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Ranking, UnemplojTnent Duration, and Wages

Olivier Jean Blanchard and Peter Diamond

Abstract

Firms often receive multiple acceptable applications for vacancies,

requiring a choice among candidates. This paper contrasts equilibria when firms

select workers at random and when firms select the worker with the shortest

spell of unemployment, called ranking. With the filling of vacancies unaffected

by the selection rule, both equilibria have the same aggregate dynamics, but

different distributions of unemployment durations. With the threat point for

the Nash bargained wage being a worker with zero unemplo^Toent duration, the wage

with ranking is much more sensitive to changes in the tightness of the labor

market. The same holds for efficiency wages.





This paper develops a model of the joint determination of unemployment, the

distribution of unemployment durations, and wages. The model is based on two

central assumptions. The first is that most vacancies receive multiple

applications. The second is that when firms receive multiple acceptable

applications, they hire the worker who has been unemployed for the least amount

of time. We refer to this second assumption as "ranking" and contrast it

throughout to the assumption of random hiring, or "no- ranking" . We show that

these assumptions have a number of important implications. First, the exit rate

from unemployment is a decreasing function of duration, with the effect of

duration being stronger the higher the rate of unemployment. Second, the wage

depends on the distributions of prospective unemplovTuent durations; one

implication is that long term unemployment, per se, has little effect on wages.

Third, looking at the relation between the wage and the aggregate level of

unemployment, and comparing ranking to the case of no-ranking, the wage moves

less with the level of unemployment, but more with the change in unemployment.

We see those implications as consistent with stylized facts, consistent in

particular with characterizations of European unemplo^Tcent in the 1980' s.

We focus on ranking in the labor market as we see it as a relevant and

important characteristic of labor markets. A caveat is in order. We shall

discuss available empirical evidence below, when we have stated our assumptions

explicitly. But it is clear that firms do not rank only on the basis of

unemployment duration; that perceptions of differential quality among applicants

also affect hiring. To the extent that quality comes from matching skills and



job needs, the hiring process will reflect both ranking and no-ranking elements,

so that ranking and no-ranking can be seen as the two polar cases. It is also

clear that ranking is not the only reason why the exit rate decreases with the

duration of unemployment. Composition effects are certainly at work, with the

most attractive and qualified workers leaving the unemployment pool faster.

Duration dependence, either through loss of skills, or decreasing search

intensity also accounts for some of the decline in individual exit rates. Our

motivation for focusing on ranking to the exclusion of these other aspects is

the usual one, that it allows for a better understanding of the implications of

this assumption.

The paper is organized as follows. Section I characterizes the matching

process and derives a matching function. A particularly convenient

characterization for our purposes is as an urn-ball process, with vacancies as

urns and applications by unemployed workers as balls. The distribution of

applications per vacancy depends on aggregate labor market conditions, thus on

aggregate unemployment and vacancies. Vacancies with at least one acceptable

application are filled. When a vacancy receives more than one acceptable

application, firms use a rule to choose among applicants. Under those

assumptions, the rule determines who is hired but does not affect the number of

hires

.

Section II embodies the matching function derived in section I in a model of

the labor market. As in our previous papers, we formalize the labor market as a

market with continual job creation and destruction, and thus labor reallocation.

Having done so, we can characterize the equilibrium values of unemployment,

vacancies and hires.



Section III derives the dynamics of the distributions of unemplojTnent

durations and of exit rates. It characterizes steady state distributions, those

distributions which obtain when unemployment, vacancies, and hires are constant.

It shows how the exit rate depends on duration, and how this dependence is

itself a function of the state of the labor market. In a tight labor market, a

long term unemployed worker may be the only applicant at a given vacancy. In a

very depressed labor market, most vacancies receive many applications, so that

the probability of being hired decreases quickly with duration.

Section IV derives the behavior of wages. It does so under two assumptions.

The first is one of bilateral Nash bargaining between the selected applicant and

the hiring firm. The second is the impossibility of precommitment , or bonding,

so that workers can renegotiate once they have been hired. The implication is

that the wage depends on the labor market prospects of those who are employed,

were they to become unemployed, rather than on the prospects of the average

unemployed worker. Thus, for example, in a labor market which is depressed but

picking up, prospects for those becoming unemployed will be significantly better

than for those who have been unemployed for a while; in turn this will generate

substantial pressure on wages. Section IV focuses on the steady state relation

between unemployment and wages. Dynamics require simulations and this is done

in the next section.

Using a discrete time version of the model, section V presents dynamic

simulations of the joint behavior of unemployment, unemployment durations, exit

rates, and wages. It compares the behavior of wages under the assumptions of

ranking and no -ranking. The simulations show how, in the case of ranking,

anticipations of a decrease in unemployment have a strong effect on the wage

even in a currently depressed labor market.



The qualitative nature of the results holds for other theories that have

wages depend on the market prospects of the employed workers. In particular,

this is shown in Section VI which repeats the analysis of sections IV and V for

an efficiency wage which satisfies a no-shirking condition.

Section VII discusses an implication and several issues in the model.

Section I . The matching process

Our formalization of the matching process as an urn-ball process follows

Gerald Butters (1977) and Robert Hall (1979). We present first a static

version, and then the continuous time extension which is used in the rest of the

paper.

1. A static urn-ball model.

Consider an economy with V vacancies and U unemployed workers. Firms which

want to fill a job post a vacancy. Think of the vacancies as urns. Each

worker makes one acceptable application with probability a, no application

otherwise; applications are submitted at random to one of the vacancies. The

parameter a captures in a very rough way a number of dimensions of the matching

process. It reflects the intensity of search by workers and firms, as well as

the skill and geographical distributions of workers and jobs. Think of the aU

applications as balls.

If the numbers of vacancies and applicants are large, the binomial

distribution giving the distribution of applications at a given vacancy can be

approximated by a Poisson distribution. The probability that a vacancy has no



application is given by exp[-aU/\']. Thus the number of aggregate hires, which

is equal to the number of vacancies which receive one or more applications, is

equal to:

(1) H - V(l-exp[-aU/V])

.

This is the basic matching function of our model. In a more realistic

model, the application rate, a, would depend on the state of labor market;

workers are more likely to learn of vacancies when there are more of them. The

probability of making an acceptable application would also vary across workers,

according to both their characteristics and their unemployment durations. We

ignore those aspects here.



2. A continuous time version.

While one can build a discrete time model in which hires are given each

period by equation (1) , we prefer to work with a continuous time version of the

initial model. While the derivation of the matching function is initially more

intricate, the payoff is the usual one of better tractability . The trusting

reader can go directly to equation (2) below.

Consider a model where vacancies are posted for one period, say a week. At

the end of the week, the application window is closed and the applications

generated by the vacancy are counted. If no applications have been received,

the vacancy is posted for another week. If one or more applications have been

received, the vacancy is filled .

The week is divided in intervals of length 1/n. Vacancies are evenly

staggered, so that V/n vacancies start in each interval, each vacancy lasting

for a week. Applications are also evenly staggered over each interval. Let A^

be the number of applications during an interval of length 1/n; the relation of

A^ to U will be derived later. We assume that a worker can have only one

application pending at any time .

1

We assume that the vacancy window is of fixed length, although this policy
is not generally optimal; a complicated time and state dependent stopping rule
which would be optimal in realistic settings is unlikely to add sufficiently to

the realism of the model to justify the analytical complexity.

