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Abstract: This paper derives sufficient conditions for a class of games of

incomplete information, such as first price auctions, to have pure strategy Nash
equilibria (PSNE). The paper treats games between two or more heterogeneous agents,

each with private information about his own type (for example, a bidder's value for an

object or a firm's marginal cost of production), and the types are drawn from an

atomless joint probability distribution which potentially allows for correlation between

types. Agents' utility may depend directly on the realizations of other agents' types, as

in MUgrom and Weber's (1982) formulation of the "mineral rights" auction. The
restriction we consider is that each player's expected payoffs satisfy the following

single crossing condition: whenever each opponent uses a nondecreasing strategy (that

is, an opponent who has a higher type chooses a higher action), then a player's best

response strategy is also nondecreasing in her type.

The paper has two main results. The first result shows that, when players are

restricted to choose among a finite set of actions (for example, bidding or pricing where
the smallest unit is a penny), games where players' objective functions satisfy this

single crossing condition wUl have PSNE. The second result demonstrates that when
players' utility functions are continuous, as well as in mineral rights auction games and

other games where "winning" creates a discontinuity in payoffs, the existence result can

be extended to the case where players choose from a continuum of actions.

The paper then applies the theory to several classes of games, providing

conditions on utility ftanctions and joint distributions over types under which each class

of games satisfies the single crossing condition. In particular, the single crossing

condition is shown to hold in all first-price, private value auctions with potentially

heterogeneous, risk-averse bidders, with either independent or affiliated values, and
with reserve prices which may differ across bidders; mineral rights auctions with two
heterogeneous bidders and affiliated values; a class of pricing games with incomplete

information about costs; a class of all-pay auction games; and a class of noisy signaling

games. Finally, the formulation of the problem introduced in this paper suggests a
straightforward algorithm for numerically computing equilibrium bidding stiategies in

games such as first price auctions, and we present numerical analyses of several

auctions under alternative assumptions about the joint distribution of types.
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1. Introduction

This paper derives sufficient conditions for a class of games of incomplete information, such as

first price auction games, to have pure strategy Nash equilibria (PSNE). The class of games is

described as follows: there are / agents with private information about their types, and the types are

drawn from a joint distribution which allows for correlation between types. Types are drawn from

a convex subset of 9t, and the joint distribution of types is atomless. We allow for heterogeneity

across players in the distribution over types as well as the players' utility functions, and the utility

functions may depend directly on other players' types. Thus, the formulation includes the "mineral

rights" auction (Milgrom and Weber (1982)), where bidders receive a signal about the underlying

value of the object, and signals and values may be correlated across players. The existence result

does not make any assumptions about quasi-concavity or differentiability of the underlying utility

functions of the agents, nor does it require that each agent has a unique optimal action for any type.

The main restriction studied in this paper is what we call the single crossing condition for

games of incomplete information: for every player /, whenever each of player i's opponents uses a

pure strategy such that higher types choose (weakly) higher actions, player Ts expected payoffs

satisfy Milgrom and Shannon's (1994) single crossing property. In particular, when choosing

between a low action and a high action, if a low type of agent / weakly (strictly) prefers the higher

action, then all higher types of agent / wUl weakly (strictly) prefer the higher action as well. This

condition implies that in response to nondecreasing strategies by opponents, each player will have

a best response strategy where higher types choose higher actions. The single crossing condition

contrasts with that studied by Vives (1990), who shows that a sufficient condition for existence of

PSNE is that the game is supermodular in the strategies, in the following sense: if one player's

strategy increases pointwise (almost everywhere), the best response strategies of all opponents

must increase pointwise (a.e). However, in Vives' analysis, the strategies themselves need not be

monotone in types. Vives' condition is applicable games where players have supermodular utility

functions, but not in the auctions and log-supermodular pricing games highlighted in this paper.

The paper has four parts. The first part shows that when a game of incomplete information

satisfies the single crossing condition described above, but when the players are restricted to

choose from a finite action space, a PSNE exists. Next, we show that under the further

assumption that players' utUity functions are continuous, or in a class of "winner-take-more"

games such as first price auctions, we can find a sequence of equilibria of finite-action games

which converges to an equilibrium in a game where actions are chosen from a continuum. The

third part of the paper builds on Athey (1995, 1996) to study conditions on utility functions and

type distributions under which commonly studied games satisfy the single crossing condition.

