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Abstract

Most large-scale communication networks, such as the Internet, consist of in-

terconnected administrative domains. While source (or selfish) routing, where

transmission follows the least cost path for each source, is reasonable across do-

mains, service providers typically engage in traffic engineering to improve oper-

ating performance within their own network. Motivated by this observation, we
develop and analyze a model of partially optimal routing, where optimal routing

within subnetworks is overlaid with selfish routing across domains. We demon-

strate that optimal routing within a subnetwork does not necessarily improve the

performance of the overall network. In particular, when Braess' paradox occurs in

the network, partially optimal routing may lead to worse overall network perfor-

mance. We provide bounds on the worst-case loss of efficiency that can occur due

to partially optimal routing. For example, when all congestion costs can be rep-

resented by affine latency functions and all administrative domains have a single

entry and exit point, the worst-case loss of efficiency is no worse than 25% relative

to the optimal solution. In the presence of administrative domains incorporating

multiple entry and/or exit points, however, the performance of partially optimal

routing can be arbitrarily inefficient even with linear latencies. We also provide

conditions for traffic engineering to be individually optimal for service providers.
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1 Introduction

Since the passage of the Telecommunications Act in 1996, the Internet has undergone a

dramatic transformation and experienced increasing decentrahzation. Today, thousands

of network providers cooperate and compete to provide end-to-end network service to

billions of users worldwide. While end-users care about the performance across the entire

network, individual network providers optimize their own objectives. The Internet's

architecture provides no guarantees that provider incentives will be aligned with end-

user objectives.

The emergence of overlay routing over the past five years has further highhghted

the potentially conflicting objectives of the service provider and the end-users. In over-

lay routing, end-user software (such as peer-to-peer file-sharing software) makes route

selection decisions on the basis of the best end-to-end performance available at any

given time, while administrative domains control the routing of traffic within their own
(sub)networks. Network operators use traffic engineering to optimize performance, and

also to react to the global routing decisions of overlay networks (e.g., [1]).

These considerations make it clear that the study of routing patterns and perfor-

mance in large-scale communication networks requires an analysis of partially optimal

routing, where end-to-end route selection is selfish and responds to aggregate route

latency, but network providers redirect traffic within their own networks to achieve min-

imum intradomain total latency.

We develop and analyze a model of partially optimal routing, combining selfish

across-domain routing and traffic engineering by service providers within their adminis-

trative domains. While recent research (e.g., [2, 3, 4, 5, 6]) has studied the interactions

of overlay routing and traffic engineering, it has neither provided a model of partially

optimal routing nor addressed the central question of whether partially optimal routing

improves overall network performance.

We consider routing flows between multiple source-destination pairs through a net-

work. Each link is endowed by a latency function describing the congestion level (e.g.,

delay or probability of packet loss) as a function of the total flow passing through the

link (e.g., [7]). Each source-destination pair in the network has a fixed amount of flow,

and flows follow the minimum delay route among the available paths as captured by

the familiar notion of Wardrop equilibrium (e.g., [7]). Our innovation is to allow subsets

of the links in the network ("subnetworks") to be independently owned and operated

by different providers, and consider the possibihty that these providers engage in traf-

fic engineering and route traffic to minimize the total (or average) latency within their

subnetworks. Source-destination pairs sending traffic across subnetworks perceive only

the effective latency resulting from the traffic engineering of the service providers. The
resulting equilibrium, which we call a partially optimal routing (POR) equilibrium, is a

Wardrop equihbrium according to the effective latencies seen by the source-destination

pairs. This model provides a stylized description of the practice of traffic engineering in



the Internet.

Because of the congestion externalities created by selfish routing, the Wardrop equi-

librium without traffic engineering within subnetworks is typically inefficient and leads

to a level of total delay in excess of the system optimum (see, for example, [8, 9, 10]).

It may therefore be conjectured that the addition of traffic engineering within parts of

the network will improve performance. Our first set of results show that this is not

necessarily the case. In particular, when the Braess' paradox occurs within the global

network, partially optimal routing may be less efficient than the Wardrop equilibrium.''

Motivated by this finding, we study the extent of inefficiency of partially optimal

routing relative to the system optimum. For the case in which all independently-operated

subnetworks have unique entry and exit points, and latency functions belong to certain

subclasses, we provide tight bounds for the inefficiency of partially optimal routing that

exactly match the corresponding bounds for the performance of Wardrop equilibria. For

example, with affine latency functions, the worst-case performance of partially optimal

routing is no worse than 25% relative to the system optimum, matching the same bound

provided for Wardrop equilibrium by Roughgarden and Tardos [9] . Similarly, we provide

bounds for the cases in which latency functions are nonnegative polynomials of bounded

degree.

Interestingly, however, in the case of subnetworks with multiple entry and exit points,

the performance of partially optimal routing can be arbitrarily inefficient even with linear

latency functions. This contrasts with the tight bound of 25% efficiency loss for Wardrop

equilibria with linear or affine latency functions (see [9, 10]). In this general case, we
can only provide bounds for some special classes of subnetworks with multiple entry and

exit points.

We conclude by investigating subnetwork performance measured in terms of total

delay (latency) under partially optimal routing. We show that, in the absence of prices

per unit of transmission, a service provider may prefer not to engage in traffic engineering

in order to reduce total flow and delay in their subnetwork. In addition, we provide

conditions for service providers to prefer traffic engineering to selfish routing within

their domain.

The remainder of the paper is organized as follows. Section 2 introduces the three

basic routing paradigms: socially optimal routing, where total (or average) latency is

minimized across the entire network; selfish routing, where end-to-end route selection

is made based on minimum route latency; and partially optimal routing, where end-to-

end route selection is still dependent on aggregate route latency, but providers engage

in traffic engineering within their subnetworks to achieve minimum intradomain total

latency.

Section 3 analyzes the performance of partially optimal routing. We show that

there may exist situations where optimization within a subnetwork leads to lower global

'Throughout, by Wardrop equilibrium we refer to the equihbrium of the same network structure

without any traffic engineering—without any optimal routing within subnetworks.



network performance. We prove that this can only be the case when the Braess' paradox

occurs within the global network. Section 4 then analyzes the worst-case efficiency

loss that can occur at the partially optimal routing solution and establishes bounds

on efficiency loss when all latency functions are affine, and when all latency functions

are nonnegative polynomials of bounded degree. In the special case where all latency

functions are affine, we find that the ratio of partially optimal routing cost to the social

optimum is no worse than 4/3.

In Section 5, we consider the case where subnetworks may have multiple entry and

exit points, and show how partially optimal routing leads to further inefficiencies in

this case. Section 6 considers the choice of routing pohcy by a single service provider

and provides conditions under which traffic engineering is (individually) optimal for a

provider in parallel link topologies. We conclude in Section 7.