2 To see the complexities being avoided, consider the case where workers can
apply to many vacancies simultaneously. Upon hearing of their hiring by one
firm, workers would withdraw their other applications. Thus, instead of a pure
birth process for applications, we would have to allow for a birth-death
process. With the ranking assumption, multiple applications would increase
duration dependence.



The number of hires per interval is equal to the number of vacancies closing

with at least one application and is thus given by:

H^ - (V/n)(l-exp[-nA^/V]).

In each interval, V/n application windows are closed. The term in brackets

gives the probability that the vacancy has received at least one application

while it was open and is therefore filled. At any time, there are V vacancies

open. Each of the A^ applications in any given interval has an equal chance of

landing in each vacancy and each vacancy remains open for n intervals, i.e., one

week.

What remains to be determined is A^. Let a'/" be the probability that an

unemployed worker with no application pending makes an application during any

interval of length 1/n. Let X be the pool of workers with applications pending.

Thus, applications are equal to a.' /vl times the pool of unemployed workers

without applications pending, U-X:

A^ - (a'/n)(U-X).

Consider in turn the expression for X: only 1/n of the vacancies which were open

in the last inter\-al have closed, so that a proportion (n-l)/n of the

applications made during the last interval is still pending. Of the

applications made 2 intervals ago, a proportion (n-2)/n is still pending, and so

on. This gives the expression for X:

3 The assumption that applications are made at rate &' /n per interval with a'

independent of n is inessential. What is essential is that, as we let n tend to
infinity, the rate of applications per interval of length 1/n converges to some
constant, say a", divided by n.



X - ((n-l)/n + (n-2)/n + . . .+l/n) )A^.

Solving for A^ and taking the limit as n goes to infinity gives:

nA^ - aU,

where

a - a'/(l+a'/2).

Replacing nA^ in the matching function, and noting that the flow per week is

H^n, gives:

(2) h - V(l-exp[-aU/V]),

where h is the instantaneous flow of hires. This matching function is the

continuous time counterpart to equation (1) and holds when each vacancy is

opened for a discrete length of time, and vacancies are uniformly staggered.

For use below, note that, given the assumption that vacancies are posted for one

week, V stands for both the stock of vacancies and the flow of newly posted

kvacancies at one point m time .

We shall use equation (2) to study both steady state relations and dynamics.

Note however that, outside of steady state, the equation holds only as an

The assumption that vacancies last for one period (week) implicitly defines
the period. An alternative - but formally equivalent - formalization strategy
would be to have a basic period of fixed length, say a week, and have vacancies
last for 1/b weeks. Following the same steps as in the text gives:

h - bV(l-exp[-aU/bV]), where a - a'/(l+(a'/2b) )

.

Although we shall not do so in the paper, it is interesting to consider the
effects of varying b. As b becomes large, vacancies last for shorter and
shorter periods of time, reducing the probability of multiple applications. If,

in the case of multiple applications, firms use the length of unemployment as a

screening device, a lower probability of multiple applications increases the
likelihood of being hired for the long term unemployed.



approximation. This is because its derivation assumed that applications are

made at a constant rate during the week. Outside of steady state, applications

will not be constant within the week and equation (2) holds only as an

approximation. The approximation will be better the shorter the length of time

during which a vacancy is open and the smoother the change in application rates

Below, we will use the Poisson distribution of applications per vacancy and

the implied matching function, (2), in a continuous time model. In doing so, we

will ignore other effects of the finiteness of the window. In particular, we

will ignore the possibility of bad productivity shocks while vacancy windows are

open. We will also ignore the implications of the finite windows for the time

shape of the probability of finding a job and for the discrete nature of the

time profile of filling a vacancy. That is, we shall use the finiteness of the

window only to derive the distribution of multiple applications, not recognizing

any other effects from the presence of windows.

Section II. A model of the labor market: flows and stocks

Having specified the matching process, we need to embed it in a model of the

labor market. We use the same minimalist model we have used in an earlier paper

This issue does not arise in the d^y-namic simulations presented in sections V
and VI. In those sections, the model simulated is a discrete time version of
the model with no overlapping vacancies.
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(1989), a model which captures the constant process of job creation and

destruction which characterizes labor markets .

There are K jobs in the economy. To produce a revenue of y, a job must be

productive and filled with one worker. If either unproductive or/and unfilled,

it produces 0. Productivity for each job follows a Markov process in continuous

time. A productive job becomes unproductive with flow probability ttq . An

unproductive job becomes productive with flow probability ^r^^. At any point in

time, some jobs become productive, some jobs become unproductive. This is the

mechanism we use to capture the flows of job creation and job destruction that

exist in the economy.

Thus, at any point in time, some jobs are productive and filled, some are

productive but unfilled, in which case a vacancy is posted, and some are

unproductive and thus also unfilled. We denote the three stocks respectively by

E (as one job requires one worker, E is also employment), V (for vacancies), and

I (for idle capacity). From the definitions, K - E+V+I . At any point in time,

some workers are employed, and some are unemployed. We denote those stocks by E

and U respectively. The labor force L-E+U is assumed fixed.

These assumptions imply that the behavior of the labor market is

characterized by a system of two differential equations:

dE(t)/dt - h(t) - noE(t),
(3)

The version we use here is stripped of details inessential for our current
purpose. In particular, we do not allow for quits and new entrants. The reader
is refered to our previous paper for a number of extensions.
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dV(t)/dt - -h(t) - TrgVCt) + ^il(t),

where, from the previous section, hires are given by:

h(t) - V(t)(l-exp[-aU(t)/V(t)]).

The flow from employment to unemployment is equal to the flow of filled jobs

becoming unproductive. The flow from unemployment to employment is in turn

equal to hires. Hires depend on unemployment and vacancies through the matching

function derived earlier. Hires decrease the stock of vacancies. Vacancies

also decrease because some of the jobs for which vacancies were posted become

unproductive. Vacancies increase as previously unproductive jobs, idle

capacity, become potentially productive.

Using the two identities above, the dynamic system can be expressed solely

in terms of U and V:

dU(t)/dt - -h(t) + ^o(L-U(t)),

(A) dV(t)/dt - -h(t) + ^i(K-L-V(t)+U(t)) -^o^(t).

h(t) - V(t)(l-exp[-aU(t)/V(t)]).

Then, for given values of the two parameters ^q and ir-^, we can characterize the

dynamics and steady state values of unemployment and vacancies, as well as of

the flows of hires and separations.

It is convenient for later use to define the variable x by:

(5) x(t) - 7ro(L-U(t))/V(t).

It is equal to the ratio of separations to vacancies being closed at any point

in time. In steady state, separations are equal to hires so that x is equal to

the proportion of closing vacancies which are filled; it can therefore be taken

as an index of how tight or loose the labor market is. A smaller value of x is

a tighter labor market. Note that, in steady state, there is a simple relation

among x, U, and V, which will be useful below:
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X - h/V - (l-exp[-aU/V])
,

'•

or equivalently

(6) V/U - -a/log[l-x].

