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Abstract

This paper develops and tests a model of sequential decision making where a first stage

of ranking a set of alternatives is followed by a second stage of determining the value

of these same alternatives. The model assumes a boundedly rational Bayesian decision

maker who is uncertain about his/her underlying preferences over the relevant attributes,

and who has to exert costly cognitive effort to resolve this uncertainty. Compared to when

only valuation takes place, the analysis reveals that ranking a set of alternatives prior

to determining their value has three primary effects: a) the spread (or dispersion) of

valuations between most and least preferred alternatives increases, b) decision makers

will, on expectation, exert more effort in the valuation phase, and c) the more each

attribute contributes to overall utility the greater the relative impact of ranking is on

valuation spread. The analysis also sheds light on how prior ranking impacts the demand

for a product. These results are then corroborated in a series of controlled lab experiments

with actual prizes. The findings have implications for many real life decision making

situations ranging from auctions, where there is a tendency to prioritize items before

determining a bid, to the ranking of job candidates prior to determining wages and

benefits to be offered. More generally, the results bear on our understanding of how past

decisions can affect future related decisions.



1 Introduction

Past decisions are often used as input to guide future related decisions. This is regarded

as beneficial when the information conveyed in a previous decision is expected to shed

light on dimensions associated with the decision at hand, even if these decisions are not

identical. In the context of such dynamic decision-making, we ask how previous choices

would affect the subsequent determination of maximum willingness to pay for a given

good. For example, consider an individual who has chosen a job offer with certain wages

in a big metropolitan city over an identical job that pays more wages but is located

in a small suburban town. Imagine that several months later, this same individual is

considering buying a small house downtown or a big house in the suburbs. How would

the willingness to pay (and thus bid) for a house located in downtown or suburbia change

if the individual is reminded of the fact that she has chosen the lower-paying urban job

over the higher paying suburban job? A similar question may arise even within a single

decision if the decision maker divides the complex decision problem into multiple sub-

decisions. Examples of such procedures are common: an employer might first rank the set

of candidates interviewed before determining the details of each offer to be made (Roth

1984), a consumer at an auction site with many similar items might have to repeatedly

choose among sellers before determining how much to bid until an item is secured (Peters

and Severinov 2001), and a management team might first rank order product development

projects before deciding how much R&D resources to devote to each one (Keefer 2001).

In an ideal world where individuals know their preferences with certainty or can

figure them out effortlessly, Individual's previous choices would not have an informational

value for subsequent decisions. In reality, however, individuals seldom know their own

preference structure with full confidence (for example, the exact trade-off between two

product attributes) or may need to anticipate the likelihood of future usage/consumption

contingencies. Hence, most decision making tasks regarding multiple alternatives entail

costly effort, in the form of cognitive thinking or time-consuming research, and will render

past choices potentially useful input. How then should we expect the effort expended

in determining valuations to be impacted by the knowledge of a prior choice or rank

ordering of the alternatives? How do previous choices impact final valuations, compared

to when only valuation takes place? The goal of this paper is to provide an answer to

these questions both theoretically and empirically.

Social-science literature has examined the implications of various decision tasks on

preference elicitation. The focus has been on how performing various tasks, such as



choice, rating and matching can yield different outcomes when performed separately (e.g.,

Tversky et al. 1988, Montgomery et al. 1994, Bazerman et al. 1992, Huber et al.

2002). However, the implications of intertemporally combining a set of tasks on final

elicited preferences have not been studied. In this context, our paper focuses on how a

previous ranking task, where the output required is an ordinal relationship between the

alternatives, affects a subsequent valuation task, where the output required is a measure

of willingness to pay for each of the alternatives.

To examine this prevalent sequence of evaluating alternatives, we construct a model

of individual decision-making over a set of two alternatives defined over two attributes

that need to be traded-off. The central features of the model that make it relevant

for examining the above decision sequence are: a) individuals are uncertain about their

preferences (much in the vein of March 1978, and Keeny and Raiffa 1976), b) through

costly cognitive effort they can resolve part of this uncertainty, and c) though individuals

may be forgetful of specific details emerging from cognitive effort during ranking, the

outcome of this decision phase (i.e., the rank ordering of alternatives) can be incorporated

in the subsequent determination of willingness to pay. As such, our boundedly rational

agents use their own previous choices as a source of information about their own utility

structure, and may be perceived to have a preference for consistency (similar to the agents

in Yariv (2002)). That said, our agents also exhibit other specific patterns of behavior

(also observed in our experimental setting) that cannot be explained by such preference

for consistency.

The analysis of the model reveals three interesting findings. First, it is shown that

the spread of valuations for the two alternatives is, on expectation, greater when ranking

precedes valuation. This is not only because of the extra information embodied in the

rankings, but, interestingly, also because rankings may induce the agent to think more

when the information is perceived to be more valuable. Second, this increased spread

as a result of ranking is more pronounced when the contribution of each attribute to

overall utility is higher. Lastly, we find that the effort expended in valuing alternatives

is (canonically) expected to be higher when ranking information is present, even though

previous effort has obviously already been expended in the ranking stage. We also exam-

ine how prior ranking affects the likelihood of purchase (with any given distribution of

prices) . In particular, we show through a canonical example that prior ranking increases

the probability of a sale when prices are either very low or very high (but not when they

are centered around the mean expected value).

A series of experiments designed to allow comparison of valuation and ranking deci-



sions (and their combined effect) were carried out. The experiments used actual prizes

for future consumption of a familiar product category, namely dining at local restau-

rants, and were constructed to induce truth-telling through a Becker-DeGroot-Marschak

(1964) mechanism. The empirical results strongly confirm the implications of the theory,

and were designed to rule out possible alternative explanations (such as learning or task

familiarity) . In particular, we confirm that the effect of ranking on valuation spread be-

comes more pronounced as the stakes involved in the task increase (i.e., the average value

of the prizes is higher) . This provides an example for a general possibility that certain

effects that are generated by bounded rationality (Rubenstein 1998) may get even larger

as the decisions themselves become more important.

The rest of the paper is organized as follows: In the next section we develop theory

that allows the modeling of a sequence of decisions regarding the same alternatives,

in particular, ranking and subsequent monetary valuation. We formulate the central

findings of the model as hypotheses, which we then test through a series of controlled

experiments. The paper ends with concluding remarks.

2 A Model of Sequential Decision Making

To shed light on our questions of interest, in this section we develop a simple model of

utility with uncertain preferences. We then analyze the utility maximizing behavior of

an agent confronted with two different alternatives that she either needs to 1) rank in

order of preference, 2) provide an exact monetary value for each, or 3) first rank and

then value each of the alternatives.

Notation: We will use the following standard notation throughout. Given any ran-

dom variable x, E [x] is the expected value of x and Var (x) the variance of x. We write

E [x\G] and Var (x\G) for the conditional expected value and the conditional variance of

x given event G. We also write Pr(G) for the probability of event G and let E [x : G] =

E [x\G] Pr(G). The sets of real and non-negative real numbers are denoted by 1Z and

TZ+ , respectively. Given any three-times differentiable function / : TZ —> TZ, we write /',

/", and /"' for the first, second, and third derivatives, respectively.

2.1 Set-Up

Consider a boundedly rational agent who wishes to maximize the expected value of

a utility function u, the parameters of which she does not know with certainty. The



agent is rational in the sense that she wishes to make a normatively optimal decision

but at the same time is constrained by the costliness of effort needed to resolve the

uncertainty. This principle is prevalent in models of bounded rationality (e.g., Simon

1982 and Gabaix and Laibson 2000) and has been generally accepted as a factor not to

be ignored in real or laboratory settings (Smith 1985).
2 Thus, it is possible for the agent

to become more informed in making her decision by introspectively accessing information

associated with the alternatives at hand. This introspection requires cognitive effort and

can be thought of as a mental cost that is accompanied by disutility.
3 Ergin (2002)

uses a few plausible axiomatic assumptions regarding decision makers that are consistent

with our characterization above. In addition, while the agent is forgetful about specific

details arising from cognitive effort expended in any previous related decision tasks, the

outcome of such decisions can be taken into account by the agent (the updating process

will become clear in what follows).

Assume our agent is presented with two indivisible goods, X and Y, each defined in

terms of two attributes a and b:

a b

X ax bx

Y ay by

Here, ax, ay, bx, by E 1Z. The value the agent attaches to obtaining good i is:

wa (ai) + Swb (bi)

where wa : TZ — V, and wb : 1Z —> 1Z are increasing functions, 6 is a non-negative real

random variable and i E (X, Y). With this notation, we write u(X) = wa (ax) + Svjb{bx)

and u(Y) = wa (ay) + 8wb{by). Thus, while the agent knows wa (•) and w\, (•) she does

not with certainty know 6, whose expected value E [5] is taken to be l.
4 For the decision

to be non-trivial, we are concerned with cases where no good dominates the other.
5

2 This principle is also related to what Marschak (1968) termed as the cost of thinking, calculating,

deciding, and acting.

3
It may also be possible in some cases for the agent to expend resources in obtaining information

by seeking out costly external sources. For example, speaking to friends, getting an expert opinion,

conducting a survey of relevant literature, etc.

4 Our results generalize to the cases where there are more than two attributes and where the agent's

value for obtaining good i is: Sawa (ai) + 8bVJi,(bi), where 6a ,6b are independent. For expositional ease

we focus on the case where only Sb{= 6) is random, reflecting the situation whereby the contribution of

one attribute to overall utility is ex ante known with less certainty.

