that -0 > m-cr > implies x > and xg > 1, while

16



for m-cr > |e|, x > and x" < 1

.

(c) A similar computation shows that when |0| > cr-m, the system

must converge. Appendix B establishes that the system has a

unique invariant distribution when cr-m >|©|, and computes the

corresponding mean and variance.

Proposition 2 shows that the system is certain to converge

to the correct choice if the popularity weight m equals a, and

that the payoff loss from a wrong choice must be small if m is

close to this level. Thus it is interesting to ask whether

there is any particular reason to suppose that popularity

weights equal or close to a are likely to be used, or conversely

whether there are forces in the model that would drive the

players to use different weights. As a partial response, we

consider a game in which players simultaneously choose their

individual popularity weights, and show that the optimal weight

m = cr is its unique equilibrium outcome. This result is only a

partial response, because it supposes more sophistication in the

determination of the popularity weights than we find compelling.

However, the result does show that popularity weighting need not

conflict with individual incentives.

To define the payoffs in this game, we suppose that players

have a common prior distribution p over e, and that p assigns

positive probability to every neighborhood of 9 = 0. For each

x
Q

e [0,1], 6 e support (p), and m, let u(0, x
Q , m) be the

long-run distribution on x when all players use weighting m.

For each value of B, the payoff to the profile m is defined to

be the mean of the long-distribution on payoffs, and the overall

payoff is the expectation of this value with respect to the

17



prior beliefs p. Our use of the long-run payoff criterion here

is made solely for convenience: we would prefer to consider

optimal behavior for discount factors near 0, but then we would

want to allow for the popularity weightings to be chosen

repeatedly (popularity has no relevance in the first period) and

would need to consider the distribution of the state in each

period separately.

Since the profile in which all players choose m = a results

in the full-information payoffs, this profile is clearly a Nash

equilibrium of the game. Moreover, it is the only symmetric

equilibrium, as shown in the following proposition.

Proposition 3

:

If every neighborhood of = has positive

probability, the unique symmetric equilibrium of the game in

which players simultaneously choose the weight m they give to

popularity is for all players to choose m = a.

Remarks: (1) We do not know whether there are asymmetric

equilibria as well. The long-run behavior of the system when two

or more decision rules are used by a non-negligible proportion

of the population seems difficult to determine. We should also

point out that no symmetric pure-strategy Nash equilibrium

exists in the case of a normal distribution that we consider in

appendix A. This should not be too surprising, since in that

case popularity weighting permits the full-information payoff

to be approximated, but not to be attained exactly. However,

profiles where all players use a "large" amount of popularity

weighting are e-Nash equilibria.

(2) If players are certain that the absolute value of 6 is

bounded away from zero, there are equilibria in which m can

18



exceed 8.

(3) It is difficult to suppose that players using the kinds of

naive learning rules we consider would consciously choose their

popularity weights to maximize their long-run payoff. We prefer

to interpret the eguilibrium assumption here as the result of a

long-run adaptive process, but this raises the question of the

relative speeds of adjustment of the process determining m and

that reflecting learning about the technologies.

Proof: Fix any profile where all players use some m * cr. The

idea of the proof is simply that if m < <x, so everyone is using

too little popularity weighting, then each individual player

would prefer to deviate and give more weight to popularity,

while if m > <r, each player would prefer to give popularity use

a bit less weight.

Since there is a "large number" of players, the aggregate

behavior of the system is unaffected if any single player

deviates. We will show that there is always a deviation that

improves the player's payoff when |8| is sufficiently small, and

has no effect on the player's payoff when |e| is larger; the

conclusion will then follow from our assumption that every

neighborhood of 8 = has positive probability.

(a) Suppose first that m < a, and consider a player

deviating to m' = m+dm for some small dm > 0. This deviation has

no effect on his long-run payoff if |e| £ <r-m, for in this case

the payoff difference between the two technologies is

sufficiently strong that x. converges to the optimal choice, and

any m' ^ m yields the first-best long-run payoff.

If |e| < cr-m, the system does not converge to a steady

state, but as a non-degenerate ergodic distribution. In this
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case, deviating to m' leads the player to use g instead of f

whenever

g f
i3 — nm ' (l-2x

t )
s u£ - u

fc
< m(l-2x

t ), or

m' (l-2x )
-0 £ c. < m(l-2x )-e.

Similarly, the player will now use f instead of g whenever

m(l-2x.) - c. < m' (l-2x.) -8.

Since the difference in payoff between g and f is e, the

expected change in the player's per-period payoff is

m(l-2x)-e]d(i(x)
,

where H is the uniform distribution, and u. is the invariant

distribution on that was derived in proposition 2. Since m(l-2x)

du
.
/ dm = 9 (2x-l)dH

-9 € [-cr,cr] for all x e [0,1], dH m(l-2x)-e = l/2cr, and so

du. /dm = 9/2cr (2x-l)du(x) = e/2cr [E 2x-l]

Since Ex > 1/2 for e > 0, and Ex < 1/2 for e < 0, du./dm >

for all 9 e (-(cr-m),0) u (0, cr-m) .

(b) Now consider a profile in which players use an m > a, and

consider an individual player deviating to m' = cr. Suppose first

that 9 > 0, so that technology g has the higher payoff. If e 2

m-cr, the system converges to 1 with probability 1, so that both

m and m' yield the full-information long-run payoff; the same is

true if 9 £ m-cr and x
Q

£ x" = (m+cr-e) /2m.

If 0< 9 < m-o- and x
Q

< x^, or equivalently 9 < (l-2x
Q
)m+cr,

there is positive probability that x. converges to 0. In

particular, if e < cr, there is positive probability of

converging to form any x. £ 1/2. If the system does converge

to 0, using weighting m leads to f being played in almost every

period, while using m' = cr , the probability of playing g

converges to the probability that c. 2 m-e = (cr+m+e)/2m, which
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is greater than for all positive 9.

The preceding two paragraphs show that m' does at least as

well as m for all positive 9, and does strictly better if x
n

s

1/2 and 0< 9< min(cr, m-cr). A symmetric argument shows that m'

does at least as well as m for all negative 9, and does strictly

better if ©* + z x £ 1/2 and 0> 9> max(-cr, -(m-cr)). Hence if

the prior assigns positive probability to the neighborhood of 9

= 0, m' yields a strictly higher expected payoff from any

initial position x
Q

.

While our formal results concern the eventual steady state

of the system, the speed of convergence is of some interest as

well. In particular, consider an initial position where x. is

small, so that g corresponds to a "new" technology, and suppose

that 9 > 0, so that the new technology is in fact an

improvement. Then the share of technology g increases whenever

9+c. > m(l-2x. ) , and since the probability of this event

17increases with 9, so does the expected rate of adoption. Such

a correlation between the extent of improvement and the speed of

adoption has been noted in the empirical discussions of in

Mansfield [1968] and Rogers and Shoemaker [1971], but has not,

18
so far as we know, been addressed in the learning literature.