Note that, at this point, we have given a full characterization of the

behavior of unemployment and vacancies, and that it does not depend on the

particular rule used by firms to choose among applicants. In our model, hiring

rules do not affect how many are hired; but they determine who is hired, thus

affecting the distribution of unemployment, as well as wages. In terms of

conventional discussions of these issues, and of the framework developed in our

previous papers ((1989), Olivier Blanchard (1989)) hiring rules do not affect

the Beveridge curve but do affect the Phillips curve.

Section III. Ranking, unemployment duration and exit rates

We consider two hiring rules and derive their implications for the

distributions of unemployment durations and exit rates. Under the first, firms

do not rank applicants and choose randomly among them. Under the second, firms

rank applicants, choosing the worker with the smallest unemployment duration

first. We defer a discussion of the empirical evidence on hiring practices

until the end of the section, once we have shown the implications of ranking

rules

.

We denote by U(9,t) the pool at time t of those with unemployment duration

less or equal to 6, so that U(e,t) is the (unnormalized) distribution of

unemployment. We denote its derivative with respect to duration, dU(e,t)/d6,

by u(9,t), so that u(9,t) is the (unnormalized) density of unemplojTnent with
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duration equal to 6 at time t. Finally, we denote by e(6,t) the exit rate from

unemployment at time t for those with duration equal to 6. When dealing with

steady states, we simplify notation, and denote those variables by U(6) , u(e)

and e(e) respectively.

1. Durations and exit rates under no-ranking

If, when they receive multiple applications, firms choose randomly among

applicants, then all applicants have the same probability of being hired. Thus,

the exit rate, the probability of being hired, is independent of duration and

given by:

(7) eo(t) - h(t)/U(t),

where we shall use the index to denote variables when firms choose randomly

among workers. UQ(6,t) in turn satisfies:

(8) dUo(e,t)/dt - -uo(e,t) - eo(t)Uo(e,t) + x(t)v(t),

where x(t) was defined in (5). The change over time in the pool of unemployed

of duration less or equal to © is composed of three terms. The first two are

outflows. The first is the flow of those whose duration now exceeds 9. The

second is the flow of hires from the pool. The third term is an inflow, the

flow of layoffs from employment.

In steady state . hires are equal to separations so that:

(9) eo - h/U - xV/U - -ax/log[ 1-x]

,

using equation (6). The exit rate is a decreasing function of x. In steady

state the distribution of unemployment durations is unchanging through time, so

that, from (8)

:

uo(e) - -eoUgCe) + xv.
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Solving this differential equation in duration gives:

VQ(e)/V - 1 - exp[-eoe],

or using equation (9)

(10) Uo(e)/U - 1 - exp[axe/log[l-x]].

2. Durations and exit rates under ranking

Suppose instead that, when firms receive multiple applications, they hire

the worker with the shortest spell of unemployment. Why firms do so in our

model is not specified. As all workers are identical, any rule is, for a given

firm, as good as any other, and no individual firm has an incentive to change

its hiring rule. An alternative assumption, with equivalent implications, would

be that there is an arbitrarily small deterioration of skills with unemployment

duration, so that, while all workers are acceptable, the firm marginally prefers

those who have been unemployed the least time . In a steady state, a similar

argument can be made from the presence of a small number of unemployables , who

are a larger fraction of the unemployed of longer duration. Whether firms

actually perceive large differences between unemployed workers of different

durations is a separate, empirical, issue that we discuss below.

In the case of ranking, the equation characterizing U(9,t) is given by:

(11) dU(6,t)/dt - -u(e,t) -V(t)(l-exp[-aU(e,t)/V(t)]) +x(t)V(t).

This argument implicitly assumes that all workers have to be paid the same
wage. But this is an implication of our assumptions about wage determination
below.
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The change in the pool of unemployed of duration less or equal to 6 at time t is

again composed of three terms. The first and third are the same as before. The

first is the flow of those whose durations now exceeds 6. The third is the flow

of layoffs. The second term is the flow of those who find a job and leave the

pool and is derived as follows. Consider a given vacancy. This vacancy will

result in a hire from the pool U(6,t) if there is at least one application from

a worker from that pool. The probability that there is at least one application

from a worker in the pool 11(6, t) is equal to one minus the probability that

there is no application from that pool, thus equal to (l-exp[ -aU(6, t)/V(t)
] )

.

If V(t) is the flow of vacancies being closed at any point, the flow of hires

from U(e,t) is thus equal to V(t) (l-exp[ -aU(e, t)/V(t) ] )

.

The exit rate for a worker of duration 9 at time t is equal to the

probability that the worker applies, a, times the probability that the vacancy

applied for has no application from an unemployed worker with duration less than

e . Thus

:

(12) e(e,t) - a exp[-aU(e,t)/V(t)].

In steady state , the pool of unemployed with duration less than or equal to

6 is constant, so that, from equation (11):

(13) u(e) - - V(l-exp[-aU(e)/\']) + xV.

Solving this differential equation in duration gives:

x exp[a(x-l)e] - (x-l)exp[aU(e)/V] + 1.

Solving for U(6) and using equation (6) gives the distribution of durations as a

function of x:

(14) U(e)/U - 1- (log[l-x.exp[-a(l-x)e]]/log[l-x]).

The exit rate is given in turn by:



16

e(e) - a exp[-aU(e)/V]

.

Using (14) and (6) gives the exit rate as a function of x:

(15) e(e) - a(l-x)/(l-x.exp[-a(l-x)e]).

What are the implications of equation (15) for the behavior of exit rates?

First, and in contrast to the case of no-ranking, the exit rate is a decreasing

function of duration, 0. For 9-0, the exit rate is equal to a : a worker who has

just become unemployed and applies to a vacancy is sure to be first and thus to

be hired. As 6 goes to infinity, the exit rate converges to a(l-x)

.

Second, the exit rate is a decreasing function of x, the state of the labor

market. From equation (15) and using I'Hospital's rule, as x tends to 1, that

is as the labor market becomes more depressed, the distribution of exit rates

tends to the limiting distribution:

e(e) -< a/(l+ae) as x - 1

.

Third, the effect of unemployment duration on the exit rate is stronger the

more depressed the labor market. More precisely, 5 log[e(6) ]/5ei5x is negative .

The intuition for this result is simple. For low values of x, the ratio of

applications to vacancies is low: most vacancies receive zero or one application

and the long term unemployed stand nearly as good a chance of being hired as the

short term unemployed. The exit rate therefore decreases slowly with 9. As x

increases, the ratio of applications to vacancies increases, and with it the

8 • • 9This is shown as follows: 5 log(e(9))/595x has the same sign as exp[a(l-
x)9] { 2x-l-a9x(l-x) ) -x . That expression is negative for x-0 and x-1, and does
not change sign between and 1.
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likelihood of multiple applications. The long term unemployed are then much

q
less likely to be hired than the short term unemployed .

Figure 1 plots U(©)/U and figure 2 plots e(6) for two values of x, x-0 . 1 and

x-0.9. These extreme values show clearly the effects of ranking on exit rates

and duration distributions. In both a is taken to be 0.1. The value x-0.1

corresponds to a tight labor market. From equation (5), the ratio of

applications aU to vacancies V is equal to 0.11. Most application windows are

closed without being filled, and very few generate multiple applications; the

proportion of vacancies which receive multiple applications is equal to 0.5%.

The probability of getting a job is high, no matter what length of unemployment

spell a worker has gone through. The exit rate is therefore high and declines

very slowly with unemployment duration.

