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1. Introduction

Economic theory treating the extraction of exhaustible

natural resources has usually neglected most types of uncer-

tainty, at least until recently. However, in the last

couple of years several economists have treated various

aspects of uncertainty. In particular, Dasgupta and Heal [2]

and Dasgupta and Stiglitz [3] have studied cases where a

perfect substitute for the natural resource will become

available at some future date. Both these studies assume

that this future date is uncertain, but that the character-

istics of the substitute product, represented by the costs

of producing it, are known with certainty. This is, of

course, highly unrealistic. In the real world both the date

of availability and the costs of producing a substitute, for

instance fusion energy, will be uncertain. However, the

analysis quickly gets very complex when too many things are

taken into consideration at once. Dasgupta, Heal and Stig-

litz have studied cases where the date of availability of a

substitute is uncertain, the present paper will therefore

consider this date as known, but assume that the costs of

producing the substitute are uncertain.

In Section 2 a simple model for studying the type of

uncertainty mentioned above is presented. Section 3 shows

how uncertainty affects the socially optimal resource



extraction under various assumptions about the society's

risk aversion. In Section 4 the competitive solution is

derived and compared with the social optimum. Finally, some

conclusions are drawn in Section 5.



2. A Simple Model of Resource Extraction with Uncertain

Costs of Substitute Production

Let x(t) and y(t) be the rate of resource extraction

and of production of a perfect substitute, respectively.

Assume that the gross benefits to society from using x(t) +

y(t) of the resource plus substitute at time t are given by

a strictly increasing, strictly concave function

U* (x ( t) +y ( t ) ) , and that the unit costs of extraction of x

and production of y are given by the non-negative constants

ci and C2, respectively. With an exogenously given constant

positive discount factor r, the discounted net benefits to

society are

W = Je ^^[U*(x(t)+y(t) )-cix(t)-C2y(t)]dt. (i;

Defining the function

U(x+y) = U* (x+y) - Ci(x+y),

we can rewrite (1) as

oo

W - /e~^^U(x+y) - cy, (2)

where c = C2 - Ci is the cost difference between producing

the substitute and extracting the resource. We shall assume

that ci is known with certainty, but that C2 is uncertain



before a given date T. However, we shall assume that the

whole probability distribution of Cz lies above Ci , so that

there are only positive values in the probability distribu-

tion of c. Before T it is impossible to produce the substi-

tute, and at T the true value of Czi and therefore c, is

revealed.

The constraints which the resource extraction and the

substitute production must satisfy are

•

R(t) = -X (t) , R(0) given,

R(t) > 0,

x(t) > 0, (3)

y(t) > 0,

y(t) = for t < T,

where R(t) is the resource stock at time t and R(0) is the

given initial resource stock.

Before stating the society's optimization problem, let

us define two functions which will play an important role in

the following analysis. The first of these functions is

T _
F(S) = Max /e ^ U(x(t))dt (4)

x(t)

subject to

R(t) = -x(t) ,

R(0) given, R(T) > S,

x(t) > 0.



In other words, F(S) is the maximum of the discounted net

benefits to society from till T given that the resource

stock at T is not less than S. Obviously, for any given

value of S, an optimal program of resource extraction (until

T) exists. We shall denote this path by x(t,S), showing

that the path depends on S

.

The second function we shall define is

G(S,c) = Max Je '^^[U(x(t)+y(t))-cy(t)]dt - (5;

x(t) T
y(t)

subject to

R{t) = -x(t) ,

R(T) - S, R(t) > 0,

x(t) > 0,

y(t) > 0.

In other words, G(S,c) is the maximum of the discounted net

benefits to society after T given that the resource stock at

T is S. Note that G(S,c) depends on c, which is known at T,

but uncertain before T. For any given value of S and c, an

optimal program of resource extraction and substitute produc-

tion after T exists. We shall denote these paths by x(t,S,c)

and y (t, S,c)

.