Note also that for fixed 9, the speed of convergence

decreases, as a increases, so that each period's observation

becomes less informative. More generally, convergence will be

slow if the new technology usually does about as well as the old

one, but occasionally does much better. Furthermore, if the new

technology usually does slightly worse than the old one, but

occasionally does much better, (i.e. if the new technology has a

higher mean payoff but a lower median) then naive learning rules
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that look only at the recent relative performance will be biased

towards the wrong choice. This is consistent with the

observation that seat belts, insurance, and vaccinations have

been slow to diffuse.

5. Heterogeneous Population with Linear Technologies

Now we turn to the study of heterogeneous populations, in

which different technologies may be optimal for different

individuals. As before, we suppose that there are only two

technologies, denoted f and g, with the mean difference in

payoffs, E(u^-u. ) , equal to 9. Now though, we think of 9 as

representing a location along a line, so that players at

different locations have different 9's. In particular, the

optimal rule (both socially and privately) is for players with

positive 9 to use g, and players with negative 9 to use f, so

that the distribution of technology choice has a cut-off or

break-point at 9 = 0.

It will be important in the following that the relative

advantage of using technology g at location 9 may be correlated

with the "absolute advantage" of location 9, e.g. the

productivity of the "land." To capture this, we suppose that the

payoffs to the technologies have the following linear form:

'u^(9)=9 + /39 +c
lt

(5)

u£(9)=/39 +e
2t<

With this parameterization, /3 > implies that technology g

does better at "good" locations, while when /3 < 0, g does better

at bad ones.

In this model, the player's location in 8-space determines
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his average payoff to the two technologies. We want to think of

the payoff-relevant variables as being unobservable but

correlated with the observed locations. The idea is that

players do not know exactly which aspects of their locations are

payoff-relevant, or how these aspects influence their payoffs.

For this reason, we do not allow the players to regress the

observed payoffs of each technology on the corresponding values

of 9. Instead, we suppose that players base their decisions on

the average performance of the two technologies at locations in

their "observation windows," where the observation window of the

player at is the interval [0-w, e+w] . We call w the "window

width."

We have two interpretations in mind for this model. First,

the location parameter 6 may correspond to geographical

location, with the performance of the technologies linked to

variables such as climate or terrain that are in turn correlated

with location. Second, the model may describe adoption

decisions at a single village, where players are differentiated

by idiosyncratic payoff-relevant characteristics such as wealth

and household size.

In studying geographic diffusion, for example of an

agricultural technology, the observation window might reflect

the farmer only observing the outputs of his neighbors, and the

window width w might be fairly small. In studying adoption at a

single site, the observation window corresponds to the players'

beliefs about which other players are sufficiently similar for

their experiences to be relevant, and players might well observe

the actions and outcome of others who are outside of their

window. To the extent that the relevant characteristics are
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difficult, to determine, the window widths in this interpretation

might be fairly large. In both interpretations, players might

prefer to weight observations of their immediate neighbors more

heavily than those of players who are farther away, but still

within the observation window; this may be particularly

attractive when the observation window is large. As in the

study of a homogeneous population, we begin by analyzing the

simple rule where players use whichever technology did better in

their window last period; later we will enrich the model to

allow for popularity weighting. To define this rule formally,

suppose that the distribution of players over locations has a

constant density, which we normalize to equal 1, and let u^(8)

be the average score realized by those players in the interval

[S-w, 0+w] who used g at period t, with the convention that

u?(0) = -co if every player in the interval used f; the average

u. (9) is defined analogously.

The (unweighted) decision rule is for the player at © is

then

(6) "Play g at period t+1 iff u^(9) -u£(e) s 0. "

In the previous sections we considered a model with a

continuum of players and inertia, so that the fraction of

players using each strategy can never shrink all the way to zero

in finite time. In our study of spatial models, though, we will

suppose that there is no inertia at individual locations, so

that all players at each location revise their choices each

period. We do so in part for reasons of convenience, and in

part because in rural areas with low population density it seems

plausible that a technology could be abandoned by everyone in an

observation window after a few bad draws in a row.
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As a first step in analyzing the decision rule (6) , suppose

that the noise terms c . and c_. are identically zero, so that

the system is deterministic. Suppose further that the initial

state of the system is described by a cut-off rule. That is,

suppose that there is a 9, such that all players with 9 s e

choose g and all those with 9 < 6. choose f. Then the period

t+1 state will be described by a cut-off rule as well. To see

this, note that all players at 9 > 9 .+ w see only g being

played, and hence will play g in the next period, while all

players at 9 < 9.- w play f. Players at every 9 e [0.-w, 9.+w]

see both f and g being played, with

(7)

-g r+w
u^(0) = L (0+l)sds/(e+w-0) = (/3+1) (9+w+e)/2, and

Q
u£(0) =

|

£sds/(e+w-e)=/3(e-w+e)/2.

Thus for 9. -w < 9' < 9" < ©t
+w, we have

u^(0") - u£(0") = u^(0') - u£(0' ) + (0"-0')/2,

so that if the player at 9' plays g in period t+1 then so does

the player at 9". Hence the state at period t+1 is described by

a cut-off rule.

A steady state cut-off rule must have the property that the

player at the steady- state cut-off is indifferent between f

and g given his observations. Thus the steady state is the

unique solution of

u^(0*) = u£(9*), that (0+1) (0*+ w/2) = 0(8*- w/2),

and so

(8) 6* = -(20+l)w/2.
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Note that although the optimal cut-off is 9 = for any

value of /3 , the steady state cut-off is only at if /3 = -1/2.

When |3 = 0, for example, the payoff to f is identically zero,

while the payoff to g is equal to 9. Hence when the cut-off is

at 0, the average payoff to players using g is strictly

positive, which will tempt players to the left of to adopt g

as well. The discrepancy between the steady state and the

optimum arises from our assumption that players do not directly

observe 9, and hence use only the average payoffs received by

the two technologies in making their decisions. Note that the

maximum steady-state payoff loss at any location is the absolute

value of 9 , which is small if /3 is not too large (in absolute

value) and the window width w is small.

Having determined the steady- state cut-off, we next

examine the behavior of the system away from the steady state.

It is easy to show that, from an initial cut-off 9
Q , the cut-off

*
will move towards the steady state 9 at a distance of w each

period until it is within w/2 of 9 . Once 9. is within this

interval the system typically enters a stable 2 -period cycle

*
about 9 . For ease of reference, we summarize this as a

proposition.

