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Introdaction

Uoaeling price competition has posed a major challenge for economic

research ever since Bertrand (1883;. Bertrand snowed that, in a market for a

homogeneous good wnere two or more firms sell at constant cost and set prices

simultaneously, the equilibrium price is competitive, i.e., equal to marginal

cost. This classic result seems to contradict observation in two ways.

First, in markets with few sexlers, firms apparently do not typically sell at

marginal cost . Second, even in periods ot technological and demand stabil~

ity, oligopolistic markets are not always stable. Prices may fluctuate, some-

times wildly.

Of course, one reason for these discrepancies between theory and fact is

that the Bertrand model is static, whereas dynamics may be an important

ingredient of actual price competition. Indeed, two classic concepts in the

industrial organization literature, the Kdgeworth cycle and the kinked demand

curve equilibrium, offer dynamic alternatives to the Bertrand model.

The Edgeworth Cvcle : According to this story, firms undercut each other suc-

cessively to increase their market snare (price war phase) until the war

becomes too costly, at wnich point some firm increases its price. The other

firms then follow suit (relenting pnase), after which price cutting begins

again. The market price thus evolves in cycles. Tne idea of price movements

is due to Edgeworth (1V2S), who, in his criticism of Bertrand, showed that a

static price equilibrium does not in general exist wnen firms face capacity

1. Another possible explanation for lack ot perfect competition ~ indeed, the
most common theoretical one - is that products ot different firms are not
perfect substitutes. Alternatively, as Edgeworth (1!'2SJ suggested, firms
may be capacity—constrained.



- 2 -

constraints. His resontion ot this nonexistence probem vas the cycle.

The Kinked Demand Curve (Hall and Hitch (ly^y;, Sweezy (.IHSV)): In contrast to

the Edgeworth cycle, the market price is stable in the long rnn. A price (the

"focal" price} above marginal cost is sustained by each firm's fear that, if

it nndercnts. the other firms vill follow suit. A firm has no incentive to

charge more than the focal price because, in that case, it believes that the

other firms will not follow.

Despite their long history, the Edgeworth cycle and kinked demand curve

have received for the most part only informal treatments. The primary purpose

of this paper is to provide equilibrium foundations for these two types of

dynamics.

The basis of our analysis is a model of duopoly with alternating moves

described in Section 2. In this model firms take turns choosing prices.

Thus, when a firm picks its price, it has perfect information about the

current price of its rival. The fact that, after choosing a price, a firm

cannot change it for two periods is meant to capture the idea of short-run

commitment (see our companion piece. Haskin-Tiroie (1V82;, for a detailed

motivation of the model).

A firm maximizes the present discounted value of its profit. Its strategy

is assumed to depend only on the pnysical state of the system (i.e., to be

Markov). In our model, the state is simply the other firms' s current price.

We first sHow through examples that an equilibrium of this model may be a

2
price cycle or a kinked demand curve (Section 3). In Section 4 we extend the

2. Unlike in Edgeworth' s treatment, the existence of price cycles in our
model does not reiy on capacity constraints.
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model to allov tor capacity as veil as price competition. We provide, also by

vay of examples, theoretical explanations ot tvo other prominent market

phenomena: excess capacity ana market sharing.

Excess Capacity : Firms in eqailibrinm may hold more capacity than they actu-

ally need, even in the absence ot uncertainty or varying demand. In oar exam-

pie. a firm accnmolates capacity that, in eqailibrinm. it never uses so that

it coald react effectively shoald the other firm ever lower its price. Only

then will the other firm be deterred from price catting.

Market Sharing : Firms may choose not to sapply the entire demand they face

even if their price exceeds marginal cost. The explanation for this behavior

is again to be foond in dynamics. We give an example with a high-cost and a

low-cost firm. In eqailibrinm the high-cost firm "bribes" the low-cost firm

into accepting a high price by allowing it a high market share, lliis apparent

sacrifice on the part of the higher cost firm deters its rival from nndercut-

ting. Farthermore. by contrast with conventional market-sharing agreements, it

requires no monetary transfers and is purely non-cooperative.

Section 5 examines the general nature of eqailibrinm in our model. In

particular, it establishes that any equilibrium must be either of the kinked

demand type (vhere the market price converges in finite time to a unique focal

priced or the Edgeworth cycle variety (in which the market price never settles

down)

.

Section 6 proves that there exists a multiplicity of kinked demand carve

equilibria. Specifically, it exhibits the exact range of possible equilibrium

focal prices when the discount factor is near 1. This range - a closed inter-

val containing the monopoly price — lies well above the competitive price. We

go on, in Secion 7, to offer an explanation for this multiplicity, as well as



- 4 -

to suggest an additional criterion that serves to rednce the equilibrium set

dramatically. Using this criterion, "renegotiation-proof ness. " we investigate

firms' adjustment to stochastic shifts in demand.

Section 8, which treats Edgeworth cycles, is the counterpart of Section 6

on kinked demand curves. It demonstrates, by construction, the existence of

Edgeworth cycle equilibria with high discount factors and proves that, in any

such equilibrium, average profit must be no less than half the monopoly level.

One restrictive feature of the analysis through Section 8 is that it

relies on a model where firms' relative timing is exogeneous. Accordingly, in

Section 9 we attempt to endogenize the timing structure. Thus, rather than

insisting that firms alternate, we suppose that they can move in any period.

Once a firm selects a price, however, it remains committed to that price for

two periods, reflecting the possibility, say, that it takes time to change

price lists. Our main result is the observation that, although in principle

firms could move simultaneously, they will turn out in equilibrium to move

alternatingly. Thus this result provides some basis for the attention we pay

to the fixed~timing model.

The reader may be disturbed by our ostensibly arbitrary assumption in the

endogenous~timing model that commitments last for two periods - why not, say,

three or four? One possible justification is to imagine a continuous time

model in which, whenever a firm sets a price, it is committed for an uncertain

length of time determined by a Poisson process. As we show in Section 9, an

equilibrium of this model is formally identical to one in the discrete time,

two~period commitment framework.
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Ve conclude in Section 10 by discussing some ot the outstanding open

questions in our model. To avoid interfering with the exposition, we relegate

proofs to the Appendix. We attempt, however, to provide informal explanations

of our results in the text.

2. The Model

In this section we describe the main features ot the exogeneous~timing

duopoly model. For further discusson of this model, we refer the reader to

our earlier paper, Mascin~Tiroie (1^82;, which applies the model to capacity

competition. Competition between the two firms (i=l,2} talces place in

discrete time with an infinite horizon. Time perioas are indexed by t

(t*=0,l,2, . . . ) . The time between consecutive perioas is T. At time t, firm

i's instantaneous profit n is a function of the two firms' current prices

p and p , but not of time: n =7t lp^» P^.^* ^^ will assume that the goods pro-

duced by the two firms are perfect substitutes, and that firms share the

market equally when they charge the same price. The price space is discrete,

3
i.e., firms cannot offer prices in units smaller than, say, a penny. In most

of the paper we assume that firms have the same unit cost c. Letting D(.)

denote the market demand function, define

(1^ n(p) B lp-c)Dlp) .

The total profit function ji(p) is assumed to be strictly concave. Let p

denote the monopoly price, i.e., the value ot p maximizing (U . Frcm our

3. The reason for this restriction is to ensure that optimal reactions exist.
In a static, Bertrand model, best responses to prices above marginal cost
are not defined wnen the price space is a continuum.
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assumptions

Jt(ph. if pj < v{

ir^pj.p^^ = jr(pj)/^.if pj -
pj

.if pj > p{.

Fizms discoimt the future with the same interest rate r; thus their

discount factor is 6s exp(~rT)<. Because one expects that ordinarily firms can

change prices fairly quickly, we will otten thinJc ot T as being small and>

therefore, of 5 as being close to one. Firm i's intertemporal profit at time

t is

- J.S i- 1 2 .V " ^^t+s'I-t+s^ •

s=0

Let us now consider the timing of price setting. In odd~numbered periods t,

firm one chooses its price, which remains unchanged until period t+2 . That

is, p.^,=p. if t is odd- Similarly, firm two chooses prices only in even-

2 2numbered periods, so that p , ,=p. if t is even. Firms' strategies are

asssumed to only depend on the payoff-rexevant state, those variables that

directly enter its payoff function. In period 2t+l, w^en it is firm one's

turn to pick a price, the payoif relevant state is simply firm two's current

2 2
price Pot+l'^P?!* Pi^™ one's choice ot price is, therefore, contingent only on

2 112
P-^. That is, his reaction function takes the form PTt+i"^^ ^^2t^ ' Similarly,

2
firm two reacts to firm one's prices according to a reaction function E (•},

n2 2 1 12where P^^o ~ ^ ^^2t+l^ ' ^®*^ ftmctions, R and E , are (first-order) Markov

strategies and are called dynamic reaction functions. We shall allow them to

be random functions.



- 7 -

We are interested in pairs ot dynamic reaction functions that form per-

fect equilibria. Perfection requires that, starting in any state, a firm's

dynamic reaction fnnciion maximize its present discounted protit given the

other firm's reaction function. We call such a pair of strategies a Markov

Perfect Equilibrium (HPE). Frcsn dynamic programming ve knov that to test

whether strategies form a WPE it suffices to check that in each payoff~

relevant state the price prescribed a firm's strategy maximizes its present

discount profit assuming that, thereafter both firms adhere to their stra-

tegies. That is, it is enough to rule out proiitable one-shot deviations.

Hence , IR , Ki is a MPE if, for ail prices p.

(2) V^(p) = maxLn'''(p. pJ + 6W^(p)J,

P

13; W-'-CpJ = E ln"'"(p,p) + 6V^(p)J,

where the expectation in i'S) is taken with respect to the distribution of

ST (p) and the analogs to {.2) and (3; hold for firm 2. The expression, V (p)

is firm i' s valuation (present discounted proiit) if (a) it is about to move,

(b) the other firm's current price is p, and (c) firms henceforth play accord-

ing to IR 'E^i.The expression W^lp) is firm i's valuation if last period it

1 2
played p, the other firm is about to move and firms use IR ,R J forever more.

For further discussion of Blarkov Perfect Equilibria and valuation functions,

we refer the reader to Maskis-Tiroie (lv82).

Most of our results will be demonstrated for discount factors close to

one, which, as we already suggested, is often a reasonable assumption for

price competition, llius, a typical proposition will hold for all & greater

than a given 6<1. We sometimes also require the set of possible prices to be

sufficiently "fine."
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3. Edgewortb Cycles and Kinked Demand Curves: Examples

This section exhibits two examples oi Markov Perfect Equilibria, one an

"Edgewortb cycle," the other a "kinied demand curve." In both examples the

market demand curve is given by D(p} *= 1~P> and production is costless. Firms

can charge any of seven prices: p{i) = •^ for i = U,l,...,6. The corresponding

profits, JtCp(i)P " p(i)ll-p(i)) are proportional to 0,5,8,9,8,5,0. The mono-

poly price is p =p(^^= Vi.

Consider the dynamic reaction function given by Table 1.

Table 1: An Edgeworth Qycle

JIlp) P R(p)

p(6; p(4)

5 p(5; p(4)

8 p(4J p(3;

S* p(a; p(2>

8 p(2) p(i;

3 p(i; p(o;

p(0} p(u;

p(5)

with prooability a(6)

with prooability l-a(5)

where a(&)=
( 30^-1) d-t^^-Hb"^;

2 4 6
8-1-76 +26%3 6"

Claim 1 : The pair of strategies IR, R}, where K is given by Table 1, forms a

MPE for discount factors close to one.
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We will not prove Claim 1. To do so, it suffices to check, that the stra-

tegies satisfy the ctynamic programming equations C^) and (i) when the discount

factor is high.