5
It is worth noting that the attribute conflict hypothesis of Fischer et. al (2000) predicts that such a

tradeoff in attributes will lead to preference uncertainty.



Hence, without loss of generality, we assume Aa = wa (ax) — wa (ay) > and A& =

Wbiby) — u>b{bx) > 0. We write p = j^ > 0. Note that if our agent knew her true utility

structure, she would be indifferent between X and Y if and only if 8 = p, and strictly

prefer good X to good Y if and only if 8 < p.

To reduce the uncertainty associated with 8, the agent may expend effort c (measured

in terms of utility). In our model, the agent has the following simple, non-adaptive way of

acquiring information about 8. For some c > 0, consider a function F : 1Z+ x [0, c] —> [0,1]

such that for each c G [0, c], F (•; c) is a cumulative distribution function (CDF) with mean

1 and variance V (c), where V (c) = Far (6). By expending c G [0, c] units of effort, our

agent can get an estimate <5 of <5 such that

6 = 6e, (1)

where e is the remaining error associated with the estimator 5, e and 6 are stochastically

independent, and 8 has CDF F(-;c). We emphasize that 8 is treated as an estimator

(i.e., a random variable) before actual thinking has been expended. After thinking, the

agent obviously obtains an estimate (i.e., a number) that she can then use to establish

her utihty for each of the goods. The net utility from each good with estimator 8 can

now be expressed as:

lUa(Ot) + 8wh (bi) - c.

It can easily be shown that Var(e) = (Var(8) — Var{8))/{\ + Var(6)). Hence, the

variance of the remaining uncertainty is decreasing with Var(8), which measures the

precision of 8.

In subsequent analysis, determining the variance of the estimators plays a central

role. We will assume that V satisfies the following condition:

Assumption 1 The function V is strictly increasing, strictly concave, and three-times

continuously differentiate

.

The condition that V is increasing (i.e., V > 0) implies that as the agent thinks more

she gets a more precise idea about 8 (i.e., with lower noise, measured by the variance of

the error term e). The concavity of V (i.e., V" < 0) ensures that the first order condition

is sufficient for optimization, and more importantly, is consistent with the agent having

an incentive to learn only part of the information about 8, leaving the variance Var (e)

of the noise term positive when making her decision. Since V" < 0, the first derivative

V has an inverse, which will be denoted by h(-).



2.1.1 Subsequent Effort and the Updating of Estimators

In order to be able to trace the impact of a previous decision regarding the two alternatives

on a subsequent decision, we need to specify how the agent would incorporate information

from the former into the latter. Through initial effort Co in thinking about the relative

importance of attribute b, the agent obtains an estimate <5o of 8 (with 8 = SqEo). Given

this estimate, if the agent then expends c\ units thinking about the residual uncertainty

£o, she gets an estimate Si such that

8 = 6 8iEi,

where (again) the estimators So, <5i, and e\ are stochastically independent, and 8\ has

CDF F(-;c\). (Here c\ is constrained so that the variance of the error term is not

rendered negative). Note that E{8 ]
= E[8i] = 1, hence E[eq] = E[e{\ = 1, yielding

unbiased estimators. Note also that Var(8 ) = V (c ) and Var(8i) = V (ci).

Using the model described above, we will analyze how our agent's previous rankings

will affect her subsequent valuation of goods. Before this, we present a canonical example

to illustrate how information is processed in accordance with the model.

2.1.2 A Canonical Example

Consider the stochastic process Dt = e
Zt

(t E [0, 1]), where Zt is given by the stochastic

differential equation
1 9

dZt = —z<rdt + crdBt , ZQ =

and Bt is a standard Brownian motion. Thus defined, Dt is a martingale, which implies

that the expected future change in D is nil, and E(Dt ) = 1 for any t. Dt can be thought

of as a random walk the agent goes through in her mind to obtain relevant information

for the task at hand. In this context, t should be thought of as an abstract point along the

continuum of information she can potentially consider. We can now express 8 as D± so

that E [8] = 1 and log 8 ~ iV(—\a2
, a2

). That is, 8 can be completely determined by the

aggregate effect of all associations, which are assumed to be stochastically independent

of each other. Upon thinking c units, she learns incremental information in an interval

\to,tc] of length (tc — to) = a log (1 + c); the resulting estimate is given by 8 = j^-, a
fc

log-normal random variable with mean E{8) = 1 and variance

Var{8) = V(c) = exp [a log (1 + c) a2
]
- 1 = (1 + c)

a° 2

- 1.

For {oca
2
) < 1, V satisfies Assumption 1. The error term e = 8/8 is also a log-normal

random variable (with mean E(e) = 1 and variance Var (e) = exp [(1 — a log (1 + c))a
2

]
—



1 = exp [a
2

]
(1 + c)~

aa — 1). Note that in this example, c = exp (1/a) — 1, so that by

thinking c units, the agent would learn all the information relevant for determining 6.

In the above example, the support of the estimators was unbounded. For simplicity,

and without qualitatively affecting any of our findings, we will assume in what follows

that estimators are uniformly bounded:

Assumption 2 There exists some D > such that F (D, c) = 1 for each c 6 [0, c].

2.2 Ranking

We now describe how the agent ranks goods X and Y in order of preference. We explicitly

define the agent's optimization problem and present a basic comparative static about the

choice of introspection length.

When asked to rank goods X and Y in terms of which good she would prefer to

receive, the agent first decides on the length cr of her thought process. Upon thinking cv

units, she obtains an estimate 5r , and based on this estimate makes a preference ordering

of goods X and Y. It is clear that she prefers X if and only if E[w(X)|5r ]
> -E[u(Y)|5r ],

i.e., 6r < p. Therefore, her expected utility from choosing cr is

Ur (cr ) = E[wa (ax ) + 6wb (bx ) : K < p] -f E[wa (aY ) + Swb (bY ) : K > p] - cr . (2)

Note that the expectation operator, E, depends on cv (through F(-;cr )). We compute

that

UT {Cr) = A bE[p -8r :8T <p} + E[u(Y)} - c,.. (3)

Using (3), we obtain the following proposition, which states a basic comparative static.

Proposition 1 Assume that F is continuously differentiable, —^^ > at each d < 1,

and —|^— < at each d > 1 . Then,

1. tr = argmaxc6 [o,c] Ur (c;p) decreases with \p — 1|, and

2. tr increases whenever both wa and wb are multiplied by a constant A > 1

.

The condition assumed in the proposition states that as the agent thinks longer, she

obtains a more precise estimator in the sense of second order stochastic dominance. (This

is somewhat stronger than the condition that V is increasing.) Under this condition, the

optimal choice of introspection length before the ranking decision decreases with \p — 1|,



which measures the degree by which one good ex ante dominates the other. 6 In addition,

all else equal, introspection length increases when the stakes involved (i.e., the unit

contribution of each attribute to overall utility) are higher. The proof of this proposition

is relegated to the Appendix.

In the next two subsections, we analyze our agent's behavior when confronted with

valuation decisions. To simplify our expressions and ensure an interior solution for the

effort expended, we will assume two additional regularity conditions. The first condition

is:

V'(0)>l/(A(E[6\c.r <p})
2
), (4)

where A is a constant (that will be defined later). This condition guarantees that the

agent will always think some positive amount in a subsequent valuation task, even when

she knows the outcome from a previous ranking of the two alternative goods. The second

condition is:

V'(c)<l/(A(E[8\6r >p})
2

) (5)

where c is given by V (c) = Var (er ) = ( Var (6) — Var(8r ) j
/ ( 1 + Var(8r ) ) . This con-

dition guarantees that some uncertainty will remain unresolved even after the valuation

decision.

2.3 Valuation

We now analyze how the agent decides on the value ofX and Y, when required to provide

the highest amount that she would be willing to pay for each of the goods. In a valuation

decision, the agent must again first decide on the length of thought, c„, obtain an estimate

6V for the relative importance of attribute b, and finally determine estimates ux and uy

for u(X) and u(Y), respectively. Given that thinking is costly, the exact amount of

effort to be expended prior to making a decision depends on how the valuation estimates

will be used to determine the agent's payoffs. In this paper, we consider the following

mechanism, proposed by Becker et al. (1964). The agent provides estimates ux and uy

for goods X and Y, respectively. One of the goods (say good X) is then selected with

some known probability n.
7 Subsequently, we draw a monetary prize (say px) from a

uniform distribution on the interval [0,m] for some large integer m. If the estimate for

6 For instance, let p > 1, in which case ex ante X is better than Y. The assumption —g^ < 0,

leads to
gc g

r < 0. By Milgrom and Roberts (1994), this shows that the optimal choice of introspection

length decreases as p increases.

TThat is, each good is selected with probability 7r; and the events that X is selected and that Y is

selected are mutually exclusive.



the good is higher than the monetary prize (ux >Px), the agent receives the good (X);

otherwise, she receives the monetary prize (px)- Consistent with Assumption 2, we take

m > max {wa (ax ) + Dwb (bx )
,wa (aY ) + Dwb (by)} (6)

so that 77i > max {ux ,Uy} with probability 1. Under this mechanism, truth-telling is

a dominant strategy. That is, the agent submits ux = wa (ax ) + 6vwb (bx ) and uY =

Wai^y) + Svwb (by) where 8V is the expectation of 6 conditional on all the information the

agent has by the end of the valuation phase.