Obviously, whatever value of resource stock the society

decides to leave to extract after T, i.e. whatever value S



has, a necessary condition for a social optimum is that x(t)

= x(t,S) for t < T, and x(t) = x(t,S,c) and y(t) = ^(t,S,c)

to t > T. This means that we can write

W = F(X) + G(S,c). (6)

At the initial time point (t = 0) , c is an uncertain variable,

It therefore has no meaning to choose S so that W is maxim-

ized. The appropriate procedure in such cases, under reason-

able assumptions (cf. Arrow [1]), is to maximize the expected

value of some strictly increasing function of VI. Disregar-

ding risk aversion for the time being, the social objective

will simply be to maximize the expected value of W, i.e.

EW=F(S)+EG(S,c), (7)

with respect to S. Once the optimal value of S is found,

the optimal resource extraction and substitute production

follow from x(t,S), x(t,S,c) and y(t,S,c).

To be able to study the properties of the optimal

solution, we must first study the properties of the functions

F{S) and G(S,c). Let us first look at the function F.

Disregarding the possibility of S not being an effective

constraint, it is well known that the function x(t,S) must

-rtimply that e U'(x(t,S)) is independent of t, i.e. that

the discounted net benefits to society of a marginal increase

in the resource use is the same throughout the period.



Furthermore, it is intuitively obvious, and easy to prove

formally, that a marginal increase in R(0) - S increases

-rt
F(S) by precisely e U'(x(t,S)), i.e.

F' (S) = -e ^'^U' (x(T,S) ) < 0. (8)

Differentiating F' (S) gives us

F" (S) = -e ^^U"(x(T,S)) ^^-^-'-^
dS '

'

Since e'^^U ' (x ( t , S) ) is independent of t and U" < 0, a

change in S must change x(t,S) in the same direction for all

t. Together with the resource constraint

T
/x{t,S)dt = R(0) - S

this means that 3x{T,S)/9S < , so that we must have

F" (S) < 0. (9)

Let us now turn to the function G(S,c). The optimal

resource extraction and substitute production corresponding

to a given S and c have the following properties, assuming

that the distribution of c is such that U' (y) = c gives a

positive solution for y whatever value of c turns out to be

the true one (for details, see for instance [3]):



To begin with the substitute is not produced, and U' (x)

increases with the rate r. This development continues until

the resource is completely exhausted, //hich occurs exactly

when U' (x) reaches c. We shall denote this date by N(S,c)

,

indicating that the date of exhaustion depends on S and c.

After N(S,c) we of course have no resource extraction, and

substitute production takes place on the level that makes

U' (y) = c. To summarize, we have

U' (x{t,S,c))

y(t,S,c) -

X (t,S,c) =

U' (i>(t,s,c)) = c

^-r(N(S,c)-t)^

for t < N (S,c)

for t > N(S,c)

(10)

where N{S,c) is determined by

N(S,c;
x(t,S,c)dt = S, (11)

From (10) it is easy to see that

x(N(S,c) ,S,c) = y(N(S,c) ,S,c)) = k(c). (12)

where k(c) is a constant which only depends on c and is

determined by

U- (k(c)) = c.

so that



^'(^) = U"(k(c)) < °' (1^)

Like for F', it is intuitively obvious, and easy to

prove, that

G (S,c) = e"^''^U' (x(t,S,c) = e'^^^^'^^c > 0. (14)

It is also obvious that G(S,c) must be higher the lower c

is, i.e. G (S,c) < 0. Differentiating (14) with respect to

S gives us

Ggg(S,c) = -e~^^^^'^^crN (S,c).