In the equilibrium ot Table 1. firms undercut each other successively

until the price reaches the competitive level, p(UJ, at which point some firm

eventually returns to a high price p(S;. Market dynamics thus consist of a

price war followed by a relenting phase. This second phase is a "war of

attrition" at p(U^ in wnich each firm waits for the other to raise its price

(relent K One may wonder wny firms attach positive probabiliy to maintaining

the competitive price, wnere they make no profit. The explanation is that

relenting is a public good from the firms' point of view. Both firms wish to

raise their prices, but each would like the other to raise its price first so

as to be able to undercut it. Therefore, mixed strategies, where each firm

relents with probability less than one, are quite natural as a resolution to

this free-rider problem.

Notice that during the price war pnase, a firm undercuts not simply to

increase market snare (as we will see in the next example, such a motivation

may not be sufficient) but because, with good reason, it does not trust its

rival. That is, it anticipates that maintaining its price will not prevent

the other firm from being aggressive. in that sense, mistrust is a self-

Justifying attitude.

Table 1 implies that a market onlooker would observe a path of market

prices resembling that in Figure 1. We should emphasize that, unlike Edge-

worth, we do not require capacity constraints to obtain this cycle. Neverthe-

less we call this kind ot price path an Edgeworth cvcle .



- 10 -

lUrket Price

p(4) .,

p(3;

p(2)

p(i;

p(o;
» 9 • Us^

Figure 1

Suppose next that dynamic reaction functions are described by Table 2,

Table 2: A Kinked Demand Curve

p R(p)

p(6; p(3;

p(5) p(3;

p(4) p(3;

p(3; pO;

p(2) p(ij

p(l) pdj

p(3;

p(0) vVi)

with probability pi6)

with proftability l-p(o)

where p(5)s(5+6) / (56+96";

Claim 2 : The pair ot strategies, IE,R}, where K is given by Table 2, forms a

UPE for discount factors close to one.

4. To prove Claim 1, like Qaim 1, it suffices to check that (2J and (3; are
satisfied.
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Notice that ultimately the market price reaches p(3;, the monopoly price,

and thereafter remains there. To see vuy this equilibrinm resembles that of

the traditional kinked demand curve, suppose that the market price were p(3)

and that firm 1 contemplated charging a higher price. Firm 1 would predict

that firm 2 would not follow suit ~ i.e., would keep its price at p(3;. Firm

1 would thus anticipate losing all its customers by raising its price and so

would find such a move undesirable. Alternatively, suppose that firm 1 con-

templated undercutting to p(2). In that first period, its market share would

rise, and its prozit would increase from 4.5 to 8. However, this action would

trigger a price war: firm 2, in turn, would undercut to p(lK At p(l^ a war

of attrition would begin. As in Example 1, each firm would like the other to

relent (to return to p(3;)-first. Unlike in Example 1, however, this free-

rider problem is not due to the firms' desire to undercut each other; the

price will end up being p(^; in any case. Rather, each firm would prefer to

earn positive profit in the sAort run by charging p(l> rather than earning

zero snort run prozit by raising its price to p(^K

Because price fails significantly in a price war, long run profits are

lower than had the price remained at -pii) , even tor firm 1, who triggered the

war. Hence it is not in the long run interest ot a firm to undercut the mono-

poly price. Because ox our perfection requirement, the length of a price war

must strike a balance. On the one hand, it must be long enough to deter price

cutting. On the other hand, it must not be so costly that, when one firm cuts

its price, the other firm is unwilling to carry on with the war and instead

prefers to relent immediately. Despite these conflicting requirements, we

shall see below that kinked demand curve equilibria always exist, at least for

discount rates that are not too low.
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Examples 1 and 2 together demonstrate that an Edgeworth cycle and kinked

demand carve can coexist for the same parameter values. As we shall see

below, this is quite a general pnenomenon.

4. Excess Capacity and Market Sharini;:: Examples

Although important, price is only one dimension in which oligopolists

compete. In particular, firms also make quantity decisions. In this section

we illustrate two ways that quantity/ capacity choice may be coupled with price

competition. Because our model becomes very complex once additional choice

variable are introduced, our examples are drastic simplifications.

Excess Capacity

Several explanations of excess capacity have been suggested in the

literature (see, e.g., Scherer (1V80;). One view proposes that excess capa-

city is insurance against cyclic fluctuations or uncertainty about demand.

Another suggests that such capacity creates a barrier to entry. Here we sug-

gest still another possibility, wixich is connected with price wars.

In the kinked demand curve equilibrium of Example 2, undercutting the

monopoly price is deterred by the threat of a price war. Recall, however,

that in this example firms are not capacity constrained. Once we introduce

such constraints, it is easy to see that the monopoly price may not be sus-

tainable If firm 2 has only enough capacity to supply Half the demand at the

monopoly price. Indeed, firm 1 will wish to undercut if it has more than this

capacity, and firm 2 will not be able to retaliate effectively because it

5. This is the view advancea by Spence (iy/7) . Dixit (IV/y) argues, however,
that in models more plausible than that used by Spence, capacity functions
as a deterent to entry (i.e., an incumbent firm will install more capacity
if threatened by entry) but is nonetheless fully used.
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cannot expand output at the lower prices to reduce the first firm's market

share, llius the threat of a price war is a significant deterrent to price

cutting only if firms have more capacity than they will use when price is at

the monopoly level.

The example we develop illustrates this idea. Firstf firms choose capa~

cities simultaneously and once-and-for—all. Firms then compete through prices

as in Section 3. One technical issue, which we ignore, is specifying which

firm chooses its price first. But for discount factors near one, this issue

is minor.

m *
Firms can charge two prices: the monopoly price, p , and a price, p,

satisfying p /Z < p < p . llie demand function is D(p} = 1~P> and production

1- ^
is costless. Firms can choose from two capacity levels: q = _^ Ithe capa-

city necessary to supply half ot the market at the monopoly price), and

<l = 1-p the capacity necessary to supply the whole market at price

* ' m
p (hence, q > 2q K llie unit cost ot capacity is z.

If one firm charges p and has capacity q whereas the other charges p ,

the former firm cannot meet all its demand, and so consumers must be rationed.

For simplicity* we will assume that the residual demand for the other firm is

(1- p ) - q = q . This amounts to supposing that the most eager buyers pay

the lowest price. If both firms charge the same price, then they both supply

half the demand at this price, capacities permitting. Notice that a firm's

demand does not depend on its capacity (otherwise, it would be all too easy to

generate "excess capacity").

1 2
'lh.is rationing scheme, the capacities q and q , and the demand and cost

fxmctions define firm i' s instantaneous proxit function n (p^,p.,q »q )• Firm
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1' s objective funcciun can De written

,«i a. -r ^t i, 1 2 1 2.-zq + i o j[ (p ,p ,q ,q ;.

t=l ^ ^

Consider the tollowmg symmetric strategies:

(4) hoth firms choose capacity q.

(5) If either firm has cnosen capacity q , K^lp ) = R (p) = p,i=l,2

If both firms have cHosen capacity q, K ip )= p and

p with prooability yib)

E^p} =
m

p with prooabilty 1-7(8^,

where yl6} = lU+26)jrlp) - 6n(p°; ; / lonlp) + bjilp");

Claim 3 : For small capacity cost z and high discount factor 6, the symmetric

strategies described by (4) and i.5) form a MF£. In this equilibrium, more-

over, firms build capacity that they never use .

The proot of Claim 3 is given m the Appendix. In equilibrium firms

* m
choose capacity q and always cnarge p . 'llius they have excess capacity

' m
(q—q ). This example is clearly extreme. Aside from the fact that firms are

limited to very few prices ana capacity levels, capacities are chosen once and

for all. In practice, of course, firms adjust capacities over time. Our

model gets at the idea, however, that capacities are adjusted more slowly than

prices, llius we can thinJc ox snort-run price competition and longer—run capa-

city competition. A more thorough going treatment 01 capacity competition

(where price competition is captuxea by reduced—form proiit functions) is con-

sidered in Masrin-Tirole (J.y82;.
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Market Sharing

We nov show that it may be in the interest ot a firm to ration its custo-

mers. In a static model, ot course, a firm will always supply the demand it

faces as long as price exceeds its marginal cost. In a dynamic framework,

however, a firm may temper its rival's aggression by voluntarily giving up

some of ics market snare.

Vfe content ourseives with an eztremeiy stylized example of market shar-

ing. Firm i has unit cost c , and firm one has a cost advantage: c < c .

The monopoly price corresponding to c is p (wnich is lower than firm 2's

monopoly price}. Timing is the same as before: firms choose prices aiternat-

m ^ ^ m
ingly. They can choose between two prices, p and p , where p > p . When a

firm chooses a price, it also cnooses a selling constraint, s, which is fixed

for two periods. A firm's selling constraint is the maximum quantity it will

be ready to supply at its chosen price lone can thinx ot s as, say, a short-

run inventory). To set a selling constraint is costless. If both firms

charge the same price ana are unconstrained, they each supply half the market

at that price. If, however, one cannot supply half the market (because of a

self-imposed constraint), the residual demand spills over to the other firm.

To simplify computations we assume that, wnen firms offer different prices,

consumers do not buy from the high price firm even if they are rationed by the

low price firm, lliis assumption, however, is not essential to our conclu-

sions.

Consider the following strategies (if no selling constraint is specified,

a firm is unconstrained):
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(6;

R (p ) = p

p , if s <. s

K-^(p ) -

p , if s > s

(7) R^p") = p""

R^Vp ) = p ana s = s ,

—

Z

^~'2, ""2 * ""2

trhere s is detinoa as follows. Letting 6 = s /ll-p )» choose 6 to satisfy

i-«^ = ii-i)4^.
n (p

)

where jr^(p) = lp-c^)(i-p). Notice that e < \I\l.

We can now state

:

Claim 4

;

The strategies describea by (6)-(8) form a MPE for appropriate values

of the parameters.

llie proof of Claim 4 is provided in the Appendix. In the equilibrium

described by {6;-(8) the price p can be sustained even though firm 1 prefers

the lower price p"*. Firm 2 can "convince" 1 to accept p by committing itself

to a relatively small market snare. We conclude that keeping one's market

share comparatively low may be rational in a dynamic setting.

5 . Equilibrium Price Competition

Henceforth, we revert to the symmetric model of Section 2, where price is

the only choice variable. Firms can cnarge any of n prices, the price grid.

To simplify notation we will assume that the monopoly price p belongs to the

6. This is an example ot a "puppy dog" strategy: remain small so as not to

trigger aggresive behavior by one's rival (see hudenberg and Tirole
(iy84)).
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price grid, ana that the grid is subdivided in equal intervals ot size k (this

is not essential). Taking a finer grid consists oi shrinking k. Some ot our

results will depend on the grid being 'fine,' i.e., on k being 'small enough.'

1 2
Consider (possibly mixed} strategies E and R . In any period the market

can be in any of 2n states. A state specifies (a) the firm that is currently

committed to a price ana (b) the price to wnich it is committed. The Markov

strategies induce a Markov chain in this set ot states. Let x^ (t) denote the

t-step transition prooability between states h and g for this Markov chain.

The states h ana g (with h possibly equal to g) communicate if there exist

positive t^ ana t2 such that i^^ (t^)^ and i v^t^^ > 0. An ergodic class is

a maximal set ot states each pair ot wnich communicate (see, e.g., Derman

(1^70)). A recurrent state is a member oi some ergodic class.

Rather that considering states, we focus on the market price, the minimum

of the two prices in a given period. The market price does not form a Markov

chain, but, abusing terminology, we shall refer nonetheless to recurrent

market prices ana ergodic classes oi market prices. A set ot prices forms an

ergodic class of market prices if it is derived from an ergodic class of

7
states. A recurrent market price is a member ot an ergodic class.

We are interested in long-run properties ot Markov Perfect Equilibria,

i.e., in their ergoaic classes. A MPE is a kinked demand curve equilibrium if

it has an ergodic class conslsiting ot a single price (a 'focal ergodic

class'); it is an Edgeworth cycle equilibrium if it has an ergodic class of

7. Formally, let P(h) denote the set ot potential market prices when the
state is h (remember that mixed strategies are allowed). A set P of
prices is an ergodic set oi market prices if and only if there exists a

set of states H such that (i) H is an ergodic set of states and
(ii) P = u P(h).

hcH
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market prices that is not a singleton ('Edgeworth ergodic class'}.