Games which satisfy the single crossing condition include any first price auction, where values are



private, bidders are (weakly) risk averse, and the types are independent or affiliated. In the class of

"mineral rights" auctions, the conditions are satisfied when there are two heterogeneous bidders

whose types are affiliated. Other applications which satisfy the conditions include all-pay auctions

and multi-unit auctions with heterogeneous bidders and independent private values, noisy signaling

games (such as limit pricing with demand shocks), and a class of supermodular and log-

supermodular quantity and pricing games with incomplete information about costs. The final part

of the paper focuses on numerical computation of equilibria, showing that equilibria to first price

auctions may be easily computed for games with a finite number of potential bids. Several

examples of auctions are provided, considering alternative scenarios for heterogeneity, private

versus common values, and correlated versus independent values.

The existence result for finite action spaces analyzed in the first part of this paper is

straightforward to prove using a reformulation of the problem, which allows us to simplify the

game to a finite-dimensional problem and then apply standard fixed point theorems. The existence

result proceeds in two steps. First, we observe that if a player uses a nondecreasing strategy

which maps types into actions, the strategy will be a nondecreasing step function. Thus, we can

restate the player's problem as determining at which realizations of his type the strategy will "step"

to the next highest action, as well as what action is taken at the "step point." Once the problem has

been reformulated in this way, we can view a nondecreasing strategy as a subset of finite-

dimensional Euchdean space, and the existence result then relies on Kakutani's fixed point

theorem. The single crossing condition plays two roles in this analysis. First, it simplifies the

strategies enough such that they can be represented with vectors of "step points." Second, we

show that it impUes that the set of vectors which represent optimal actions is convex. The paper

also demonstrates that the logic of the argument can be extended to games with nonmonotonic

strategies. For example, a PSNE will exist in games where every player's best response to a U-

shaped strategy by the opponents is U-shaped. However, this result requires an additional

assumption to guarantee that the best response correspondence is convex: we assume that players

are never indifferent between two actions over an open interval of types.

Thus, the first part of this paper shows that with finite actions, PSNE exist quite generally.

The second part of the paper proceeds to derive conditions under which these results extend to

continuous action spaces. We show that when there exists an equilibrium in nondecreasing

strategies for every finite game, and when the players' objectives are continuous, there exists a

limit of a sequence of equilibrium strategies for finite games which is an equiUbrium in a game with

continuous actions. It is important to know that the strategies are monotonic (or satisfy related

properties such as a U-shape) because when the strategies are of bounded variation, a sequence of

equilibrium strategies for finite games has an almost-everywhere convergent subsequence (by



Kelly's selection theorem (Billingsley, 1968)). However, in auctions and related games where

winning gives a discrete change in payoffs, the players' objectives are not in general continuous in

their own action, and thus establishing existence in such games requires additional work. Using

properties of the equilibria to finite-action games, we show that if an auction game satisfies the

single crossing property described above, so that best responses to nondecreasing strategies are

nondecreasing, plus some additional regularity conditions, then existence result from the finite

action auction game will extend to auctions with continuous action spaces.

Analyzing existence in games with a continuum of types and a continuum of actions is difficult

because the strategy space is not a finite subset of Euclidean space. Many previous results about

existence of pure strategy equilibria are concerned with issues of topology and continuity in the

relevant strategy spaces. For example, Milgrom and Weber (1985) show that pure strategy

equilibria exist when type spaces are atomless and players choose from a finite set of actions, types

are independent conditional on some common state variable (which is finite-valued), and each

player's utility function depends only on his own type, the other players' actions, and the common

state variable (the utility cannot depend on the other players' types directly). They also study a

condition which they call "continuity of information." Similarly, Radner and Rosenthal (1982)

show that players choose from a finite set of actions, types are independent,! ^nd each player's

utility function depends only on his own type, but the type distributions are atomless, then a pure

strategy equilibrium will exist. The authors then provide several counter-examples of games which

faU to have pure strategy equilibria, in particular games where players' types are correlated. The

counter-examples of Radner and Rosenthal faU our sufficient conditions for existence in games

with finite actions a different reason: the best response of one player is always a litde bit more

complicated than the strategy of his opponent.