Note that in reality when the agent faces a price px for good X, she buys the good

(i.e., pays p(X)) if and only if ux > px . In that case, she would get what she gets under

our mechanism minus px . Thus, her payoffs will be the same as here minus a constant,

reflecting the same preferences.

Our next proposition states that the agent maximizes the variance of her estimator,

multiplied by a constant that is determined by the specifics of the mechanism, minus the

cost of thinking. We will write Uv (c„) for the agent's expected utility when she thinks

c„ units and submits valuations ux and uy (as defined above), to be followed by the

mechanism described above to determine her payoff.

Proposition 2 Under Assumption 2, take m as in (6). Then, given any cv 6 [0, c], we

have

Uv (c) = AVar(8v ) + B - c„ = AV (c) + B - c,

where

A = ^H(bX )+wl(by)},

B = ~[E[u2 {X)]+E[u2 {Y)]]+nm-AVar{6),

and 6V is the estimator she obtains upon thinking cv units.

The proof is relegated to the Appendix. Prom Proposition 2 we have,

U'v {cv)=AV'{cv)-l. (7)

Since V is increasing, it follows that the optimal length of thought in valuation (prior

to providing utility estimates), cv = argmaxc€ [o z£
]Uv (c;A), is increasing with A. The

other parameters affect c„ only through A. Note that A is increasing with n (i.e., the

probability that the estimate will be used for a given good), with w2
(bx ) and w2

(by)



(i.e., the coefficients that translate the variance of 8V to the variances of ux and uy,

respectively) and with 1/m (i.e., the probability that the price will be in an interval of

unit length, measuring the need for precision).

Finally, since V is concave, using the first order condition (7), we obtain

Cy = arg max Uv (c) = h (1/A)
, (8)

ce[o,e]

where h = {V')~ . From conditions (4) and (5) it is evident that c\, G (0, c).

2.4 Ranking and Valuation

We now describe how the agent determines the value of goods that she has previously

ranked. Our boundedly rational agent knows which good she prefers but does not re-

member the details of her introspection. In other words, by the nature of the ranking

decision she knows which good is preferred and the optimal amount of effort she must

have expended to rank the alternatives (cv), but would need to go through the same in-

trospection (expending the same effort again) to recapture the pertinent details regarding

the relative importance of attribute b.

During her ranking decision, the agent obtained an estimator 8r with

8 = 8re r , (9)

where 8T and eT are stochastically independent, and 8r has CDF F(-;cr ) with cr =

argmaxc6 [o ie]
Ur (as explained in §2.2). Let us first examine the case whereby the agent

knows that she has ranked X at least as high as Y. This implies she must have found

8r < p. Thus, while the agent has some information on <5r , she has no information about

er (the residual error associated with 8T ). Given the concavity of V and the fact that the

cost structure for resolving uncertainty regarding er and 6r is the same, in any decision

task subsequent to ranking, it is optimal for the agent to think about er . Furthermore,

our regularity condition (5) guarantees that the variance of er is sufficiently high so that

the agent will choose to resolve only part of the uncertainty in er . Hence, based on

2.1.1, subsequent introspection for purposes of valuation yields an estimator of er that is

independent of 8r and satisfies

8 = SrS^Era, (10)

where 8r , 8£r , and erv are stochastically independent and 8Er is the estimator of er ,

obtained through an introspection of length CrV . Her new estimator for 8 is 8„, = .E^l^r <

P,KT ]
= Kr E[8\8r < p].

10



Similar to the proof of Proposition 2, we compute the expected utility from thinking

crv units, given the ranking information, to be

Urv (crv \8T < p) = AVar(6rv \6r < p) + i%
r <pi

- crv ,

where Bt~
g <p i is the same as B defined in Proposition 2, except that the expectations and

variances are conditional on {8r < p}. Since Var(8TV \8r < p) = (E[8\8r < p])
2V {crv)^

this becomes

Urv {crv \8r <p) = A{E[8\8r < P}fV {crv ) + S|
ir < p|

- crv . (11)

Since (E[8\8r < p})
2 < 1, we must have

crv [8T < p} = arg max Urv (crv \6T < p) < arg max Uvo (cy )
= cvo , (12)

c£[0,c] c6[0,c]

where cvo and UV0 (Cu ) are introspection effort and expected utility of valuation without

previous ranking. The implication of the inequality (12) is as follows: knowing that she

has ranked X at least as high as Y, the agent infers that she must have found attribute b

not so important. Thus she chooses to think less in resolving the remaining uncertainty

associated with its relative weight. Together with (4) and (5), (11) implies that

crv [5r <p} = h(l/(A(E[6\6T < p})
2
)). (13)

In similar fashion, if the agent were to know she previously ranked good Y higher

than good X, then she would infer that she must have found 8r > p, and the utility from

introspection of length crv would be

Urv {Crv \8r > p) = A{E[8\8r > P))

2V (c^) + Br$r>pl " Crv, (14)

where Bn > i is the same as B in Proposition 2, except that the expectations and vari-

ances are now conditional on {8r > p}. In this case, the agent chooses to expend thinking

effort

CrV [8r >p} = h(l/(A(E[8\8r > p})
2
)). (15)

Analogously to (12), it is straightforward to establish that crv [8r > p] > cvo . This

is because the agent now knows she must have found attribute b relatively important,

8Note that Var{8rv \6 r < p) = Var{6£r E[6\ST < p}\6T < p) = (E[6\6T < p])
2Var(6ST \6r < p) =

(E[6\Sr < p})
2V {crv ), where the penultimate equality is due to the fact that 6 r and 6Er are stochastically

independent.

11



and has a greater incentive to expend effort to make a more informed decision. In the

Appendix we show that < c„, < c and V(0) < V(cTV ) < Var(e). Hence the optimal

effort is positive, yet some uncertainty still remains unresolved after the valuation phase

(satisfying the regularity conditions (4) and (5)).

Clearly, the presence of ranking information impacts the optimal effort in the valuation

stage. What is the direction of this impact in expectation? The ex ante expected effort

with ranking information is:

E [crv ]
= Pr (or < p) h(l/(A(E[6\8r < p])

2

)) + Pr (oT > p) h{\ / (A(E[6\6r > p])
2
)).

Since Pr ft < p) E[6\6r < p] + Pr ft > p) E[6\Sr > p] = E[8] = l and c„ = h (1/A),

we have the following comparative statics result:

Proposition 3 Under Assumption 2 and conditions (4) and (5), E [crv ]
> cvo (resp.,E [crv ]

<

c\j ) whenever h (1 /

x

2
) is a convex (resp., concave) function ofx.

In words, Proposition 3 implies that rank ordering a set of goods makes the agent

expend more effort (in expectation) in subsequently generating valuations for these same

goods, compared to the case when no ranking has taken place and provided that h (l/x2
)

is convex. Note that h (l/x2
) is a convex function ofx if and only if

—

v'(h(i/x2
))
x 1S anon_

increasing function of x. As we will discuss later, —V"/V is typically decreasing in x; we

need it to decline faster than l/x for convexity. In the canonical case described in §2.1.2,

h (l/x2
) is indeed a convex function of x,

9 hence E [c™] > cvo and the presence of ranking

information increases the optimal effort during the valuation stage (in expectation). The

proposition reflects the fact that when /i(l/x2
) is convex, the greater returns to effort

when attribute b is found important (i.e., 8T > p) overshadow the lowered incentives to

expend effort when 8r < p.

2.5 How Ranking Affects Subsequent Valuation

Having established how the agent incorporates her knowledge of previous rankings when

selecting the optimal effort to allocate in the valuation decision, we now turn to examine

how the valuations themselves are impacted by such a sequence of decisions. To do so,

we will first establish when the findings from introspection in the valuation phase leave

the findings from the ranking phase intact, and alternatively, when they can lead to

9
If V{c) = Ct for some 7 € (0,1), V (c) = 7c^ 1 and h(z) = (z/7 )

1/(7_1)
. Hence, h (l/x 2

)
=

^,1/(1-7)3.2/(1-7)^
js indeed a convex function of x.
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a preference reversal (i.e., when the good found to have a higher value was previously

ranked lower). Then, confining ourselves to a very large class of canonical functions,

we will show that knowledge of the previous ranking decision leads to more accurate

valuations, as measured by the variance of the final estimator for 6. This occurs not

only because of the extra information embodied in the rankings, but also because the

agent is induced to think more when the information is perceived to be more valuable.

Using this result, we will show that knowledge of a previous ranking decision increases

the spread of valuations, as measured by the mean squared difference between the utility

estimators for the goods, and that this effect becomes more pronounced as the stakes

involved increase, as measured by the contribution of each attribute to overall utility.