A natural first question is wiietlier a MPE can have several ergodic

classes. This question is partially answered by Propositions 1 and 2.

Proposition 1 For a given price grid, a MPE cannot have two focal ergodic

classes if the discount factor is close enougii to 1.

Proposition 2 A MPE can not possess both a focal and an Edgeworth ergodic

class.

We have not yet been able to prove that a MPE cannot possess two Edge-

worth ergodic classes. But Proposition 1 and 2 siiow that Markov perfect

equilibria can indeed be subdivided into two categories that are independent

of initial conditions. In one category, the market price converges in finite

time to a focal price. In the other, the market price never settles down.

Ve now turn to a general study of kinked demand curves and Edgeworth

cycles.

6 . Kinked Demand Curves: General Results

In this section we completely characterize kinged demand curve equilibria

for fine grids ana high discount factors. We first define two prices x and y

(x < p < y) that will play a crucial roie in this characterization. We

choose z and y so that

jr(xJ > rnCp ) 2 Jt(i~k) and x < p

and

7r(y) > |n(p°'} 2 n(y+k) and y > p°.
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Thus profits at z and y are approxiaately four sevenths and two thirds ot

monopoly profit. We now study the set ot prices that are focal prices of some

UFE. This set is characterized in two steps.

Proposition 3 (necessary conditions) Ii p is a focal price ol some MPE,

(i) p iy

lii) for a sufficiently fine grid and a high discount

factor, p 2.^.

Pro-position 4 (suficient conditions) For a given (sufficiently fine) grid and

a price p belonging to this grid and to the interval LziyJ, p is the focal

price of some MPE for a discount factor near one.

Propositions 3 and 4 completely characterize the set ot possible focal

prices for fine grids wnen firms place sufficient weight on the future. We

should emphasize two aspects oz this characterization. First, focal prices

are bounded away from the competitive price (zero protit level); firms must

make at least four~sevenths ot the monopoly prozit in equilibrium.

Second, there is a nondegenerate interval of prices that can correspond to a

kinked demand curve equilibrium, lliis multiplicity accords will with the

informal story behind the kinked demand curve. As this story is usually told,

if other firms imitate price cuts but do not imitate price rises, a firm's

marginal revenue curve will have a discontinuity at the current price. As

long as the marginal cost curve passes through the interval of discontinuity,

the current price can be an equilibrium (see Scherer {.XifSO)).
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7. Multiplicity. Renegotation. and Demand Shifts

The technical reason for the multiplicity of equilibria is that the cross

partial derivative of the profit function, — , is not single-signed. In
dp dp

Haskin-TiTole (1982) we showed (in a model where firms compete in capacities)

that when this cross partial is negative - so that a firm's marginal profit is

declining in the action of the firm - dynamic reaction functions are nega~

tively shaped. The explanation for this negative slope is much the same as

that for the downward sloping reaction functions in the static Cournot model:

if marginal profit decreases as the other firm increases its action, then the

action satisfying the first order conditions for profit-maximization also

decreases. As in the Cournot model, moreover, downward sloping reaction func-

tions make the possibility of a continuum of equilibrium a nonrobust pathol-

ogy.

In contrast with the Cournot model, the cross partial in our price model

changes sign: when the other firm's price is sufficiently low (i.e., lower

than its own price), a firm's marginal profit is zero; when the two prices are

equal, marginal profit is negative (since raising one's price drives away all

customers); finally, when the other firm's price is higher, a firm's marginal

profit is positive if, its price is below the monopoly level. This nonmono-

tonicity of marginal profit gives rise to dynamic reaction functions that are

decidedly nonmonotonic. In a kinked demand curve equilibrium, a firm will

respond to a price cut above relenting price £ by lowering its own price. But

below £, a price cut induces it to raise its price to p . This nonmonotoni-

city is also responsible for the multiplicity of possible focal prices.
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Although this multiplicity has good economic and technical explanations,

it may nonetheless be disturbing to those wno insist that a theory should make

a precise behavioral prediction. We would like to point out. however, that

there are quite reasonable properties one might require ot an equilibrium (in

addition to Markov perfection), wnich may considerably narrow the range of

equilibria. One such property is "renegotiation-proofness.

"

If a firm undercuts the focal price in a kinked demand curve equilibrium

it precipitates a price war. Now, firms' strategies in a price war form a MFE

but suppose that, after the initial price cut occurred, firms could "talk

things over." If, at that point, there existed an alternative equilibrium in

which both firms did better than in the price war, the firms might well agree

to move to that equilibrium instead. But this renegotiation could destroy the

deterrent to cut prices in the first place; for, if a firm realized that

lowering its price would not touch off a price war but instead would lead to

an equilibrium that it found better than a war, it might find such a price cut

advantageous. Hence, our focal price equilibrium would collapse.

Accordingly, we will define a MPE to be renegotiation-proof if, at any

8
price, p, there exists no alternative, MPE that Pareto-dominates it. The

requirement of renegotiation-proofness drastically reduces the equilibrium

set.

Proposition 5

;

For a sufficiently fine grid there exists 6_ < 1 such that for

all 6 > 5^ there exists a symmetric renegotiation-proof MPE when firms have

discount factor 6. This MPE is a kinked demand curve equilibrium with focal

price p . Moreover, for any c > 0, any symmetric renegotiation-proof MPE

8. Essentially the same criteria has been studied in the repeated games
literatxire by Farrell (1^83;
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lR,Kj must satisfy PrlElp ) = p i > 1-e for 6 close enough to 1.

As the prooi oi Proposition 5 snows, one renegotiation-proof equilibrium

is a kinJ:ed demand curve equilibrium with a monopoly tocai price in which, at

a price la) greater than or equal to p , tirms undercut to p , (h) between p"

and some price jj (soe the appendix tor the deiinition ot j^) , tirms undercut to

£. and (c) less than or equal to £' tirms raise their price to p o llie propo~

sition asserts, moreover, that not only do renegotiation-proof equilibria

exist but that ail symmetric ones must be approximately kinked demand curve

equilibria with monopoly tocai prices wben t> is near 1.

The proposition has implications tor the way we might expect tirms to

react to shifts m demand. Suppose that the current proiit function is nip),

but that in the future, the proiit function might permanently shift to

(1+yJnlp) or lJ.-7)7tlp). Let us suppose that the prooability of either such

change in any given period is p. If p is small enough, it will not afect

current behavior at all. Thus, if (K. R> is the renegotiation-proof HFE of

Proposition 5, such behavior remains in equilibrium even with the prospect of

a shift in demand (but before the snift actually occurs) as long as p is suf i-

ciently small (alternatively, we could simply suppose that future shits in

demand are completely uniorseen). We will suppose that after a shift occurs,

firms move to the renegotiation-proof equilibria (K_.R_) if the shift is down-

ward, and to (K^.K^; if the snift is upward. Imagine that firms begin by

behaving according to (K.,R) and that at some point there is a downward shift

in profit to (i-T)n(p). 'llie monopoly price, p"" before the shift exceeds that,

p , after the shift. Hence, if firms were at the steady-state price, i.e., at

m
p , beforehand, they can move directly to the new renegotiation-proof steady

state afterwards, llins price will fail from p to p once and for all.
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If, instead, there is an upward shift, the nev monopoly price p exceeds

p°. If the shift is large, so that p is less than the new "relenting" price

V Ithe price below wnich firms return to focal price p^J • then firms simply

raise their prices directly to p^, and that is the end or the story. If, how-

ever, the shift is smaller, so that p exceeds ^, the first firm to respond

will cut its price (to gain a larger market snare). This will be followed by

m
an ultimate price rise to p . Thus, comparatively small increase in demand

temporarily lower prices (i.e., induce price wars) as firms scramble to take

advantage of the larger demana. In the end, however, the higher demand

induces a higher price.

8. Edgeworth cycles: General results

Ve now turn to Kdgeworth cycles. We start by proving existence of an

Edgeworth cycle in a general framework.

Propostion 6 Assume that the proiit function 7t(p) is strictly concave. For a

fine grid and a discount factor near 1, there exists an Edgeworth cycle.

It may be instructive to consider the equilibrium strategies used in the

proof, which is provided in the Appendix. In this equilibrium there exist two

prices £ and p satisying £ ^ p < p and such that the optimal symmetric stra-

tegies are given by (9).

p for p > p

p-k for p 2 P ^ Vl

c for p 2 P > c

(9) R(p) = c with proDability (i(6) for p=c

p + k with prooability l-n(6)

c, for p < c
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Tims, begiimiiig at p, tlie eqail ibrinm involves a gradual price war until an

intermediate price, J2' is reached at wnich point the firms undercut to the

competitive price wnere each firm tries to "induce" the other firm to relent

first.

We nov examine to the question ot how low protits can be in an Edgeworth

cycle. For symmetric equilibria we have the following result.

Proposition 7 For a discount factor near 1, at least one firm earns average

profit no less than a quarter ot monopoly proiit, 7i(p ) , in a. HPE. Hence, in

a symmetric equilibrium, this must be true oi both firms.

Thus, regardless or the equilibrim. the average market price must be

bounded away from the competitive price. We showed above that for a kinJced

demand curve equilibrium, aggregate protits per perioa must exceed four

sevenths of the monopoly proxit. lliis result and proposition 7 show that one

should not expect low prices in equilibrium if firms place enough weight on

future profit. lliis conclusion contrasts with the properties of a MFE in the

s imul t aneous~move price-setting game, wnere protits are very close or equal to

9zero (Bertrand equilibrium).

9. Assume that both firms are forced to play simultaneously (in odd periods,
say). Then there is no payoff—relevant variable at the time firms make
their decisions. Assume that the proxit function is strictly concave in

the firm's own price. If S is the mixed strategy of firm 2, firm I's

— 2 11profit can be written ^rlS =pjiji (p ,p). This function has a unique

P
m m

maximum or possibly two consecutive optima p and p +k. The same holds
for firm 2. We then conclude that the unique equilibrium is always to set

p =c+k.
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9. Endogeneons timing

Ve now abandon the assumption that f ixms move alternatingly. For the

moment we will continne to suppose that time is measured discretely, and so

the intertemporal protit functions are the same as betore. Firm 1 (firm 2) is

no longer constrained to choose prices only in odd (even) periods. Nonethe~

less, when a firm selects a price, it remains committed to that price for two

periods. If in any period a firm does not have a commitment pending, it is

free to choose a new price. Failure to do so amounts to being out of the

market for one period. Thus, in any period wnere it has no commitment, a firm

can choose any of the n prices in the price grid or no price at all (the null

action)

.

From the point of view of a firm that is about to move, the payoff-

relevant information is whether (a) the other firm is currently committed to a

price and (b) if so, wiiich price. Ve continue to require that strategies be

Markov, i.e., dependent only on payotf~reievant information. Thus a Markov

strategy for firm i can be described by the pair IR (•),$ }, where R (p) is,

as before, firm i's reaction to the price p and S is its action when the

other firm is not currently committed to a price. Both R (p) and S are ran-

dom variables taking their values in the union of the price grid and the null

action.

Notice that if, along the equilibrium path, a firm chooses prices accord-

ing to R (.), the firms alternate in their price selections (alternating

10. More generally, we might imagine that the firm is committed for m periods.
What is important is that m be greater than 1, i.e., the period of

commitment snould exceed the basic decision period. Our reason for

concentrating on m=2 will emerge below, wbere we consider a continuous
time model.
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mode). By contrast, if S dictates i's eqailibrinm behavior, firms move at

the same time (simultaneously mode).