In contrast, our analysis allows arbitrary correlation between types, to the extent that the joint

distributions over types lead to expected payoff functions which satisfy the single crossing

property of incremental returns. Thus, any required restrictions on the distribution (such as

affiliation) have economic interpretations. Weber (1994) studies mixed sti-ategy equilibria in

auction a class of auction games where the affiliation inequality faUs; this paper shows that

affiliation is not essential except to the extent that it implies monotonicity properties of the players'

objectives.

Now consider the special case of first price auctions. The issue of the existence of pure

strategy equilibria in first price auctions with heterogeneous agents (and continuous actions spaces)

Radner and Rosenthal (1982) also treat the case where each player can observe a finite-valued "statistic" about a

random variable which affects the payoffs of all agents.



has challenged economists for many years. Recently, several authors have made substantial

progress, establishing existence and sometimes uniqueness for asymmetric independent private

values auctions (Maskin and Riley (1993, 1996); Lebrun (1995, 1996); Bajari (1996a)), as well as

affiliated private values or common value auctions with conditionally independent signals (Maskin

and Riley, 1996)). Lizzeri and Persico (1997) have independently shown that a condition closely

related to the single crossing condition is sufficient for existence and uniqueness of equilibrium in

two-player mineral rights auction games with heterogeneous bidders, but their approach does not

extend to more than two bidders without symmetry assumptions. Many interesting classes of

auctions with heterogeneous bidders are not treated by the existing analysis, and even for the

auctions where existence is known, computation of equilibrium (which involves numerically

computing the solution to a system of nonUnear differential equations with two boundary points)

can be difficult due to pathological behavior of the system.^

Two main approaches to existence have been used in the case of first price auctions: (i)

establishing that a solution exists to a set of differential equations (Lebrun (1995), Bajari (1996a),

Lizzeri and Persico (1997)), and (ii) estabUshing that an equilibrium exists when either types or

actions are drawn from finite sets, and then invoking limiting arguments (Lebrun (1996), Maskin

and Riley (1992)). Since there exist games (with discontinuous payoffs) which have pure strategy

equilibria for every finite action set, but where there is no pure strategy equilibrium in the infinite

case (for example, see FuUerton and McAfee (1996)), these limiting arguments generally involve

more work and use the special structure of the game at hand.3 The strategy taken in this paper is

different from that of the existing literature, in that we treat the issue of existence of equilibrium

separately from the issue of monotonicity of strategies in different classes of auctions. However,

we do rely on limiting arguments, and use the special structure of a "winner-take-more" game to

prove that discontinuities do not in fact arise in the limit.

The third part of the paper derives conditions under which the single crossing condition holds

for different classes of auctions. This distinction is useful because in some classes of auctions (i.e.

private value auctions), it is relatively easy to establish that the single crossing condition holds,

while it can be challenging in other classes (for example, mineral rights auctions with more than

two bidders, where players form expectations about their own value from winning based on their

signal and the other players' actions). Knowing that the single crossing condition impUes

existence can also be helpful if it is possible to demonstrate that the single crossing condition holds

^ Marshall et al (1994) summarize some of the problems; they provide and implement an algorithm which alleviates

these difficulties for a simple class of distributions, F(Ada)= y^. See Section 5 of this paper for more discussion.

3 Simon and Zame (1990) provide an elegant treatment of limiting arguments in the context of mixed strategy

equiUbria.



for a range of parameter values, or if it is possible to establish that it holds in the relevant region

using numerical analysis.

The final part of this paper analyzes the computation of equilibria to auctions. The theoretical

and computational difficulties in analyzing auctions with heterogeneous bidders have confounded

attempts to apply and test auction theory in real-world problems,'* where heterogeneity and

correlation between types are the rule rather than the exception, and as well the private values

assumption may be tenuous. Further, even if bidders are ex ante symmetric, if they collude or

engage in joint bidding, asymmetries will arise (Marshall et al, 1994). Since very little is known

about the theoretical properties of general auction games with heterogeneous bidders, numerical

computation can also play an important role in suggesting avenues for future theorizing. Further,

the growing literature on structural empirical analyses of auctions (i.e. Laffont, Ossard, and Vuong

(1995), Bajari (1996b)) requires that equilibria to auctions be computed in each iteration of an

econometric procedure.