Using the relationship in (10), we write

- / E[6\6r < p}6Er [K < P]
if K<p ,..,

E[6\8r > p]6Sr [6r > p] if 6r > p

for the estimator for 8 when the agent needs to provide monetary values for the goods that

she has already ranked, and where 8Er [8r < p] and 6er [Sr > p] have CDFs F(-; crv [5r < p))

and F(-;crv [6r > p\), respectively. We also write u^ = wa(ax) + Kvwb(bx) and Uy =

Wa{ay) + 5rtJWb(6y) when the agent incorporates ranking information in her estimators

for the values of u (X) and u (Y). Similarly, we write uv^, Uy (with estimator 5V0 ) when

no previous ranking information is available. It will also prove useful in subsequent

derivations to define ue
^, Uy as the agent's valuation estimates if she were to use the

estimator 6Er , i.e., when she (hypothetically) ignores the ranking decision outcome (see

§2.4). Note that we have uT£ - u? = Ab(p-STV ), u
e£-Uy- = Ab(p-6Er ), andu^ -Uy =

Ab(p-6V0 )}°

For purpose of exposition, let us focus on the case where the agent knows she has

ranked good X as least as high as good Y. When introspection in the valuation phase

yields 6Sr < p, the new findings are aligned with the ranking information, hence the agent

clearly keeps valuing X higher than Y. When p < 8Er < p/E[6r \8r < p], the new findings

no longer favor X. But, since the difference is small, the agent still gives X a higher

value than Y, rendering the previous ranking intact. When the result of introspection is

<5
£t. > p/E[8r \6r < p], the new findings strongly favor Y, and the agent in effect reverses

her rankings by giving Y a higher value than X (albeit with a decreased difference due

to the ranking information). In this last case, we observe a preference reversal between

the two decision tasks.

10To see why, take for example u™ — £™. One can easily establish that u^ — u™ =
\
wa(p.x ) +

6rvwb (bx )}
- [wa (ay ) + 6rvwb {by )] = (wa (ax )

- wa (ay )) - 6TV i"Wb(by )
- uib (bx )) = A b (p - 6rv ).

13



It is also worth pointing out that when the agent knows she has ranked X higher

than Y (i.e., 8T < p), she incorporates the ranking information into her new findings by

multiplying 8£r with E[8T \8r < p] < 1 (see (16)). By doing this, she lowers her valuations

for both X and Y, i.e., ur£ < u£
£ and Uy < up. 11 The reverse is true when 8T > p.

2.5.1 The Impact of Rankings on the Variance of the Estimators and the

Likelihood of Purchase

In a valuation decision, the variance of the estimator measures how informed the agent

is when she provides her estimates. Thus, it is critical to understand how information

from previous rankings affects the variance of the estimator for 8. In this discussion, we

will focus on the case when —V"/V is non-increasing.12

To express the variances of estimators for 8, with CDF F {-;h (^)), one can define

a function $ : 7£+ —

»

1Z by

V(x)=x2v(h(-^\Y\/x>0. (17)

When no prior ranking has taken place, we have E[6] = 1 (before valuation) and by (8)

the agent expends effort c\j = h (1/A) in the valuation phase. This results in estimator

8V0 with variance Var(6V0 ) = ^ (1). Analogously, if prior ranking has taken place we

have ^(E[8\8r < p\) = Var(8rv \8T < p) when good X is ranked higher than good Y, and

ty(E[6\6r > p\) = Var(8rv \8T > p) otherwise. The following Lemma describes the shape

of ^ under the assumptions of our model, and sheds light on how information from a

ranking decision affects the variance of the final estimator for 8.

Lemma 1 Under Assumption 1, $ is increasing. Moreover, ^ is convex whenever

—V"/V is non-increasing.

Based on the above lemma, previous ranking affects the variance of valuation esti-

mators as follows. When 8T < p, ranking leads the agent to think less compared to

11 One might think that the information that X has been ranked higher than Y would lead her to

increase her estimate for X. This is not true. The answer depends on the parameters as well as the

source of uncertainty. In our case, when the agent knows the value of attribute a, but is uncertain about

the relative value of attribute £>, it will lead her to decrease her estimate.
12When V is a utility function, —V"/V measures the absolute risk aversion. Canonically, the absolute

risk aversion (— V"/V') is non-increasing. In Economics, much work has focused on the family of utility

functions with constant (CARA) and decreasing (DARA) absolute risk aversion, such as 1 - e~ QC
,

log (1 + c), and cM , which satisfy the above property.

14



the case when no ranking information is available. Given that the agent obtains less

additional information in the valuation phase, her ultimate decision is in a sense less

informed, i.e., Var(8rv \8r < p) = %(E[6r \5r < p]) < * (1) = Var(8Vo ). When 8r > p, the

agent is prompted to think more, and in this case Var(8rv \8r > p) > Var(8VQ ). Recall

also that ranking information is incorporated into 8rv according to (16). Which of these

effects dominates is determined by the shape of ty. Since ^ is convex, ex ante, ranking

information will lead to a more informed decision, as stated by our next Proposition.

Proposition 4 Under Assumptions 1 and 2 and the regularity conditions (4), (5), and

(6), we have

Var(6TV ) > Var(5V0 ) (18)

whenever —V"/V is non-increasing.

Proof. Under our hypothesis, the conditional variances are determined by \&, and by

Lemma 1, ^ is convex whenever —V"/V is non-increasing. In that case, we have

Var(8TV ) = Pv(8r < p)Var(8rv \8r < p) + Pr(8r > p)Var(8rv \8r > p) (19)

= Pr(<5r < p)^(E[8r \8r < p\) + Pr{8r > p)^{E\8T \8T > p\)

> * (Pr(<5r < p)E[6r \6r <p} + Pr{6r > p)E[8T \K > p])

= y(l) = Var(8V0 ).

The inequality holds due to the facts that ^ is convex and that Pr(<5 r > p) = 1 — Pr(<5r <

p); the penultimate equahty is due to the fact that E[8r ]
— 1.

Proposition 4 establishes that, ex ante, prior rankings lead to more informed decisions.

As we discussed earlier, this is not only because of the information contained in the

rankings but also because such information leads the agent to think longer when the

decision is more important.

We now turn to examine the implications of Proposition 4 for the ex ante likelihood

of the agent purchasing a good. Consider good X, with price px- Given an estimate

8, the agent is willing to buy X if and only if iix = wa (ax) + 8wb(bx) > Px, i-e.,

8 > q = (px — wa (ax)) /wb (bx). Let us write x for the conditional expectation of 8 prior

to the valuation decision (before expending cognitive effort). Then x = 1 when there is

no prior ranking, x = E[8r \
8r < p] when the agent knows that he ranked X higher than

Y , and x = E[8T \
8T > p] otherwise. The probability that the agent is willing to buy the

good is

ii{x- q ) = i-F(^h ( !

x
x' \ Ax2
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We will focus on the canonical example described in §2.1.2. In that example, we have

n(,;,) = l-#( 1^i + ^/2)

where $ is the standard normal CDF, v = r^- log (-yAx2
) is the variance, and 7 = aa2

.

The behavior of II depends on whether 7 is greater than or less than 1/2. When 7 is

large, the function V is approximately linear. With non-decreasing marginal returns to

effort, the agent has an incentive to invest in cognitive effort until virtually all uncertainty

is resolved (if she invests at all). As it is highly likely we will end up in a corner solution

when 7 > 1/2, we believe our theory is more relevant for 7 < 1/2 and focus on this case.

To understand the impact of prior ranking on the probability of sale occurring, we

examine how II (x; q) changes as x increases (in the region 7 < 1/2). On the one hand, q/x

decreases, causing II (x; q) to increase. On the other hand, the variance v also increases

as x increases, as the agent now thinks longer. From the properties of the log function,

this may initially increase n (x; q) (provided q > x) but will eventually decrease II (x; q)

to because 6 converges to in probability as its variance goes to infinity. When 7 < 1/2

the latter effect from increasing variance will be small. In fact, it is easy to verify that

if 7 > 1/2

iim Tl{x;q) = { 1/2 if 7 = 1/2

1 if 7 <l/2

for each q. We also check that II (x; q) is increasing if and only if

, 3-r-2 2-7-1

q > (7^4) 2(1 - 7) x !-»
.

Hence, as plotted in Figure 1, when 7 < 1/2, II (•;<?) is a U-shaped function minimized
l-T 37-2

at x = q
1 - 2"' / (7j4) 2 < 1

- 2t) and approaches 1 as x —> 00. Since ^Ax1 > 1, II (-; g) is an

increasing function in the allowable region whenever q > (jAy 7~ "
.

What is the impact of prior rankings on the ex ante probability of sale taking place?

Recall that x can take the values 1, E[6r \
8r < p], and E[8r \

6r > p]. Therefore, the ex

ante probability of sale is higher with ranking if and only if

Pr (Sr < pj n (E[Sr \Sr < p]; q) + Pr (sr > p) II (E[6r\K > p]\ q) > n (1; q) . (20)

Since

Pr (ST < p) E[Sr \6r < p] + Pr (K > p) E[6 r \K > p] = 1,

(20) holds if and only if II (•; q) is convex with respect to these three points (E[6r \5r < p],

E[6T \6r > p), and 1). When II (-; g) is convex (resp., concave) with respect to these

16



Y = 0.3, A = 20.9

\ ^^--^__^ ' q = 1

0.9
q = 0.2

0.8
q = 03

0.7 -

0.6

q = 0.9

0.5

"q^i

0.4 v^^^—"*"
-

0.3
__ qTl.5

0.2 /s ^<^^^
q = 4

0.1

4r ~-^ i . i 1— —t

q = 8

Figure 1: II as a function of x for 7 < 0.5. (.4 = 1/(0.167)).

three points, prior rankings increase (resp., decrease) the ex ante probability of sale. In

particular, assuming that both E[6r \
6r < p] and E[8 r \

8r > p] are close to 1, we need

to check whether II (-; g) is convex or concave around 1. We refer to Figure 1. First,

consider the case that the price (and hence q) is very small (e.g., when q < 0.3 in the

figure). In that case, II (; q) is convex at x = 1, hence prior rankings increase the ex ante

probability of sale. When the price of the good is around the ex ante value of the good

(e.g., when 0.9 < q < 1.5 in the figure), II (; g) is concave at x = 1, hence prior rankings

decrease the ex ante probability of sale. When the price is very high (e.g., when q > 4 in

the figure), II (•; q) is again convex at x = 1, hence prior rankings again increase the ex

ante probability of sale. In summation, prior ranking tends to increase the probability

of a sale occurring at extreme prices (that are relatively high or low) in our canonical

example.