2 Preliminaries: Different Routing Paradigms

We consider a directed network G = (V, ^), with node set V, link (or edge) set A,

and w source-destination node pairs {si,ti}, . . . ,{sy,,ty,}. Let W = {l,...,w}. Let

Pi denote the set of paths available from Sj to ti using the edges in A; we view each

path p E Pi as a. subset of A, p C A. Define P = Ui^wPi- Each link j E A has a

strictly increasing, nonnegative latency function lj{xj) as a function of the flow on link

j.^ We assume that Xi units of flow are to be routed from Sj to ti, for alii eW, and we
define X = [Xi,. . . ,Xw]- We caU the tuple R = {V,A,P,s,t,'K,\) a routing instance.

We denote the set of routing instances R = {V, A, P, s, t, X, 1) by the set TZ. In the

following, we will also be interested in routing instances in which the latency functions

of all links are restricted to belong to a certain class of functions. We denote the set

of routing instances R in which all latency functions are convex (affine and concave,

respectively) by 7^'=°"'^ (7^"/^ and 7^'=°"^ respectively).

^Throughout the paper, we will refer to Ij as the latency function, though Ij can be used to model

congestion metrics other than latency (e.g., loss).



2.1 Socially Optimal Routing

Given a routing instance R = {V, A, P, s, t, X, 1), we define the social optimum, denoted

by x^'^{R), as the optimal solution of the following optimization problem:

minimize y ^Xjlj{xj)

subject to Vj Vp = ^i) J ^ ^;

p€P:jep

P&Pi

2/p > 0, p G P.

This optimization problem minimizes the total (or equivalently the average) delay expe-

rienced over all paths. Under our assumption that each latency function is continuous,

it follows that x'^'-^(i?) is well-defined. The total latency cost at the social optimum is

given by:

C{^'^{R)) = J2^f{R)lj{xfm.
j&A

-2.2 Selfish Routing

When traffic routes "selfishly"—that is, when sources choose minimum delay end-to-end

paths—all paths with nonzero flow must have the same total delay. A flow configuration

with this property is called a Wardrop equilibrium. Under the assumptions on the latency

functions (i.e., each Ij is continuous and strictly increasing), it is well-known that the

Wardrop equilibrium flow vector for a given routing instance R, denoted x^^(i?), is the

unique optimal solution to the following optimization problem (see e.g., [9, 11]):

mmimize
jeA

subject to y. Vp — ^ji J ^ ^!

p&p-.j&p

p€Pi

yp>0, peP.

The total latency cost at the Wardrop equilibrium is given by

Y^ri,{z)dz (1)

A^ i JO

c(x^^(p)) = J2^Y'iRM^Y"(^))- (2)

j€A



Equivalently a feasible solution x^^ for a routing instance i? is a Wardrop equilib-

rium if and only if it satisfies

5:/,(xn(xf^-x,)<0, (3)

for all feasible solutions x for the same routing instance; see, for example, [12, 13].

2.3 Partially Optimal Routing

Let us now assume that a single network provider controls a subnetwork with unique

entry and exit points; within this domain, the provider optimizes performance of traffic

flow. Formally, we assume there is a collection of directed subgraphs (subnetworks)

inside of G. Within a subnetwork Go = {Vq,Ao), a service provider optimally routes

all incoming traffic. Let Sq E Vq denote the unique entry point to Gq, and let to £ Vq

denote the unique exit point from Gq. Let Pq denote the set of available paths from

So to to using the edges in ^o- We make the assumption that every path in P passing

through any node in 1-^ must contain a path in Pq from sq to to; this is consistent with

our assumption that Go is an independent autonomous system, with a unique entry and

exit point. We call Rq = (Vo,^o, -PojSojto) a subnetwork of G, and with a slight abuse

of notation, we say that Rq C R.

Given an incoming amount of flow Xq, the network provider chooses a routing of

flow to solve the following optimization problem to minimize total (or average) latency:

minimize y. ^jhi^j) (4)

subject to 2_\ Vp — ^j) 3 ^ ^o;

pePo-jep

y^ yp = Xq;

p€Po

yp > 0, p G Po-

In this optimization problem, the subnetwork owner sees an incoming traffic amount Xq,

and chooses the optimal routing of this flow through the subnetwork. This is a formal

abstraction of the process of traffic engineering carried out by many network providers

to optimize intradomain performance.

Let L{Xo) denote the optimal value of the preceding optimization problem. We
define /o(Xo) = L{Xq)/Xq as the effective latency of partially optimal routing in the

subnetwork Rq, with flow Xq > 0. If traffic in the entire network G routes selfishly,

while traffic is optimally routed within Go, then replacing Go by a single link with

latency Iq will leave the Wardrop equilibrium flow unchanged elsewhere in G.

We have the following simple lemma that provides basic properties of Iq and L.



Lemma 1 Assume that every latency function, /j, is a strictly increasing, nonnegative,

and continuous function. Then;

(a) The effective latency /o(-^o) is a strictly increasing function of Xq > 0.

(b) Assume further that each Ij is a convex function. The total cost L{Xo) is a convex

function of Xq.

Proof.

(a) Fix Xq, and Xq < Xq with Xq > 0. Let (x,y) be an optimal solution to problem

(4) with total flow Xq- Define yp = ypXo/Xo, for all p e Pq. Then this is a feasible

solution to problem (4) with total flow Xq. Furthermore, the total latency at this

solution is easily seen to be:

pePo jSp \q&Po.j€g / jeAo "^ \ " /

Now we observe that:

< -^ 5Z^i^i(^i) = ^o(^o),

^%eAo

where the last inequality follows because Ij is strictly increasing and Xq < Xq.

(b) Note that L{Xq) is the primal function of optimization problem (4). Since the

objective function is convex and the constraints are linear, the result follows using

standard arguments from convex analysis (see [14]).

In light of the preceding lemma, we can extend the definition of Iq so that /o(0) =
lim^^Qio ^o(a;o); the preceding limit is well defined since Iq is strictly increasing.

To define the overall network performance under partially optimal routing, first sup-

pose that there is a single independently-operated subnetwork. Given a routing instance

R = {V,A,P,s,t,'K,\), and a subnetwork Rq = {Vo,Ao,Po,SQ,tQ) defined as above, we

define a new routing instance R' = {V, A' , P', s, t, X, 1') as follows:

V' = {V\Vo)[j{sQ,to};

A'={A\AQ)[j{{SQ,tQ)};



P' corresponds to all paths in P, where any subpath in Pq is replaced by the link (sq, to);

and 1' consists of latency functions Ij for all edges in. A\Aq, and latency Iq for the edge

(so, to). Thus E! is the routing instance R with the subgraph Go replaced by a single link

with latency ^o; we call R' the equivalent POR instance for R with respect to Rq. The
overall network flow in R with partially optimal routing in i?o, :k^'^^{R,Ro), is defined

to be the Wardrop equilibrium flow in the routing instance R':

x^'^«(i?,i?o) = x'^^^(i?').