We are interested in whether the alternating structure we imposed in Sec~

tions 2-8 emerges as equilibrium behavior in our expanded model. Accordingly,

1 2
we will say that a MPE (E ,E ; ot the fixed~timing (alternating move) game is

1 2
robust to endogenous timing if there exist strategies S and S such that

11 2 2 „,^
(i) ( IR ,S i, IE ,S i) is a HFE ot the endogenous timing game;

(ii) starting from the simultaneous mode, firms switch to the alternating

mode in finite time with prooability one.

1 2
Notice that because E and E are MFE' s ot the fixed timing game, they never

entail choice ot the null strategy. Hence, once firms reach the alternating

mode, they stay there forever.

1 2
Analogously, if (S ,S ) is a MPE ot the game in which firms are con-

strained to move simultaneously, we sJnall say that is robust to endogenous

1 2
timing if there exist reaction functions E and E such that

11 2 2
(iii) (IE ,S i IE ,S i) is a tIFE of the endogeneous—timing game,

(iv) starting from the alternating mode, firms switch to the simultaneous

mode in finite time wiih prooability one.

Our principal result ot this section is the observation that symmetric

alternating-move but not simultaneous-move MPE' s are robust.

Proposition 8; For a sufficiently fine grid and a discount factor near enough

to 1, any symmetric alternating-move MPE (E, E) but no simultaneous-move MPE

1 2
(S ,S > is robust to endogenous timing.



- 27 -

In the enaogenous-timing model we have been discussing, only tvo possible

relative timings are possible: simultaneous moves or equal-spaced alterna-

tion. This is, ot course, a consequence oi our two—period commitment assump-

tion. With longer commitments, asymmetric spacing would be possible. We

would like to argue, however, that it is quite natural to concentrate on the

two-period case wnen there is uncertainty about how long commitments will

last.

We shall now measure time continuously and suppose that firms discount it

at rate r. The instantaneous protit function n (p ,p ; represents firm i's

flow of profit per unit time. We suppose that, wnen a firm chooses a price,

then in any small interval At, the prooability that its commitment will lapse

is >^t, wnere X is a constant. That is, commitment lengths are described by a

Poisson process with parameter k.

Notice that a Markov strategy in this model is exactly the same as in the

discrete framework. The only payotf-reievant information for a firm that is

about to move is wiiether or not the other firm is currently committed to a

price and, if so, wnat that price is. In particular, the length ot time the

other firm has so far been committed is irrelevant given our Poisson assump-

tion. Thus, as before, we can describe firm i's behavior by the pair

(R (•),$ ), where E (p) is the action that i takes (possibly random) when the

other firm is currently committed to price p, and S is its action when the

other firm is currently uncommitted.

11 2 2
Suppose that the strategies l(£ ,S ), (R ,S )) form a MPE. If firm 1 is

about to choose a price (for convenience, we will implicitly assume in the

1 2following discussion that R and R place zero probability on the null action)
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and firm 2'8 current price is p, then t irm I's present discounted protit is

(10) V^(p) = max lTi^(p.p;At+XAtW'^(p) + (l-XAt)e~'^*^V^(p)J.

Moreover, if firm I's current price is p and firm 2 has just reacted to p,

then firm I's present discounted proiit is

(11; W^(p) = E ljt^(p.p)At + XAtV-'-(p) + ll-XAt)W-'-(p}e~'^^J.

where p is distributed according to K (pj. Equations (lO) and (11) can be

rewritten as

(12) V^Cp) = max In^(p.p)/ (X+r) + X,W^(p)/(X+r) i

P

(13> W-^-Cp) = E ln^(p.p)/(X +r) + XV^ (p) / ik+i) i

112 ~1 12 —
But notice that if we replace n (p ,p )/{k+i) by n (p ,p ) and k/{X+x) by 6 in

(12) and (13), these equations have exactly the same form as (2) and (3).

Hence our continuous~time mocel with uncertain commitment lengths formally

reduces to the discrete-time, two-period commitment model, and all the

analysis for the latter model carries over to the former.

10. Open Questions

Even though Propositions 1 througn H tell us quite a bit about the nature

of equilibrium in our mode, several important questions remain outstanding.

First, as mentioned after Proposition 2, we do not yet Imow whether an equili—

brum can have more than one ergodic class, although we strongly suspect that

it cannot.

Second, we believe that the structure oi Edgeworth cycle equilibria can

be made more precise. As currently defined, an Edgeworth cycle is simply an

equilibrium without a focal price. We conjecture that in any Edgeworth cycle

with a sufficiently fine grid, there exist prices p and £ (£ < p) such that.
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for any p > p.£ 1 R^lp) i. p and R^(p) _< p; and, tor any p 1 £. E^(p) 2 p.

Similarly, in any kinked demand curve equilibrium, there ought to be a price

£ < p such that, for ail pe(£,p^;, jj <_ R^tp) ± p, and for p l£ , R^(p) 2 P^-

To date we have examined kinked demand curve equilibria only in the

extreme cases where 6=0 and 5=1. In the former case, wnere there is effec-

tively no future, equilibrium reduces to ttertrand perfect competition. In the

latter case, as we have seen, the focal prices are bounded well away from mar-

ginal cost. Intuitively, it seems plausible that the band ot possible focal

prices snould be monotonically increasing in 5, but this intuition remains to

be confirmed.

Finally, we have supposed in our endogenous timing model that, when a

firm's price commitment expires, it is out oi the market if it fails to set a

new price Iwnich could be equal to the old one). In some circumstances, it

may be more realistic to suppose that if a firm sets a price, that price

remains in effect until explicitily changed. That is, a firm, as before,

remains committed to a price for a certain length ot time, but when that com-

mitment elapses, continues to cnarge that price until it selects a new one.

Actually, we suspect that this modification will not affect the set ot equili-

brium possibilities (at least, the kinked demand curves), but this must still

be investigated.
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Appendix

Claim 3 : For small capacity cost 2 and high discount factor 5,

the symmetric strategies described by (4) and (5) form

a MPE. In this equilibrium, moreover, firms build

capacity that they never use.

m
Proof : First assume that both firms have capacity q . Then from

our assumption on rationing each firm faces demand of at

m m
least q , regardless of prices. Thus a firm will charge p .

Although profits depend on which firm moves first, each firm's

mm
profit is approximately p q /2(l-5) when S is close to 1.

Assume next that firm 1 has capacity q and firm 2 has

capacity q . We must check that always playing p is an optimal

strategy for both firms. Clearly firm 2 could not do better by

m
raising its price to p , since it would lose market share

completely if firm 1 charged p. If firm 1 charged p some

period, firm 2 would again be better off charging p rather than

in

p : its payoff in the two periods before it moved again would be

n(p) (1+5/2) rather than n(p )/2, and the former is higher. As

m A ,

for firm 1, if firm 2 charged p , I's gain from charging p ratner

than p" would be p(q+ S(q-q") )-( nCp"') /2) [ 1+ S] > ( 3/16) [ 1+ 5/2-

(1/8) [1+5] > 0. If firm 2 charged p, firm 1 would also be better

off playing p; by doing so rather than charging p , it would gain
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(q-q'°)p-q"'p"' = (
1 -p- 1 /4 ) p- 1 /8 > 0, since (l/2)p > 1/8. Profit is

approximately (for 6 close to 1) (q-q )p/(l-5) for firm 1 and

q p/(l-6) for firm 2.

Assume, finally, that both firms have capacity q. Then,

regardless of the prices they choose, they will never be capacity

m
constrained. Checking that p is a focal price is then trivial.

For 6 close to 1, each firm's profit is (approximately)

m m
q P /(1-S).

To see that choosing capacity q is an equilibrium strategy

A m
for small values of z, note that deviating from q to q changes a

firm's net profit by

m ,. m A,
rA m q [p -p]

z[q-q J
-

(1-6)

which, indeed, is negative for small z.

Q.E.D,

Claim 4 : The strategies described by (6)-(8) form a MPE for

appropriate values of the parameters.

Proof : We first verify that firm I's specified strategy is

optimal, given that of firm 2. Notice first that it cannot be

optimal for firm 1 to set a supply constraint because such a
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constraint would not influence firm 2's behavior and would only

reduce firm I's profit. Assume that firm 2 has chosen p and

2
supply constraint z (which is equivalent to restricting itself

2 2 * 2 *
to a fraction (i.e., market share), e = z /(1-p ), of IT (p ).

m
If firm 1 undercuts to p it gets

1 m, ^ - n (p°)
n (p ) + 6

2(1-6)
'

whereas by choosing p , it gets

(1-B^n\p*) . (l-e^)
^"'^^')

(1-6)

since, according to (4), firm 2 will choose price p and market

-2
share e in response. From equation (4), firm 1 should undercut

2 -2
if and only if e > e , as specified. Now assume that firm 2 has

m
chosen p . If it conforms to (3), firm I's payoff is then

1 m , , m *
n (p )/2(l-5). If instead of playing p it chooses p , it

obtains (using (4)):

6(l -e'')n (p*) 5 ,. 6,^1, m
—6 = 1^ ^^- 2^" ^P ^

<
n (P )

2(1-5)

Hence, it is optimal for firm 1 to play according to (3)

m
Consider firm 2's behavior. If firm 1 has charged p , then

if 2 conforms to (4), its payoff is JI (p°)/2(l-S). If instead it

* -2
chooses p and market share e (we shall see below that
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-2 *
e is optimal given p ) , it obtains

e n (p )

(1-6)

Thus we must find parameter values such that

2m -2 2 *

f ^^ n (p ) 59 n (p )

1-5

* m
Assume now that firm 1 has played p . If firm 2 plays p ,

its profit is

2 m
2 m n (p )

n (p ) + 5
2(1-5)

If it plays p , it should either constrain itself to market share

-2
e (to prevent firm 1 from undercutting) or not constrain itself

at all. If 8 is firm I's market share (in equilibrium e =1/2,

but we must also consider the possibility that firm 1 constrains

itself), firm 2's payoff when it does not constrain itself is

2 m
,, i,„2,*, 2n(p)
(1-e )n (p ) . 5 ^nr^y

If it constrains itself to 6 , it obtains

2 *>
-2 n (p )

8
1-5

Thus we need to find parameter values such that



A-5

i^ iQeIi , „^, (n2<p")(i. ,,,^-r,). n-(p*) ^ 6^ s!i£;^,
1-6 2(1-5) 2(1-5)

Notice that if p is close to p and .5 is not too small, then

m.2in 6 2 * 2IT(p)
n (p )(i+ „.: ,J > n (p ) + 5 " ^^ ^

2(1-5) 2(1-5)

Therefore, it suffices to require that

-2 n''(p ) ^ 2^ m.,, 5
e -r^^^r— 2 H (p )(1+ „,, ,J .1-5 2(1-5)

I.e.,

-2 2 * 2-5 2 m
(a2) e n (p ) 2 V^ H (p )

* n
It remains to show that we can find p near p and 5 near 1

satisfying conditions (5), (al), and (a2). First, remember thatml * m
p maximizes 11 . Thus, if p is near p , (5) implies that:

(a3) e^ :
I

For p near p we can approximate (al) by

2 m
2 m -2 2 * - -2 2 m dH (p )/dp * m ,

n (p ) 2 2e 5n (p ) ~ 2e 5n (p )[i+ V ^p -p >]
r,2 , m,
n (p )

T uu' dn (p°')/dp ^ * m, . .^ .Letting € - (p -p ), we require that:
„2 , m ^

n ^^ )
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-2
(a4) 1> 2e 5(l+e)

Using 6, we can rewrite (a2) approximately as

(a5) e^(l+€) > ^
We must verify that (a3)-(a5) can be satisfied

-2
simultaneously. Replacing e in ( a4 ) and ( a5 ) using (a3) we

obtain

(a6) l> s'Ci+e)

and

(a7) 5(l+e) > 2 - 5 .

* m
Now choose a small value of € (by taking p near p ). If we then

choose slightly less than 1/J 1+e ,both (a6) and (a7) are

satisfied. Thus we can find parameter values for (3)-(5) which

describes a MPE

.

Q.E.D.