2.5.2 The Impact of Rankings on the Dispersion of Valuations

Having established in Proposition 4 that prior rankings increase the variance of the esti-

mator for 6, we can derive a testable hypothesis about the spread of valuations submitted

for the two goods. We measure the spread by the mean squared difference between the

valuations for the two goods. Hence, E [{ii™ — v.™)
2

} and E [(u
v
^ — Uy) 2

]
are the spreads

of the valuations with and without information from a previous ranking decision, respec-
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tively. Since u7^ — Uy = A b (p — 6rv ) and uv
£ — uVy = Ab (p - <5„ ), we have

E [(t# - uT
Y
v

)

2
]
= A2E[(p - 6rv )

2
}
= A2 [Var(8rv ) + (p - l)

2

and

E [(t# - u
v

J)
2
}
= A2E[(p - 6V0 )

2
}
= A2 [Var(8V0 ) + (p - l)

2 "

.

The following proposition is an immediate corollary to Proposition 4. It states that

under our usual regularity conditions, knowledge of previous rankings increases the ex

ante spread between the maximum amounts the agent is willing to pay for the two goods.

Proposition 5 Under Assumptions 1 and 2, and the regularity conditions (4), (5), and

(6), we have

E [(&£ - fi?)
2
]
> E [(«£ - fi"?)

2

]
(21)

whenever —V"/V is non-increasing.

The above proposition establishes that by first ranking a set of goods, the subsequent

valuation spread between them is higher than if valuation alone were to be performed.

The next proposition examines how the effect of ranking on valuation dispersion depends

on the relative contribution to overall utility of each unit of the attributes (a, and hi).

We first define some notation.

Notation Given any A > 0, multiply wa and wb by A so that the agent's utility from

obtaining good i is \(wa (al ) + 6wb {bi)). Use superscript A to indicate that the payoffs

are multiplied with A.

Proposition 6 Assume: (i) F (•; •) is such that E[6r \8 > p] increases and E[8T \6 < p]

decreases when we increase the amount of effort c to obtain the estimator 6, (ii) —V"/V
is non-increasing, and (Hi) -V (h (1/x2

)) /V" (h (1/x2
)) is a convex function of x. Then,

under the same assumptions of Propositions 1 and 5,

Var{tTV )
- Var(8

X

J (22)

is increasing in A.

The first assumption (i) states that as the agent exerts more effort she gets a better

estimate in a sense that is stronger than the second-order stochastic dominance. Given

(ii), and the fact that h is decreasing, (Hi) can be replaced by the assumptions that V'/V"

18



>V J

is (weakly) concave and h(l/x2
) is a convex function of x. These two assumptions are

clearly satisfied when V (c) = c7 and 7 € (0, 1), as in our canonical example. 13

An increase in A increases [Var(8rv ]
— Var(8VQ )] in two ways. First, as A gets larger

then from Proposition 1 the agent exerts more effort in the ranking decision. Hence,

by (i), E\8T \8T > p] becomes larger while E[8T \8T < p] becomes smaller. This increases

Var(8rv ), as $ is convex by (ii) — see (19). Since Var(8
Vo ) is not affected, this in-

creases [Var(8TV )
— Var(8 )]. Second, an increase in A increases A, and hence leads the

agent to exert more effort in the valuation stage as well. This increases both Var(8rv )

and Var(8
vo ). Under (Hi), it impacts Var(8rv ) more and thereby further increases the

difference [Var(8rv )
- Var(8VQ )}.

Proposition 6 also implies that the greater the contribution of each additional unit

of the attributes, the more pronounced the effect of ranking on the spread of valua

tions. That is, E [(u
r
£

x - ur
Y
vX

)

2
]
- E [{u

vf - uv

Y
oX

)

2
}
= A2A2

,
{Var{8^) - Var{8.

is increasing in A. (This statement is true even without condition (Hi).) Finally,

E [(u
T
£
x - ur

^
x

)

2

]
/A

2 - E.[(v%
x - MyoA

)

2

]
/A

2
is also increasing in A, an implication we

will test in our experiments.

3 Testing Model Implications

We now present the results of a series of experiments designed to examine the model

findings in actual decision making situations. Given the interest in understanding the

impact of ranking on subsequent valuation (compared to when valuation alone is con-

ducted) we focus on the findings of §2.4-2.5. In particular, one can state the primary

testable implications in the form of three hypotheses as follows:

Hypothesis 1 When valuation comes after ranking and the rank ordering of alternatives

is known, the squared (or absolute) difference between the monetary values stated for

the goods is higher than if valuation alone takes place.

Hypothesis 2 The relative impact of ranking on valuation is increasing in the con-

tribution of a unit of each product attribute to overall utility.

Hypothesis 3 When valuation comes after ranking and the rank ordering of alternatives

is known, the effort expended in determining valuations for all goods is higher than if

13The assumptions (i-iii) of the proposition are all satisfied by the canonical case described in §2.1.2.
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valuation alone takes place.

In addition, we will examine the implications of our analysis in §2.5.1 for the effects

of prior ranking on the likelihood of purchase in a given price range.

3.1 Experimental Design and Method

To test the above hypotheses, we conducted three experiments. All three presented

individuals with decisions regarding pairs of restaurants that were described in terms of

two or three attributes. The set of possible attributes included Location (different areas

in Cambridge, MA), Type of Food (Asian, Indian, Seafood), Service Level, Food Quality

and Decor; see Appendix B (Table Bl) for a more detailed description. Subjects were

recruited from the general Cambridge and Boston (MA) areas and included both students

(undergraduate and graduate) and non-students. Subjects were promised a minimum of

$10 for their willingness to participate and a chance to earn more in cash or prizes as

explained below. The main goal of Experiment 1 was to test Hypothesis 1 regarding

valuation spread, and together with Experiment 2 to test Hypothesis 2. Experiment 2

also allowed a test of Hypothesis 3 regarding effort expended. Experiment 3 was designed

to replicate the results of Experiment 2 and rule out alternative explanations (we describe

these issues in greater detail below).

3.2 Experiment 1

Participants were presented with eight separate decisions, each describing two restau-

rants (one pair at a time). Table Bl (Appendix B) lists the set of alternatives. Stimuli

were presented using a computer interface and responses were recorded through the

same interface. Subjects were randomly assigned into one of two conditions- a "valu-

ation only" condition (VO) and a "ranking and valuation" condition (RV). In the VO
condition (N=44), subjects were asked to state their dollar value for a dinner-for-two

(which included an appetizer, main course and dessert) at each restaurant. Subjects

were told up-front that at the end of the experiment prizes would be awarded as fol-

lows: one of the sixteen (2x8) restaurants for which they provided a dollar value would

be selected with equal probability. In addition, the computer would randomly draw a

number between 0-50. If the dollar value the individual stated for the dinner-for-two at

the selected restaurant was greater than the randomly drawn number, a dinner-for-two

voucher (non-transferable) at that specific restaurant would be granted to the individual.
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Otherwise, the individual would get the random number in actual dollars. It is easy to

see that this mechanism induces truth-telling and is consistent with Becker, Degroot and

Marschak (1964). Participants were presented with several examples before beginning

the experiment to help familiarize them with the above mechanism.

In the RV condition (N=44), subjects faced the same eight pairs of restaurants as

in the VO condition in two separate stages. In the first stage, participants were asked

to rank the two restaurants in each decision in order of dining preference (again for

a dinner-for-two), by designating with a T their most preferred and a '2' their least

preferred alternative. In the second stage, subjects were sequentially shown the same

eight pairs of restaurants and were asked to state their dollar value for a dinner-for-two

at each alternative. Subjects were reminded of their first stage ranking designations.

The two stages were separated by an explanation of the mechanism by which prizes

would be awarded (with examples). In the RV condition, subjects were informed that

the computer would first randomly select either a stage I or a stage II decision. If a

stage I decision was selected, they would receive a dinner-for-two voucher at their most

preferred restaurant (the restaurant they designated with a '1'). If a stage II decision

was selected, a mechanism identical to that described above for the VO condition was

invoked. On average, 20 minutes elapsed between a particular ranking decision in stage

I and the need to value the same alternatives in stage II. This process provided us with a

eight observations per individual and most likely reduced the recollection of any specific

details from introspection in a particular ranking decision.
14

3.2.1 Results of Experiment 1

Given the valuations supplied by subjects for each of the decisions, we could test whether

or not prior ranking affected the squared spread of valuations using the following regres-

sion model:

{uA - uB )

2 = a + ctjdj + arRANK + e, (23)

where q is an intercept term, dj, j 6 [1,2, ..., 8] are dummy variables to control for the

specific decision, RANK is a dummy variable denoting whether ranking had taken place

prior to the valuation phase, and e is a standard normal error term. The results of the

regression analysis are presented in Table 1.