The value x-0.9 corresponds to a depressed labor market, with a ratio of

applications to vacancies of 2.3. 90% of vacancies are filled when application

windows close, and 67% generate multiple applications. Thus the exit rate

declines rapidly with duration.

3. Evidence on hiring rules.

Having shown the implications of ranking rules, we now briefly turn to the

9 This implication may not hold in a model in which workers have quality
differences. The decline in the exit rate then reflects the deteriorating
composition of the pool, and the effect may be less drastic when unemployment is
high than when it is low. Put another way, being long term unemployed may be a

weaker correlate of bad quality when there are many long term unemployed.



empirical evidence on hiring practices. The evidence comes from a number of

case studies, in particular a 1982 study for the US reported by John Barron and

John Bishop (1985), and a 1986 study for the UK by Nigel Meager and Hilary

Metcalf (1987)^°.

Our assumption that ranking by duration is important is supported by three

sets of facts from those studies. First, many vacancies generate a large number

of applications, a necessary condition for our model to be of empirical

relevance (studies cited above, and Harry Holzer, Lawrence Katz and Alan Krueger

(1988)). Second, in many cases, the position is filled without interviewing all

applicants but by first creating a short list based on some simple criterion.

Third, "time since last job" is used both as a short listing criterion, and as

an important criterion in a final decision. Supportive evidence also comes from

the perceptions of the employed workers: in the UK in 1985, while unemployment

stood at 11.6%, the proportion of employed workers who thought they could find a

job quickly if laid off stood at A5%, slightly higher than the 40% giving the

same answer in 1977 when unemployment stood at only 5.2% (Olivier Blanchard and

Lawrence Summers (1988)).

However our specific assumption is stronger than simply saying that ranking

by unemployment duration is important. We assume that unemployment duration is

used as the only criterion in hiring. The empirical evidence shows clearly that

This last study is particularly interesting given the depressed state of the
labor market in the UK and the high proportion of long term unemployed at that
time

.
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this assumption is too strong. Leaving aside the fact that firms clearly take

into account the personal characteristics of workers - an aspect we have ignored

by assuming identical workers - unemployment duration is not the only way in

which firms look at the employment history of workers. A criterion mentioned

more often than "time since last job" is "employment record". Uliat this means

exactly is unclear; it may well be that a recent but short period of employment

may be discounted by firms. If the length of previous employment as well as the

duration of unemployment matter, the analysis becomes substantially more

complicated. More importantly, our qualitative results about wage determination

may be substantially affected. We shall return to this issue in the conclusion.

We also assume that, while firms use ranking by unemployment duration, they

see all workers as equivalent. As we indicated, the assumption can be relaxed

to allow for some duration dependence of skills, so long as all workers are

considered acceptable by firms. The evidence is that firms which rank by

unemployment duration perceive the long term unemployed as distinctly worse,

often as lacking motivation. Whether those firms would hire the long term

unemployed were they the only workers available is unclear from the available

evidence.
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Section IV. Wage determination under Nash bargaining

In characterizing wage determination, we make two assumptions. The first is

Nash bargaining between the newly hired worker and the firm. The second is that

workers cannot sign binding contracts" . This implies that, once an unemployed

-possibly a long term unemployed- worker is hired, she can renegotiate with the

firm, but now as an employed worker. This allows us to assume that the wage is

determined by Nash bargaining between the firm and each employed worker.

To see the importance of the second assumption, suppose instead that workers

signed binding contracts. Then, the surplus to a worker from a match would

depend on the length of her unemployment spell, and so would the wage under Nash

bargaining. Moreover, firms would prefer workers ready to accept lower wages,

thus upsetting any preferred hiring pattern over identical workers. The

presence of multiple applications would raise additional issues. When a firm

had multiple applications, and if the applicants could sign binding contracts,

the presence of two or more competing workers would yield the Bertrand rather

This issue arises also in efficiency wage models, and in insider/outsider
models, where it has been discussed at length. We have little to add to the
debate. We return to the issues raised by bonding and commitment in the
conclusion.
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1 o
than the Nash solution .

We first characterize the wage under Nash bargaining and random choice of

workers by firms in hiring; this yields a familiar formula. We then

characterize the wage under Nash bargaining and ranking.

1. Wages under no -ranking.

Under random choice of applicants, the Kash bargaining solution takes a form

familiar from the earlier literature on search (e.g., Peter Diamond (1982)).

Let W (t) and W' (t) be the values of being employed and unemployed respectively.

Let r, w(t) , ttq and e(t) be the interest, wage, separation and exit rates.

Under no -ranking, the exit rate is the same for all unemployed workers and is

simply equal to eQ(t) - h(t)/U(t). Assume that there is no flow of benefits

when unemployed. Wg(t) and W^j(t) satisfy the two arbitrage equations:

(16) r Wg(t) - w(t) + ^0 (^'u^t^-'^'e^'^)) + dWg(t)/dt.

(17) r W^(t) - eo(t)(Wg(t)-W^(t)) + dW^(t)/dt.

Symmetrically, let V^, W.^, and W^ denote the values of a filled job, of a

vacant job, and of an idle job. Tnose values satisfy the three arbitrage

equations

:

12 The assumption that the firm first chooses a worker among the applicants and
then bargains with that worker would give us Nash rather than Bertrand
bargaining, but, with binding contracts, the outcome would still depend on the
unemployment spell of the selected worker. Ve have not explored whether the
assumption that newly hired workers must be paid the same wage as the currently
employed can deliver results similar to those we derive under individual
bargaining.



22

(18) r Uf(t) - y-w(t) +»ro(Wi(t) -Wf (t) )+ dWf(t)/dt,

(19) r W^(t) - (h(t)/V(t))(Wf(t)-W^(t))+7ro(Wi(t)-W^(t))+ dW^(t)/dt,

(20) r Wi(t) - 7^-^(V^(t)-V^{t))+ dWj^(t)/dt.

Productive and filled jobs bring a revenue to the firm of y-w(t) . They may

however, with probability ttq , become unproductive, and thus idle. Vacant jobs

do not bring revenue and may either become filled, with probability h/V, or

unproductive and idle with probability ttq. Idle jobs in turn may become

potentially productive and thus vacant with probability t-^.

Under Nash bargaining, the surplus from a match is split equally between the

worker and the firm so that:

(21) Wg(t) - W^(t) - Wf(t) - W^(t).

We defer the examination of the dynamics to the next section and concentrate

on the steady state. In steadv state all W's are constant, and the wage is

given by:

(22) w/y - (r+nQ+eQ)/(2T:+2-KQ+eQ+(h/V))

- (r+7ro+(h/U) )/(2r+2^0+(^/U) + (h/V) )

.

Using the fact that in steady state h/V-x and h/U - -axlog[l-x] (from equation

(6)) gives the wage as a function of x, r and ^tq. Finally, if we assume that r

and -kq are small in relation to both en and h/V, as is empirically the case,

then the wage reduces to:

w/y « V/(V+U).

This gives the wage as a simple function of unemployment and vacancies.