Furthermore, by using Equations (10) -(11) we can show that

(see the Appendix for details)

^s^S'^) = k(c)-rcZ - (15)

where

7 - V^'""^ „ 1 ^-r(N(S,c)-t) ,,g,
^ -

i
U"(^(t,S,c)) ^ ^^ < °

,

(l^-

In other words, we have

G (S,c) < 0. (17)

Differentiating G (S,c) with respect to c gives us
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G (S,c) = e
^^^^'^' [1-rcN (3,2)]. (18)

sc c

By using Equations (10) -(11), we find (cf. the Appendix]

that

^^c^S'^) = rc-k!c)/z/ (1^)

i.e. N (S,c) > and 1 - rcN (S,c) > 0. This means that we
c c

have

G (S,c) > 0. (20)
sc

In particular, it is clear from (11) that for S = we must

have N(S,c) = T, which of course implies N (0,c) = 0. From

(18) we therefore have

Gg^(0,c) = e
'^'^. (20')

Finally, we will need the sign of G (S,c) . From^ ^ sec

(20') it follows that G (0,c) = 0. When S > it is
sec

proved in the Appendix that

cU"'(x) < 2(U"(x))2 => G (S,c) < 0. (2i;

The sign of U" ' (x) depends on the curvature of the function

U' (x) , which can be interpreted as the demand function for

the resource. The condition (21) therefore states that a

sufficient condition for G (S,c) to be negative is that
sec ^
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the demand function is either concave or convex with a

sufficiently weak curvature. In the Appendix it is also

indicated that even if the demand function is convex with a

curvature so strong that cU" ' (x) > 2(U"(x))2, we may well

have G (S,c) < 0. However, we cannot exclude the possibil-
scc '^

ity of G (S,c) being positive, at least for some relevant

S and c.

Let us finish this section by summarizing what proper-

ties the functions F(S) and G(S,c) have. The function F(S)

is strictly decreasing and strictly concave in S (cf. (8)

and (9)). The function G(S,c) is strictly increasing and

strictly concave in S (cf. (14) and (17)), and is strictly

decreasing in c. Finally, the function G (S,c) is strictly

increasing in c (cf. (20)). For most reasonable demand

functions we will also expect to find G (S,c) strictly

concave in c (cf. (21) and the discussion after (21)). In

the next sections we shall utilize this information to study

the effects of uncertain costs of producing the substitute.
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3 . The Effects of Uncertainty

Let us first assume that society as a whole is risk

neutral, so that the socially optimal value of S is the

value that maximizes the expected value of W, i.e. maximizes

the expression given by (7) . Denoting the optimal S by S*,

we therefore have

9F(S*) EG(S*,c) ^
dS dS

^'

or

F' (S*) + EG (S*,c) < 0, (22)

where a strict inequality implies S* = 0. Let us compare S*

with the optimal value of S in the case of certainty, which

we shall denote by S° . If c is known with certainty to be

equal to its expected value c, S° is given by

F' (S°) + G (S°,c) < 0, (23)

where a strict inequality implies S° = 0.

From (20') we have G (0,c) = 0, so that
sec ' ' '

EGg(0,c) = Gg (0,c)

Together with (22) and (23) this means that S* = if and

only if S° = 0. We therefore have the following proposition,
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remembering how the resource extraction before T depends on

S (cf . p. 7)

:

Proposition 1 . When society is r isk neutral and the

cost of producing a substitute for the resource is uncertain ,

it will be optimal to use up all of the resource stock

before the time T when substitute production becomes tech-

nically feasible if and only if this is optimal also when

this cost is known with certainty . If the entire resource

stock is exhausted at T, the whole path of extraction will

be independent of whether or not the cost of producing the

substitute is uncertain .

Let us now turn to the case where S* and S° are positive.

In the end of Section 2 we argued that G (S,c) usually would

be strictly concave in c. If this is the case, we must have

EG (S*,c) < G (S*,c)

,

s s

which together with (22) implies that

F' (S*) + G^ (S*,c) > 0. (24)

But F' (S) + G (S,c) is a strictly decreasing function of S,

so (24) and (23) therefore imply that

S* < S°. (25)

In other words, more of the natural resource is used up

before T in the case of uncertainty than in the case of

certainty.
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If the function G (S,c) is strictly convex in c, v;e of

course get the opposite result from (25), i.e. we find that

S* > S°. If the sign of G (S,c) depends on S and/or c, we

cannot state how uncertainty will affect the optimal S

without more knowledge about the demand function, the prob-

ability distribution of the cost of producing the substitute,

and the initial resource stock.