Proposition 1 : For a given price space, a MPE cannot have two

focal ergodic classes if the discount factor is
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close enough to 1

To demonstrate Proposition 1, we first establish two lemmas

that will prove useful below.

f f
Lemma A : If P is a focal price, then n(p ) > 0.

f
Proof of Lemma A : Suppose that, starting from p , firm 1, say,

f
raises its price to p > p , where n(p) > (we will handle the

case where no such p exists in a moment). There exists a price p

> p with n(p) > such that with positive probability firm 2

reacts to p with p. But then firm 1 can earn positive profit by

also playing p, and so raising its price to p guarantees it

f
positive expected profit. Thus n(p ) > 0.

If the firm cannot raise its price to p where ITCp) > 0, then

p > p and n(p ) < 0. In this case, however, the firm can

always undercut and make a positive profit.

Q.E.D.

For an equilibrium pair of dynamic reaction functions

1 2
(R ,R ), a semi-focal price is a price p such that p is in the

1 2
support of both R (p) and R (p)

.

Lemma B : A firm never reacts to a price above a focal or semi-

focal price, p , by undercutting to a price p < p if n(p ) > 0.

f
Proof of Lemma B : Let p be a (semi-)focal price. Assume that
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firm i reacts to p > p by charging p < p . Letting W (p) denote

the valuation of firm i when it has just played p, i.e., its

present discounted profit when firms play their equilibrium

strategies (see Maskin-Tirole (1982)), we must have

(a8) n(p) + SW^(p) 1 n(p^) + 5w'-(p^),

f f
since firm i could have undercut to p . But p is a semi-focal

price. Thus, firm i does not gain by undercutting to p when the

other firm charges p:

(a9) n(p) + 5W^(p) 1 ^LLeJ. + 6w\p^) ,

But (a8) and (a9) are inconsistent if n(p ) >

Q.E.D,

Proof of Proposition 1 :

Consider a fixed price space. First note that if IKp ) "

n(p„), p^ and p cannot both be focal prices for a given MPE if 5

is sufficiently close to 1, as it would be in either firm's

interest to jump to the high profit from the low profit focal

price. Assume therefore that p and p are focal prices for

which n(p ) = n(p ) . If p < p , strict quasi-concavity of the

m
profit function implies that p < p < p .
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If, beginning from p , firm i, say, undercuts to p , Lemma

B implies that the other firm will react by choosing a price

greater than or equal to p . Thus firm i's present discounted

2
profit starting two periods hence is at least 5 n(p )/2(l-S)

(since present discounted profit is nondecreasing in the other

firm's current price). Therefore, firm i can guarantee itself

m
by undercutting to p from p . But

n(p ) > —^—(1+5) .

Therefore p cannot be a focal price

Q. E.D.
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Propos it ion 2 : A MPE cannot possess both a focal and an

Edgeworth ergodic class.

Proof : Assume that a MPE has a focal price p and an ergodic

Edgeworth class P. Notice that p ^P. Let p be the greatest

element in P. Because p is recurrent, there exists some price

peP with p < p such that some firm reacts to p by playing p with

positive probability.

f
First assume that p > p . If there exists a price in P

f f
less than p , then starting above p , it must be optimal for

f
some firm to undercut below p , contradicting Lemma B. Therefore

f
the set P is entirely above p . Now assume that firm i, say,

reacts to p€P by playing p with positive probability. Because it

f
could have instead undercut to p , we have

(alO)

f

5w\p) 2 n(p^) + 6?^^ ^

2(1-6) '

.1 ,~.
where W (p) denotes firm i's valuation (present discounted

profit) when it has just played p). By Lemma A, (alO) implies

f

(all) 6w\p) >
^^
2(1-S)

'

But (all) implies that p is not a focal price since it would be

f
in the interest of firm i to raise its price form p to p.

f
Assume, therefore, that p < p . Assume that firm i reacts
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to peP by playing p with positive probability. Since it could

f
have reacted by playing p instead, we have

<.,2) s.\h .^
But because p is a focal price, firm i does not gain by lowering

its price fron p to p, i.e.,

f

(al3)
2(1-6) - "^^^ ^ SW^(P)

Inequalities (al2) and (al3) imply that

(al4) n(p ) 2 2n(p) ,

— m
which in turn implies that p is lower than p (otherwise, from

f
the strict quas i-concavity of H, p would exceed p ). Now, in the

Edgeworth ergodic class P, price is never above p. Therefore,

starting from a price in P, a firm's present discounted profit is

no higher than n(p)/2(l-S). Letting V (p) denote the valuation

of firm i when the other firm has just played p (i.e., firm i's

present discounted profit when the current market price is p) , we

have, using (al4),

u,5, vS;, . w^;,< 2i£) , Mz^

When firm j has just charged p, firm i can guarantee itself

f f
5n(p )/2(l-S) by charging p . Therefore,
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,.,s, v'(;, . |2|^

Similarly firm j, rather than charging p, could have guaranteed

f f
itself sn(p )/2(l-5) by raising its price to p . Therefore,

">")
»
«'<^' ^ Ifl^iT

Adding (al6) and (al7), we obtain

v^;) - w^;) >
"^p )

(1-5) '

contradicting (al5)

Q.E.D

Proposition 3 (Necessary Conditions) : If p is a focal price of

some MPE , then

(i) P < y

(ii) for a fine grid and a high discount factor,

P 2 X,

where y>p°', n(y) = (2/3)n(p"'); and x<p°, n(x) = (4/7)n(p™)

To prove Proposition 3, we make use of the following lemma, which

holds for any semi-focal price.
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f f
Lemma C : If P is a semi-focal price and p > p , then for

i = 1,2, the support of R (p) lies in the interval [p ,p].

Proof : We already know from Lemma B that firms never undercut

from above to below a semi-focal price. We now show that

f
starting from above p a firm does not want to raise its price.

Imagine, however, that for some i, there exists p c R (p) with p

f f
> p > p . Since firm i could undercut from p to p , we have:

SW^(p) 2 n(p^) + 5w\p^) ,

which implies that

(al8) SW^0) > II%!l. 6w\p^

But (al8) implies that p is not a semi-focal price, since it

f
tells us that at p it is in firm i's interest to raise the price

to p.

Q.E.D.

Proof of Proposition 3 :

f f
(i) We first show that, if p is a focal price, p 1 y. Assume

f f f
p > y. At p each firm has payoff n(p )/2(l-S). This payoff
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must exceed that obtained by undercutting. Each firm can always

guarantee itself

m 3 n(p )

n(p ) + s
2(1-5)

m f
by undercutting to p and returning to p therafter. Therefore

n^ "'^ . "(P^) n.r^r^T ,
3n(p^)

n(p ) i —-— [1+5+5 J < —-—
,

a contradiction.

(ii) Let us now show that for fine grids and high discount

factors, p 2 X.

f m -
Assume to the contrary that n(p ) < (4/7)n(p ). Define p in

f m,
(p , p ) to sat isf

y

(al9) p belongs to the price grid

(a20) n(p) > n(p^)(l+5/2)

(a21) n(p-k) < n(p^)(l+5/2),

where k is the interval between prices. It is easy to see that

for sufficiently fine grids, p exists and is unique. From Lemma

f
C we know that firms always weakly undercut prices above p . We

shall consider two cases that depend on whether or not firms
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strictly undercut all prices between p and p.

f -
Case (a): Both firms strictly undercut all prices p€(p , p]

(i.e., for i = 1, 2 and p e (p , p], the support of R (p)

f
is contained in [p , p)).

f
By induction starting with price p +k, one can show using

f - f
(a21) that at any p€(p , p] each firm undercuts to p directly

2 f
(otherwise, its payoff is at most n(p-k)+6 n(p )/2(l-S), which is

f f
less than n(p ) + filKp )/2(l-5) by definition of p).

Consider a firm's behavior when the current price is p+k. By

f
(a20) a firm will not undercut directly to p . Thus there are

four possibilities:

(1) R (p+k) = p+k for some i.

In this case, firm j(''i) can ensure that the price remains

f
at p+k forever, guaranteeing it a profit higher than at p .

f
Hence, at p , firm j would gain by raising the price to p+k, a

contradiction. Thus we can rule out this case.

(2) R (p+k) = p and the support of R*^(p+k) = {p, p+k},

i.e., firm j randomizes between p and p+k.

Firm j must be indifferent between playing p and p+k:

n(;) . i!iiiz!) = nii;^ . ,^n(p^) + t^^'A )2(1-5) 2(1-5)

- - 2 f
But n(p) > n(p+k)/2 + 5 n(p )/2, at least if the grid is not too

coarse. Therefore, this case can also be ruled out.

(3) R^(p+k) = R^(p+k) = p
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(4) The support of R^(p+k) = {p, p+k} for i=l,2.

Notice that in this last case the two firms must randomize

between p and p+k with the same probability distribution.

Otherwise, they could not both be indifferent between p and p+k

(as we saw, at and below p the equilibrium strategies are

symmetric)

.

Now consider the firms' behavior when the current price is

p+2k. We first show that neither firm wants to undercut to p.

If it does so undercut, it gets

(a22) n(p) + 6
2 n(p )

2(1-S)

If, however, it undercuts to p+k, its opponent will play

p or p+k, the following period, and the first firm gets at least

n(;+k) + 6^n(p') + l^i^) ,

which is greater than (a22). Thus a firm's reaction to p+2k must

be p+k or p+2k. Consider case (3) above. There are four

subcases

:

(3-1) R (p+2k) = p+2k for some i.

This can be ruled out the same way we eliminated case 1.

(3-2) R (p+2k) = p+k for some i and the support of

R'^(p+2k) = {p+k, p+2k}.

For firm j to be indifferent between p+k and p+2k, we need
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XT.- , X r2/n/ U snjp^)
,

n(p+2k)
. 2 - s^nip^)

n(p+k) + 6 (n(p ) + ttt;
——) = —-— + s n(p) +

2(1-5) 2(1-6) '

that is,

(a23) n(p+k) + n(p^) (6^+|-)
n(p+2k) 2 -

t;
— + fi n(p)

Assuming that the grid is not too coarse and using the definition

of p, however, we may conclude that (a23) cannot hold. Therefore

subcase (3-2) can be ruled out.

(3-3) R'^(p+2k) = R^(p + 2k) = p+k

(3-4) The support of R^(p+2k) = {p+k,p+2k}.

In case (3-4), the two firms must again randomize with the

same probability distribution.

Consider now case (4) and its corresponding four subcases:

(4-1) R^(p+2k) = p+2k.

Like (3-1), this case can be ruled out.

(4-2) R (p+2k) = p+k for some i and the support of

R"^(p+k) = {p+k,p+2k}.

Firm j's randomizing behavior in (4-2) requires that

(a24) n(p + k) + 5W*^(p + k) =
"^^^^^^ + 6^V^(p+k)

But recall that, in case (4), firm j is indifferent at p+k

between playing p and p+k. Therefore,
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f

(a25) V^;+k) = nC^) + ^^
l[l_\)

5^-^^ .w^;.k)

Substituting into (a24) the values of V (p+k) and W (p) obtained

from (a25), one easily obtains a contradiction, viz., that firm j

is strictly better off undercutting to p+k.

(4-3) R^(p+2k) = R^(p+2k) = p+k

(4-4) The support of R (p+2k) = {p+k,p+2k} for i=l,2, and firms

randomize with the same probability distribution.

Finally, consider a firm's behavior when its opponent's

price is p+3k. We will show that in cases (3-3), (3-4), and (4-

4) a firm will not undercut to a price below p+2k.

Case (3-3): If a firm undercuts to p+k (it does not want

to undercut to less than p+k since at p+2k it strictly prefers to

undercut to p+k rather than undercutting to less than p+k), it

gets

n(p+k) +
2„. f^

6 n(p )

2(1-5)

If it undercuts to p+2k, it obtains

n(p+2k) + 5^n(p) + 8^ "^^ ^

2(1-S)

f,
But Il(p+2k)>n(p+k) and n(p)>n(p )(l+5)/2. Therefore, firms never

want to undercut to less than p+2k.