2 . Wages under ranking

How do things change if firms rank by unemployment duration, so that exit
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rates from unemployment depend on duration? The value of being unemployed now

depends on duration. Thus let W^j(6,t) be the value of being unemployed with

duration 6; and Vg(t), the value of being employed. The arbitrage equations

characterizing the behavior of W^j(e,t) and Vg(t) are then given by:

(23) r Vg(t) - w(t) + ^o(tnV^(0,t)-V^(t)) + dVg(t)/dt.

(24) r u^(e,t)- e(e,t)(Vg(t)-w^(e.t))+ du^(e,t)/d9+ dv^(e,t)/dt, ve.

When an employed worker becomes unemployed, her unemployment duration is zero,

so that the change in value from becoming unemployed is now Vg(t) -V."^(0 , t) . An

unemployed worker of duration either finds a job with probability e(e,t)dt, or

becomes unemployed with duration 6+d9.

The arbitrage equations characterizing the values of filled, vacant and idle

jobs are the same as before.

As we argued earlier, in the absence of binding contracts, we can think of

the wage as the result of Nash bargaining between an employed worker and a firm.

If a deal is not struck, an employed worker stands to lose Wg(t) -V^^(0 , t) as she

becomes an unemployed worker with zero length of unemployment spell; the firm

stands to lose V^it) -V^{t) . The Nash bargain is characterized by:

(25) Wg(t) - V^(0,t) - Wf(t) - UV(t).

In the rest of this section, we concentrate on the steady state. In steadv

state . equation (24) becomes:

r v^(e) - e(e)(Wg-w^(e))+ d'.:^(e)/de.
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Integrating forward with respect to duration gives :

» e

Wu(0) - Wg J e(e) (exp[-/(e(z)+r]dz) de.

Using this expression for W^(0) in (25), and solving for the wage gives:

(26) w/y - (T+irQ+e*)/{2r+2nQ+e*+(h/V)),

with e* implicitly defined by:

CO e

(27) e*/(e*+r) - J e(e) exp [ -/(e(z)+r)dz] d9.

The formula characterizing the wage is thus the same as under random choice,

except for the presence of e* rather than eQ. This however is an essential

difference and we explore it at more length.

How does the labor market situation now affect the wage? From the firm's

side, labor market tightness affects the wage through (h/V) , which reflects how

long the firm expects to have to wait for another applicant, were the deal with

the current worker not to go through. From the worker's side, market tightness

affects the wage through the distribution of exit rates from unemployment. In

considering the threat point associated with an end to current employment, a

worker must consider reemployment possibilities in the future. Thus, what

matters for a worker is not the current unemployment rate, but the sequence of

exit rates she would face if she became unemployed. The effect of that sequence

13 The limit of W^(e) as 6 grows without limit is found by noting that ^ij(B) is

monotonically decreasing since e(6) is monotonically decreasing. Thus setting
the derivative equal to zero and substituting the limit value of e(e) gives the
limit value of W,_^(e) in terms of W^.
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is summarized by e*. e*/(e*+r) is a weighted sum of exit rates for durations

to °o, with the weights depending on the exit rate itself. If exit rates did not

decline with duration, e* would be equal to eg, the duration independent exit

rate with random hiring, and the expression for the wage would reduce to that

above

.

The expression for e*/(e*+r) can be rewritten in terms of unemploN-ment

duration densities, shoving more clearly the effects of the composition of the

unemployment pool in steady state. Differentiating equation (13), we have:

u'(e) - - a exp[-aU(e)/V]u(e) - - e(e)u(e).

Integrating with respect to duration, we have:

e

u(e) - u(0)exp[-je(z)dz]

.

Using this expression in equation (27) gives:

CO 00

e*/(e*+r)- J e(e) (u(e)/u(0) )exp[ -rS] dS - J -u' (e)exp [ -re]/u(0)de.

Integrating by parts, gives e* as a function of the sequence of u(e)

:

o

(28) eV(e*+r) - 1 - r J u(e)exp[ -re]/u(0)de.

This expression shows how a change in the pattern of exit rates, with layoffs

and total unemployment unchanged, that shifted the distribution of durations

toward greater durations raises e*/(e*+r) , and thus e and w. Since the exit

rate with ranking is monotonically decreasing, crossing the no-ranking exit rate

once, this implies that the wage is higher with ranking than with no-ranking.

Finally, using the distribution of exit rates given in equation (15), e* can

be expressed as a function of x:
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-l-r/(a(l-x))

(29) e*/(e*+r) - (1-x) x B^ ( (r+a(l-x) )/a(l-x) . 1)

.

where B is the incomplete Beta function,
X p-1 q-1

Bj,(P,q) - / r (1-r) dr. -

While not particularly revealing, this expression allows us to characterize the

effects of x on e* and thus on w.

Compared to random choice, how large a difference does ranking actually imply

for the steady state level of the wage at any level of unemployment, and for the

effect of changes in steady state unemployment on the wage? The answer depends

greatly on the interest rate. A positive value of r is, in steady state, the

only reason why the perspective of the employed workers differs from that of

those already unemployed. For conventional values of r, the difference between

the ranking and no-ranking wages is very small. This is shown in figure 3a,

which gives the ranking and no -ranking wages as a function of x, assuming that

the probability of an application is .1 per week, y is 1.0 and the annual

interest rate is 10% (the weekly interest rate is .2%). Even as x becomes close

to 1 , as the labor market is more depressed, the ranking and no-ranking wages

remain close.

One may however argue that the relevant interest rate is higher, at least

for the workers if not for the firm . Figure 3b shows the effect of x on the

wage for a value of the weekly interest rate of 1%. The effects of ranking on

This argument however suggests using different interest rates for the firm
and for workers, something we have not done in the derivation.
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both the level of the ranking wage and its unemployment elasticity become

clearer. The difference between the ranking and no-ranking wages increases as x

increases. The elasticity of the ranking wage with respect to unemployment

steadily decreases as x becomes close to one, as the labor market becomes more

depressed. But it is clear from those figures that large steady state effects

from ranking alone require large discount rates, larger than we are willing to

assume.

Intuition suggests that the effects of ranking on the relation between

unemployment and wages may be more dramatic out of steady state. For example,

in a labor market which is depressed but picking up, the prospects of the

currently employed, were they to become unemployed may be very different from

the current experience of those currently unemployed, leading to substantial

pressure on wages. Two effects are at work here. The first would be present

even under random hiring: higher hiring rates improve prospects for all

unemployed workers. But in addition, ranking improves prospects more for those

with short unemployment duration. The next section focuses on dynamics.

Section V. Dynam.ics of exit rates, durations and wages

Dynamics of aggregate unemployment, vacancies, separations, and hires are

characterized by equation (4), those of exit rates and durations by (7) and (8)

for the no-ranking case, and by (11) and (12) in the case of ranking. The

equations characterizing wage behavior are equations (15) to (21) for the case

of no-ranking, equations (18) to (20), and (23) to (25) for the case of ranking.

However, characterizing dynamics in the case of ranking is too hard an
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analytical task, and we turn now to simulations. Simulations are carried out

using a discrete time model; the details are given in Appendix A. We simply

note here that the simulation model is the discrete time version of the

continuous time model above except for the treatment of vacancies. The unit

period is a week. It is simpler to return to a specification with non

overlapping vacancies, as in the first part of section I, with all application

windows being open for one week at a time.