From the reasoning above and what we have said about

how the resource extraction before T depends on S, we there-

fore have the following proposition:

Proposition 2 . The optimal path of resource extraction,

up till the time T when substitute production becomes tech-

nically feasible , will be higher , equal or lower when the

cost of producing a substitute is uncertain than when this

cost is certain . One will usually expect to find

G (S,c) < , in this case the resource extraction before
sec —

T will be higher when the cost of producing the substitute

is uncertain , provided that society is risk neutral and that

some of the resource stock remains unextracted at T.

It may seem somewhat strange that uncertainty in the

most usual cases will tend to increase the optimal resource

extraction before substitute production is possible. As we

soon shall see, however, this result is only valid when

society is risk neutral or at least not too strongly risk

averse.
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Assume that society is risk averse, so that instead of

maximizing the expected value of W, it wishes to maximize

the expected value of cp(W), where cp(W) is a strictly increas-

ing, strictly concave function. The optimal resource stock

at time T is now given by the value of S which maximizes

E(P(W) = E(p(F (S)+G(S,c) ) . (26)

Calling the optimal value of S in this case S**, we there-

fore must have

E{(p' (F (S**)+G (S**,c) ) (F' (S**)+G (S**,c)} < 0, {21\

where a strict inequality implies S** = 0. Equation (27)

states that a weighted average of (F' (S**)+G (S**,c)) over

all outcomes of c is equal to zero. Since U" (W) < 0,

G (S**,c) < and G (S**,c) > 0, the weights for higher

values of F'(S**) + G (S**,c) compared with the weights for

lower values of F'(S**) + G (S**,c) in (27) are higher than

they would have been with U" (W) = 0. This implies that

E{F' (S**)-(-G (S**,c)] < 0,

I.e.

F' (S**) + EG (S**,c) < 0. (28)
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Comparing this with (22) and remembering that F' (S) +

EG' (S,c) is a strictly decreasing function of S gives us

S** > S*,

unless S** = S* = 0. In other words, less of the natural

resource is used up before T in the case with risk aversion

than in the case with risk neutrality. From what we have

said before we therefore have the following proposition:

Proposition 3 . When the cost of producing a substitute

is uncertain , the optimal resource extraction at any point

of time before such production is technically feasible is

lower when society is risk averse than when society is risk

neutral , unless the entire resource stock is exhausted at T

in both cases .

It is not possible to say anything in general about the

relationship between S** and S°. Obviously, for a suffi-

ciently weak degree of risk aversion we can get S** < S°,

since S* - S** approaches zero as cp" (W) approaches zero. To

see if S** > S° is possible, look at in what way risk aver-

sion affects society's choice of S. From (27), it is clear

that risk aversion, i.e. cp" (W) < 0, simply has the effect

that society gives relatively more weight to the outcomes of

c which give a low value of G(S,c), i.e. to the high values

of c. The stronger the degree of risk aversion, the stronger

is this effect. The limiting case of risk aversion is to
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only consider the highest possible outcomes of c, i.e. to

choose S so that the lowest possible outcome of W is maxi-

mized. The optimal value S** in this case simply follows

from (23) , with S° replaced by S** and c replaced by the

highest possible outcome of c, which obviously is higher

than c. From the properties of the functions F(S) and

G(S,c) it is clear that S** in this case must be higher than

S°. From what we have said before we therefore have the

following proposition:

Proposition 4 . When the cost of producing a substitute

is uncertain and society has a sufficiently strong degree of

risk aversion , the optimal resource extraction at any point

of time before substitute production becomes technically

feasible is lower than it would have been if the cost of

producing the substitute was known with certainty , unless

the entire resource stock is exhausted at T in_ both cases .