Cases (3-4) and (4-4): In these two cases, p+2k is a semi-

focal price. Therefore, for i=l,2.
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n(p+k) + 5W (p+k) 21^;^* 5w'(;.2k) ,

which implies that

n(p+k) + 5W^(p+k) < n(p+2k) + 5W^(p+2k) .

Therefore, firms do not want to undercut form p+3k to p+k.

We can now establish that, in cases (3-3), (3-4), and (4-

f
4), p cannot be a focal price after all. Assume that firm j has

f
just played p . Firm i's present discounted profit from that

point on is n(p )/2(l-5). But if firm i raises its price to

(p+3k) , it can get at least

shCp^i.) . s\W) +
^"^^'^

2(1-5)

since (a) firm j will respond with a price no lower than p+2k,

after which (b) firm i can lower its price to p+k, which, in

turn, will (c) induce firm j to choose a price no lower than p<

The difference between these two payoffs is

D . .^(;*i<) . s'^ - tus.As^^kli

Note that, although p depends on 5, n(p+k)-n(p) is bounded below

by some a > for a given k. Thus, from the definition of p, we

obtain

4 2

D 2 6 a + I((p )[_----._
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which IS i>ositive for 6 close In 1. Thus f is not a focal

price, and so casei: (3-3), ;3-^i^, nnd ('l-'l) art:- irnposs ib 1 c

.

Next consider case (m-3). Suppose that, say, firm i

contemplates raising its price from tlif focal price to above the

monopoly price. We claim that firm j will not undercut to ji+k

(or n fortiori to a price below p+k). If firm j undercuts to

p+li, it f.ets

(a2G) Il(p+k^ 4 ,SW (p+k) =
IUp + 1c) j

-

where we liave used the fact that p+k is a semi-focal price. If

firm j instead undercuts to the monopoly price, it {(cts at least

(a27) IKp"') + 6~V^(;+k) ,

since, from Lemma E, firm i will respond by choosinfi a price no

lower than p+lc. Using

v^;.k) = nc;) . r "^^ ^

2(1-6)
'

we can express the difference between (a26) and (a27) as

m, n(p+k) (1 + 5)6"
5 = n(p'") - ••^' ••^ '- (i-6-)n(p) - " :'" n(p')

For k small and S near 1,

^ z n(p^ - I1M_ n(p^) : n(p^ - Imp') ,

which is positive z-^-^ce n(p ) < (4/7)n(p ). We thus conclude
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firm j will not undercut to a price below p+2k. Hence, firm i

f
gains by raising its price from p , which implies that case (a)

is impossible.

f -
Case (b): For some pe(p ,p] there is firm i such that p is the

support of R (p)

•

Let p be the lowest such price. Notice first that p must

be a semi-focal price, i.e., p is in the support of R (p,) as

f f
well. If not, at any p €(p ,p^), firm j undercuts to p (this

f
can be proved by induction starting from p +k) , and therefore

2 f
firm i obtains the payoff n(p )/2 + S n(p )/2(l-S) if it plays

f
p . If instead it undercut to p , it gets

f
which is clearly higher ( n( p ) <n(p) < (3/2) n(p )). Moreover, at p

f
both firms randomize between p and p with the same probability

distribution (otherwise, they would not both be indifferent

between these two choices).

m
Let us first suppose that at prices p€(p ,p ) both firms

react by strictly lowering their prices (we shall take up the

possibility of weak undercutting below).

Consider price p +k. Because at p a firm is indifferent

f
between charging p and p , it must strictly prefer to charge p

at p +k. Hence, given our strict undercutting assumption, both

firms play p in response to p +k. By induction, the reaction is
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the same to any price not exceeding p , where p is defined

relatively to p in the same way p is derived from p. Namely,

letting V(p^) = v\p^)=V (p^)=n(p^)+sn(p^)/2(l-5)=n(Pj)/2 +12
SW(p ), where W(p )=W (p ) = W (p ), we define p so that

(a28) p belongs to the price grid

(a29) n(p^) + 8 V(p^) > n(p^) + SW(p^)

(a30) n(p^-k) + 6 V(p^) < n(p^) + 5W(p^)

It is easy to show that p exists, is unique, and is lower than

the monopoly price if the grid is fine and the discount factor is

*
close to one.

Between p +k and p , both firms undercut to p . We claim

n
that, at any price above p but below p , firms undercut by k.

From (a29) this is clear for p +k. We now prove it by induction

for higher prices, p . Consider P = p^ + 2nk. If a firm

undercuts to p-k, it gets

9 _
A = n(p +(2n-l)k) + S^nCp +(2n-3)k) +...

+ 5^" ^(n(p^+k) + £^(n(p^) + 5w(p^)))

* n(-p^) - n(p^)/2^+ n(p^) i (3/4)n(p^) + n(p^) = (7/4)n(p^)
and we assumed that n(p ) < (4/7)n(p ).
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If instead it undercuts to p-2k (it will not undercut to less

than p-2k since by induction it reacts to p-k by playing p-2k),

it gets

B = n(p^+(2n-2)k) + 6^n(p +(2n-4)k)

2n-2 - 2
+...+ 5 (n(p^)+ 6 V(p^))

But we know that, for any q less than 2n,

n(p^+(2n-q)k) > n(p^+(2n-q-l)k) ,

and that

V(p^) = n(p^)/2 + 5W(p^) < n(p^) + 5W(p^)

Thus A > B.

Now consider p = p +(2n+l)k. If a firm undercuts to

p +2nk it gets

C H n(p^+2nk) + S^n(p^+(2n-2)k) + 6^"[n(p^) + 6^V(p^)]

If instead it undercuts to p+(2n-l)k, it gets A. But again,

n(p^+(2n-q)k) > n(p^+(2n-q-l)k) ,
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and, by definition of p ,

n(p^) + s v(p^) 1 n(p^) + 5w(p^)

Therefore C > A.

We conclude that if firms strictly undercut between p and

m m —
p , the price trickles down from p to p . In particular, if a

firm raises its price from the focal price to the monopoly price,

m
it will earn a profit near n(p ) every other period for quite a

long time if the grid size is small. Since half the monopoly

profit greatly exceeds half the focal price profit, it therefore

pays a firm to raise its price, a contradiction.

We now consider the possibility of weak undercutting. Let

p be the lowest price above p such that, for some firm i, p is
^ X ^

in the support of R (p )• Then,

n(p )

V^Cp^) = —2 + 5W (p^) 1 n(p^) + 5W(p^)
,

so that

. ncp^) n(Pj)

(a31) SW^(P2) 2 [ + —2 n(p^)
^

^ n(p )

2(1-5)

For p to be a focal point, firm i cannot gain by raising its

price to p„. We therefore require 5W (p ) i n(p )/2(l-S), so

that the bracketed expression in (a31) must be nonpositive:
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(a32) ncp^) ^ n(p^) + n(p )

But from the definition of p , for fine grids and high discount

factors

,

(a33) n(p^) - n(p^)/2 + n(p ) .

Formulas (a32) and (a33) imply that p must be well above p .

But we have shown that equilibrium between p and p consists of

trickling down to p and then undercutting to p . Thus, again

if, at the focal price, a firm raises its price to p , the price

will long remain above p if the grid is fine. Hence, raising

the price will be worthwhile if the discount factor is near one.

f
This contradicts the fact that p is a focal price.

f
We conclude that p cannot be a focal price unless

n(p ) 1 (4/7)Il(p ) if the grid is fine and the discount factor is

close to one.

Q.E.D.



A-26

Proposition 4: ( Sufficient Conditions ) For a given (fine) grid

and a price p belonging to this grid and to the

interval [x,y], p is the focal price of some MPE

for a discount factor close to one.

Proof : We must show that any price in [x,y] is a focal price for

sufficiently high discount factors. To do this, we will consider

f
three cases depending on the relative magnitudes of JICp ) and

m f m f
(2/3)n(p ) and of p and p , where p is the focal price

candidate in [x,y].

Case (a) :
.
n(p ) > (2/3) n(p") and pip™.

Consider the fol owing strategy.

(a34) R(p)

p for p 2 p

p for p > p > p

p for pip,

where 2. < p is defined by

(a35)

f

(i+5)n(p) 1 „ ^ > (i+6)n(p-k)

Notice that, for a fine grid and high discount factor, profit at

f
£ is approximately one fourth that at p .

We claim that the strategy pair (R,R) is an equilibrium.

f
Note first that if undercutting p is worthwhile, then a firm

f
must gain by undercutting either to p -k. or to £. The

requirement that the latter kind of undercutting be unprofitable
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can be expressed as

n(p') ,n(p)(i.5) .
^'"^^'^

2(1-6) 2(1-5) '

which reduces to

n(p^)
(1+6) 1 n(p)(i+5) ,

and, from (a35), is clearly satisfied for S near 1. That the

former kind of undercutting is worthwhile amounts to

f 3 f
n(p ) , n. f

l.^ . 6 n(p )

20^ ' "^p -^^ " 2TT3ir

which simplfies to

f
"^^ ^ (1+6+6+6^) 2 n(p^-k) ,

and is also obviously satisfied. If at p a firm raised its

2 f
price, its present discounted profit would be (6 /2(l-6))n(p ),

f f
which is less than the payoff from sticking to p . Thus, at p ,

firms will adhere to the prescribed strategy.

At p > p a firm does not want to undercut to a price below

f f
p for the same reason that undercutting at p is unprofitable.

f
If it chooses a price in the interval [p ,p] its present

discounted profit is at most
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^^ ' 2(1-5)

whereas if it follows the prescribed strategy its profit is

^^ ^ 2(1-5)

But the latter is bigger than the former for 5 near 1 since

n(p^)>(2/3)n(p°).

f
Next, consider p € (£., p ). The prescribed reaction to p

is £, and it is clear that the optimal deviations from 2. can only

f
be p-k or p . Hence, for equilibrium, we require that

(a36) n(p)(i+5) . i^A^ 1 n(p-k) f
'^"^^^^

2(1-5) 2(1-5)

and

(a37) n(p)(1.5) . -Aip!), _illip!l
^ '

-^^ ^ 2(1-5) 2(1-5)

From the definition of £, (a37) holds. But

'"^^'^
= |(i^5)n(p^ . 4^^ n(p-k) .

^'"^^'^

2(1-5) 2 2(1-5) 2(1-5) '

for 5 sufficiently large, which implies that (a36) is also

sat isf ied.

f
Finally, at p< £, a firm is best off returning to p , by

definition of 2.- ''''^ have thus established that (R,R) is an
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equilibrium.

For the other two cases, we shall merely exhibit

f
equilibrium strategies that support the p in question as a focal

price. The formal proofs that these strategies form equilibria

are very much like that in case (a).

Case b : n(p ) > (2/3)n(p°) and p > p"

.

Let

R(P) =

f
P . for

for p

p 2 p

f
> P >

with probabi
, xui. i^ ' P > p.]

ilit:

p, with probability (1-cx)

p, for P > P > P

p , for p 2 p ,

for p = p.

f m
where p > p ^ P-. > 2.

and

f

n(p)(i+5) 1 8 „ ^> n(p-k)(i+s)

2 3 n(p ) n(p ) 2 3

n(p)(i+s) + cc(-^—^)n(p ) = -^—H„(—— + ^-—i-ncp))

n(p^) = n(p )
- € ,

for € small. We claim that (R,R) forms an equilibrium for a fine

grid and high discount factor.

Case (c) : IICp ) i (2/3)n(p™) and p™ > p 1 x
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R(P)
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p, if p > p

p, with probability ex

f
p , with probability !-« .

f . - f
p , if p > p 2 p

p if p > p > P

P. if P 2 P

m - f
where p > p > p > 2.

and

(a38) n(p) 1 n(p^)(i+|) > n(p-k)

if p = p

f

(a39) V(p) = ^^ + SV){p) = n(p^) + 5"^^ ^

2(1-5)

(a40) n(p)(l+S) + 6^V(p) 1 5W(p) > n(p-k)(l+5) + 6^V(p)

(a41) « =
(2+5)n(p )

- n(p)

5n(p) + sncp )

Here V(p) is the valuation of a firm when its rival has just

played p, and W(p) is the firm's valuation when it itself has

just played p.