This paper proceeds by observing that the representation of nondecreasing strategies with finite

actions as a vector of "step points" imphes that equilibria to auction games can be computed with

very simple algorithms. Our analysis shows that the equilibria to such finite-action games get

"close" to equilibria of continuous-action games as the number of actions increases. There are

well-developed numerical techniques for approximating a fixed point in finite-dimensional

problems (Judd, forthcoming). We provide a numerical analysis of several examples of first price

auctions with alternative assumptions about heterogeneity and the type distribution.

2. Existence of Equilibrium with Finite Actions

This section derives sufficient conditions for the existence of a PSNE in a game of incomplete

information, where the types of the players are drawn from an atomless distribution and the players

are restricted to choose from a finite set of actions. Consider a game of incomplete information

between / players, /=!,..,/, where each player first observes their own type f,.e T=[ f ,, f ,]e9t and

then takes an action a. from an action space //c9?. Each player's utility, M,(^,t), may depend on

the actions taken as well as the types directly. The joint density over player types is /ft), with

conditional densities /(t_,lf,.). The objective function for player / is then specified as follows.

Given any set of strategies for the opponents, ocf.i tj, tj]^/^\ j^i, we can write player i's

^ Only a few studies exist; Hendricks and Porter (1988) analyze the case of informed versus uninformed bidders in

mineral rights auctions, while Pesendorfer (1995) uses a model of an asymmetric private value auction to analyze

asymmetric auctions for school milk contracts. Bajari (1996b) uses a structural econometric approach to study

asymmetric construction auctions.



objective function as follows (using the notational convention (a.,a_,(t_,))=

C/,(a,,a,0,0=1 M,((a,,a,(t_,)),t)/(t_,|r,Mt_,

The following basic assumptions are maintained throughout the paper:

The types have joint density with respect to Lebesque measure, /ft), which is bounded and

has no mass points. ^ Further, f u.({a.,a_^(t_.)),t)f(t_.\t.)dt_^ exists and is finite for

all 5 and all a/.[ tj, tj\^^\ j^i. (2.1)

We proceed by proving two results. The first looks for pure strategy equilibria in

nondecreasing strategies, while the second potentially allows for more complicated strategies.

However, the second result requires that players are never indifferent between two strategies over

an open interval of types (this assumption would not be satisfied for an auction without additional

structure, since two actions might both win with probability zero against a more aggressive

opponent).

2.1. Pure Strategy Equilibrium in Nondecreasing Strategies

This section studies games with finite action spaces which satisfy the single crossing condition.

The single crossing will play two roles in the analysis. First, it will guarantee that we can

represent each agent's strategy with a vector of finite dimension. Second, it will be used to

guarantee that each player's best response correspondence is convex (recall that we have not made

assumptions which could be used to guarantee a unique optimum). These two properties of games

with the single crossing condition allow us to use Kakutani's fixed point theorem to guarantee

existence of a PSNE.

Before beginning our analysis of equiUbria in nondecreasing strategies, we introduce the

definition of Milgrom and Shannon's (1994) single crossing property of incremental returns (SCP-

IR), as well as the corresponding theorem which states that SCP-IR is sufficient for a monotone

comparative statics conclusion to hold in problems which may be non-differentiable, non-concave,

or have multiple optima. Consider the following definition:

Definition 2.1 h(x,0) satisfies the (Milgrom-Shannon) single crossing property of
incremental returns (SCP-IR) in (x;d) if, for all Xu>Xij g(6)=h(X[j,0)-h(X[j6) satisfies the

^ In games with finite actions, condition (2.1) can be relaxed to allow for mass points at the lower end of the

distribution, so long as for each player, there exists ak> tj such that the lowest action chosen by player 7 is chosen

throughout the region [ tj,k).



following conditionsfor all Ofj>d^: (a) g{dj>0 implies g(0^)>O, and (b) g{di)>0 implies

Figure 1: h satisfies SCP-IR if, for all Xh>Xi^, the

function h{x„, 6)-h{xij 6) crosses zero at most once, from

below, as a function of 6.

The definition requires that if x^ is
/i(%,0)-/j(a;^,0)

(strictly) preferred to x^ for 0^, then x^ must

still be (strictly) preferred to x^ if 6

increases from G^ to Oh- In other words,

the incremental returns to jc cross zero at

most once, from below, as a function of 6

(Figure 1). Note the relationship is not

symmetric between x and 6. Milgrom and

Shannon show that SCP-IR implies that the

set of optimizers is nondecreasing in the Strong Set Order (SSO), defined as follows:

Definition 2.2 A set Ac,'^ is greater than a set 5cSR in the strong set order (SSO),

written A>sB, if, for any aeA and any be B, max(a,6)GA and rmn{a,b)& B. A set-valued

function A(t) is nondecreasing in the strong set order (SSO) iffor any T^ > T^ A(Tf,)>sA(Tj.