4. The Competitive Solution

The demand for the resource in a competitive economy

will depend on its price, such that the following equality

must hold:

p(t) = U- (x(t) ) , (30)

where p(t) is the resource price (net of extraction costs).



For an equilibrium with positive resource extraction

for all t < T to exist, the resource price p(t) must rise

with a rate equal to r (see for instance [6]). Together

-rt
with (30) this implies that e U'(x(t)) must be constant

for all t < T. But it is precisely the path x(t,S), defined

on pages 4-5, which has this property. Before T the price

is therefore given by

p(t) = U'(x(t,S)) for t < T. (31)

The level of the price path p(t) will be determined once S

is determined. We shall return to how S is determined in

the competitive economy shortly, after seeing how p(t)

develops after T.

After T substitute production is technically feasible

with a known cost. The equilibrium development of p(t) in a

competitive economy, assuming S > 0, has been discussed by

Dasgupta and Stiglitz [3], Hoel [5] and Nordhaus [7]: The

price p(t) will start at some value lower than c, rise with

the rate r and reach c at the same moment as the resource

stock is completely exhausted. Together with (30) this

means that U' (x(t)) must rise with the rate r until it

reaches c at the same time as R(t) reaches zero. But from

(10)- (11) we see that it is precisely the path x(t,S,c)

which has this property, i.e.

p(t) = U'(x(t,S,c)) for T < t < N(S,c). (32)
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The level of this price path will depend both on S and on

what the cost of producing the substitute turns out to be.

Whatever value of S the competitive economy gives, it

is clear that there is nothing to prevent a jump in p(t) at

T. The reason why such a jum.p can occur (and will occur

except by chance) is that c is not known just before T,

while it becomes known at T. From (31) and (32) we therefore

see that whatever value S has, p(t) will make a jump at T

for all outcomes of c except one. To distinguish p(t) just

before and just after T, we shall denote these values by

p(T") and p(T+). Note that whatever value S has, p(T+) will

be a random variable before T.

If all resource extracting firms are risk neutral, a

necessary condition for an equilibrium with S > is that

the expected value of p(T+) is equal to p(T~). p(T") follows

from (31), and p(T+) follows from (32); using S* to denote

the market determined value of S we therefore have

EU' (ft(T,S*,c) ) = U'(x(T,S*)).

But from (8) and (14) this is seen to be equivalent to

F' (S*) + EG (S*,c) = 0. (33;

Comparing this equation with (22) , it is clear that S* =

S*. As the extension to the case where S* = is straight-

forward, we therefore have the following proposition:
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Proposition 5 . If society as a whole and all resource

extracting firms in a competitive economy are risk neutral ,

the resource extraction and substitute production in the

competitive economy is socially optimal .

Let us now turn to the case where all firms are risk

averse. In this case the expected value of pCT"*") must

exceed p(T~) for any resource extraction to be postponed

till after T. Using the same reasoning as we used to derive

(33), we therefore get

F' (S**) + EG (S**,c) > 0, (34:

where S** is the competitive solution of S when all firms

are risk averse. Since F' (S) + EG (S,c) is strictly decreas-

ing in S, (33) and (34) imply that S** < S* when S* > 0. It

is straightforward to verify that S** = S* if and only if

S* = 0. From what we know about the function x(t,S), we

therefore have the following proposition:

Proposition 6 . When the cost of producing a substitute

is uncertain , the resource extraction in a competitive

economy at any point of time before substitute production

becomes technically feasible is higher when all resource

extracting firms are risk averse than when all resource

extracting firms are risk neutral , unless the entire

resource stock is exhausted at T in the latter case.
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From Propositions 3 and 6 we iitunediately see that the

following proposition must hold:

Proposition 7 : When the cost of producing a substitute

is uncertain , and society as a whole and/or all resource

extracting firms have risk aversion , the resource extraction

in a competitive economy at any point of time before substi -

tute production becomes technically feasible is higher than

the socially optimal level of resource extraction , unless it

is socially optimal to have no extraction after T,

It should be noted that v/e purposely have distinguished

between the cases where all resource extracting firms are

risk neutral and the case where all resource extracting

firms are risk averse. Let us now briefly consider the case

where some firms are risk neutral and some firms are risk

averse. In this case we may still get Ep(T+) = p(T"), so

that Proposition 5 (with "all resource extracting firms"

replaced by "some resource extracting firms") will still

hold. In such a case all risk averse firms will extract all

of their resource stock before T, while the risk neutral

firms will have a total stock S* left at T. Obviously,

Ep(T+) = p(T-) can only occur if the total initial resource

stock of the risk neutral firms is not less than S*. If

this requirement does not hold, the equilibrium solution

must imply Ep(T+) > p(T-), so that Propositions 5 and 6

(with "all resource extracting firms" replaced by "some
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resource extracting firms") will hold in this case (see [4]

for similar reasoning in the case of an uncertain resource

stock)

.
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5 . Concluding Comments

Our conclusions so far are given in Propositions 1-7 in

Sections 3 and 4, and will not be repeated here. However,

we shall make some further comments on some of the

propositions

.

Proposition 2 implies that without risk aversion it is

optimal in most, but not all, cases to have a higher initial

resource extraction when there is cost uncertainty than when

the cost of producing the substitute is known. Dasgupta and

Stiglitz [3] only study how an uncertain date of availability

of the substitute affects the initial resource extraction in

the special case where the demand function for the resource

has a constant price elasticity. In this case they show

that the optimal initial resource extraction can be both

higher (for a "small" initial resource stock) and lower (for

a "large" initial resource stock) than the initial resource

extraction when the date of substitute availability is

known. As we mentioned in the Introduction, the real world

is characterized by an uncertain date of availability of

the substitute and uncertain costs of producing this substi-

tute. From our result in Proposition 2 and the result of

Dasgupta and Stiglitz it does not seem possible to give any

general conclusion about how the optimal initial resource

extraction will be affected by this kind of simultaneous
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uncertainty. It seems that whether the initial extraction

will be higher or lower than in the case of full certainty

will depend on the initial resource stock, the demand func-

tion for the resource, the cost of producing the resource,

and on the properties of the joint probability distribution

of the date of substitute availability and the cost of

producing the substitute.

Proposition 5 states that without risk aversion the

competitive resource extraction will be socially optimal. A

similar result holds when the cost of producing the substi-

tute is certain, but the date of availability of the substi-

tute is uncertain (cf. [3]). This suggests that when both

types of uncertainty occur simultaneously, the competitive

resource extraction will be socially optimal in the absence

of risk aversion.

Propositions 3, 6 and 7 show that while risk aversion

tends to reduce the socially optimal resource extraction

before T, risk aversion tends to increase the resource

extraction in a competitive economy before T. The reason

for this is the following: Risk aversion always makes

whatever decision-maker one is studying give more weight to

the outcomes of the uncertain variable which this decision-

maker regards as least desirable. For society as a whole

the least desirable outcomes are obviously those with high

values of c. For resource extracting firms, on the other
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hand, the least desirable outcomes are those giving a low

future resource price, i.e. those with low values of c. The

effects of risk aversion in the case of an uncertain date of

availability do not seem to have been studied by anyone.

However, reasoning similar to the above applies also in this

case: For society as a whole the least desirable outcomes

are obviously those with a long period before substitute

production becomes possible, while resource extracting firms

consider these outcomes as the most desirable, as they in

these cases can get a resource price higher than the cost of

producing the substitute for a long period. It therefore

seems reasonable to guess that Propositions 3, 6 and 7 can

be generalized to the case where we have an uncertain date

of availability of the substitute in addition to an uncertain

cost of producing this substitute.