The parameters in the model are a, the probability that an unemployed worker

makes an acceptable application during a week, kq and ir-^ which characterize the

process of job creation and destruction, the labor force, L, the capital stock,

K, and the interest rate, r. We choose parameters so as to - very roughly-

replicate the characteristics of the US labor market. We shall focus on

movements between two steady states, one which corresponds to a depressed labor

market, the other to a normal labor market.

We choose, as a normalization, the labor force, L, to be 1. We choose K to

be 1.05. We choose the interest rate equal to .1% per week . We choose a to

be 0.7: unemployed workers make 0.7 acceptable applications per week.

To choose the ir parameters, we note -as in our previous papers- that, given

nQ and n-^, the proportion of productive jobs (filled or vacant) is equal to c =

JTj^/CTTQ-i-Tr^) and that the proportion of jobs which go from being productive to

being unproductive is equal to s t^Qn -^Z (it q+j^ ^) . c can be thought of as an

As is clear from our steady state results in the previous section, the
choice of such an interest rate implies nearly no difference between steady
state ranking and no ranking wages.
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index of aggregate activity, s as an index of the intensity of reallocation. As

we are interested in cyclical fluctuations, we consider steady states which

differ in their value of c, but have the same value of s.

The first set of parameters, corresponding to a depressed labor market, is

ttq - .019 and n-^ -.129, which in turn imply c-.872 and S-.0165. Together with

the values of a,L and K given above, these parameters imply steady state values

for unemployment of .102, for vacancies of .018, and for x, the index of labor

market tightness we focused on earlier, of .94.

The second set of parameters, corresponding to a "normal" labor market, is

ttq - .018 and T]^ - .22, which imply C-.925 and S-.0165. Together with the

values of a,L and K, these parameters imply steady state values for unemployment

of .05, for vacancies of .021, and for x of .80.

1. A sharp decrease in unemployment.

The first simulation shows the effects of a sharp decrease in unemplo^^Tnent

starting from a depressed labor market. In that simulation, the index of

aggregate activity, c, increases unexpectedly and permanently from .872 to

.925, with expectations adjusting at once to the permanent change. This leads

to a decrease in unemployment from an initial value of 10.2% to a new steady

state value of 5.0%. The speed at which unemployment decreases exceeds that

found in actual economies; the reason for presenting this simulation is that the

sharp and rapid decline in unemployment shows most clearly the mechanisms at

work.

Figure A. a presents the path of adjustment of unemployment and vacancies.

Time is measured in weeks on the horizontal axis. Unemployment adjusts
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monotonically to its lower value, with the adjustment being largely over after 4

months. Vacancies increase from 1.8% to 2.1%, overshooting their steady state

value for some time. This is because the number of job creations, thus of newly

posted vacancies is larger at the beginning, when activity picks up, than when

the economy nears steady state.

Figure 4.b gives unemployment densities by duration at various points in the

adjustment process. The final steady state distribution shows lower density at

all durations than the initial distribution, reflecting the tighter labor market

situation. Note that, during the process of adjustment, densities at low

duration decrease to values lower than their steady state values. This is

because the large initial increase in job creations and thus newly posted

vacancies leads to large hiring rates, and thus to rapid attrition of those

cohorts entering unemplojonent after the pickup in economic activity and hiring.

This is confirmed in figure 4.c which gives exit rates by duration, again at

various points in the adjustment process. In the final steady state, exit rates

are much higher than in the initial steady state, especially at long durations.

And exit rates, 4 and 8 weeks after the change in c, substantially exceed their

steady state values.

Finally, figure 4.d gives the behavior of wages. Both the ranking and the

no-ranking wages increase substantially in anticipation of higher exit rates in

the future. The effect on the ranking wage is substantially stronger. It more

than doubles, overshooting its steady state value and then slowly decreasing

over time. This shows most clearly the effects of ranking. Although the market

is still initially depressed, the prospects of the employed workers are so good

as to increase the wage above its steady state value.
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2. A slower decline in unemployment.

The second simulation considers the same decrease in unemployment, but at a

slower pace. In that simulation, c follows the partial adjustment process c(t)-

c(t-l) - .02( . 925-c(t-l) ) , starting from an initial value of .872. The change

from the initial value is unanticipated, but from then on the path of adjustment

of c is fully anticipated by workers and firms.

Figure 5. a shows the adjustment of unemployment and vacancies over the first

two years. The process of adjustment comes now from the convolution of the

process for c and the intrinsic dynamics of the system. The process of

adjustment is monotonic for both vacancies and unemployment, and is mostly

complete after two years.

Figures 5.b and 5.c show the evolution of unemployment densities and exit

rates. There is no longer overshooting of either exit rates or densities.

Figure 5.d shows the behavior of wages. Despite the fact that the

adjustment of unemplo^Tnent is now much slower, the contrast between the ranking

and the no-ranking wages is still dramatic. While the ranking wage no longer

overshoots its steady state value, it increases by a large amount when the labor

market picks up, substantially more than the no -ranking wage.

Section VI. Efficiency Vages

We have analyzed the labor market under the assumption that the wage is set

to divide the gain from beginning employment between a firm and a newly laid-off

worker,
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Wg - Wu(0) - Wf - w^.

An alternative assumption is that wages are set by firms, rather than bargained

over. The determinants of the optimal wage include the need to attract workers

more quickly, to attract better workers, to hold workers, and to encourage

workers to work more efficiently. One particularly simple version of this array

of effects is the case where wages are set to just satisfy an equality between

the cost of losing a job and a constant. This condition has been interpreted as

a no-shirking condition (Guillermo Calvo (1979), Carl Shapiro and Joseph

Stiglitz(1984) ) . If a fired worker is in the same position as a newly laid-off

worker, this condition becomes:

(30) Wg - W^(0) -" Q.

This condition can only hold where the gain to hiring a worker remains positive.

When the condition holds, no one is ever fired, and the dynamics of unemployment

(and, we assume, vacancies) is the same as that modeled above. Thus, the

presence of duration dependent (rather than random) hiring rules affects the

wage. The equations for the values of different positions of workers in terms

of the wage are unchanged. Using (30) to determine the wage and solving, we

have

:

(31) w - (r-i-7ro+e*)n.

Similarly, it is straightforward to simulate the economy, using this

alternative wage determination equation and following the same discrete time

formulation as was used above and is described in Appendix A. Figures 6 and 7

show the response to the same sudden and slow increases in c which were

discussed above. For these simulations the parameter Q was chosen so that the

wage with ranking would be the same before the change with efficiency and Nash
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bargained wages. These figures give the same qualitative picture as those

above

.

It is natural to ask what happens if we combine Nash and efficiency

arguments about the determination of wages. That is, how are wages determined

if the firm and the worker are free to bargain over the wage, but it is known

that the worker will shirk if the wage is below the level needed for the no-

shirking condition. As we argue in Appendix B, the wage is the maximum of the

wages set by the two conditions. Thus, the no- shirking condition results in the

higher of two wage levels, just as is the case with an outside option (Kenneth

Binmore (1983) and Avner Shaked and John Sutton (1984)).

Section VII. Conclusions

Rather than repeat our results, we take up one implication of our results

for microeconomic work on unemployment, and discuss two issues in our basic

model.

It is a common practice to make comparative static inferences from observ'ed

exit rates of the unemployed, using the exit rates as contributions to hiring.