Lemma 2.1 (Milgrom and Shannon, 1994) Let h:%^ ^^'^. Then h satisfies SCP-IR if and
only ifx'{6)= argmaxh{x,0) is nondecreasing in the strong set orderfor all B.

Under SCP-IR, there might be ax'ej:*(0J and z.x"ex*{dif) such that x'>x" , so that some

selection of optimizers is decreasing on a region; however, if this is true, then x'gx*(0^) as well.

Using Definition 2.1, we can state the sufficient condition for existence of a pure strategy Nash

equilibria in nondecreasing strategies.

We say that a game satisfies the Single Crossing Condition (SCC) for games of

incomplete information if, for i=l,..,l, given any set of 7-1 nondecreasing functions

OCj:[tj, tj\-^/4\j^i, player Vs objective function, t/,. (a,, a_,. (•),?,), satisfies single

crossing of incremental returns (SCP-IR) in (a.;t). (2.2)

The first result is then stated as follows:

Theorem 2.1 Consider the game of incomplete information described above, where (2.1)

and the Single Crossing Condition (2.2) hold. If/I' is finite for all i, this game has a PSNE,

where each player's equilibrium strategy, ^ft^, is a nondecreasing function of t^.

The proof of Theorem 2. 1 relies on the fact that, when players choose from a finite set, any

nondecreasing strategy a- (t.) is simply a nondecreasing step function. Then, the strategy can be

described simply by naming the values of the player's type f,. at which the player "jumps" from one

action to the next higher action. To formalize this idea, consider the following representation of

nondecreasing strategies. For simplicity, we treat the case where each player has the same feasible

action space, but this assumption is made purely to conserve notation. Let/^={Ao,A,,..,Aj^^} be



Figure 2: The elements of the vector x specify

when the agent "jumps" to a higher action.

the set of potential actions, in ascending order,

where M+1 is the number of potential actions.

Let T.'^=X\.ti^t ^, and define the set of
m = l

nondecreasing vectors in T.'^ as follows: S,^=

{x e 7;^^2|xo =t^,x^<x^<-< x^, x^^, = r:}.

Further, let E^Sf'x-xZf.

Consider a candidate nondecreasing strategy

for player /, a,:[r,, f,]->A. For any such

function a,, we can assign a corresponding vector

xe Z,^ according to the following algorithm

(illustrated in Figure 2).

Definition 2.3 (i) Given a nondecreasing strategy a^(t), we say that "the vector xe Ej*^

represents «,(?,)" if x^ = inf|/.|a,.(?,.) > a\ whenever there is some n>m such that a^{t)=A^ on

an open interval of T^ and x^= t
^
otherwise.

(ii) Given xe Sf , let {x} denote the set {r,,x,,..,;Cj^^,f,}, and let m*(t,x) = max{m|x„ < t}.

Then, we say a nondecreasing "strategy aft^ is consistent with x" if ocf^t^ = A^^^, ^^forall t^

e 7:\{x}.

Each component of x is therefore a point of discontinuity, or a "jump point," of the step

function described by a,.. Simply by naming the x which corresponds to a^, we have specified

what action the player takes everywhere except at the jump points and endpoints, that is, the

actions are specified on T^Vfx}.

To interpret part (ii), note that a,(r.) is consistent with x if action A^ is used between x^ and

x^^y Since x does not specify behavior for ?,e {x}, a given xeX,. might correspond to more than

one nondecreasing strategy. However, because there are no atoms in the distributions of types, a

player's behavior on the set {x} (which has measure zero) will not affect the best responses of

other players. The proof makes use of this fact, proceeding by finding a fixed point in the space of

nondecreasing best responses which can be described by elements of S, and then filling in optimal

behavior for each player at the jump points. Behavior at the jump points can be assigned arbitrarily

since it won't affect the best responses of the other players; thus, it can be assigned to be optimal

without loss of generality, making the resulting strategies best responses for all types.