Proposition 7 states that risk aversion will imply that

the resource extraction in a competitive economy is higher

than optimal before T. A natural question to rise is what

kind of policy could make the competitive firms extract

their resources at an optimal rate. The most obvious policy

would be to impose a tax on extraction before T (and/or

subsidize extraction after T) . Such a policy would reduce

the resource extraction before T, provided that the resource

extracting firms really believed that the tax would be lower

after T than before T. However, it may be difficult to
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convince the resource extracting firms that this v;ill be the

case. The firms may well believe tha; once the date T is

reached, the tax will stay unchanged. After all, reducing

the tax at T will mean that the state will lose revenue

which must be raised elsewhere in the economy, at the same

time that the after tax profits of the resource extracting

firms, which already are above the normal return on capital,

will increase. Reducing the tax on resource extracting

firms at T may therefore be regarded as a very undesirable

policy by whatever government is in power at time T. It is

not much help for a government to make a binding tax agree-

ment with resource extracting firms at the initial time

point (t = 0) either: If the government at t = T wishes to

keep the revenues from resource extracting firms unchanged

after T, there will often be several ways to achieve this

without breaking a legal tax agreement, for instance through

price regulation. It may therefore be impossible to reduce

the competitive resource extracting before T to the socially

optimal level only by imposing a tax on the extraction

before T. In this case the most obvious policy which sug-

gests itself in a competitive economy with privately owned

natural resources is direct output regulation of the resource

extracting firms.
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Appendix

From (10) we obtain (A.i;

U"(x(t,S,c) . iiit^|z^= e-^(^^(2'^)-^^-crN (S,c)) (A.I)

and from (11) we get

x(N(S,c) ,s,c;
N(S,c) 3^ , ,

N (S,c) + /
lx(t,_S^

^
T

3S
dt = 1, (A. 2)

Inserting the expression for 9x(t,S,c)/3S from (A.I) into

(A. 2) gives us

x(N(S,c) ,S,c)

N(S,c)
- cr /

T

1

U" (x(t,S,c))
^-r (N(S,c)-t)^^

N (S,c) = 1

or, by using (12 )

,

N (S,c) = r-r—\ ^
s ' k (c) -crZ

which is identical to (15), with Z given by (16)

From (10) we obtain

U" (x(t,S,c:
^^--^(^,3,0) ^ ^-r(N(S,c)-t)

(i_<,^N^(s,c; (A. 3:

and from (11) we get
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N (S, c) p.- , „ >

x(N(S,c),S,c)N (S,c) +/ ^x^t,b,c;

T
3c

dt = (A. 4)

Inserting the expression for 3x"( t , S , c) /9S from (A. 3) into

(A. 4) gives us

N(S,c)
x(N(S,c) ,S,c) - cr J

T
U" (x(t,S,c))

^-r(N(S,c)-t) .,
e at N^(s,c;

N(S,C)
= - /

T
u" (x(t,s,c:

^-r(N(S,c)-t)^^^

which, using (12), can be rewritten as

— Z 1

^c^^'^^ " k(c)-crZ " rc-k(c)/Z'
(A. 5)

which is identical to (19), with Z given by (16).

Differentiating G (S,c), given by (18), with respect

to c gives us

G^ (S,c) = e ^^^^'^^[-rN (S,c)-rcN (S,c)sec c cc

+ (l-rcN^(S,c) ) (-rN^(S,c) )

]

e ^^^^^'^^ [r2c(N (S,c))2-2rN (S,c)

-rcN (S,c)]
cc

Differentiating (A, 5 with respect to c gives us

(A. 6)

N (S,c;
cc (N^(S,c))2 3k(c)/Z

9c
- r
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which inserted in (A. 6) qives us

G (S,c)
sec

-rN(S,c) -, ,„ ,

e rN (S , c)
c

2(rcN (S,c)-1)
c

k(c)/Z
- cN (S,c) •

= e-^^(S'^^c(N^(S,c))-
2(rcN (S,c)-1)

N^(S,c)

9k(c)/Z
3c J

(A. 7)