The model of this paper points to the dangers of doing so. (On the same issue,

in a different model, see Bo Axell and Harald Lang (1988).) Consider first the

random hiring model. In this model, all workers have the same exit rates. Yet

this exit rate is not equal to the marginal contribution of a worker to

aggregate hiring. With a constant returns aggregate matching function, the

marginal product of a worker will be less than her average product. Consider

next the ranking model. In this model all workers have exactly the same
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marginal contributions to aggregate hiring, but workers differ significantly in

their exit rates. Thus two economies with the same numbers of vacancies and

unemployed but different ranking rules, and so different distributions of

durations, would have the same aggregate hires. Consider finally an extension

of the ranking model where the acceptable application rate, a, varies with

duration. For example, assume that long duration unemployed, knowing they have

little chance of finding jobs are more diligent in finding vacancies to which to

apply. (Empirical evidence points to the opposite behavior, but we are not

making an empirical point here.) If the application rate rises sufficiently

slowly with duration, the exit rate could decline with duration while the

marginal contribution to aggregate hires is rising with duration. These

examples underline the importance of an articulated equilibrium model when

considering the effects of policies such as changes in the schedule of

unemployment benefits.

Our results are based on the assumptions that there is no deterioration of

skills with unemployment duration and that workers cannot sign binding

contracts. How are the results likely to be modified when we relax one or both

assumptions? If we allow for - even partial - commitment but maintain the

assumption of identical workers, the only equilibrium is one with random hiring.

The reason is simple: if other firms rank by unemployment duration, an

individual firm has an incentive to hire those who have been unemployed for the

longest time, as they will accept a lower compensation. Ranking cannot

therefore be an equilibrium. If instead, we do not allow for commitment, but

allow for duration dependence, so that, for example, the training cost of a new

worker increases with unemployment duration, then, our model still applies, with
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the modification that those with very long unemployment duration may require too

large a training cost and so may no longer be employable. In contrast to the

version in the text however, firms are no longer indifferent with respect to the

hiring rule, but now have an incentive to rank applicants and choose those with

the shortest duration first. This implies that, if we allow for both commitment

and duration dependence, the ranking rule we have used will still be an

equilibrium when the training cost minus the bond that firms extract from

workers in equilibrium increases with duration. In a companion paper, (1990b),

we are exploring equilibrium with training costs and commitment.

We also speculate that similar considerations are at work if - as empirical

evidence suggests is the case - firms care not only about unemplo^Tuent duration,

but also about the employment record. Suppose for example that firms rank

workers by unemployment duration, subject however to the constraint that

employment duration in the previous job exceeds some minimum length. In this

case, it is clear that firms will be able in effect to extract a bond from the

worker, with the size of the bond being a function of the length of employment

required to acquire a badge of good behavior. A question is then when, with

duration dependence, ranking is still an equilibrium.
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Appendix A

The model used for simulations is a discrete time version of the model in

the text, except for the treatment of the timing of vacancies. It is simpler in

discrete time to shift back to a model without overlapping application windows.

Our basic period for the simulations is a week. We start the week with E(t-

1) filled jobs, U(t-l) unemployed, V(t-l) vacancies, and K-V(t-l) -E(t-l) in idle

capacity. From Monday to Friday, the employed workers produce, the unemployed

make job applications, and vacancies receive job applications. On Saturday,

there are ttq and r-^ shocks that change the productivity of some of the jobs. On

Sunday, some workers are laid off while others get new jobs. On Monday, the

wage is agreed to for the coming week and work begins. The aggregate shocks we

consider in simulations are changes in the values or the paths of jtq and tt^^.

These changes occur on Saturday.

By normalization of the labor force,

(Al) E(t) + U(t) - 1.

The hiring function is equation (1) in the text. Vacancies shrink from new

hires and from idling while they grow from positive shocks to idle capacity:

(A2) V(t) - V(t-l)*exp[-a*U(t-l)/V(t-l)]*(l-7rQ) + ff^*(K-E( t-1) -V( t- 1) )

.

Implicit in this formulation is the assumption that newly hired workers who are

idled at the end of the week do not get another crack at a job this week.

The newly unemployed, U(0,t), were laid off at the end of week t-1. Their

numbers satisfy:

(A3) U(0,t) - ^oE(t-l).
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Ue denote by U(t,e) the numbers of unemployed who were laid off less than 6+1

full weeks ago. We track 6 on a weekly basis from to 51 and denote total

unemployed by U(t) . We assume that the ranking model holds for durations up to

one year, but all unemployed with durations over a year have the same job

finding probabilities. We need to track the unemployment duration equations fo:

the weeks up to one year and for total unemployment. For 9 - 1 to 52, the

unemployed up to any duration are the unemployed up to a duration one week less

one week ago, plus the newly laid off minus the new hires that survive the bad

productivity shock within the week:

(A4) for 6-1 to 51,

u(e,t) - u(e-i,t-i) + u(o,t)
- V(t-l)*(l-exp[-a*U(e-l.t-l)A(t-l)])*(l-7rQ);

(A5) U(t) - U(t-l) + U(0,t)

- V(t-l)*(l-exp[-a*U(t-l)/V(t-l)])*(l-^0)-

We now have a recursive system which will track vacancies and unemployment

of different durations. Associated with those values of unemployment and

vacancies are the exit rates (under ranking)

:

(A6) eo(0,t+l)- V(t)*(l-exp[-aU(0,t)/V(t)])*(l-»ro)/U(0,t);

and for 6-1 to 52,

e(6,t+l)- V(t)*(exp[-aU(e-l,t)/V(t)]

-exp[-a\]{e,t)/V(t)]]*(l-nQ)/[V(e,t)-\J(e-l,t)].

It is convenient to define f(t+l) as h(t+l)/V(t):

f(t+l)-(l-exp[-aU(t)/V(t)])*(l-^0)-

Next, we derive the equations for the Nash bargained wage. The value functions

for the different positions for a firm satisfy:

Wf(t-l) - y-w(t-l) + S{nQV^(t) + (l-rQ)\}^(t));

(A7) W^,(t-1) - 5(7roW.(t)+f(t)Wf(t) + (l-»ro-f(t))W^(t));
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Wi(t-l) - M(l-'ri)Wi(t) + jT^W^Ct)).

Define the value from filling a job as A^-:

(A8) Af(t) - Wf(t) - W^(t).

Subtracting the first two equations in (A7) , we have:

(A9) Af(t-l) - y-w(t-l) + 6il-^Q-f(t))Af(z).

The value functions for the workers recognize the constant probability of

job finding for all workers with duration over one year.

(AlO) Wg(t-l) - w(t-l) + 5;poWo(t)+(l-po)Wg(t));

and for 6 - to 51,

w^^(e,t-i) - 5(e(e,t) Wg(t) + (i-e(e,t))w^(e+i,t));
,

;

W^(52,t-1) - 5{e(52.t)Wg(t) + (l-e(52 , t) )W^(52 , t) )

.

Similarly, we define the gain from finding a job after different unemployment

durations:

(All) for e - to 52, A(e,t) - Vg(t) - W^(6,t).

Subtracting the equations in (AlO) and using the gains, (All), we have:

(A12) for e - to 51,

A(e,t-1) - w(t-l) + 5l(l-e(e,t)) A(e+l,t)-7roA(0,t));

A(52,t-1)- w(t-l) + 5((l-e(52,t))A(52,t) -^o^(0,t)).