Now consider notation for the objective function faced by a given player. Let X denote the

vector (x',..,x^), which describes a set of step functions for each player. Consider player 1 with

type fp and let V^(a^;X,ti) denote the expected payoffs to player 1 when player 1 chooses a,e/^



and players 2,..,/ use strategies which are consistent with (x^,..,x')- Then V,(a,;X,?,) can be

written as follows:

m2=0 mi=0
,)><xl< •<.,)'

M "2+1

= £••£ 1 - J«,(«pA„^,..,A„,,t)-/(t_,|f,Mt_,

where lo(y) is an indicator function which takes the value 1 if ye 5 and otherwise.

(2.3)

By (2.1), the behavior of opponents on sets of measure zero do not affect player /, so player /

views each opponent as using a nondecreasing strategy whenever they use actions consistent with

x'onr,.\{x'}. Then, by (2.2), V.(a.;X,0 satisfies the SCP-IR in (a,.;^. Let af''(r,.|X)= argmax

V^.(a,.;X,r,.); this is nonempty for all t. by finiteness of /^. By Lemma 2. 1, there exists a selection,

)^(f,.)e a^''(t.\X), from the set which is nondecreasing in t. (in particular, the lowest and highest

members of this set are nondecreasing; see Milgrom and Shannon (1994)). As we argued above,

there exists a ye E. which represents y^t), so that y^t) is consistent with y. Thus, there is at least

one best response vector y which represents an optimal strategy. Now define the set of all such

vectors as follows:

r,(X)={y: 3 a,(0 which is consistent with y such that a,(0^ af^ihl^) )

The existence proof proceeds by showing that a fixed point exists for this correspondence.

Once the problem is formulated in this way, it is straightforward to verify that the correspondence

r(X) is nonempty and has a closed graph. However, convexity of the correspondence requires

additional work. Observe that even if the player's payoff function is stricdy quasi-concave, and

even if a change in the player's type changes payoffs everywhere, the player still might be

^4

M

A,

^h)

O. Ui

A yi

w
yi

*4

y^

Figure 3: The set af^it^ is nondecreasing in the

Strong Set Order. The vectors x and y represent "jump

points" corresponding to optimal strategies. The arrows

indicate convex combinations of x and y.

Aq Aj ^2 A3 A4

Figure 4: Even if V is strictly quasi-concave in a„

the agent may be indifferent between two actions for a

range of types.

10



indifferent between two actions over a set of types, as shown in Figure 4. Thus, it is important to

address the issue of multiple optimal actions. The proof makes use of an important consequence of

the SCP-ER.: it implies that the set of best response actions is increasing in the strong set order. In

Figure 3, notice that as r, increases, higher actions come into the set of optimizers, but once a lower

action leaves the set of optimizers, it never reappears. Further, once a given action has entered the

set of optimizers, no lower actions enter the set for the first time. When this property is satisfied, it

is straightforward to show that the set of vectors which represent optimal behavior will be convex.

In the figure, x and y are both vectors ofjump points representing optimal behavior; the arrows in

the figure show convex combinations of x^ and y^ for m=l,..,4, and any such convex

combination also represents optimal behavior.

Lemma 2.2: Define Y^as above, i=l,..,I. Then there exists a fixed point of the

correspondence (r,(X),.., r,(X)):Z—>S.

Proof of Lemma: The proof proceeds by checking that the correspondence

r=(r,(X),..,r/X)) is nonempty, has a closed graph, and is convex-valued. Then

Kakutani's fixed point theorem will give the result. The details are in the Appendix.

With this result in place, all that remains in proof of Theorem 2.1 is to assign strategies to

players which are consistent with the fixed point of r(X)=X. By definition, r(X) describes

strategies for each player which are optimal almost everywhere in response to behavior by the other

players which is consistent with X, and that each player does not care what the other players do on

a set of measure 0. Thus, for each player / we can assign any behavior we like to the "jump

points," {x'}, without affecting the best responses of the opponents. Then, all that remains is to

fill in the behavior of each player at the "jump points." Consider an X such that Xe T(X). The

correspondence T was constructed so that each x* represents a nondecreasing, optimal strategy for

player i given X, call it j3,(f,). Then the vector of nondecreasing strategies (Pi(ti),..,P,(t,)) is a

pure strategy Nash Equilibrium of the original game, since j3,(f,)e af^(r,|X) for i=l,..,I and f.e T..