Notice that p as defined by (a38) exists and is unique,

f m
since IlCp ) i (2/3)n(p )• For 8 large and k small, ex is

approximately equal to one fifth. The reader can check that for
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fine grids and high discount factors the pair of strategies (R,R)

forms a MPE.

Proposition 5 : For a sufficiently fine grid there exists ^ < 1

such that for all 6 > S_ there exists a symmetric

renegotiation-proof MPE when firms have discount

factor 6. This MPE is a kinked demand curve

m
equilibrium with focal price p . Moreover, for

any €>0, any symmetric renegotiation-proof MPE

{^,6} must satisfy Pri^Cp"") = p"*} > 1-e for 8

close enough 1.

Proof : Consider the following strategy R:

R(P)

m m
P . P 2 p

m
P. P€(p,p )

m
P . P 1 P

where £^ satisfies

^'^ fn^> n(p)(i.5) .
'^

ncp"") 1
'""^'^^

2(1-6) 2(1-5)

and

(ii) f"!^!? > n(p-k)(l+5) + ^
2(1-5) 2(1-5)

m
n(p )

From the argument in the proof of Proposition 4, £ exists and

(R,R) forms a MPE for k small enough and 5 near 1. For p2p and

P^Ej aggregate present discounted profit is maximized when both
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firms follow R stating at price p. Hence at such a price there

A zu

is no MPE that Pareto dominates (R,R). Consider p€ (£,p ). By

construction of R,

and

V(p) = n(E)(l+5) + 6^n(p°)/2(l-5)

W(p) = 6^n(p"')/2(l-6)

1 *?

Suppose that at p there exists a Pareto-dominat ing MPE (R ,R ) in

which, say, firm 1 moves first. Then V (p) 2 V(p) and W (p) 2

W(p) with at least one strict inequality. Suppose, for the

1 p
moment, that (R ,R ) is a kinked demand curve equilibrium (we

will consider the possibility of an Edgeworth cycle below). For

m
S close enough to 1, the focal price must be p . Now, for some i

and p, suppose that p is in the support of R (p), where p > p.

m
From Lemma C, we know that p<p . Now

m,

(a42) 5<v (p) 1
snip )

2(1-5) '

m
because firm i could choose p rather than p. Similarly

m.

(a42i) V (p) 1 2(1-6)
^^ P ^ P

m

end
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m

,

(a42ii) (^"^(p) >

Now

,

(v (p) + 0"^Cp) <

i ~

and so if p > p", (a42) and (a42i) imply that (^^(p) + <v^(p) =

n(p™)/l-S, that is, R^(p) = p"'. But if R'^(p) = p"", then 5(v^(p) =

2 m - m
£ n(p )/2(l-5), a contradiction of (a42). Hence p < p . Now, if

p < p , (a42) and (a42ii) imply that

(a43) ^\p) + ^^(p) >
n(p ) ,

snip )

i-s

However

,

(a44) J\ip) + ^4^^ ^ <^'CP) > <^'(P) + ^'(P) .1-6

since, starting at p, the market price can be no greater than p

for at least one period. Formulas (a43) and (a44) imply that

m

,

(a45) n(p) > n(p )/2

But then (a42) and (a43J imply that

n(p) + s^ (p) >
1 ~. - ncp"") sncp")

2(1-5) '

m
which contradicts that fact that ,p is a focal price. Hence, for
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m
P<P .

~ a! ~ "ID
(a46) if P is in the support of K (p) and p>p, then p = p

Moreover, from (i) and (ii) of the statement of the proposition

(a47) ^\p) = ^^(p) = P° for all p i 2. •

1
TO

Now , if R (p) < £, then (R , R ) cannot Pareto-dominate

(R,R) at p from (a47). From (i) and (a47), ^ (p) ^ p°

(otherwise, the new equilibrium would leave firm 1 worse off)

Hence (a46) implies

(a48) supp ^ (p) c (2_, p)

Hence, because, starting from p,the market price must first fall

to 2. before returning to p ,

3 m

<^\p) + <?^P) < n(p) f 5n(p)(i+s) + -^-^zf-^

Now by definition of R,

2 m

v(p) + w(^) = n(p)(i+6) 4. ^ "^P )

1-S

1
f}

Thus, since C (p) + <?"(?) > V(p) + W(p) , we have
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n(^) ^ 6ii(p)(i-5) + UliSLl > n(p)(i-5) + ^
"^^"^

1-6 1-5

that is,

n(p). > (i-5)(i+6)n(£) + s^ncp"") ,

which, for 5 close enough to 1, is impossible. We conclude that

(R ,R ) cannot Pareto-dominat e after all.

1 9
Next, suppose that (R ,R ) is an Edgeworth cycle. Because

(l-5)((^^(p) + ^^(p)) > (l-5)(V(p) + W(p)), and the right hand

side of this inequality goes to n(p ) as 6-1, we know that, for

all e > 0,

1 , m, a2 , m.
(a49) Pr{ min {S (p""),^ (p"")} 2 p°} > l-€ ,

if 8 is close enough to 1. Let e = Pr{6 (p ) > p }. Then, if

firm 2 always plays p , its average payoff, starting at p , is

bounded from below by

(a50) (l-€)(e^n(p°) + (1-e^) n(p'")/2) .

Now, if as 5-*l and e-O, € remains bounded away from zero, then

m
there exists b>0 such that eventually (a50) must exceed n(p )/2 +

b. That is.
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(a51) (l-5)<?"(p"') > ^^^|--^- + b

But (a51) implies that

m

.

(a52) V (p )
'

2(1-6) 1-6

which contradicts the fact that

^^p") 2 v^^) = n(p)(i-.6) . 47117} •

Hence, € must go to zero with e, and we conclude that for all

1 „
r >0

a1 m m 1
(a53) Pr (R (p ) = p } > 1-y for S close enough to 1.

Similarly, for any y >0

a2 m m 2
(a54) Pr {R (p ) = p } > 1-y for 6 close enough to 1 .

Thus, for 5 close enough to 1, (R ,R ) is practically a kinked

m
demand curve equilibrium with focal price p . In particular,

(a46)-(a48) all hold and we can derive the same contradiction as

before. This establishes the first assertion of the proposition.

Next, suppose that (R,R) is a symmetric renegotiation-proof

MPE. Now, as 6-0, (^( P) ( 1- 6) -<?( p ) ( 1- 5) for any p. Moreover,

(^(P) + <J(p))(l-5) i (l-5)n(p'"). Hence,

(a55) <^(p)(l-6) and ^(p)(l-6) converge, to n(p'°)/2.
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otherwise, for 6 near 1, firms could do better by moving to

equilibrium (R,R). But (a55) implies that for any €>0 and 6

close enough to 1,

(a55) Pr { R(p°) 1 P™} > l-€

Given (a56) we can argue exactly as in the preceeding paragraph

to conclude that (R,R) must be nearly a kinked demand curve

m
equilibrium with focal price p .

Q. E.D.

Proposition 6 : Assume that the profit function n(p) is strictly

concave. For a fine grid and a discount factor

near 1, there exists an Edgeworth cycle.

Proof : Let c denote the unit cost of production. Consider a

pair of prices {2., p} such that c < 2. *^ P < P and the reaction

function R, where

R(P) =

p, if p > p

p-k, if p 2 p> p

c, ifp2p>c
c, with probability p

p+k, with probability 1-p

. c, if p < c .

if p = c

We will show that 2.> P> and p can be chosen so that {R, R}

is a MPE . We first study the conditions that these parameters

nust satisfy for equilibrium. We consider two cases:

Case (1) ; p - £ = (2t+l)k



A-38

Let V(p) denote the valuation of a firm when the other firm

has just played p; take W(p) to be the valuation ofa firm that

has just played p; and define. V = V(p). We have

(a42) V = n(p-k) + & n(p-3k) + ... + 8 ^OCe) + 6
^"^

V

where we have used

(a43) V(c) = 5 V

Case (2) : p - E = 2tk

In this case, we have

(a44) V = n(p-k) + 6^n(p-3k) + ... + S^^ "n(E+k) + 6^^V(e)

But

(a45) V(e) = SW(c) = V(c) = 6^V ,

where we used the fact that a firm is willing to stay at c when

its rival's price is c. Therefore (a44) can be wr:^tten as

(a46) V = n(p-k) + 6^n(p-3k) + ... + 5^^ ^n(E+k) + 6^*"^^V

Given p and V, we now investigate the conditions that 2.
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must satisfy. Namely, at £+k, a firm must wish to undercut by k,

whereas at £ i^ must prefer to lower its price to c (in which

2-
case, its valuation is 6 V (see (a43)):

(a47) n(E) + s'^y 1 s^v > n(E-k) + s^y

For given p and V, p must be such that a firm is

indifferent between staying at price c and returning to p+k,

That is.

(a48) S^(l-p)(n(p) + 5W) + p5^V = 6^V ,

where W is given by

(a49) W = 5n(p-2k) + 6^n(p-4k) + ... + 6^^~'^n(2.+ k) + 6^^"*'^V

if p-2. = (2t + l)k

and

(a50) W = 5n(p-2k) + S^n(p-4k) + ... + s^^ ^His.) + 6^^"*'^V

if p-2. = 2tk. Notice that < p < 1 since

2- 4-
5 V > 6 V

and
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S^V < 6^(n(p) + 5W)

(the latter inequality follows from the fact that above p, a firm

prefers to lower its price to p and get n(p)+5W rather than

reducing to p-k and getting V).

We have exhibited the properties that, given p, £ and p

must satisfy. The price p itself must be such that above p+k a

firm prefers to reduce its price to p rather than to p+k. Choose

— m —

p to be the lowest price above p such that at p+2k firms

strictly prefer to lower their price to p rather than to p+k (the

existence of such a price will be proved below). Thus p is the

m
lowest price above p such that

(a51) n(p) + SW > n(p+k) + 6 V
,

where W and V are defined by {(a42), (a49)} or {(a44), (a50)}.

We complete the proof as follows. We first prove that (a)

if (a42) and (a46) through (a51) are satisfied, the proposed

strategies form a MPE. We then show (b) that there exist p, £

and p satisfying these relationships.

(a) Demonstration of Equilibrium: Notice first that a firm will

never raise its price above that of the other firm to a point

strictly between p+k and c (If a firm raises its price to

2
P € (c, p+k), its discounted profit is 5 V(R(p)), where R(»)
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and V(») are nondecreas ing . We claim that, at p < c, raising

its price to c is an optimal reaction for a firm. By doing so,

the firm gets

2-
6W(c) = V(c) = 5 V ,

which is the same payoff as when the firm raises its price

to p+k. On the other hand if the firm reacts by playing

A 2 4-
p < c, its payoff is less than S V(c) = 5 V. Hence, playing c

(or p+k) is optimal.

From (a47) and the parenthetic argument of the preceding

paragraph, a firm will never play a price between c and £.; it

would be better off playing c or p+k.

Let us now show by induction that, for p € (£, p ]

reducing one's price by k is optimal. We have to show that the

firm does not prefer to play p or p-2k. These two conditions

suffice since (i) a firm would not want to lower its price below

p-2k given that, by induction, it does not want to do so at p-k,

and (ii) it does not want to raise its price since, again by

induction, it does not want to do so when the price is lower.

Let us consider the two cases.

Case (1) : p-g. = (2t + l)k

We want to show that



A-4:

2 2t 2t+4-
n(p-k) + 6 n(p-3k) + ... + 6 n(p) +6 V

2 max {n(p)/2 + 8 n(p-2k) + ... + 6 n(E+k) + 6
^"^

V ,

n(p-2k) + 6 n(p-4k) + . . . +
2t-2 2t+2-

6 n(£+k) +6 V}

The second inequality is follows from

n(p-qk) > n(p-(q+l)k) for q>

and

(a47) n(£) + S^V 1 6*'V

We must show that the first inequality also holds, i.e.,

n(p-k) - n(p)/2 2 5 [n(p-2k) - n(p-3k)] + ...