Proposition 4

:

From an initial cut-off e
Q

, the system determined

by (6) and (7) evolves according to

0. +w 9.<9 -w/2.

(9) e = *
-©

t
+26 ©

t
e[9 -w/2, 6 +w/2)

9. -w e.se +w/2.

—a * — f *

Proof: If u^(S.-w) - u. (0.-w)> 0, then all players who observe

both technologies being played -i.e. all players in the interval
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[8. -w,8. +w] - use g in period t+1. Substituting 8 = 8 -w into

eguation (7), we see that this is the case if (/3 + l)8. ^

vs A .£ A JL

/3(8 -w), or 8. ^ -/3w = 8 + w/2. Similarly, if e. < 6 -w/2, all

players who see both technologies being played choose f in

period t+1. Finally, if 8
fc

e [8 -w/2, 8 +w/2), ©t+1 will

atisfy O+l) (e
t+1

+0
t

+ w) = ^(©t+1 + ©
t

- w) , so thats

*
et+1

= -e
t

-(2/s+i)w = -e
t

+ 28 .»

Next we consider the behavior of the model with noise, i.e.

with c.. and c_. non-degenerate i.i.d. random variables. Let z.

= e_. - e 1t denote the difference in the two shocks, and let 8.

= 8 +z. ; et i-s *-he steady state of the system when e_ -e. is

identically equal to z. for all r. Because behavior rule (6)

depends only on the difference between the payoffs to f and g,

and not on their levels, the evolution of the system from 0.

when the shock is z, is the same as that given in equation (9)

,

* *
with the term 8 replaced everywhere by 8. .

Proposition 5: If the period-t cut-off is 8. , and the period-t

shock is z. , the period t+1 cut-off is given by

8. +W 8 <8 -W/2.

-8. +28.
t
e[e.-w/2,8 +w/2)

A A JL

8 -w 8 £8.+w/2.

(10) 8t+1
=

Proof: For locations 8 € [8.-w,8.+w], the difference between

the average payoffs of the two technologies in 8's observation

window (the interval [9.-w, B.+w]
) , i.e. u£(8,e .) - u.(8,c .),

is [8 + 8
fc

+(2/3+l)w]/2 -z
t
= (8 +8. -28.) /2. Since 6

t
> 6. +

•* * ^ a *
w/2 implies S+e. * 28. for all 8 £ 8 -w, et

> et
+ w / 2 implies

that all players who observe both technologies choose g.
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Similarly, 9, < 8. + w/2 implies that all players who see both

* *
technologies choose f. Finally, if 8^ e [6 -w/2 ,8 ,+w/2) , the

period-t cut-off is given by et+1
= -e

t
+28 .

Proposition 6

:

When the z. are i.i.d. draws from a

distribution that has a strictly positive density on a compact

support, the dynamic process generated by (10) has a unigue

invariant distribution F, and the expected probability

distribution at date t converges to F uniformly over initial

probability distributions p..

Proof: Appendix C shows that the system is a random

contraction in the sense of Norman [1972] and satisfies

unigueness condition 2.11 of Futia [1982].

We have not been able to characterize this distribution

directly. Instead, we have computed an invariant distribution

of the simpler system generated by

(ID et+1 =

r A A JL

t
+W0

t~et

®t"wVe
t

Note that system (11) differs from (10) only when 8. falls in an

interval of width w. Normally we will think of the variance of

z. as being much larger than the window width; in this case it

may be reasonable to guess that the invariant distributions of

(10) and (11) are close together.

We should point out that the simplified system (11) , unlike

(10), does not have a unigue invariant distribution: Because all

steps have size w, from initial position 8 , the support of (11)

is concentrated on the grid 8 + kw, and so different initial^ o

conditions lead to different invariant distributions. Moreover,
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the supports for of the date-t distribution are different for t

even and for t odd. Despite these qualitative differences

between systems (10) and (11), the absolute magnitude of the

effect of the initial condition is small when w is small, which

supports the conjecture that the two systems are similar. Table

1 below provides further support for this belief by comparing

Monte Carlo estimates of the steady-state variance of (10) with

the variance of the particular invariant distribution of (11)

that is computed in proposition 7. As conjectured, the two

variances are close when w is small.

To examine the invariant distributions of (11) , suppose

that the noise terms z. are are i.i.d with mean and c.d.f. H.

A A

Then 9. follows a Markov process with the transition from 9. to
A JL A A JL.

©. + w having probability Prob[0 +z. ^ 0. ] = 1 - H(©. -9 ) . The

invariant distribution has a particularly simple form when the

z. are uniform on [-cr, cr] and the parameters are such that there

is an invariant distribution whose support is a symmetric grid

* *
containing the points 9 -cr and 9 + <r

.

Proposition 7: Suppose the z. are uniform on [-cr, cr] , and that

M = cr/w is an integer. Then one invariant distribution of (11)

* -2M
is the binomial Prob(0 = 9 +kw) =

[ ( (2M! ) / (M-k) ! (M+k) ! ] 2 ;

this is the limit of the time-average distribution when the

*
initial condition belongs to the grid 9 ± kw, k ^ M.

*
Remark: Recall that the mean of this distribution is 9 , its

variance is crw/2, and that the distribution is asymptotically

normal as w tends to. zero.

Proof : To show that f is an invariant distribution, it is
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sufficient to verify that it meets the "detailed balance

condition" that for all 6 and 6'
, the (unconditional)

probability flow from 9 to 6' equals the probability flow in the

reverse direction. Thus, we will verify that

f(e) Prob(et+1
= e'|e

t
= e)= f(9') Prob(et+1

= e|e
t
= 9'),

or equivalently that

f(9)/f(9') = Prob(9
t+1 =9| 9

fc
= 9')/ Prob(9

t+1
= 9' | 9

t
= 9).

Since the probability of a jump of more than w is zero, it

suffices to check this conditions between adjacent states, so

* *
take 6 = B +kw and 6' = 6 +(k+l)w for some integer k between

-M/w and (M-l) /w. For such states, we have

f(9)/f(9' ) = 2"2M |"(2M!)/(M+k!) (M-k) ll = (M+k+1) / (M-k)
,

2
-2M

|

(2M! ) / (M+k+1) !
(M-k-1) !