Furthermore, from (A. 5) it is easy to see that

2(rcN^(S,c)-l)
_ 2 k(c)

cN (S,c)
c

c Z
'

which inserted into (A. 7) gives us

G {S,c) = e ^^^^'^^rc(N (S,c))2
sec c

2 k(c)
c Z

ik(c)/Z
3c

(A. 8)

From (A. 8) we therefore see that

G (S,c) < <=>
sec '

k(c)
> 2k(c)

dc cZ '

or, after some manipulation

G^^^(S,c) < <=> |||> -2 + kMc) |. (A. 9)

From (12) and (13) we know that k' (c)c/k < 0, a sufficient

condition for G (S,e) < is therefore that
see
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9c Z ^ ^ (A.io:

Let us see when this inequality holds. By differentiating

Z, given by (16), and using (12), we obtain

8_Z

9c

N^(S,c)

U"(k(c)) - ^N^(S,c)Z

N(S,c) ^„ , (j;(t,s^c) ) 3x(t,S,c) ^-r(N(S,c)-t:

T

(A. 11)

(U" (x(t,S,c)))2 dc
dt

By differentiating (10) we see that

3xa,S^cl _ l-_^cN^(S,c) ^_^(N(s^^)_t) ^
l-rcN^(^,c2

9c U"(x(t,S,c) U" (x(t,S,c:

for t < N(S,c) (for t = N(S,c) we get an equality instead of

an inequality). Using this inequality, we therefore must

have

N(S,c) ^„, (5^(t ^s,c) 9x(t,S,c) ^-r(N(S,c)-t)

T
(U" (x(t,S,c))2 9c

dt

(A. 12]

< -E (S,c) (1-rcN (S,c) ) Z,

where we have used the definition of Z and defined ^(S,c) by

(S,c) = Max U"' (x(t,S,c)

)

'

l"^
(U"(x(t,S,c)))2

Using (A. 12) together with (A. 11) gives us
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ii < ^c^^'^^ - rN (S,c)Z - E(S,c) (1-rcN (S,c)Z)
dc - U" (k(c) ) ^

^

or

m^ U"(k(cnz - [rcN•(S,c)-^cF.(S,c)(l-rcN^(S,c))] . (A. 14;

The first term in (A. 14) is positive, a sufficient condition

for (A. 10) to hold is therefore that the terms in brackets

do not exceed 2. But < rcN (S,c) < 1 (of. (19)), a suffi-

cient condition for this to hold is therefore that

cg(S,c) < 2. (A. 15)

From the definition of ^(S,c) it is clear that if the

demand curve U' (x) is linear or concave, g(S,c) will be

equal to zero, so that (A. 15) holds. It is also clear that

even if the demand function is convex, which is often assumed,

(A. 15) will hold as long as the curvature of U' (x) is not

too strong or c is not too high. And even if U" ' (x) and/or

c is so large that (A. 15) does not hold, the condition

(A. 10) may still hold. Finally, even if (A. 10) doesn't

hold, we may have G (S,c) < 0.
^ sec

The reasoning above indicates that one will usually

expect G (S,c) to be negative. To get an idea about what

condition (A. 15) states, let us look at the example U (x) =
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-1 1-B '^ •" -- "^
(I-3) X ^, where 3 > and & i= 1 . This function implies

that the demand function U' (x) has a constant price elasti-

city. With this function we get

cE (S, c) = c
1+3 Max [x(t,S,c)]

t

3

The condition (A. 15) can therefore be rewritten

Max [x{t,S,c)]
t

-3
1+3 c

3 2

or

Min {U' (x(t,S,c) )} >
1+3 c

3 2

In this inequality the left-hand side is simply the price of

the resource at T, and we see that for (A. 15) to hold, the

resource price at T must exceed (l+3)c/23. This means that

if 3 < 1» (A. 15) can never hold. If 3 > 1, whether or not

(A. 15) will be satisfied will depend on S and c.
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