14 Note that the same attributes appear in only two cases that are separated by several intervening

decisions. In the decisions used in Experiment 2, there were no two exactly overlapping attributes per

decision.
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Table 1: Effect of Prior Ranking on Valuation Spread

Parameter Estimate t-stat p-value

Intercept 69.71 6.01 <0.01

Decision 1 11.34 0.73 0.46

Decision 2 -19.93 -1.29 0.20

Decision 3 -32.72 -2.05 0.04

Decision 4 -25.61 -1.66 0.10

Decision 5 -40.11 -2.59 0.01

Decision 6 -22.53 -1.46 0.15

Decision 7 -37.80 -2.44 0.02

RANK 30.526 3.95 <0.01

As can be seen from the above table, ranking alternatives prior to determining will-

ingness to pay significantly increases the spread of valuations for any two alternatives.

Experiment 1 thus strongly supports Hypothesis 1. This result also holds if in the re-

gression (23) we use the absolute difference between valuations instead of the squared

difference. The average absolute valuation difference between first and second ranked

alternatives (across all decision pairs) was $5.2 in the VO condition and $7.1 in the RV

condition (see Table B2).

3.3 Experiment 2

In this experiment we had subjects consider dinner-for-one dining alternatives (N=37

and N=39 in the VO and RV conditions, respectively). Given that the contribution of

each attribute to overall willingness to pay (or utility) is expected to be lower than when

the same alternatives are considered for a dinner-for-two, 15 using responses from both

experiments enables us to test Hypothesis 2. The restaurant pairs used in this experiment

were a subset of those used in Experiment 1 (see Table Bl). To examine Hypothesis 3,

we wanted to compare the time subjects spent thinking in the valuation phase when

15
It could be the case that a dinner-for-two prize introduces considerations not present with a dinner-

for-one, but since willingness to pay given the same restaurant alternatives (and hence same attribute

levels) is higher between Experiments 1 and 2 (comparing same decisions and same conditions, see

Table B4 in Appendix B), we believe that we are capturing a formulation consistent with Proposition

6. Vouchers for dinner-for-two cost exactly twice as much as dinner-for-one vouchers for the same

restaurant.
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prior ranking was or was not performed. In order to do so, we equated the number of

decisions performed in the VO and RV conditions to avoid confounding effects associated

with overall time spent in the experiment and/or learning effects.
16 Thus, in the VO

condition we had subjects state dollar values for ten pairs of restaurants, while in the RV

condition we had subjects rank five pairs of restaurants and then state dollar values for

these same five pairs (ten decisions altogether). The construction was such that the last

five pairs in the VO condition corresponded to the five pairs in the RV condition (the

first five pairs of the VO condition were ignored). The reward mechanism was identical

to that of Experiment 1, with subjects able to receive dinner-for-one vouchers or cash

(and the computer randomly drawing a number between 0-35).

3.3.1 Results of Experiment 2

The average absolute valuation difference between first and second ranked alternatives

(across all decision pairs) with dinner-for-one options was $3.3 in the VO condition and

$4.1 in the RV condition (see Table B3). A similar regression to (23), again confirms that

prior ranking increases the spread of valuations (significant at the 10% level). To examine

how increasing/decreasing the relative contribution of each attribute to overall utility

affects the spread of valuations between the two conditions, we compute the following

variable:

(uA - uBf
V

(uA + uBy/2
[M)

This variable "normalizes" the valuation spread by an average measure of the utility

(or wiUingness to pay) from the two alternative restaurants. Thus, a comparison of the

relative impact of ranking on valuation between the dinner-for-one and dinner-for-two

scenarios is possible. To do so, we estimate the following regression equation:

y = p + 0,(1, + /3RVl RV*D1 + (3HV2RV * D2 + /3V02V0 *D2 + e, (25)

16
In Experiment 1 we observed that on average subjects monotonically decreased the amount of time

they spent with each subsequent decision (perhaps due to boredom with the experiment or learning

effects). Hence, because subjects in the RV condition had eight ranking decisions prior to the valuation

phase while those in the VO condition immediately valued the eight pairs, there would be a confound

between the number of decisions previously encountered and whether more or less time was being spent

as a result of having ranking information available. Theoretically, since the number of decisions is

doubled in RV condition, the probability that a particular decision will be chosen for prize is divided

by two, substantially decreasing the optimal effort in RV condition by (7). The set-up in Experiment 2

was designed to overcome these concerns. In addition, in this experiment all relevant decisions involved

trade-offs between different attributes (see Table Bl).
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where fi is an intercept term, dj,j € [1, 2, ..., 8] are dummy variables to control for the

specific decision, RV and VO are dummies for the experimental condition, arid D1,D2

are dinner-for-one and dinner-for-two indicators, respectively. The results from estimat-

ing the above regression model are given in the table below.

Table 2: Effect of Prior Ranking and Attribute Importance on Valuation

Spread

Parameter Estimate t-stat p-value

Intercept 0.15 4.65 <0.01

Decision 1 -0.08 -2.20 0.03

Decision 2 -0.124 -3.15 <0.01

Decision 3 -0.01 -0.58 0.56

Decision 4 -0.02 -2.47 0.014

RV*D1 0.04 0.94 0.35

RV*D2 0.18 4.35 <0.01

VO*D2 0.001 0.02 0.98

As the results indicate, the higher the "stakes" of the decision at hand (i.e., the more

each attribute is expected to increase overall utility) the more a prior ranking impacts

valuation spread. Thus Hypothesis 2 is strongly confirmed. 17 This result also derives

validity from a pilot study we conducted whereby we assigned respondents to VO and

RV conditions with no incentive mechanism in place (i.e., subjects were paid for their

participation in the study, but there were no prizes allocated that depended on their

responses). In this pilot, where the "stakes" for the valuations supplied were in a sense

nil, there was no significant overall effect for ranking. In fact, in five of the eight decisions

the spread was actually greater in the VO condition. It is also noteworthy that in both

Experiments 1 and 2, when examining the average amounts subjects were willing to pay

in each decision for their most preferred vs. least preferred alternative, there was no

common pattern of divergence for the increased spread across conditions. In some cases

both most and least preferred alternatives were given a higher value in the RV condition

compared to the VO condition (though the spread still increased), in some cases both

valuations were lower, and in other cases the most preferred alternative was given a higher

value in the RV than in the VO condition and the least preferred a lower value. Though

17 Once again, these results were corroborated if in (24) we used absolute values instead of squares.
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we realize our experiments are between subjects, we believe these results are consistent

with our model (see §2.5, on how valuations for both goods can increase or decrease as a

result of a prior ranking). 18

As we measured the duration of time subjects spent making each of their decisions,

we could also determine the effect of prior ranking on the effort expended in valuating

pairs of dinner-for-one alternatives. We estimated the following regression model:

T = l0 + lj dJ + lrRANK, (26)

where T is the time the subject spent determining valuations for any given decision pair,

7 is an intercept term, dj are as in (23) and RANK designates if a ranking decision had

preceded valuation. Estimation results are given in the table below

Table 3: Effect of Prior Ranking on Time Spent in Valuation Phase

Parameter Estimate t-stat p-value

Intercept 15.09 5.54 <0.01

Decision 1 20.09 5.74 <0.01

Decision 2 6.00 1.71 0.087

Decision 3 1.41 0.40 0.69

Decision 4 5.63 1.61 0.11

RANK 10.90 4.92 <0.01

As clearly evident from Table 3, having performed a prior ranking of alternatives

significantly increases the time spent on determining willingness to pay for the same

alternatives (compared to when no such ranking takes place). In fact, the average amount

of time spent (across all decisions) determining valuations for a decision pair in the RV

condition was almost 50% higher than that in the VO condition (32.16 and 21.72 seconds,

respectively; see Table B5 in Appendix B). This result is consistent with Hypothesis 3.
19

18 Given that related behavioral decision theory has mainly been concerned with how different decision

tasks, when examined separately, would yield different outcomes, it is not clear they would entirely bear

on the focus of our study (explicitly combining two decision tasks). For example, it is not clear that

'anchoring and adjustment' (Tversky and Kahneman 1974) is relevant in this case, because a ranking

is a different output measure altogether than a valuation (or rating) measure. Even if subjects were

to 'anchor' on the rankings, one might expect the most preferred alternative to be 'adjusted' to have a

higher (average) value in the RV condition than in the VO condition, and the opposite be true for the

least preferred alternative. As indicated, this pattern was not prevalent in our experiments.

We believe that in the last decision subjects were perhaps hurried to conclude the experiment, and
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One additional point regarding the connection between the experimental results and

the theory developed is worth stressing. In our model, the ex ante mean value of the

estimates for a given alternative should remain the same regardless of whether ranking

has taken place, since E[6] = E[8vo ]
= -E

1

^™] = 1- We find strong, between subject,

support for this property in Experiment 2. Comparing the mean valuation for each

restaurant across subjects in each condition (see Table B4 in Appendix B), reveals a

statistically significant difference for only one restaurant out of ten (namely, alternative

B in decision pair 3).

3.3.2 The Impact of Prior Ranking on Likelihood of sales

We also examined how the demand for each restaurant, as a function of price, would be

affected by prior ranking. Recall from §2.5.1 that, under certain conditions, ranking is

expected to increase demand when prices are extreme, i.e. either very low or very high.