In other words, it is equilibrium with traffic routed selfishly given the effective latency

/o of the subnetwork Rq. Note also that this formulation leaves undefined the exact flow

in the subnetwork Rq; this is to be expected, since problem (4) may not have a unique

solution.

The total latency cost of the equivalent POR instance for R with respect to Ro is

given by

C(x^'^«(i?,i?o)) = 53x;°^(i?,i?o)/i(xf^^(i?,Ho)).

The deflnition immediately generahzes when there are multiple independently-operated

subnetworks. Let R^ = (Vi^,Ai, P^, s^, t^) for j = 1, 2, ..., J denote the subnetworks, each

represented by a directed subgraph Gq. Define

V' = {V\[jV^)\J{sU};
j=i j=i

A' = {A\\jAi)\J{{44)}.

Let R' be the routing instance R with each subgraph Gg replaced by a single link with

effective latency Iq. The partially optimal routing flow x^^^{R, {-Ro}/=i)i is again the

Wardrop equilibrium flow in the routing instance R'. In the remainder of the paper,

we assume without loss of generality that there is a single subnetwork in the overall

network.

3 Partially Optimal Routing and Global Performance

We first consider the effect of optimal routing within subnetworks on the performance of

the overall network. One might conjecture that optimally routing traffic within subnet-

works should improve the overall performance. The following example shows that this

need not be the case.



l,(x,) = x, l,(x ) = 3.25
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\ / / ^i\)
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•z^) '/'S)
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Figure 1: A network for which FOR leads to a worse performance relative to selfish

routing. Figures (b) and (c) illustrate representing the subnetwork with a single link

with Wardrop effective latency lo{Xo) and optimal effective latency Iq{Xo), respectively.

Example 1 Consider the network G = (V^, ^) with source and destination nodes s,t E

V illustrated in Figure 1(a). Let R = {V, A, P,s,t, 1,1) be the corresponding routing

instance, i.e., one unit of flow is to be routed over this network. The subnetwork Go
consists of the two parallel links in the middle, links 5 and 6, with latency functions

/5(x5) = 0.31, le{xe)^OAxe.

The latency functions for the remaining links in the network are given by

/i(xi) = xi, ^2(2:2) = 3.25,

/3(a:3) = 1.25, k{x4) = 3x4.

Assume first that the flow through the subnetwork Go is routed selfishly, i.e., according

to the Wardrop equilibrium. Given a total flow Xq through the subnetwork Gq, the

effective Wardrop latency can be defined as

loiXo) = -^ G(x^^(i?o)),
Ao

(5)

[cf. Eq. (2)], where Rq is the routing instance corresponding to the subnetwork Gq with

total flow Xq. The effective Wardrop latency for this example is given by

[0(^0) = min{0.31, 0.4X0}.
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Substituting the subnetwork with a single link with latency function Iq yields the network

in Figure 1(b). It can be seen that selfish routing over the network of Figure 1(b) leads

to the link flows a;f -^ = 0.94 and X^^ = 0.92, with a total cost of C{:x.^'^{R)) = 4.19.

It is clear that this flow configuration arises from a Wardrop equilibrium in the original

network.

Assume next that the flow through the subnetwork Go is routed optimally, i.e., as the

optimal solution of problem (4) for the routing instance corresponding to Go- Given a

total flow Xo through the subnetwork Go, the eff'ective latency of optimal routing within

the subnetwork Go can be defined as

Xo

where L{Xo) is the optimal value of problem (4). The effective optimal routing latency

for this example is given by

^o(^o)
0.4Xo, if < Xo < 0.3875;

0-31 -fS' if Xo> 0.3875.

Substituting the subnetwork with a single link with latency function ^o yields the network

in Figure 1(c). Note that selfish routing over this network leads to the partially optimal

routing (POR) equilibrium. It can be seen that at the FOR equilibrium, the link flows

are given by a;f°^ = 1 and X^^^ = 1, with a total cost of G(x™^(i?)) = 4.25, which

is strictly greater than C{x^^{R)).

In the preceding example, when the subnetwork optimizes intradomain performance,

we see a degradation in global network performance. This is reminiscent of Braess'

paradox, a classic example of degradation in global network performance despite local

improvements (see, for example, [11]). Braess' paradox occurs in a network if reducing

the link latency functions increases the total latency in the network. We now investigate

the relationship between Braess' paradox and the performance degradation observed in

Example 1.

Definition 1 (Braess' paradox) Consider a routing- instance R — {V,A,P,s,t,X,\)

and a subnetwork Rq = (Vq, Aq, Pq, Sq, to) C R. We say that Braess' paradox occurs in R
centered at Ro if there exists another routing instance Rm — {V, A, P, s, t, X, m), with a

vector of strictly increasing, nonnegative latency functions, m = {rrij^j 6 A), such that

for all Xj > 0,

mj{xj) < lj{xj), y j e Ao, mj{xj) = lj{xj), V j ^ Ao,

and

G(x^^(i?„)) > G(x^^(i?)).



In our definition we have explicitly fixed a subnetwork Rq within which we locally

"improve" performance; formally, the routing instance R' differs from R only by a reduc-

tion of the latency functions on some (or all) links. Nevertheless, in a network topology

where Braess' paradox occurs, this local change can yield a higher total latency.

Similarly, the following definition captures the counterintuitive phenomenon exhib-

ited in Example 1, where traffic engineering within some subnetwork, i.e., partially

optimal routing, leads to a degradation in the overall performance compared to pure

selfish routing.

Definition 2 (POR paradox) Consider a routing instance R = {V,A,P,s,t,^,\),

and a subnetwork Rq = {Vo,Ao,PQ,So,to)- We say that the POR paradox (partially

optimal routing paradox) occurs in R with respect to Rq if

C(x^°«(i?,i?o))>C(x'^^(i?)).

Intuitively, the POR paradox appears to be a form of "generalized Braess' paradox",

in the following sense. Given a total flow Xo routed through the subnetwork Go, we

define the effective Wardrop latency /q, as follows:

kxo) = ^ E ^f'mM'iR')) =
^^"7^^^^^

' (6)

- s£Ao

where R' = (Vq, ^Oi Pq, So, ^0,-^0, 1) is a routing instance corresponding to the subnetwork

Rq with total flow Xq [cf. Eq. (5)]. As in Lemma 1, it is straightforward to show that

lo is strictly increasing. Furthermore, it is clear that ^o(-^o) > ^o(-'^o) for all Xq > 0,

since x^^(i?') is a feasible solution to problem (4). Thus when we contrast x^'^^{R)

and :x^^{R), it is as if we are lowering the effective latency of the subnetwork Rq. If

this increases the total latency, then we are observing a form of Braess' paradox.

In fact, it is possible to show a stronger result: whenever the POR paradox occurs

in R with respect to some Rq C R, then Braess' paradox occurs in R centered at i?o-

This result is stronger than the "generalized Braess' paradox" discussed in the preceding

paragraph, because it shows that Braess' paradox occurs within the original instance R
without altering the network topology.