1

Prob(9t+1 =9 1 e
t

= e')/ Prob(9
t+1

= 9' | 9
fc

= 9) =

|(o-+(k+l)w)/2cr|/(o-kw)/2o- = (M+k+1) w/ (M-k) w,

so detailed balance holds.

w/o- (10) (11)

.5 .21 .25

.1 .048 .05

.05 .024 .025

.001 .00496 .005

TABLE 1:

STEADY STATE VARIANCE FOR UNIFORM NOISE

and
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As one would expect, the variance of the steady state is

decreasing in w, because small w corresponds to small steps in

each period. Note that the social optimum is the constant © =

0, and that the expected welfare loss (compared to © = 0) when

the cut-off is ©. is

Hence, in the long run the average per-period welfare loss

r t "2
j

u d© =
©J/2,

(using the invariant distribution computed in proposition 7) is

1/2 E(0
2

)
= 1/2 (E(©))

2
+ 1/2 var(0) = [(2/3+l)

2
/8 +cr/2]w, so

that steady state welfare is decreasing in w. For small w,

despite the lack of either memory or popularity weighting, the

spatial nature of the process allows the long-run outcome to be

. . 19approximately efficient.

While small w's are thus desirable from the viewpoint of

the time-average payoff, they entail a significant short-run

welfare loss when the initial state is far from the optimum,

because in this case the system will take a long time to

approach the neighborhood of the optimum. This is true for two

reasons: First, ©. is limited to move at most w per period.

Second, in the presence of noise a typical path is likely to

*
take far more than © /w periods to reach a neighborhood of © ,

because many steps will be in the wrong direction.

For a fixed initial condition and social discount factor,

the socially optimal window width will trade off the speed of

convergence and the steady state variance, with larger w's being

optimal the farther the initial condition is from 0. If the

social planner does not know the initial condition and/or the

location of the social optimum, the size of the optimal w will
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depend on the planner's prior beliefs. This tradeoff between

speed of adjustment and the variance of the steady state seems a

20natural feature of the sorts of model we consider

At this point we would like to make a few observations

about how the conclusions might change if the players did keep

records of their past observations. Since players at locations
*

within <r of 9 will play both technologies infinitely often,

they could eventually learn which technology is better for

themselves by keeping such records. However, a few calculations

suggest that this learning process will be fairly slow if the

random shock to the payoffs has a sizable common component and w

is small.

To see this, suppose that the payoffs to each technology

are subject to a common shock tj. as well as the idiosyncratic

shocks we assumed before, so that system (5) is replaced by

(5')

<u^(e)=e + 0e +e
it

+ V
[u£(8)=00 +C

2t
+ 7Jt

.

If the variance of 77 is relatively large, then

observations of only one technology at date t are not very

informative, and only observations of both technologies in the

same period will be of much help. Players at locations more than

three standard deviations from 9 -that is, outside of the

* 1/2 •

interval 9 ± 3 (aw/2) - rarely see both technologies played,

and hence would need a very long memory to learn. Players at

*
locations 9 closer to 9 do see both technologies played more

often, but for these players the systematic payoff difference

between the technologies is smaller, and hence it may require

many observations to be fairly confident one is better. Our
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informal approximations, reported in appendix E, suggest that

this is indeed the case, and in particular that the number of

periods required to be fairly confident which technology is

2 2
better is of the order of a / w , so that when w is small a very

long history would be required for players to do much better

than with our simple rule. Of course, players could use history

even when the advantage to doing so is slight or slow to

develop, but in these cases it seems less obvious that players

would be led to abandon simple rules.

6. Examples of non-linear Technologies

Before considering the implications of popularity weighting

in a heterogeneous population, we would like to discuss some

examples of what can happen without popularity weighting when

.

the payoffs as a function of location do not take the linear

form presumed in equation (5) . Suppose for example that the

"old" technology f has returns that are identically zero, while

g(0) = cos (9), so that regions where g is optimal alternate with
(See ^.(^uv^c.^-^

regions where f is.^If there is no noise in the system, and the

window width is relatively small, then even if all players in

locations © e [-tt/2, tt/2] adopt the new technology g, the new

technology will not spread to the other regions where it is

optimal. In this example there are substantial social gains

from having the new technology "tested" at a number of diverse

locations. (It is for this reason that we would argue that the

gentleman farmers may have played an important role in the

spread of the new husbandry, even though they were not among the

first to adopt it.)

It may also be interesting to note that when the local
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g(6)=cos e

Figure 1



process may fail to spread as widely as it should, random shocks

to payoffs can increase social welfare, that is, welfare can

increase as the variance of the noise term z. increases from

zero. Suppose that the technologies are f(0) = and g(0) =

cos(0), and that the initial state has all players to the right

of using g and players to the left using f. Without noise,

*
the cutoff will move to e = 37T/2 and stay there. (See figure

1.) When the support of z. is sufficiently large, there will

eventually be enough consecutive draws of very negative z. that

the cutoff reaches tt/2. From this point, the system may no

longer have a single cutoff, as players to the left of tt/2 will

tend to switch to g, while those to the right switch back to f.

Essentially, the noise leads the players in region II to use the

new technology long enough that it can spread from region ,1 to

region III.

The next example shows that in certain extreme cases the

specification error involved in ignoring how payoffs vary with

"location" can allow a technology that is everywhere inferior to

completely drive out a better one. This is the case depicted in

figure 2 below, in which f(0) = and g(0) = 0-e . If the
A. A A.

current cut-off is at 0, then the player at € [0 -w, e+w]

-a -f
computes u^(0) = 0-e +(0-(0-w) ) /2, and u (0) = -w

+ (0-(0-w) ) /2. Since ug (0) - u
f
(0) = w - e, if w > e all

players who observe both technologies choose technology g.

Hence B. .= t
- w, and eventually g will take over the entire

population.

We should point out that these technologies are quite

special: an inferior technology can only drive out a better one

if the difference in payoffs |f-g| is small compared to the

34



Figure 2



errors caused by estimating the payoffs by their average values

in the window. These errors are of the magnitude of w df/de

and w dg/de, which bound the difference between the payoffs at

(0-w) and e+w. Thus, if w is small, the difference in payoffs

|f-g| must be small as well in order for the inferior technology

to dominate, and hence even though the wrong technology is

adopted everywhere, the payoff loss at each location is not

substantial. (In the example above, the payoff loss at each

location is c, and c must be less than w in order for g to

dominate.

)

For small window widths, a more substantial payoff loss

arises when the new technology is not adopted in a region where

it is a substantial improvement. This was the case in the

example where g = cos(0) and f = 0, so that the regions where g

should be adopted are disconnected. We can also modify the

example of figure 2 so that g is better than f at every location

(and so in particular is better on a connected set) and yet a

substantial payoff loss results from g failing to spread. In

figure 3 , the payoffs to f and g are such that g is much better

than f in the neighborhood of 9 = 0, but is only slightly better

than f for extreme 6 values. Hence, if technology g is first

introduced at these extreme values, it will be driven out of the

population before it can be tried in the center region.