+ 5^^[n(E+k) - n(z)]

From the concavity of 11,

s^[n(p-2k) - n(p-3k)] + ... + 5^*[n(E+k) - n(E)]

i is /2)(n(p-2k) - n(E-k).

Therefore, it remains to show that
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n(p-k) 2 (i/2)[n(p) + 5 n(p-2k)] - s n(£-k)/2 .

But n(p-k) 2 (1/2) [n(p) + n(p-2k)] and n(E-k) > . Thus the

firm prefers to undercut by k afterall.

Case (2) : p-2. = 2tk

Analogously with case (1) we need to show that

2 2 1-2 2 1 + 2-
n(p-k) + 6 n(p-3k) +...+ 8 n(£+k) + s v

2 2t-2
1 max {n(p)/2 + 8 n(p-2k) +...+ 8 n(£+2k) +

2t 2t+4-
6 n(£) +6 V ,

n(p-2k) + 5^n(p-4k) +...+ 5^^~^n(E) + 5^^'^^V} .

The second inequality is again immediate. To demonstrate

the first one, recall that

n(E) + 6^v < s^v + [n(E) - n(E-k)] .

From concavity it suffices to show that

n(p-k) - n(p)/2 2 (5 /2)[n(p-2k) - n(E)] +

6^^[n(z) - n(E-k)] .

An even stronger sufficient condition is

(a52) n(p-k) 2 (1/2) [n(p) + n(p-2k)] + [n(E)/2 - n(iL-k)]

But again,
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n(p-k) 1 (i/2)[n(p) + n(p-2k)]

and

n(E)/2 - n(E-k) <

(if the grid is not too coarse). Thus (a52) holds.

Next consider p in (p ,pj. The previous proof that at p a

firm prefers to undercut to p-k rather than staying at p relied

only on the concavity of IT, not on the fact that p was lower than

p . Recall that p was defined as the lowest price above p such

that at p+2k a firm prefers to undercut to p rather than to p+k.

m -
Therefore, for p between p and p, a firm at p+k prefers to

undercut to p rather than to p-k. Thus again the two necessary

inequalities are satisfied.

Finally, we consider p > p. We must show that, at p, firms

undercut to p. The most a firm can get by choosing a price above

p given that the other firm reacts by undercutting to p is

n(p+k) + 5^V

But by definition of p we know that a firm strictly prefers to

undercut to p rather than to p+k. At p a firm will not undercut

td a price below p since at p+k it will not do so. Therefore at
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p a firm will undercut to p after all.

Thus if conditions (a42) and (a46) through (a51) are

satisfied the strategies {R,R} form a MPE.

(b) Existence of p,p, and p: We will define 2.> P and p as

functions of V and apply a fixed point argument to prove that

there exists a V such that the previous necessary and sufficient

conditions are satisfied.

m

Consider an arbitrary V in [0, —— -] . From the
2 ( i- 5)

strict concavity of H, formula (a47) defines a unique 2.(V) in

[O.p™] (since (6 -6 )V i 6 (1+5) n(p°)/2 < n(p°)). Now given V

and 2. - 2.(V), define the function

U(p.V) = •

n(p-k^^+^6 n(p-3k) +...+ s ^n(p)
+5 V, if p-p = (2t+l)k

2 2t-2
n(p-k) + 8 n(p-3k) +...+ 6 n(p+k)

2k+2- .^+5 V, if p-p = 2tk .

This function will represent the fictitious payoff of a

firm who undercuts the price p by k. It is defined exactly like

V(p). We note first that U is continuous in V although (because

2. must belong to the grid) £(V) is not. To see this, observe

that if 2. is locally constant in V, U is linear in V. Moreover,

when 2. jumps, U does not. Note also that U increases in V.

m
Next notice that at a price p € (2.,p +k] a firm with

fictitious payoff U (which is defined exactly like V) prefers to

undercut by k and obtain payoff U(p,V) rather than to undercut by
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2k and obtain payoff U(p-k,V). The demonstration is the same as

that in part (a) of this proof. Define p(V) as the lowest price

m
above p such that

U(p+k,V) > U(p+2k,V) ,

which means that at p+2k a firm would prefer to undercut to p

rather than to p+k, given these fictitious payoffs. Finally,

define p(V) by (a48) where p = p(V) and

5n(p(v)-2k) +...+ s^^ ^n(p(v)+k)+5^^^^v ,

W(V) =

if p(V)-p(V) = (2t+l)k

— - 2k-l — 2k+?-
6n(p(V)-2k) +...+ 6 n(p(V)) + 8 V ,

if p(V)-p(V) = 2tk .

As before, one can check that < p(V) i 1.

To complete the proof, we must show that there exists V

such that

V = U(p(V),V) = U(V)

Like U, U(V) is continuous in V, even though p(V) is not. This

is because p(V) jumps only when U(p(V)+k,V) = U(p( V)+2k , V) , where

U is continuous by definition. Thus to establish that U has a

fixed point, it remains only to show that U maps

[0, n(p°)/2(l-6) ] into itself. Clearly U(V) 2 if V 2 0.

We now show that
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5(V) i MA- if V 1
"^^"^

2(1-5) 2(1-5)

Define Z = SU(p( V)-k , V) . Z is the present discounted profit of a

firm that played p last period (and is undercut to p-k). Thus

Z+U(V) represents the aggregate payoff when the price

is p(V). Now the average aggregate payoff (i.e., Z+U(V)

multiplied by (1-5)) is no greater than n(p ). Indeed, it must

m —
be strictly less than n(p ) because, starting from p, the market

m
price cannot always be p . Thus there exists ex > such that

m
(a53) n(p ) 1 <Z +U(V))(l-5)+<x .

On the other hand,

(a54) U(V) i n(p(V)-k) + SZ ,

since the firm that is undercut to p(V)-k and has valuation Z

could undercut to p(V)-3k instead of p(V)-2k but does not choose

to. Using (a53) and (a54), we get

(.55) ncp-") 1 (i-«(5(v) .
"""-"'^'"'-"'

i . „

If 5 is sufficiently close to 1, (a55) implies that
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5(V) <

"^^""^

2(1-5)

Therefore, U has a fixed point

Q.E.D

Proposition 7 : For a high discount factor, the average aggregate

profit per period in a symmetric MPE exceeds half

the monopoly profit.

Proof : Consider a symmetric MPE {R,R}. Assume that firm 1, say,

— m
chooses a price p > p . Firm 2 then reacts by choosing a price

that solves

(a56) max {max ( n( p) + 5W(p) ) , ^ + 6W(p), max 5W(p)}.

P<P P>P

Let 2. be the smallest price that solves (a56). The are two

cases

.

Case (a) : 2. 2 p

Then the equilibrium payoff of firm 1 is at least

(a57) 6^[n(p"') + 5W(p'°)]

m
since, after firm 2's reaction, it could undercut to p . Now

because a firm could always raise its price to p and two periods
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m
later undercut to p , we have

(a58) W(p°) 1 5^(n(p°) + SWCp"))

From (a58), (a57) is at least

2 m 4 m 2 4 m
s n(p ) ^ 6 n(p ) ^ (1/2)6 (i+s ) n(p )

, 4 , 2 3 (1-S)
1-6 1+6+6 +5

XI ^- ^K ^ 1- (1/2)6 (1 + 6 ) 1 _, -. ^, „-
Notice that lim = — . Thus firin Is payoff

" 1+5+6 +6

4
per period is at least 11 /4 (minus €) if 6 is sufficiently close

to one. By symmetry, the same is true of firm 2.

m
Case (b) : E < P

In this case, for all p < 2.,

n(E) + 6W(£) > n(p) + 6w(p)

and

(a58) n(E) + 6W(£) 2 n(p") + 5W(p°)

The first inequality implies that at a price above 2.» ^ firm will

never undercut to below £. Therefore, we have

(a59) W(p°) 2 6V(£)
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But at £ a firm can always charge £. Hence,

(a60) V(e) 1 n(£)/2 + 5W(£) .

Using (a58)-(a60) we obtain

n(E) + 5w(£) 1 ncp") + s n(E)/2 + s w(£.)
,

or

(l-5)W(p) 1

n(p'")-n(p)(i-6^/2)

5(1+5)

m.
Since RCr) < n(p )

(a61) (l-5)W(p) >

m
n(p )s

n,
But the right hand side of (a61) converges to n(p ) /4 when 5

converges to one. Thus for a high discount factors, each firm's

m.
profit per period is at least n(p )/4 (minus e).

Q.E.D

Proposition 8 : For a sufficiently fine grid and a discount

factor near enough to 1, any symmetric alternating-move MPE (R,R)

1 2
but no simultaneous-move MPE (S ,S ) is robust to endogenous

timing.
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Proof : Consider a symmetric MPE (R,R) of the alternating-move

model, and let V(p) and W(p) be the associated valuation

functions. Let p denote the smallest price that maximizes n(p) +

5W(p). We will construct a strategy S for the simultaneous mode

such that ({R,S }, {R.S }) forms a MPE for the endogeneous-t iming

game.

For the moment, suppose that firms, when in the simultaneous

mode, can choose either (a) null action or (b) a price no greater

than p (we will admit the possibility of firms' choosing prices

greater than p later on). Once we specify firms' behavior in

this mode, then their payoffs are completely determined, assuming

they play according to R in the alternating mode. Thus we can

think of firms in the simultaneous mode as playing a one-shot

1 2
game in which they choose mixed strategies S and S and their

1 2
payoffs are determined by ({R,S }, (R,S )). Because this is a

* *
symmetric game there exists a symmetric equilibrium (S ,S ). Let

U be a firm's coorresponding present dicounted profit. We claim

that ({R,S }, {R,S }) is a MPE for the endogenous-timing game.

We first note that S must place positve probability on the

null action. If this were not the case, then firms would remain

in the simultaneous mode forever. But, as we argued in footnote

8, any simultaneous-mode equilibrium must entail (essentially)

zero profit. By contrast, if a firm played the null action and

thereby moved the firms into the alternating mode. Proposition 7

would guarantee it of at least a quarter of monopoly profit,
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which is clearly preferable. Thus S must indeed assign the null

action positive probability.

We next observe that, in the simultaneous mode, firm i

cannot gain from choosing a price p greater than p, given that

firm j sticks to S . If firm j does not choose the null action -

i.e., it selects a price - then firm i sells nothing with a price

greater than p. If firm j does select the null action, then the

firms move into the alternating mode, and firm i's payoff is

n(p)+5W(p), which, by definition of p, is no greater than that

from choosing p. Hence a firm has no incentive to choose prices

greater than p in the simultaneous mode.

It remains only to show that, in the alternating mode, a

firm has no incentive to play the null action. If it did so, its

payoff would be SU , since the firms would then be in the

simultaneous mode. Now, because, as we have noted, it is optimal

for a firm to play the null action in the simultaneous mode.

U < 5V(p)

.

Hence, by playing the null action in the alternating mode, a firm

2
obtains a payoff less than S V(p). If instead it chooses a price

p>p, the other firm will react with a price no lower than p, and

2 A
so its payoff is at least S V(p). Hence the null action is not

preferable

.

1 2
To see that a simultaneous-move MPE (S ,S ) cannot be robust
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to endogenous timing, recall that in such an equilibrium, S =

1 2
c+k for i=I,2. Now if (S ,S ) were robust, there would exist •

1 2
reaction functions R and R such that, starting form the

alternating mode, firms switch to the simultaneous mode in finite

time with probability one. But given that firms are in the

alternating mode, a firm is always strictly better off choosing

p=c+k than the null action. Hence, once the alternating mode is

reached firms stay there, a contradiction.

Q.E.D
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