Proposition 1 Consider a routing instance R = {V,A,P,s,t,'K,l) and a subnetwork

Rq = (Vo,^0)-Po,'So,io) C R. Assume that the POR paradox occurs in R with respect

to Rq. Then Braess' paradox occurs in R centered at Rq.

Proof. Our approach will be to uniformly lower the latency functions in the subnetwork

Rq, such that we exactly ensure at a Wardrop equilibrium the effective latency of Rq is

given by Iq, the effective latency of optimal routing within Rq. This will allow selfish

routing to "replicate" the partially optimal routing of flow, and imply Braess' paradox.

10



Let x^^^{R) be the Wardrop equilibrium flow for the routing instance R, with corre-

sponding path flows y^-^(-R). Similarly, let x.^^^{R, Rq) be the flow with partially opti-

mal routing in Rq, with corresponding path flows y^'^^{R,Ro). Let Xq = x^^^{R,Ro)
represent the flow routed through the subnetwork Rq under partially optimal routing.

Note that Xq > since by assumption FOR paradox occurs in R with respect to Rq.

Let /o denote the effective latency of Rq under partially optimal routing, and /q denote

the effective latency of Rq under selfish routing [cf. Eq. (6)].

Define a routing instance Rq = {Vo,AQ,Po,SQ,tQ,XQ,V) and let x'^-^(i?o) be the

Wardrop equihbrium flow for the routing instance Rq.

We define a new collection of latency functions as follows. For all j ^ Aq, define

ruj = Ij. For j e Aq, we choose a new strictly increasing, nonnegative latency function

rrij with mj{xj) < lj{xj) for all Xj > 0, such that

mjixY'iR^)) = b^UxriK)).

Observe that such a choice is possible, since lo{Xo) < lo{Xo).

Let To = {Vo,Ao,PQ,so,to,XQ,i[n); i.e., Tq is the routing instance Rq with latencies

replaced by m. We claim that x"'^(ro) = x.^^{R'q). This follows from the definition of

m: all values mj{xY^{Ro)) are proportional to Ij{xY^{R'q)), with common constant of

proportionality /o(-'^o)/^o(-^o)- Thus if x^-^{Rq) is the Wardrop equilibrium fiow with

latencies 1, it must remain so with latencies m. Furthermore, observe that for any path

p with positive flow, we have

E
j&p ^^ ^' jep

because the second summation above is equal to Iq{Xo). Thus we conclude

C(x^^(ro)) = J2 xY^{TQ)mjixY^{TQ)) = XqIq{Xq). (7)

Let T = (y. A, P, s, t, X, m). Deflne a feasible flow x = [iCjjjg^ as follows:

Xj —
i J^'E

xfO^(i?,i?o), ff J^Aq;
xY'={R'q), ff j e Aq.

We claim that x^^{T) = x. This claim follows easily since we have already estab-

lished that x^^(To) = x^^(i?^), and (7) holds. In the flow x for the routing instance T,

the effective latency perceived by any flow crossing the subnetwork Rq is exactly equal

to the partially optimal routing effective latency Io{Xq) (by (7)). But then since all

routing outside the subnetwork Rq is performed according to x.^'-"^{R, Rq), we conclude

that in fact x^-^(T) = x, as required.

11



Combining the preceding, we obtain

Y:xY^{T)m,{xY^{T))
,

jeA'

= C(x^^^(i?,i?o)).

Since we assumed that the POR paradox occurs in R with respect to Rq, we obtain from

the preceding that

implying that Braess' paradox occurs in ^.centered at Rq.

An immediate corollary of the preceding proposition is the following:

Corollary 1 Given a routing instance R, if Braess' paradox does not occur in R, then

partially optimal routing with respect to any subnetwork always improves the network

performance.

Since Milchtaich, [15], has shown that Braess' paradox does not occur in graphs with

the serial-parallel structure, this corollary implies that as long as the network under

consideration has a serial-parallel structure (for example, a network of parallel links),

partially optimal routing always improves the overall network performance.

4 Efficiency of Partially Optimal Routing

We have seen in Example 1 that partially optimal routing can actually worsen per-

formance relative to the Wardrop equilibrium. In this section, we quantify the ineffi-

ciency of partially optimal routing. Our metric of efficiency is the ratio of the total

cost at the social optimum to the total cost at the partially optimal routing solution,

C{yi^'-')/C{x^'-'^). Throughout, we assume that all independently-operated subnetworks

can be represented as subgraphs with unique entry and exit points.

12



We will establish two main theorems. The first provides a tight bound on the loss of

efficiency when all latency functions are affine; and the second provides a tight bound

on the loss of efficiency when all latency functions are polynomials of bounded degree.

We start with a simple result that compares the worst-case efficiency loss of partially

optimal routing with that of selfish routing. These relations will be useful in finding

tight bounds on the efficiency loss of partially optimal routing. Recall that Tl'^°^^ ,
71°-^^

,

and T?.'^""'^ denote the class of all routing instances where latency functions are convex,

affine, and concave, respectively.

Proposition 2 (a) For all 7^' e {7^^°™,7^'^•^/,7^'=°"'=}, we have

C(x^^(i?)) C{^'^[R)) ...

RqCR

(b)

(c)

Proof.

RqCR

(a) Given an arbitrary routing instance R = {V,A,P,s,t,'X,\), simply let Rq consist

of a single link j E A from the routing instance R, with the corresponding latency

function Ij. Then it is clear that x^'^'^{R, Rq) = x^^{R); thus for any instance on

the right hand side of (8) we have constructed an equivalent instance on the left

hand side with the same objective function value, establishing the relation.

(b) The argument in part (a) establishes

^en^ C{^POR^R,Ro)) - R^n C{^^^{R))-

To show the reverse inequality, let /? G 7?, and Rq C 7^. Let R' be the equivalent

POR instance for R with respect to Rq. Then it can be seen that

C(x^^«(i?,i?o)) = C(x'^^(i?')),

C(x^°(i?)) = C(x^°(i?')).

Hence, for every feasible solution of the optimization problem on the left-hand side

of relation (9), we have a feasible solution for the problem on the left-hand side

that has the same objective function value, establishing the relation.

13



(c) This follows by combining the argument in part (b) with Lemma 3.

In the remainder of this section we will prove several tight bounds on the efficiency

loss of partially optimal routing. We begin by recalling the following key results in the

analysis of selfish routing, due to Roughgarden and Tardos [9].

Proposition 3 (Roughgarden-Tardos (2002) [9])

(a)

inf ^(^!!M.o
Ren'on. C(x^^s(i?))

(a) Consider a routing instance R = {V,A,P,s,t,X,\) where Ij is an affine latency

function for all j G A. Then,

C(x^^(/?)) ^ 3

Furthermore, the bound above is tight.

The first result shows that the worst-case efficiency loss of selfish routing is un-

bounded, when latency functions are only known to be convex. However, if latency

functions are affine, then the proposition guarantees the tight bound on efficiency loss

in part (b).