7. Heterogeneous populations and popularity weighting

Our analysis of social learning in homogeneous populations

showed that popularity weighting could improve the aggregate

performance of the learning process, and that the optimal level

of popularity weighting is consistent with individual
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incentives. We will now investigate the implications of

popularity weighting in our model of a heterogeneous population

with linear technologies.

To model popularity weighting, let x.(8) be the fraction of

players in the interval [6-w, e+w] who use technology g. In the

spirit of the popularity weighting rule (3), we now modify the

the decision rule (6) used in sections 5 and 6 and suppose that

players use the decision rule

(12) "Play g at period t+1 iff u^(0) -uj(8) * m(l-2x. (6) )
,

"

where, as before, the parameter m indexes the importance of

popularity in the players' decisions.

Since the analysis of this system is quite close to that of

the system without popularity weighting, we will give the

results without proof. As in section 5, if the state in period

t corresponds to a cut-off rule, so will the state in period

t+1. In addition, without noise terms the system has the same,

unique, steady-state cut-off 9 = - (2/3+1) w/2. However, the

introduction of popularity weighting does change the dynamics in

two ways. First, in the absence of noise terms, the system

converges to the steady-state cut-off from any initial cut-off;

the oscillations described in proposition 4 do not arise.

Second, (and relatedly) movements of less than one window width

become more common, as players are more hesitant to a less

popular technology.

The following proposition gives a more precise description

of the dynamics.

Proposition 8

:

From an initial cut-off 9 , the system described

by decision rule (12) and payoffs (5) evolves according to
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(13) :

,6 +w if ©
t
<©

t
- (m+w/2)

e
t+i

= ' e
t
+

(
2m-w

) /

(

2m+w )

(

e
t
"e

t ) if 8
t
6[e

t
-(m+w/2), e*+(m+w/2)]

• ©
t
~w if e.> G.+ (m+w/2) .

Proof: Omitted. The calculations involved are straightforward,

and quite similar to those of proposition 4. Note that the

dynamics above reduce to those of proposition 4 when m = 0, as

they should do.

To see that, in the absence of noise, the system converges

* ...
to 6 from any initial cutoff, note that the cut-off moves a

full window width so long as \S.-e
|

> m + w/2. Eventually then
A * A

it

|©.-6
j|

^ m + w/2, and from then on 0. -6 =

[ (2m-w) / (2m+w) ] (8. -0 ), so that the system converges to 9 .at a

geometric rate.

Note also that for a given 8. , the system will move less

than a full window width whenever the realization of e. is in an

interval of 2m + w. This show that popularity weighting makes

the system more "sluggish," and suggests that it will reduce the

variance of the long-run distribution. To verify this

intuition, and determine the extent to which popularity

weighting reduces the variance, we characterize the long-run

distribution in one special case.

Proposition 9

:

(a) If the z. are i.i.d. draws from a

distribution that has a strictly positive density on a compact

support, the dynamic process defined by (5) and (12) has a

unique invariant distribution,

(b) If the z. are i.i.d. draws from the uniform distribution on
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[-a, a] and m £ 2a, the invariant distribution f is concentrated

on the interval [0 -a- w/2, +<t +w/2] and satisfies

and

E
f
(0) = e ,

2
var, (0) = a w/6m.

Proof: (a) Omitted; the argument is very close to that for

proposition 6.

(b) Appendix D shows that there is a deterministic,

finite time T for which the cut-off is in the interval [0 - cr

*
.-w/2, + a +w/2], and that once this interval is reached, ©T

remains in the interval for all subsequent periods T+s.

Given a T satisfying these claims, we have
1 T , t

, _em, \
<

* * * *
|0 -0

|
+

1 T+ -S
|

< (c + w/2) + cr , which is less than m +

w/2 from our assumption that m > 2a. Hence we the evolution of

from T on is determined by the second case in proposition

8.

Writing c = (2m-w) / (2m+w) , and applying this rule repeatedly, we

find that

T+s - <*-c) ) c
r 0*

' / T+s-x
T=0

Hence,

E(0m+s |0T ) = (l-c)^cTE(0*) + c
s (l-c)0m -» E(0*),

and

var(0m+s |0T ) = (1-c)
2

^ c
2Tvar(0*) =

(l-c)cr
2
/3 (l+c)= 2wcr

2 /12m = cr
2w/6m.
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Comparing the steady state distributions for m > 2<r with

that for m = 0, we see that popularity weighting reduces the

long-run variance by a factor of l/3m.

The welfare consequences of increasing m for fixed w are

similar to those of decreasing w for fixed m: in both cases, the

steady state distribution becomes more efficient, while the

speed at which the system converges decreases. It may be

interesting to note, however, that in this simple model there is

one way to change the parameters to speed up the rate of

convergence (when the initial cutoff is far from the optimum)

without altering the steady-state variance, namely increasing

21the window width w while holding the ratio of w/m fixed.

8 . Concluding Remarks

The various models we have presented suggest that even

very naive learning rules can lead to quite efficient long-run

social states, at least if the environment is not too highly

nonlinear. Moreover, popularity weighting can contribute to this

long-run efficiency, and the use of popularity-weighting passes

a crude first-cut test of consistency with individual

incentives. Of course, there are many other plausible

specifications of behavior rules for social learning, so it is

interesting to speculate about the robustness of our

conclusions.

In this light, we would like to report simulation results

for one simple modification of popularity weighting that seems

to improve the short-run performance of. the system without

changing its long-run behavior. For this purpose, we return to

the homogeneous-population model of section 4 , and now suppose
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that players give weight to trends in the relative popularity of

the two technologies as well as to the popularity itself.

More precisely, suppose that players now choose technology

g iff the realized difference in payoffs u^ -u. exceeds the

expression m(l-2x.) -c(x.-x
t ) , where x.-x._ is the trend in

popularity. Since the trend variable converges to zero along any

path where the system converges to a steady state, the system

still converges to the better technology with probability l when

when m =cr. However, if the initial state is far from the

optimum, as in the case when a superior technology is first

introduced, one would expect that responsiveness to trends would

help to increase the speed with which the new technology is

adopted.

To test this intuition, we ran two simulations, both, with

the noise term c uniformly distributed on [-cr, cr] and popularity

weighting m = cr. In the first, the fraction a who adjust each

period was .5, and the mean payoff difference 9 was .lcr; in the

second, a = .1 and B = .02cr. In both cases, we counted the

number of periods required for the system to move from initial

state x
n

= .05cr to x = .99a. The results, reported in Table 2,

show that at least one obvious modification of our assumptions

reinforces the impression that naive rules can perform fairly

well.

a=. 5, e= .1 a=.l, 8=.02

c = 39 940

c = 5 26 710

c = 10 28 470

Table 2 : Trend Weiaht ina and the Speed 22
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There are a number of other extensions that we have not

considered but seem important. Players might use rules of thumb

which make some use of historical data. Also, players might be

arranged in more complex networks than the simple linear

structure we have considered. Finally, our results suppose

either that rules of thumb are exogenous, or, in Proposition 3,

are equilibrium choices of a static game. It would be

interesting to complement these results with an analysis of a

dynamic process by which players adjust their rules of thumb

along with their choice of technology.