Subtracting the equation from the rest, we can write:

(A13) for e - 1 to 51,

A(e,t-1) -A(t-l,0)+5((l-e(e,t))A(e+l,t)-(l-e(0,t))A(t,l));

A(52.t-l)-A(t-l,0)+5((l-e(52,t))A(52,t)-(l-e(0.t))A(t,l)).

The generalized Nash bargaining solution relates the loss from becoming

newly unemployed to the loss from becoming a vacancy:

(A14) A(0,t)-Wg(t)-W^(0,t)-z{Wf(t)-W^(t)) -zAf(t).
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(We have implicitly taken z to be 1 in the text. We do the same in the

simulations ue report in section 5.) Combining this with the equations for the

gains we have

:

(A15) A(0,t-1)+Af(t-1) - (l+l/z)A(0,t-l) - (l+z)A£(t-l)

- y+6((l-jro-f(t))Af(t) + (l-e(0,t))A(l.t)-»roA(0,t)).

Thus, we have a set of 54 forward looking value equations. Starting at the

steady state value equations, the equations can be run backwards using the

escape rates along the transition path and starting far enough in the future

that the value equations are indistinguishable from the final steady state.

From this trajectory of values of A^, the wage can be calculated. In

particular, we use the equation:

(A16) (l+z)w(t-l)-zy+f((l-f(t))A(0,t)-(l-e(0,t))A(l,t)).

To calculate the steady state values for starting this calculation, we use

the equations:

(A17) 5(l-e(0))A(l) - - y + A(0) { (1+1/z) (l+<5^o) -5 (1- f )/z ) ;

(A18) for e - 1 to 52, A(e) - a(e) {A(0) -6 (l-e(O) )A(1) )

,

where 0(8) satisfies q(52) - l/{ l-5(l-e(52) ) ) ,

and for e - 1 to 51, q(9) - 1 + 6 (l-e(e) )a(©+l)

.

The first two equations solve simply for Aq and A-^ and can be used to solve the

remaining steady state values.

For comparison purposes, we also want to calculate the wage assuming random

hiring . The trajectories of U and V are unaffected. e(t+l) and f(t+l) now

satisfy:

(A19) e(t+l) - V(t)*(l-exp[-aU(t)/V(t)])*(l-»ro)/U(t);

f(t+l) - {l-exp[-aU(t)/V(t)])*(l-^0)-
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The value equations for the firm continue to satisfy (A9) . For the worker, we

have

:

(A20) Wg(t-l) - w(t-l)+M^0"u('^) + (^-''0)"e(^)':

W^(t-l) - 6(e(t)Wg(t) + (l-e(t))W^^(t)).

Subtracting,

(A21) Ag(t-l) - Wg(t-l) - W^(t-l)

- w(t-l) + 6(l-7ro-e(t))Ag(t). \

Since the Nash bargaining solution, (A14) , still holds, we have:

(A22) Ag(t-1)+Af(t-1) - (l+l/2)Ag(t-l) - (l+z)Af(t-l)

- y + S{(l-^Q-f(t))Af(t) + il-7^Q-e(t))A^(t)).

As before, the simulation is done by calculating values backwards from a steady

state

.

We also derive the wage under efficiency wages . To simulate efficiency

wages, we continue to use (Al3) . Instead of (A15) , we use the no-shirking

condition:

(A23) A(0,t) - n.

Thus we have 52 forward looking equations which can be solved backwards from the

steady state. The wage can then be solved from any equation in (A12) and the

nonnegativity of the value of hiring a worker checked from solving (A9)

backwards. To calculate the steady state values, we use (A23) along with (Al8)

,

which continues to hold. For the firm, we use the steady state version of (A9)

.

Appendix B: Combining Nash and Efficiency Wage Theories

In the text we have considered separately the situations where the wage

satisfies the Nash bargaining solution and where the wage satisfies a no-
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shirking condition. In this appendix, we argue that the presence of both

bargaining and the need to motivate workers results in a wage which is the

maximum of the wages generated under the two hypotheses. In a nonstationary

environment, the equilibrium wage would be based on looking ahead, where in each

future period the wage would be the maximum of the two approaches. This is

similar to the argument that has been made by Kenneth Binmore (1963) and ANTier

Shaked and John Sutton (198A) when an outside option is available.

This result can be seen from both the axiomatic formulation of the Nash wage

and the noncooperative bargaining approach. The equation used above for the

Nash wage comes from selecting a wage to maximize the product of the gains from

beginning employment for the firm and the worker. Consider what happens if it

is known that the worker will shirk (do no work) if the wage is below some

critical level. In this case the gain to the firm from hiring the worker is

negative. Thus any wage that violates the no-shirking condition does not

maximize the product. If the Nash wage is above the critical value, it does

maximize the value. If the Nash wage is below the critical value then the

efficiency wage maximizes the product since, ignoring shirking, the product is

quasiconcave in the wage.

We proceed by describing a bargaining game. Assume that the firm moves

first, proposing a wage, v-^. The worker has three options: accept the wage and

do not shirk, accept the wage and shirk, reject the wage. If the worker rejects

the wage, the worker proposes the next wage, W2 . The firm might accept or

reject this wage. If the firm accepts the wage, the worker then gets to choose

whether to shirk or not. If the firm rejects the wage, the firm gets to make

the next proposal. At any time there is a probability that negotiations will be



42

exogenously broken off, requiring each party to wait for the next potential

partner with whom to take up negotiations. The value of the position in the

event of broken negotiations is the status quo point for the Nash solution.

The last move in any sequence which results in a contract is for the worker

to decide whether or not to shirk. This decision is made by comparing the wage

with the wage coming from the no-shirking condition. This makes it clear that

the firm will never offer a wage that is accepted which is below the efficiency

wage, and that the value of a contract to the firm and worker is based on

production without shirking. Ve assume that a contract at the no-shirking wage

is preferable to the firm to having no contract. The heart of the argument is

that if the Nash wage exceeds the efficiency wage, it remains the solution to

the bargaining game; if the Nash wage is not above the efficiency wage, there is

no internal solution to the bargaining problem, and the efficiency wage is

offered and accepted at the first stage.

Since this is a stationary game, we can follow the procedure in Avner Shaked

and John Sutton (1984) , where the parties understand that the game at step three

has the same value as the game at step one. Let K be the value to the worker of

being at step 3. At step 3 the value to the firm is W-K, where W is the

combined value to the firm and worker from an agreement which results in work

without shirking (a value which is independent of the wage). At step 2, waiting

until step 3 is worth (pW.y+(l-p) (W-K) ) to the firm, where p is the probability

of an exogenous breakdown in negotiations and W.^ the value of being a vacancy.

Thus at step 2, the worker's position is worth W- (pW.^-t-(l-p) (W-K) ) . This is more

than the value which ensures no-shirking. Seen from step 1, waiting until step

2 is worth pW^-(-(l.p) {W- (pW.^+(l-p) (W-K) ) ) to the worker. The firm will make this
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offer, unless it is less than the efficiency wage, in which case the firm offers

the efficiency wage. Setting the value of the offer to the worker at step 1

equal to K, we have

K-W^+(W-W^-W^) (l-p)/(2-p)

.

As p goes to zero, this is the familiar formula for Vg.
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