Our main theorem in this section is an extension of the results in Proposition 3 to

the setting of partially optimal routing.

Theorem 1

(a)

"Mt CP0R{R^ Ho)
~ "

(a) Consider a routing instance R = {V,A,P,s,t,X,\) where Ij is an affine latency

function for all j G A; and a subnetwork Rq of R. Then:

C{-K.^°{R)) ^ 3

C(x^OR(H,i?o)) -4

Furthermore, the bound above is tight.

14



Proof. Part (a) of the theorem is an immediate corollary of Proposition 2(a) (for IZ' =
7^'""^) and Proposition 3(b).

The remainder of the proof establishes part (b) of the theorem by proving two lem-

mas. The first provides a tight bound of 3/4 on the ratio of the optimal routing cost to

the selfish routing cost for routing instances in which the latency function of each link is

a concave function. This lemma is relevant because when all latency functions are affine,

the effective latency of any subnetwork under partially optimal routing is concave, as

shown in the second lemma.

The proof of the following lemma uses a geometric argument that was used in [16].

This result also follows from the analysis in [10]. Here, we provide an alternative proof,

which will be useful in our subsequent analysis.

Lemma 2 Let R e 7^'=°"^ be a routing instance where all latency functions are concave.

Then,

C(x^^(i?)) 3

Furthermore, this bound is tight.

Proof of Lemma. Consider a routing instance R e 7^'^°"'=, with R = {V, A, P, s, t, X, 1).

Let x^^ be the flow configuration at a Wardrop equilibrium. By Eq. (3), for all feasible

solutions X of Problem (1), we have

C(x^^) = Y.xY^ixf") (11)

< 5^x,/,(a;n (12)

j&A

jeA j€A

We next show that for all j e A, and all feasible solutions x of Problem (1), we have

xM^Y"^) - Iji^j)) < lxY%ixY^). (13)

If Xj > xY^, then since Ij is nondecreasing, we have lj{xY^) < lj{xj), establishing the

desired relation. Assume next that Xj < x]^^. The term Xj{lj{xY^) - lj{xj)) is equal to

the area of the shaded rectangle in Figure 1. Consider the triangle formed by the three

points

(0,/,(xf^)), {0,l,{x,)-^xj)xj),

I'M) ''^"' V
15



,WE

Figure 2: Illustration of the proof of Proposition 2.

Denote this triangle by T. It can be seen that

^.(^i(0-^.(^.))<^Area(T).

By the concavity of Ij , we further have

Area(r) <
'.(xf^)

dydx <
xY^l.ixf'^)

'0 Jlj[x) ^

i.e., the area of triangle T is less than or equal to the area between the curves y = lj{x)

and y = lj{xY^) in the interval x E [0, x^^], which in turn is less than or equal to half

of the area xY^lji^Y^)- Combining the preceding two relations, we obtain Eq. (13),

which implies

j&A jeA

Combining with Eq. (12), we see that for all feasible solutions x of Problem (1), we have

^C(x^^^)<5]x,/,(x,).

Since the socially optimal flow configuration x'^'^ is a feasible solution for Problem (1),

we obtain the desired result.

The following lemma, which establishes that the effective latency /q of a subnet-

work under partially optimal routing is concave when the latency functions are affine,

completes the proof of part (b) of the theorem.
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Lemma 3 Let Rq = {Vo,Ao,Po,So,to) be a subnetwork. Assume that the latency func-

tions of all links in the subnetwork are nonnegative afhne functions, i.e., for all j G Aq,

lj{xj) = ajXj + bj, where aj > and bj > 0. Let /o(Xo) denote the effective latency of

partially optimal routing of Xq units of flow in the subnetwork Rq. Then /o(^o) is a

concave function of Xq.

Proof of Lemma. Since the Ij are afiine, for all Xq > 0, we have

a,x:
loiXo) = minyp>o, p^p ^ -~- +

j€Ao
Xq Xq

subject to 2_. yp ~ -^i' ^ ^ ^o
pePo:jep

pePo

Using the change of variables % = y' fo'^ ^^^ P ^ Po, and Xj — ^ for all j G Aq in the

preceding optimization problem, we obtain

/o(A"o) = min^p>o, p^p^ ^ ajXQx] + bjXj (14)

jeAo

subject to 2, Vp — %) j S ^0

pePo:j€P

I] yp = 1-

pePo

Denote the feasible set of problem (14) by Y , i.e.,

>^=<y
I

yp> 0, VpGPo, 5^yp = i[.

Then by defining a;j(y) = Ylp^Po-jepyp' ^^ *^^^ write (14) equivalently as:

Iq{Xq) = inf
yeY

^£-40 / \jeAo J

But now observe that ^0(^0) is the infimum of a collection of affine functions of Xq. By
a standard result in convex analysis (see, e.g., [14], Proposition 1.2.4(c)), it follows that

^o(^o) is concave.

Combining Lemmas 2 and 3 with Proposition 2 completes the proof of part (b) of

Theorem 1.
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The preceding proof exploits the fact that the effective latency Iq is concave in the

subnetwork to establish a tight efficiency loss bound for partially optimal routing with

respect to the social optimum, under the assumption that all latency functions are affine.

We can apply a similar approach to develop bounds on the efficiency loss of partially

optimal routing even when the latency functions may not be affine; our starting point

is a result of Correa et al. [16], extending earlier work of Roughgarden [17], that gives

bounds on the efficiency loss of selfish routing with general latency functions.

To state their result, we require the following definitions. Given a class of latency

functions £,, we define P{C) as:

PiC)= sup P{l,x), (15)

with

Intuitively /3 is measure of the steepness of a class of latency functions; for all the cases

we will consider, it is equivalent to 1 — l/a{C), where o:{C) is the steepness parameter

defined by Roughgarden [17]. The following proposition was first proven by Roughgarden

[17] for convex and differentiable latency functions, and then extended by Correa et al.

to all classes of latency functions [16]. '

Proposition 4 Let £ be a class of separable latency functions. Consider a routing

instance R = {V,A,P,s,t,X,l) with Ij e C for all j e A. Then

C(x""=(B)) - ^
'^^ "'

Furthermore, the bound above is tight.

We emphasize that P{C) = 1/4 when C is the class of affine latency functions, so the

preceding proposition is indeed a generalization of Proposition 3.

In the spirit of Proposition 4, the following theorem generalizes the results of Theorem

1 to networks where latencies are nonnegative polynomials.

Theorem 2 Let Cd be a class of nonnegative separable polynomial latency functions of

degree d. Consider a routing instance R = {V, A, P, s, t,X, 1) with Ij G Cd for all j 6 A,

and a subnetwork Rq of R. Then,

where P{Cd) is defined in Eqs. (15)-(16). Furthermore, the bound above is tight.
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Proof. The proof proceeds as follows. First, we establish a bound on the efficiency

loss of a routing instance where each latency function is the pointwise infimum of a

collection of latency functions in a prespecified class. Then, we establish that if all

latency functions are polynomials, the effective latency of any subnetwork under partially

optimal routing is an infimum of polynomials. Combining these claims will yield the

result of the proposition.