Finally, we should point out that popularity weighting is

not always as beneficial as our results might suggest. Consider

the problem of children is a poor neighborhood choosing whether

to pursue higher education. If students who have done so in, the

past tend to move out of the neighborhood, and past residents

are underrepresented in the observation windows, then the choice

of higher education will appear less popular than it really is,

and decisions based on popularity may be biased against this

, . 23choice.
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Appendix A:

Optimal Popularity Weighting with Other Distributions

To better understand the forces generating proposition 2a-

that a single choice of popularity weight yields the optimal

long-run distribution uniformly over all values of e- we show

that analogous results obtain when the per-period noise term e.

has distribution F with unbounded support.

Suppose first that a = 1, so that the entire population

adjusts every period, and hence the state x. takes on only the

values and 1. If we let s. denote the vector

[Prob(x.)= 0, Prob(x
t ) = 1], we have s. =s.A, where the

transition matrix is A =

F(m-e) l-F(m-e)

F(-m-e) l-F(-m-e)

Since this matrix is strictly positive, the system is
* . .

ergodic; the unique invariant distribution u is given by

M*(x=0) = F(-m-e) /[F(-m-0)+ l-F(m-e)].

If F is the standard normal distribution, then as m

increases, the ratio F(-m-S)/ 1- F(m-0) converges to if > 0,

and converges to » if 6 < 0. Hence for large m, the ergodic

distribution of the system places probability near 1 on the

correct choice. Moreover, the same is true for any distribution

for which the the ratio F(-m-0)/ 1- F(m-S) converges to if 6 >

0, and to oo if e < 0. (This is what is meant by saying that the

tails of the distribution are "infinitely revealing.")

With a more involved argument, we have shown that the same

conclusion holds for any a e (0,1) when players use the

(discontinuous) popularity weighting "if x. £ 1/2, choose g iff

u?-u. £ -m; if x. <l/2, choose g iff u^-u. £ -m." The details

are. available on request, here is the intuition for the result.

Note first that when m = » the system is deterministic with

stable steady states at and 1. If m is finite but very large

compared to a and to the distribution, then steps the "wrong

way" (i.e. decreasing steps when x. > 1/2 ) are rare

"innovations", and when the distribution is symmetric, transits
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from to 1/2 and from 1 to 1/2 both take same number of

innovations. If the tails of the distribution are infinitely

revealing, then as m -» a> innovations towards the better

technology become infinitely more likely than innovations

towards the inferior one, and the analysis of Freidlin and

Wentzell [1984] suggests that the limit of the ergodic

distributions will be oncentrated on the better technology. To

establish this formally, we partitionthe interval into a large

number of (appropriately chosen) small subintervals, and

approximate the original system by two finite-state Markov

processes, whose ergodic distributions will serve as bounds on

the ergodic distribution of the original system. We then use

the discrete-time, finite-state translation of Freidlin and

Wentzell's results (Kandori, Mailath and Rob [1992], Young

[1992]) to confirm the intuition above, i.e. the limits of the

ergodic distributions of thefinite-state process are

concentrated on the subinterval corresponding to the better

choice. The above suggests that infinitely-revealing tails are

sufficient for there to be a single popularity rule that is

approximately optimal for all 6. Moreover, this rule has the

nice feature that it need not be tailored to the exact form of

the distribution. Even when the tails are not infinitely

revealing, however, there is another popularity rule that seems

to perform very well, namely "choose g iff u^ - u. s F (1-x.)."

With this rule,

E(xt+1 |x
t ) = (l-a)x

t
+ a Prob[0 + c

fc

* F
-1
^)]

= x
t

+ a[F(e+F
_1

(x
t
))-x

t ],
so that E(x. |x.) > x. if and only if 9 > 0; the system tends

to drift towards the correct choice. Although the system may

converge to the wrong technology with positive probability, the

simulation results reported in table 2 for the logistic and

Laplace distributions (which both have non-revealing tails)

suggest that when a is small the system is very likely to

converge to the right choice. Intuitively, when a is small, the

system evolves through a series of small steps that allow the

drift to outweigh the random forces. We conjecture that there

may be a general result these lines.
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Appendix B : Proof of Proposition 2c

If cr-m > \9\ , then neither nor 1 is an absorbing state.

Our first step is to show that there is a unique invariant

distribution. To do so, we first note that the stochastic system

(4) is a random contraction in the sense of Norman [1972]. A

random contraction is a stochastic system in which the

realization of an i.i.d. auxiliary variable (call it u) is used

to determine which of a family of mappings <p e V is used to

send x. to x. ., and each ip is a contraction "on average." In

our context, cj corresponds to the realized difference in

payoffs, and there are only two maps ip : ^(x. ) = (l-a)x. +ct, and

<p_ (x. ) = (l-a)x. , both of which are contractions, so that (4) is

indeed a random contraction. Norman's results then imply that

the Markov operator associated with system (4) is quasi-compact.

We next note that when \9\ <cr-m, the system (4) satisfies the

uniqueness criterion 2.11 of Futia [1982]: for any neighborhood

U of the point x = 1/2, and any point x' in [0,1], there is an n

such that the probability the system starting at x' in is in U

exactly n periods later is strictly positive. ( If m £ <r, the

uniqueness condition fails, as both x = and x = 1 are

absorbing.

)

The last step is to compute the mean and variance of the

invariant distribution u. Using E (x.) = E (x. .) , we have

E
u
(x) = (l-a)E^(x) + ajp(x)du(x),

where p(x) = (cr-m+e)/2<T + (m/cr)x. is the probability that 8+e. £

m(l-2x. ) , which is the probability that x. . = (l-a)x.+a.

Simple algebra then shows that E x = 1/2 + 8/2 (cr-m).

To compute the variance, we first write the identity

[(l-p(x)) [(l-a)x]
2

+p(x) [(l-a)x+a)] 2
Jdu(x) =

E (x
2
)|(l-a)

2 +2a(l-a)m/crl + E (x) J2a (1-a) (cr-m+0) /2a +a
2
m/<r| +

a (a-m+S) /2a;

2 2 - 2
solving for E (x ) and computing var(x) = E (x ) -(E (x)) gives

the desired result.