To examine whether this holds in our experimental setting, we looked at three regions

defined by price points: a) p
m = the mean value for a restaurant in any decision (see

Table B4), b) p
m - = one standard deviation below the mean, c) p

m = one standard

deviation above the mean. We then separately counted the number of individuals in

each treatment (RV, VO) that would be willing to pay for a dinner-for-one at a given

restaurant, when p
m- < v l

k , p
m < v l

k , and p
m < v\ , where v\ is individual i's valuation

for restaurant k (there are 10 restaurants). In Table 4 below, we present the difference

between the two treatments in the percent of individuals willing to buy at each price

(denoted A% ). As Table 4 shows, our experimental results support a pattern whereby

sales are more likely to take place at low or high prices as a result of alternatives first

being rank ordered and then valued. Around the mean, willingness to pay is relatively

unaffected by a prior ranking.

hence the times are less divergent across the two conditions. See also §3.4 where the result on effort

levels is again strongly confirmed. Note that this is also consistent with the discussion after Proposition

3 that h (l/a;
2
) is likely to be a convex function.
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Table 4: Effect of Prior Ranking on Demand at Different Price Points

A%

Decision Restaurant

p
m-

p
m

p
m+

5.1%

5.4

0% 7.7%

2.7

1 A
B

2 A

B

2.6

2.7

5.1

2.7

3 A

B

12.8

21.6

4 A

B 8.1

7.7

5.4

5 A 7.7 10.3

B 8.1 2.7 8.1

Average 4.5% 1% 7.1%

3.4 Experiment 3

While in Experiment 2 we controlled for the overall number of decisions each subject faced

by having five "filler" valuation decisions in the VO condition (in lieu of the five ranking

decisions in the RV condition), one cannot entirely rule out alternative explanations for

the results presented in Table 3 based on a difference in the nature of tasks in the two

conditions. In particular, there may be greater 'task familiarity' or learning specificity

about valuations in the last five decisions of the VO condition (given that five valuation

decisions had already taken place). To account for such alternative explanations, we

used a set-up similar to that in the VO condition of Experiment 2 (i.e., dinner-for-one

with five relevant valuation decisions) except that subjects (N=49) first rank ordered

five irrelevant restaurant pairs.
20 This way, in both the RV and VO conditions, subjects

faced ten decisions, five ranking and five subsequent valuation decisions.

20The first five ranked pairs used in the VO condition were different restaurants than those in the last

five valuation decisions. We thank Al Roth for pointing out the potential problem arising in Experiment

2 and for suggesting Experiment 3 to us.
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3.4.1 Results of Experiment 3

Table B6 (in Appendix B) presents the amount of time subjects spent in each of the last

five valuation decisions. For convenience, we juxtapose these results with those from the

corresponding RV dinner-for-one condition (using RV data from Experiment 2). We also

re-estimated equation (26) with the new data. The parameter estimate for prior ranking,

7r ,
was 10.2 and significant at the 1% level. The results once again strongly corroborate

Hypothesis 3.

In addition to replicating the results on effort levels, re-estimating regression equation

(25) with the new data yielded a parameter estimate (3RV2 =0.15 (significant at the 1%

level), while the parameters PRVl and (3V02 were not significantly different from 0. Thus

supporting Hypothesis 2. As for the likelihood of sales, the results from Experiment 3

support higher demand in the RV condition when price is one standard deviation below

the mean (in analogy to column 3 of Table 4) and no difference in demand when price is

at the mean (in analogy to column 4 of Table 4) . When price is one standard deviation

above the mean, no difference between the conditions was found (as opposed to expected

higher demand in the RV condition, see column 5 of Table 4).
21

4 Conclusion

Whether implicit or explicit, the tendency to first obtain a relative sense of ranking

among alternatives prior to attaching a specific value to each seems pervasive in many

decision making contexts. In this paper, we set out to examine how this sequence of

decisions affects the final valuation of alternatives and the amount of effort expended in

arriving at these valuations. The model we have proposed incorporates aspects of both

rational optimizing behavior and bounded rationality.

Several interesting findings, supported through a series of laboratory experiments,

have emerged. We find that, on expectation, first ranking a set of alternatives increases

the spread of values generated in a later stage and increases the amount of effort expended

in the valuation phase; this is in addition to the effort already expended in first ranking

21 That said, our Experiment 3 was conducted almost a year after Experiment 2. Because we are

comparing VO data from the former with RV data from the latter, there was the potential for inflationary

and/or seasonal effects. Comparing the mean valuation for each restaurant in the VO condition between

the two experiments reveals that the new valuations are in fact slightly higher (by 7%). If we deflate the

new valuations for each subject by this factor, the demand at one standard deviation above the mean is

in fact higher (by 10% on average) with prior ranking (in analogy to column 5 of Table 4).
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alternatives. Furthermore, we have shown that prior ranking can affect the likelihood

of sales taking place. In particular, using a canonical example, we predict that prior

ranking tends to increase sales when prices are either very low or very high. Given that

the ranking of alternatives is often viewed as a way to simplify valuation decisions, we

believe that these results bear significance for our understanding of many decision-making

contexts.

At a practical level, our results have implications for real life situations where the

tendency to rank alternatives prior to determining valuation is encountered. Sellers may

attempt to use this two-stage process to their advantage. For example, car dealers will of-

ten refuse to discuss the price of any vehicle before they have taken the customer through

the lot and made him/her rank the set of relevant cars. The dealers' reasoning, it would

seem, is that encouraging a ranking of alternatives (mainly on non-price attributes), will

work to their advantage in subsequent price negotiations. In addition, the growing per-

vasiveness of Internet commerce and digital information dissemination in recent years

has made this two-stage process far more pronounced. For instance, in consumer elec-

tronic auctions, consumers are often given a listing of several relevant products in the

desired category. For each alternative, attribute levels are specified in the description of

the product. After reading all descriptions, consumers must decide which item to bid on

first (or if multiple items are required a complete rank ordering of all). They then must

decide on a specific valuation of the alternatives in order to enter a bid.

At a theoretical level, our paper provides a framework for capturing the impact of

previous choices on current related decisions. We do so in the context of a model that

assumes boundedly rational agents with uncertain preferences. Though it may be plau-

sible to model these agents' behavior using some anomalous preference relation, such as

a preference for consistency, we show that there will be other details in their expected

pattern of behavior that could not possibly be the result of such an anomalous prefer-

ence characterization. Subjects in our controlled lab experiments did, in fact, exhibit

such patterns of behavior.
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A Appendix - Omitted Proofs

Proof. (Proposition l)Under our model set-up, we write (3) as

Ur (c; p) = A b j" (r- Sr) f [K] c) dS + E{u {¥)} - ,

where / = dF/dc. Then,

dUT (c; p)

dp
= A,

= A
fc

%{p-'^)f{fr,C

Thus,

(p-p)f(p;c) +
J f(6T ;

d2UT {p; c) _ d

p d_

r=P Jo dp

c)d6

[f>-M f (<5r ;cJ d8T |E i»(y)'-|c

= AbF(p;c).

dF{p;c)

dcdp dc[
A bF(p;c)]=A b

Qc

Then, by hypothesis, for any p > 1, we have —g^g' = A&—^^ < 1, hence argmaxc€
[
0)c] UT (c; p)

is decreasing with p, and so is with \p — 1| = p— 1. Similarly, for any p < 1,
—

gig > 1> hence

argmaxc6 [o )e]
fr (c;p) is increasing with p, and hence decreasing with |p — 1| = —p + 1.

To prove, part 2, note that when wa and wb is multiplied with A, we have

cp

Ur (c; A) = AA
fc / (r - Sr) f (K; c) d8 + XE [u (Y)} - c.

Hence,

dUr (c; A)

dX

tP

= Ab l (r-6r)f{6r;c^d8 + E[u(Y)},

which is increasing in c under the hypothesis of the proposition.

Proof. (Proposition 2) Given u(X), and given that X is selected, the value of having

estimate ux is

1 /""* 1 f
m If 1 \

Uv {ux) = — u {X) dpx + — Pxdpx =— (u(X)ux- ^ux +m Jo m Jux m V 2 /

m
~2

Here, the first equality expresses the fact that the agents will receive X if px < ux , and px
otherwise, while px is distributed uniformly on [0, m]. We obtain the second equality by simple

calculation, and the final one by adding and subtracting ^u (X)
2

. Similarly, Given u (Y), and
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given that Y is selected, the value of having uy is Uv (uy) — —
5m (^Y ~ u ?)) + 2m u ?) +

m/2. Therefore, given the true value 8, the utility of having an estimate 8V is

U(8v) irUv (ux) + nUv {uy)~ (fa - » po)
2 -i (»y - , cnf + *j [. (x)

2 + u (yf + irm

*-
Wb (bx?{K~s) -^^y)2

{K-6) + ^[u(xf + u{Y)
2m
TV

~2m

irm

wb (bx ) +wb (by) 8V - 8
2m

u{X) 2 +u{Y)2 + -Km.

Therefore, the value of introspection of length c is

where A = tt-2m

Uv (c) = E [U{8V )

Wb {i>x)
2 + Wb {by)

2

Cv

andB'=2^

AE

E

(8-8) 2 + B'-c, (27)

U (xy ,(Yy + 7rm. Now,

(K - sf E (8ev - 8)
2
}
= E \fv (e - l)

2
]
= E[6

2

V]E [(ev - l)
2

]
= E^Var (ev )

On the other hand,

Var(8) = E {8vev -1 =E E[eI]-\ = e\8v]{E[eI]-1)+E

= E[8v}Var(ev ) + Var(8v ).