Our starting point is the following observation of Correa et al. ([16], particularly

Lemma 2.3): given a class of separable latency functions C and a routing instance

i? = (y, A, P, s, t, X, 1) with Ij G C for all j ^ A, the following inequality holds:

x,/,(xf^(i?)) < x,./,.(x,) + /?(/:)xf^(i?)/,.(xf^(i?)), V j e ^, V X > 0. (17)

Using this fact, we can prove the following lemma.

Lemma 4 Let Cs be a class of nonnegative separable latency functions which is closed

under scahng by a constant k < I (i.e., for all I E Cs, ^Q have kl E £=, for all scalars

k < 1). Let R = {V, A, P, s, t, X, 1) be a routing instance with

l,{x)= M{f{x,z)}, yjeA, (18)

where: Zj is a compact set; for each x, f{x, ) is a continuous function of z; and for each

zEZj,fi-,z)eCs. Then: " -^

C(xW^^(i?)) - ^^ '^^^'>'-

Proof of Lemma. We use the bound in Eq. (17) together with a similar geometric

argument used in the proof of Lemma 2 to prove the result.

Let X be a feasible solution of problem (1). By the definition of Ij [cf. Eq. (18)], for

all j E A, there exists some Zj such that

h{xi) = fi^v^j), (19)

and

/,(xf^(H))</(xf^(il),z,). (20)

/(xfg(H),gj)
Let c = , / WBiDw > 1 and dehne

ijyx^ (H))

fj{y) = ^^, Vy>0.

Since c > 1 and /(y, Zj) > 0, it follows that fj{y) < f{y, Zj) for all y > 0, which by Eq.

(19) implies that

fj{Xj) < lj{Xj).
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In view of the assumption that the class Cs is closed under scaling by a constant A; < 1,

we have J, e £,. Moreover, since fj{xY^{R)) = lj{xY^{R)), x^^(i?) is a Wardrop

equilibrium of the routing instance R = {V,A,P,s,t,X,\), where Ij = fj for all j e A.

Combining the preceding, we obtain

x,(/,(xf^(i?)) - /,(x,))

< x,(/,(xf^(i?))-/,(a:,)

Summing over all j E A and using an argument similar to the proof of Lemma 2 [in

particular Eq. (12)], we obtain the desired result.

The following lemma characterizes effective latencies in the special case where all

latency functions are nonnegative polynomials. The proof is similar to the proof of

Lemma 3, and is omitted.

Lemma 5 Let Rq = (Vq, ^o, Pq, ^o, ^o) be a subnetwork. Assume that the latency func-

tions of all links in the subnetwork are nonnegative polynomials of degree d, i.e., for

all j G ^0, iji^j) is a polynomial of degree d such that lj{xj) > for all Xj > 0. Let

/o(^o) denote the effective latency of partially optimal routing of Xq units of flow in the

subnetwork Rq. Then /o(^o) is given by

/o(^o) = inf{/(Xo,y)},
y&y

where 3^ is a nonempty compact set, f{Xo, y) is a continuous function of y, and for each

y E y, f{-,y) is a nonnegative polynomial of degree d.

Since the class of polynomial functions is closed under scaling by a constant, the

preceding two lemmas immediately imply the conclusion of the theorem, as required.

The preceding theorem, together with Theorem 1, gives a tight characterization of

the efficiency loss of partially optimal routing when all independently-operated subnet-

works have unique entry and exit points. In particular, observe that, as long as latency

functions are polynomial of bounded degree, the worst-case efficiency loss under partially

optimal routing is no worse than the same worst-case value for pure selfish routing.

5 Subnetworks with Multiple Entry and Exit Points

We now turn to a discussion of the efficiency of partially optimal routing when independently-

operated subnetworks can have multiple entry and exit points. Unfortunately, in this
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Figure 3: A subnetwork with multiple exit points.

case efficiency loss may be unbounded for even in the most restrictive case where latency

functions are linear. The next example shows that the efficiency loss may be unbounded

for networks that include subnetworks with multiple entry and exit points.

Example 2 Consider the general network illustrated in Figure 2. The subnetwork

consists of links 1, 2, and 3 with latency functions

/i(.Ti) = 0, l2{x2) = ax2, ^3(3^3) = 0,

for some a > 0. The remaining links in the network have latency functions

hixi) = bxi, k[x^) = a^5,

for some 6 > a > 0.

The link flows at the social optimum are given by:

x^=
1 1 a

.y

1 ^1
1 + a'l + a' 'l + a

The cost of the optimal solution is

+
(l + a)2 (l + a

For any a > 0, the optimal routing for the subnetwork is to route all the incoming

flow along link 1. To find the FOR equilibrium, let Xi denote the amount of traffic that

is routed over the subnetwork (i.e., along link 1). Assuming that 62 < 1, we solve for x\

in the Wardrop conditions

b{z + Xi) = (1 - xi).
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Figure 4: A special multiple entry-exit subnetwork, where the shaded area represents a

single entry-exit subnetwork with an arbitrary topology.

Hence the link flows at the FOR equilibrium are given by:

^POR l-hz 1 + z b + bz

1 + 6 1 + 6' 1 + 6

The cost of the FOR equilibrium is

C(x^^«) = b
l + z

1 + 6
+

b + bz

1 + 6

For a fixed 6 > 0, taking the limit as a —» and z -^ 0, we obtain

C{x') ^ 0, C(x^"^)
1 + 6

>0,

thus showing that the relative efficiency approaches zero.

Nevertheless, there are at least two important special cases where one can show that

the efficiency loss of partially optimal routing is bounded. The first is illustrated by the

network topology in Figure 4. Let 5i, . .
.

, s„ be n entry points, and ti, . .
.

, i„ be n exit

points. Assume that Xi units of flow enters the network at node 5,, and is destined to

node ti, for alH = 1, . .
.

, n. The shaded area represents a single entry-exit subnetwork

with an arbitrary topology.

For this structure, it is evident that the FOR effective latency between nodes Si and

U is given by

k{xi,X) = li{xi) + li{xi) + Iq{X),

where X = Y^=i ^i> ^^^ ^o is the effective latency of optimal routing within the sin-

gle entry-exit subnetwork, defined as in our previous analysis. Given this structure,

immediate corollaries of Theorems 1 or 2 imply that, under the assumptions of these

theorems, exactly the same results apply to the model of Figure 4.
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A bound on efficiency loss can also be provided in the case when the following three

conditions are satisfied: first, all latencies in the entire network are affine; second, all la-

tencies in the subnetwork under consideration are linear (i.e., zero latency at zero flow);

and third, for any given source-destination pair {s,t) in the global network, there exist

distinguished nodes ist and jst in the subnetwork, such that every path P available to

(5, t) that passes through the subnetwork enters at igt and leaves at jst- In this case, it

is straightforward to establish that a Wardrop equilibrium in the global network leads

to a Wardrop equilibrium within the subnetwork. Furthermore, the Wardrop equilib-

rium within the subnetwork must optimize intradomain performance. The latter claim

follows because when latencies are linear, the social optimum and Wardrop equilibrium

coincide (as is readily observed from the optimization problem (1)). As a result, the

FOR equilibrium in this setting is equivalent to the Wardrop equilibrium, and thus the

efficiency loss is bounded by 3/4 in this setting (cf. Proposition 3).