APPENDIX C: PROOF OF PROPOSITION 6

To begin we rewrite (10) in the equivalent form (10')

E (x
2

)
=

44



(10')
t+1

min[0 +w,2(0 +z )-0.)]0 + z s©

*• * " * "
max[0.-w,2(0 +z )-6 )]8 +z

t
<0

t

To show that the system (10) is a "random dynamical system" as

described by Futia [1982], we note that the auxiliary events

are the z . . The probability distribution Q on the z's does not

depend on the current state, and so in particular is continuous

in the state, and the map p(0,z) defined by 8. = <p(0. , z. ) is

easily seen to be continuous in 9 for fixed z, so that (10) is

indeed a random dynamical system.

Next we check that it is a random contraction, as in

Futia 's definition 6.2. Because the map Q is constant in 0, the

constant M in part (a) of the definition can be taken to equal

0. Next we must show that for all z, and all 0*0',
d(<p(0,z), (p(0',z)) ^ d(0,0'), and that for all and 0' there is

a positive probability of z such that d(<p(9,z), <p(8',z)) <

d(0,0') .

To show that d(<p(9,z), tp(9',z)) * d(0,0'), we note that for

all and 0' and all z, either (a) both and 0' move in the

same direction (e.g. (<p (0, z) -0) (<p (0' , z) -0' ) > 0) or (b) <p(9,z)-8

i i <p(6',z)-8'. Case a has three subcases: either (1) <p

moves both locations by w, so that d(<p(0,z), <p(8',z)) = d(0,0');
*

or (2) the location closer to +z. moves less than w, and the

state farther away moves w, so that d(p(0,z), <p(9',z)) <

d(0,0'), or (3) both locations move by less than w, in which
*

case the two locations are reflected about the point +z., and

d(p(0,z), <p(0',z)) = d(0,0').

In case (b) , suppose w.l.o.g. that < 0'; then case b
* *

implies that s. +z ^ 0', and so d(0, 0') = d(0, +z) +
* . ......

d(0 +z, 0'). Using the triangle inequality, this implies that

(CI) d(<p(9,z) , <p(9' ,z)) - d(0,0') i

d(<p(9,z), 0*+z) + d(0 +z, ip(0',z)) - d(0, +z) - d(0 +z, 0'

)

= [d(<p(0,z) , 0*+z)- d(0, 0*+z)] +[d(0*+z, <p(0',z))- d(0 +z,0')],

and inspection of (10') shows that each of the terms in square

brackets is non-positive. Thus d(<p(0,z), <p(0',z)) ^ d(0,0')

for all z, 0, and 0'.

To show that for all and 0' there is positive
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probability that d(tp(8,z), tp(8',z)) < d(8 ,8'
) , let 8 < 8'

, and
*

suppose first that 8 - 8 > - a + w/2. Then for sufficiently

small c >0 there is a positive probability that z lies in any
*

sufficiently small neighborhood of 8 - 8 + e -w/2, and for z's

in this neighborhood, moves less than w to the left, while 8'

moves w, so that d(</>(8,z), <p(8',z)) < d(8,8'). If 6 - 6 s - <r +
*

w/2 but 8' -8 < a -w/2, a similar argument establishes the

existence of a range of z's such that both 8 and 8' move to the

right, with 8' moving less than 8. Finally, ife-e<-o- +
*

w/2 and 8' -8 £ cr -w/2, then 8' -8 > w, and &{<p(6 ,z) , ip(8',z)) <

d (8,8') for z's in a neighborhood of e+w/2. Thus (10') is a

random contraction.

The last step in the proof is to verify that (10')

satisfies Futia's uniqueness condition 2.11, which requires

that there be a point 8 such that for any neighborhood U of 8

and any 8, there is an n such that when the system begins at 8,

it has a positive probability of being in U in period n. It is
h *

easy to see that e.g. 8 Z = 8 satisfies this condition.

APPENDIX D Proof of Proposition 9 , part b.

To complete the proof, we must show that there exists a

deterministic, finite time T such that (i) |e -8] < a +w/2, and

(ii) that |0m, c
-8\ < 0"+ w/2 for all subsequent dates T+s.

Define d. =
|
8 .

-8 |. Note that since (8. -8.) and (8.-8.)
have the same sign, and \8. - 8

\

^ cr, (8 -8. ) and ( +- + 1
~e +-)

have the same sign whenever d. > a + w/2. Hence,

(Dl) d
t+1

= |d
t

- (|8t+1
- 8

t |)| whenever d
t
> a + w/2.

As a first step towards proving (i) , we show that for any

initial condition there exists a finite T' such that regardless

of the sample path, either d
T , < a + w/2 or d

T/
s \&T > +1

~e
T '\ •

To see this, note that (Dl) implies that until such a T' is

reached, d. ~dt+1 =
l

et+i -etl' and from proposition 8,

|8t+1
-8

t |
= min{ w, [2w/(2m+w)](8

t
-8*)} *

min{w, [2w/ (2m+w) ]w/2}

.

Thus, until the conditions defining T' are satisfied, the

decrease in d. is bounded below by a positive constant which is

independent of the sample path.
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If d ,
< it + w/2, setting T = T" completes the proof of (i)

The remaining case is a+ w/2 < d
,

s
i
eT'+l

~
T' I

* In th ^ s

case, (Dl) implies that d
T , = |©T - +1

- 6 , |
-d

t , which is less

than w - (a+ w/2) = w/2 - a < w/2 +cr. Hence we can set T = T'+l

to complete the proof of (i)

.

To prove claim (ii) , note that when |e_ -6
\

< a+ w/2, we

have |©T
-9

T |
£ (a + w/2) + a, which is less than m +w/2 from

the assumption that m > 2a. From proposition 8 we then have

©
T+1

=
T

+ [ (2m-w)/(2m+w) ] (e
T

- e*) , and since both 9* and ©
T

lie in the interval [G - a - w/2, 9 +a + w/2], so does 9 .

The claim now follows from induction on s.

Appendix E:

This appendix gives a rough computation of how many periods

would be needed on average for a player using history to be

reasonably sure he knew which technology is better. If we let a

= var(e . ) + var(c_.) denote the variance of u^ ~ut / then the

player at 9 will need about (<r /9) observations of both

technologies to be fairly confident (about 85%- i.e. 15% chance

of a false rejection) that he knew which technology was better.
* 1/2 . . 2For 9*6 + {cm/ 2) , this requires on the order of 2a /crw

* 1/2
c *

observations of both technologies. For 9 + (crw/ 2) < 9 * 9 +
1/2 2

3(crw/2) , at least 2a /9crw observations of both technologies

are required.