Substituting the previous equation in this one, we obtain

(8V - 8)
2 = Var {8) - Var(8v ).

Substituting this in (27), we obtain

Uv {cv ) = -A Var {8) - Var{8v ) + B' - c = AVar(8v ) + B - Cy = AV{cy) + B - c,

where B = B' - AVar {8).

When ux > m , the agent gets u(X) independent of her estimate ux- Hence, when 8V is

not bounded, we need to correct Uv , by adding a term in the order of

— [E [ux :iix >m]+E[uY :uY > m]] .

Therefore, when the tails of the distributions are sufficiently thin, and m is sufficiently large,

Uv (c) and argmax[/„ (cy) will be sufficiently close to the ones computed through Proposition

2.
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Proof. (Boundary Conditions on c™ and V(crV )) The boundary conditions (which are

omitted) are not binding: By (4), V'(cTV [8r < p}) < V'(0), hence CrV [8r < p] > 0. From (5), by

V{ctV [8t > p\) < Var(e), hence c^^r > p] < Cr < c. Since crv [8r < p] < Cy < CrV [8r > p], it

follows that the boundary conditions are not binding. Moreover, since V is increasing, we have

V (0) < V(crV [8r < p}) < V^Cyo) < V(crv [8r > p]) < Var(e). Hence, some uncertainty remains

unresolved in each decision.

Proof. (Lemma 1) In this proof we will omit the arguments of the functions V, V , V"',

and V", which will always be h (l/ (Ax2
)). Since V (h (1/ {Ax2

))) = 1/ (Ax2
), we will write

V and 1/ (Ax2
), interchangeably. To show that ^ is increasing, we first compute that

*' (x) = 2xV + x2 (V) - (h (1/ (Ar2
)))' = 2xV + j(h (1/ (Ax

2
)))' ,

where

(h (1/ (Ax2
)))' = h> (1/ (Ar2

)) (-2/ (Ax3
)) = --^. (28)

Since V" < 0, we have (h (1/ (^x2
)))' > 0. Hence, *' (x) > at each x > 0, showing that *

is increasing.

Towards showing ^ is convex, we further compute that

*"(x) = 2V + 2x(V>).(h(l/(Ax2
)))' + ±(h(l/(Ax2

)))"

= 2V + ^(/l (l/(^x2
)))' + \(h(l/ (Ax2

)))". (29)

By (28), we have

Using (28), we further compute that

3 (
fc <v (*")))* = j(-a^)' A2x6 {V") 2

3xV + x3V"
Ax3V"

6 _ 4V" _ 6(y') 2
_ AV" (V'f

{Ax2
)
2V" (Ax2Y(V"Y

~~
V" ~ (V"f ' ^ '

Substituting (30) and (31) in (29), we obtain

• (V'\3
V*» {x) -2V

4{V ' )2

I

6(r)2 4V'"- {V'
)3

2* [x) zv
v" v (vy ~

(V 1

)

2
f 2V" V

V" \
"

(V") 2

Since V > and V" < 0, this implies that *" > whenever 1 - 2V'"V'/(V"f < 0, i.e.,

firff\2

V" > 2V -^ut
'
wnen —V"/V is non-increasing, V/V" is also non-increasing, hence we have

(V'/V")' = 1 - 2V'"V'/{V"f < 0, showing that V" > %$- > !%$-, and completing the

proof.

We will now prove Proposition 6. Firstly,
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Fact 7 Given any convex function f, any x,x' ,y,y' £ R, and any 9,6' 6 [0,1] with x' < x <

y < y' and with 9x + (1 — 9) y = 6'x' + (l — 9') y', we have

Of (x) + (l-0)f (y) < 0'f (x
f

) + (1 - 0') f (y') .

Proof. (Proposition 6) First note that

d*(x;A) _ 9 V (h(l/(Ax2

)))

dA A2 V"{h(l/{Ax2
)))

(32)

Given any x, y, and 9 with Ox + (1 — 9) y, define

(x, y,0; A) =0y(x;A) + (l-0)V(y; A) - * (1; A)

By (32),

dA '^2

y(h (i/(Ax*))) j _ v (/i (i/ (V))) y (h (im))

V"{h(l/(Ax2
))) V"(h(l/(Ay2

))) V"[h{l/A))

Since y//
f
A

x
; <M is concave in z, we have dcf>/dA > 0, hence </> is increasing in A.

Now, given any A and A' with A < A', we have

Varied) - VartfL]
%X.~~X ;.V

,
%v xA'

#[£!£ <p],£[5;i(5; >p],Pr(£ <p) ;
aa'

(i5[£|£ < p},E[o
X

T \o

X

r > p},Pv(o
X

r < p);Ax
')

> 4> (E[o
X

r \5

X
< p},E[o

X
r \6r > />], Pr(# < P); A

X

)

= Var(6
X

v)-Var(8
X

V0 ).

-A' -A' -A -A
By assumption (i) in the hypothesis and by Proposition 1, E[5T \5T < p] < E[6r \8r < p] <

-A -A -A' -A'
E[8r \8T > p] < E[6r \6T > p]. Together with Fact 7, this gives the first inequality. The

second inequality holds because <j> is increasing in A, which is increasing in A. Equalities are by

definition.
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Lj Appendix — Supplement to Experimental Findings

Table Bl: Restaurant Pairs

Decision Alternative'' Type c Location"
7

Food Quality 6 Service Quality ' Decor 9

1 A

B

Indian

Seafood

Kendall Sq.

Inman Sq.

2(1) A Harvard Sq. 12 13

B Central Sq. 17 16

3(2) A

B

20

17

14

16

4 A

B

21

17

16

19

5 A Kendall Sq. 15 16

B Harvard Sq. 17 13

6(3) A

B

Indian

Asian

17

12

7(4) A

B

16

20

13

6

8(5) A

B

Seafood

Indian

15

18

"Number in paranthesis denotes decision used in Experiment 2 (which only had 5 restaurant pairs).

''In each decision, subjects were presented with two options designated "A" or "B" . Restaurants were

not identified by name to reduce chances of personal biases.

cDenotes the type of cuisine served at each of the alternatives (Asian, Indian or Seafood).
dAU restaurants are in Cambridge, Massachussetts (at either one of the following squares: Central,

Harvard, Inman, Kendall). This allowed prizes to be relevant to the subject pool recruited from the

general Boston area.

eDenotes the quality of food at the given restaurant based on the restaurant guide/critic "Zagat"

(see www.zagat.com). The scale for food grade ranges from 0-30, where 30 in the Zagat scale implies

highest possible food quality. Subjects were informed of the scale and its meaning prior to the beginning

of the experiment.

-^Denotes the quality of service at the given restaurant based on the restaurant guide/critic "Zagat"

(see www.zagat.com). The scale for service grade ranges from 0-30, where 30 in the Zagat scale implies

highest possible quality of service.

9 Denotes the state of interior furnishings and the emphasis on decorative style at the given restaurant

based on the restaurant guide/critic "Zagat" (see www.zagat.com). The scale for decor ranges from 0-30,

where 30 in the Zagat scale implies an excellent/extraordinary level.
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Table B2: Mean Absolute Difference in Valuation (Experiment 1)

Decision Pair VO Condition RV Condition

(N-44) (N=44)

1 7.71 8.98

2 4.02 7.75

3 4.59 6.91

4 5.20 4.98

5 4.36 5.96

6 4.84 7.59

7 4.36 6.23

8 6.11 8.48

Average 5.15 7.11

Table B3: Mean Absolute Difference in Valuation (Experiment 2)

Decision Pair VO Condition RV Condition

(N=37) (N=39)

1 2.97 4.10

2 2.97 4.00

3 3.23 4.31

4 3.40 3.54

5 3.75 4.31

Average 3.26 4.05
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Tale B4: Average Willingness to Pay For Each Restaurant22

Decision23 Restaurant

Experiment 1 Experiment 2

vo RV VO RV

2(1) A 23.25 20.52 11.94 12.90

B 25.73 24.01 14.64 15.72

3(2) A 31.64 27.71 17.94 18.08

B 27.14 22.89 15.13 15.05

6(3) A 24.61 23.32 13.45 14.46

B 21.73 21.68 10.76 12.82

7(4) A 24.23 24.05 14.16 14.15

B 25.23 23.91 14.97 15.80

8(5) A 29.64 25.43 15.30 15.74

B 27.75 24.36 14.35 14.05

22 Table shows the average willingness to pay (across all respondents in a particular study and condi-

tion). Only the five common decisions across experiments are presented.
23 Number in parenthesis is the corresponding Experiment 2 decision number.
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Table B5: Time Spent in Valuation Phase (Experiment 2)

Decision Pair VO Condition RV Condition p-value

(N=37) (N=39)

1 27.41 53.46 <0.01

2 17.78 35.13 0.02

3 20.78 23.33 0.42

4 20.89 31.46 0.02

5 21.73 19.70 0.45

Average 21.72 32.16

Table B6: Time Spent in Valuation Phase (Experiment 3)

Decision Pair VO Condition RV Condition p-value

(N=49) (N=39)

1 35.27 53.46 <0.01

2 21.56 35.13 0.04

3 17.78 23.33 0.03

4 19.98 31.46 <0.01

5 17.49 19.69 0.26

Average 22.4 32.16
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