6 Partially Optimal Routing and Subnetwork Per-

formance

In this section, we consider a model where a subnetwork chooses its routing policy to

achieve the minimum (total) latency within its subnetwork. This amounts to assuming

that the subnetwork ignores revenues from transmission, which is natural in this context,

since we have not considered the pricing decisions of service providers (see Concluding

Remarks). While optimal routing seems like the natural means to achieve this goal,

end-to-end route selection may counteract any expected performance gains from this

type of intradomain traffic engineering. As a result, the provider may prefer to allow

traffic to route selfishly in order to reduce fiow and total delay in its subnetwork. The
following example illustrates this scenario.

Example 3 Consider the parallel-link network illustrated in Figure 5. The latency

functions are given by

for some constant c > 0. Assume that links 1 and 2 form a subnetwork, denoted by Go,

which is controlled by an independent administrator. Assume that one unit of flow is to

be routed over this network.

Assume first that the flow through the subnetwork Go is routed selfishly, i.e., accord-

ing to Wardrop equihbrium. It can be seen in this case that ^/c units of traffic is routed

through the subnetwork, leading to a total cost of C{x.^^) = c, and a subnetwork cost

of Ggo(x'^^) = cv^.

Assume next that the flow through the subnetwork Go is routed optimally, i.e., the

flow is routed through the overall network according to FOR equihbrium. Assume that
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I,(x,) = l

unit

Figure 5: A parallel link network. Links 1 and 2 form a subnetwork that is controlled

by an independent administrator.

the constant c G

routed through the subnetwor

l-5^'l It can be seen in this case that the entire traffic is

\, leading to a total and subnetwork cost of C(x^^^) =

Ccai^^^^) = 1 - ~^- Note that for c^/c < 1 - ^, we have

As the preceding example demonstrates, lower-layer traffic engineering may prefer

selfish to optimal routing. It is equally easy to construct examples where optimal routing

will be preferred. The simplest example is a situation in which the total traffic entering

the subnetworJi ig. constant, regardless of whether selfish or optimal routing is used. This

will be the case in the example above when c > 1, and a similar analysis immediately

implies that optimal routing will be preferred within the subnetwork in this case.

To gain more insights, let us next consider a "partial equilibrium" analysis of routing

within a subnetwork, taking the strategies of all other subnetworks as given. To illustrate

the main issues, we consider a network consisting of parallel links between a single origin-

destination pair with d units of total traffic. Suppose that there are A^ -I- 1 providers and

each network provider owns a subset of the links in the network. We represent network

provider i, for i = 1,. . . ,N, by a, single link with effective latency k (corresponding to

the intradomain routing policy chosen by provider i, whether optimal routing or not).

We assume all these latency functions k are continuous and strictly increasing.

As in the preceding discussion, we assume that if provider pursues an optimal in-

tradomain routing policy, then the efi^ective latency is given by ^O) and if provider allows

purely selfish routing within his network (corresponding to a Wardrop equilibrium), the

effective latency is Iq. To simplify the discussion here, let us also assume that Iq and Iq

are both continuous and strictly increasing (this will be the case, for example, when all

latency functions of the links in the subnetwork are continuous and strictly increasing).

As before, recall that /o(a;) > lo{x) for all a; > 0. Moreover, for simplicity, let us assume

that Iq{x) > lo{x) if X > (though the arguments can be generalized to the case without

this assumption).

We assume that the subnetwork owner can randomize between the two policies, so

any convex combination of optimal and selfish routing can be achieved. In other words,
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the subnetwork owner chooses a 5 G [0, 1] corresponding to an effective latency given by:

mo{x,5) = {1- 5)lo{x) + 6lo{x),

where 5 = corresponds to optimal routing, while 6=1 corresponds to selfish routing.

We continue to use x'^'^-'^ to denote a Wardrop equilibrium with respect to the latency

functions moJi, Jn, so that x''^'^-^ satisfies:

mo(xo^°",5) > A;

li{x[°^) > X for 1 = 1,..., N-

i=0

xf°^ > Oforz = 0,...,A^;

A = min{moK^^<5),/i(xr«),...,/;v(x^°^)}.

First consider the routing of flow through the links 1, . .
.

, A''. If a total flow x is

routed through links 1, . . . ,
A'', then the resulting flow allocation must satisfy:

li{xi) = mm{h{xi),...,lN{xN)}ifxi>0; '

(21)

N

J2^i = ^-, (22)

1=1

Xi>0, i = l,...,N. (23)

In view of the assumption that li,. . . ,lj\! are strictly increasing, the preceding equations

have a unique solution. We define Ir{x) as the latency at this solution, i.e.,

Ir{x) = mm{li{xi),...,lN{xN)},

where {x^, . . . ,X]\i) is the unique solution to (21)-(23). Since each /, is strictly increeising

and continuous, the function Ir is also strictly increasing and continuous.

Next consider the traffic engineering problem faced by subnetwork 0. The network

provider will choose a value of 6 that minimizes the total latency inside the subnetwork,

given that traffic will follow the Wardrop equilibrium pattern for the resulting effective

latencies. Formally, the optimization problem of subnetwork is the following:

min (^{1
- 6) lo {xo) + 5lo (xo)) xo (24)

subject to

0<io<c(,<56[0,l

{l-5)lo{0) + 5lo{0) > lR{d), ifxo = 0;

{l-5)lo{d) + 5lo{d) < Ir{0), [fxo = d;

{1 - S) lo {xo) + 6lo (xo) = lR{d-xo), iiO<XQ<d.
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Since /o('''^o) > ^0(2^0) for all xq > 0, and Ir is strictly increasing, as 5 increases from

5 = (purely optimal routing) to 5 = 1 (purely selfish routing), the flow routed through

subnetwork at the POR equilibrium must be nonincreasing.

Next note that when Iq{0) > lR{d), the subnetwork can achieve the minimum total

latency of zero by choosing 5 = 1 (since the POR equilibrium will route no traffic across

subnetwork 0). Similarly, if lo{d) < Ir{0), then regardless of provider O's policy, all the

flow will be routed across subnetwork 0. As a result, in this scenario the optimal strategy

is (5 = (optimal routing), as this minimizes the total latency. For the remainder of this

section, we assume that /o(0) < lR{d) and lo{d) > Ir{0). Since ^o > ^0, this also implies

lo{0) < lo{0) < lR{d). (25)

We now proceed to define the maximum and minimum flow that will flow through

subnetwork over all possible choices of routing policy. The condition (25), together

with the fact that Iq and Ir are strictly increasing and continuous, ensures that the

following equation has a unique solution Xq''^^ > 0:

lo{x^''') = lRid-X^^'').