Our next step is to approximate the frequency with which

these observations arrive. To do so, we approximate the

steady-state distribution by a normal distribution, and then

note that the density of the normal is less than -25/cr at points

more than 1 standard deviation away from the mean, and that the

density of the normal at the mean is less than .5/cr. Finally,

we recall that only players within w of the current period's

cutoff see both technologies being used. Thus we conclude that
*

for players within one standard deviation of 9 the required

observations arrive on average every [2w-.5/cr] = <r/w periods;
2 . 2 2

since these players need about 2a /crw observations, 2cr /w

periods are required. For players between 1 and 3 standard

deviations away, the required observations arrive about every
2

2cr/w periods; these players need 2cr /9crw observation, so that
2 2. C

about 4<t /9w periods are required.
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empirical research on adoption processes, especially in
development. Mansfield [1968] and Ryan and Gross [1943] are
classic studies of technology adoption in basic industries and
agriculture, respectively.

Cross [1983] develops a model of boundedly rational,
adaptive choice with a similar information structure.

Smith's paper models the pricing decisions of
monopolistically competitive firms, for which the assumption of
unobserved payoffs seems more plausible. Banerjee [1991a] is a
model of investment decisions; Banerjee [1991b] is less explicit
about its intended interpretations. Bikchandari et al suggest
that their model is appropriate for a wide range of decision
problems, including that of technology adoption.

4 Manski [1990] considers heterogeneous populations from an
econometric viewpoint. His paper provides a sufficient condition
for an individual to be able to obtain a consistent estimate of
his own optimal choice by observing the choices and outcomes of
others

.

5 Note that when the players are heterogeneous, a central
planner would need to know the relative payoffs of the
competing technologies for every player in order to implement
the optimum by fiat. Centrally-based agricultural reformers are
often hampered by their lack of understanding of the variation
in farmers' tastes and production costs. For example, Apodaca
[1952] describes how a planner tried to induce a New Mexico
community to adopt a hybrid corn. The innovation was adopted
and then discontinued despite doubling yields, as the villagers
decided the taste and consistency of the corn were inappropriate
for making tortillas.

(In the second model the environment is complicated enough that a
great many periods would be required to obtain good estimates, as
we discuss in section 5.)

See Mingay [1977] and Slicher von Bath [1965] for more
thorough descriptions of the technology. Timmer [1965]
discusses the extent of the resulting gains in productivity.

8Kerridge [1967] pp. 28-34, 339-341.

9Chambers and Mingay [1966] p. 55.

10See Timmer [1969]. and Kerridge [1967]. Slicher von Bath [1965]
p. 243 gives a similar figure for the rate of diffusion in
France.

See Timmer [1969] for an excellent summary of this debate.
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12 • ...
The consideration of inertia is further motivated by the

empirical evidence that there is typically a substantial lag
between the time individuals first learn of the existence of a
technology and the time they adopt it. Ryan and Gross [1943]
found that farmers in two rural communities on average adopted
hybrid seed corn 9 years after they first heard of the
innovation. Other studies cited in Rogers and Shoemaker [1971],
p. 129, report lags of 2-4 years for the adoption of weed spray
in Iowa and fertilizer in Pakistan. Note that the spread of
literacy and modern communication media will speed up the rate
at which farmers become aware of a new technology's existence,
but do not seem to have eliminated the lag between becoming
informed and deciding to adopt.

If we interpret x. as the probability that a singleindividual

chooses g, as opposed to the population fraction, (2) is an
example of the linear stochastic learning theory (LSLT) of Bush
and Mosteller [1952]. This theory describes a traditional
one-player bandit problem, in which only 1 arm is observed in
each period; it is also assumed that the only possible outcomes
are "reward" and "failure," with the probability of arm i being
rewarded being tt. Our model corresponds to the special case in
which 7T. = 1-tt_ , and the two arm's outcomes in a given period

are perfectly negatively correlated. (In the bandit problem, the
joint distribution is irrelevant.) See Schmalansee [1975] for a
brief survey of these models, and a discussion of their
applicability to market pricing. In our system (2) ,

Schmalansee's constants L, L, G, and G all equal a, while
Schmalansee's a and a both equal 1, and his /S. and jS_ equal 0.

Schmalansee argues that in some cases the behavior these models
prescribe, with both actions taken infinitely often, is more
realistic than that of the optimal solution to the discounted
bandit problem.

14 ....
The empirical literature suggests that popularity weighting is

a factor, but reliable estimates of m are hard to come by.
Rogers and Shoemaker (op cit. , p. 142) say that "many students
of peasant life feel" that innovations must be 20% to 30% better
to be adopted; they also cite a President's Science Advisory
Committee figure of 50% to 100% . From our reading, it is not
clear whether these premia reflect popularity weighting or
inertia.
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15
We should warn the reader that the results we obtain for the

uniform case will seem to rely on the fact that this
distribution has compact support: an observation that u^ - u^ >

a implies that 6 is greater than zero. However, compact support
is not what underlies our conclusions. Appendix A shows that the
non-linear rule "only switch if the observed payoff difference
is large compared to the popularity" leads to a long-run
distribution that places most of its weight on the better choice
whenever the distribution of errors is "infinitely revealing in
the tails." The appendix also reports simulations of a more
complex rule that seems to work well even when the tails are not
infinitely revealing.

An alternative explanation is to use the fact that the rule m
= a yields the optimal long-run decision, and that since a is
the standard deviation of the per-period payoff differences,
rescaling the utility function rescales cr in the same way.

17
Unless the payoff difference is so extreme that G -cr > m, in

which case the rate of adoption is independent of 8. Note that
the rate is also an increasing function of 8 when m = 0, s
provided that 8 is smaller than cr.

18However, the correlation is easy to explain as the result of an
optimal investment policy under complete information if adopting
the innovation requires investing in a capital good.
19 Although our leading example of very small window widths is
the English agricultural revolution, small window widths should
not be seen as requiring illiterate agents. Anecdotal evidence
suggests that farmers often distrust the information of central
authorities and experts, and prefer to see how innovations work
out in their neighborhood. Ryan and Gross [194 3] found that the
experiences of neighbors was an important factor in the adoption
of hybrid seed corn by 2 0th century Iowa farmers.
20 . .
' Although we have not checked the details, it seems that a
combination of large window widths with a rule of
proximity-weighted averages could combine quick convergence with
a small long-run variance.
21 . ...." However, as w increases the specification bias grows. When w is
large, it may be more natural to suppose that players weight the
experience of those nearby more than that of those who are
farther away but still within their window.

22 ...
Based on estimated standard errors, the first two digits

are correct at the .95 level.

23We thank Roland Benabou for this observation.

(See Futia's [198 2 survey for a summary of Norman's results,
and other techniques for establishing that the invariant
distribution is unique.)
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