Moreover, given our assumptions, x^^^ is the minimum flow that can go through sub-

network (achieved exactly when 5=1, i.e., at purely selfish routing).

The maximum possible'flow through subnetwork will depend on the relative values

of lo{d) and Ir{0). Formally, we define x^'^-^ as follows. If /o(<^) < ^h(O), then we let

^MAX _ ^^ since choosing 5 = (optimal routing) will lead to all traffic flowing through

subnetwork 0. On the other hand, if /o('^) > ^fi(O), we let x^'^^ be the unique solution

to the following equation: ,

kix^^"") = Ud - x^^^), if/o(d) > Ir{0).

With these definitions, x^'^^ is the maximum fiow for subnetwork (achieved exactly

when 5 = 0, i.e., at optimal routing). We define cq{x^^-^) as the cost to the owner of

subnetwork at this optimal routing; i.e.,

MAX\ __ / dlo{d), if lo{d) < Ir{0)\

iRid-x^^""), li lo{d) > Ir{Q).
Co (3^0 J — \ ^MAX] (J ^MAX

Clearly, any fiow xq E [x^''^^ ,x^''^^] is achievable. To achieve a flow xq e [x^''^,x^^^)

the owner of subnetwork should choose 5 such that:

^ ^ iRJd-Xo) -lojxo)

k{xo) - lo{xo)

where < 5 < 1 since: (1) the definition of Xq^-'^-^ ensures that lR{d — xq) > lo{xo);

and (2) ^0(2:0) > ^o(a:o) for all Xq > 0. Finally, using the definition of 5 in (26), observe
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that for all xq G [xq'^^^ jX^"^-^), we have the relation mo{xo,5) = lfi{d — Xq). In other

words, if the subnetwork owner chooses policy 5 according to (26), the flow through the

subnetwork will be xq, and the resulting latency will be //j(d — xq).

As a result, the optimization problem for the owner of subnetwork becomes:

--
{ .„,,^^i^.M.., [-o^-(^ - -°)]

'
^(-o""^)}' (27)

the solution of which determines the delay-minimizing routing policy of the subnetwork.

If the solution yields xq G [a;^^^^ , x^'^'^
)

, the subnetwork owner should choose 5 in

accordance with (26). If the solution yields Xq = Xp^^"^, the subnetwork owner should

choose (5 = (pure optimal routing). If the game between service providers is one of

complete information, all the latency functions are common knowledge and the owner of

the subnetwork can compute x^^^ , x^'^'^ , and Ir, and hence the optimal flow through

the subnetwork. If we assume that lo{d) > Ir{0), we can intuitively understand the

solution: If XQln{d — xq) increases as xq increases in the neighborhood of x^^^ , the

provider will (locally) prefer selfish routing. Similarly, if xolR{d — xq) decreases as xq

decreases in the neighborhood of x^"^^, the provider prefers selfish routing.

This analysis shows that with complete information and a parallel-hnk network, the

delay-minimizing policy of the network is straightforward to characterize. We leave

several issues for future work: the analysis of networks with more general topologies;

general equilibrium structures where all subnetworks optimize; situations in which la-

tency functions of other providers are unknown; and scenarios in which the objective of

subnetworks may be profit maximization rather than delay minimization.

7 Concluding Remarks

A newly-emerging paradigm in the analysis of large-scale communication networks rec-

ognizes and quantifies the inefficiencies resulting from the selfish behavior of flows within

the network, which choose the minimum delay routes, ignoring the congestion external-

ities they create on the overall network (e.g., [9, 10, 11]). Even though selfish routing,

where transmission follows the least cost path for each source-destination pair, is a rea-

sonable approximation for routing across domains within large-scale networks, service

providers operating their own administrative domains typically redirect traffic within

their own networks to achieve better performance (see, e.g., [2, 3, 4, 5, 6]). This overlay

routing structure of large-scale communication networks, particularly the Internet, has

not previously been modeled or analyzed.

This paper provides a model of partially optimal routing that captures these essential

features. While source-destination pairs transmit fiows across the least cost paths, ser-

vice providers controlling the subnetworks that make up the large-scale global network

use traffic engineering to reduce delay within their own administrative domains. End-

users perceive the delays resulting from the traffic engineering of the network providers.
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We formulate and analyze the equilibria of this global network with partially optimal

routing.

Even though traffic engineering within parts of the overall network may be conjec-

tured to reduce congestion externalities and improve overall network performance, we

show this not to be the case. In particular, if the global network exhibits the Braess'

paradox, traffic engineering that reduces delays within a subnetwork may worsen the

performance of the overall network. More specifically, we prove that if partially optimal

routing leads to an increase in overall delay relative to selfish routing over all links,

Braess' paradox must occur in the global network.

Much of the paper quantifies the potential inefficiency of partially optimal routing

relative to the system optimum in the case where all independently-operated subnetworks

have single entry-exit points and delays can be modeled by latency functions of a specific

class, such as affine or nonnegative polynomials of bounded degree. For example, with

affine latency functions, we establish that the performance of partially optimal routing

is no worse than 25% relative to the system optimum.

In contrast to these results that match the corresponding bounds for selfish routing

throughout the whole network, when subnetworks have multiple entry-exit points, the

performance of partially optimal routing can be arbitrarily bad, even with linear laten-

cies. This result suggests that special care needs to be taken in the regulation of traffic

in large-scale networks overlaying selfish source routing together with traffic engineering

within subnetworks. ' ""

We also provide conditions for service providers to prefer to engage in traffic engi-

neering rather than allowing all traffic to route selfishly within their network. The latter

is a possibility because selfish routing may discourage entry of further traffic into their

subnetwork, reducing total delays within the subnetwork, which may be desirable for

the network provider when there are no prices per unit of transmission.

We believe that the model of partially optimal routing presented in this paper is

a good approximation to the functioning of large-scale communication networks, such

as the Internet, and raises a number of interesting questions for further investigation.

Possible areas of further study include:

1. Quantification of the loss of efficiency of partially optimal routing relative to selfish

routing throughout the entire network.

2. Analysis of dynamics and stabihty of partially optimal routing in large-scale com-

munication networks.

3. Analysis of simple regulation schemes that can prevent realization of worst-case

performance losses in networks with partially optimal routing.

4. Quantification of the loss of efficiency of partially optimal routing relative to the

system optimum in specific network topologies incorporating subnetworks with

multiple entry-exit points and multicommodity flows.
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5. Analysis of the equilibrium of routing patterns when multiple service providers

simultaneously and strategically decide the extent of traffic engineering.

6. Analysis of partially optimal routing when service providers do not simply mini-

mize total delay, but charge for transmission through their networks and maximize

profits, taking into account the impact of delays within their network on their rev-

enues.
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