2.2. An Existence Theorem for Strategies of Limited Complexity

Now, we turn to a generalization of Theorem 2. 1 beyond games with the single crossing

condition (2.2). The basic idea is that an equilibrium will exist if we can find bounds on the

"complexity" of each player's strategy such that each player's best response stays within those

bounds when the opponents use strategies which can be represented within those bounds. The

formalization we use for representing strategies builds directly on our representation of

nondecreasing strategies (there are, of course, altemative representations). We will need a

definition, as follows:

11



Definition 2.4 The strategy ajit) has at most

K direction changes if there exists a

nondecreasing vector z e Zf , such thatfor all Q<k

< K the following holds:

(i) If k is even, then for all z^ t'<t"< Zt+^j

a,{t;)<ait;').

(ii) Ifk is odd, then for all z^< t'<t"< z^+i,

ait;)>a,{t;').

We say that such a z represents the direction

changes of cc.(t).

tj X^ X2 X^ X^ X^ X^ ATg Xg t-

Figure 5: A representation of a strategy with

two direction changes and four actions (M=3).

This definition, illustrated in Figure 5, merely formalizes the idea that a strategy changes from

nondecreasing to nonincreasing, or vice versa, at most K times. Thus, a nondecreasing strategy

has at most direction changes. An important feature of strategies with at most K direction

changes is that they are functions of bounded variation; this will imply that our existence results

extend to games with continuous action spaces in Section 3.

We can then generalize condition (2.2) as follows:

A game of incomplete information satisfies the Limited Complexity Condition if

there exists a vector of nonnegative integers 'K.={K^,..,K^, such that, for all /, if each of

player I's opponents j?^/ use strategies which have at most Kj direction changes, and/^

is finite, then there exists a best response for player i which has at most K^ direction

changes. Further, when opponents use such strategies, then for all a^^l, there is no

open interval T|cT^ such that C/,.(a,.,a_,.(),?,.)= C/,.(a;,a_,.(),r,.) for all /,.e 7/. (2.4)

Unlike Theorem 2.1, where we could prove convexity of the best response correspondence

from the SCP-IR, here we require an additional

assumption which implies that the best response

action is unique for almost all types. This in turn

implies that there will be a unique vector of jump

points representing the best response strategy. To

see why this assumption is required, consider

Figure 6, where a player is indifferent between two

actions over two regions of types. There are two

vectors, x and y, both of which represent optimal

behavior. However, the convex combination of x

and y would assign the player to use action A, in

?uc,+0-k)y, Ax,+(1-A)y,

Figure 6: Player i is indifferent between

actions Aq and A, over an open intervals of

types, violating (2.4), and the set of vectors

representing optimal behavior is not convex.
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the region (Ajc,+(1-X)>',,Xjc2+(1-X)}'2). which is not optimal. Condition (2.4) rules this out.

While the Limited Complexity Condition may arise naturally in some problems (the case of U-

shaped strategies seems especially promising), another possible motivation for the condition could

be bounded rationality on the part of the players.

Under condition (2.4), we can extend the logic of Theorem 2. 1 in a straight-forward way. The

representation is a natural extension of the one developed for nondecreasing strategies; the vector

which represents our strategy will have K subvectors, each of which describes behavior on a

monotonic portion of the strategy. This is formalized in the appendix, as part of the proof of the

following theorem.

Theorem 2.2 Consider a game of incomplete information, where (2.1) and the Limited

Complexity Condition (2.4) holdfor some K. Then this game has a PSNE where each

player's strategy, /3.(), has at most K- direction changes.

It is interesting to discuss the relationship between this result and the results from the existing

literature, especially Radner and Rosenthal (1982). On the one hand, condition (2.4) seems quite

general: we do not need it to hold for all K, but rather just for some K. What it rules out is games

where a given player's response to a "simple" strategy becomes ever more complicated. Radner

and Rosenthal maintain assumption (2.1) and finite actions, and further they require independence

of types. Under those conditions, they find existence of a pure strategy equilibrium. They then

present counterexamples, such as an incomplete-information variant of matching pennies, where

correlated information leads to nonexistence of a pure strategy equilibrium.

Since our results do not place ex ante restrictions on the joint distribution over types, it is

interesting to revisit their example. The setup is as follows: the game is zero-sum, and each player

can choose actions Aq or A,. When the players match their actions, player 2 pays $1 to player 1,

while if they do not match, the players each receive zero. The types do not directly affect payoffs,

and are uniformly distributed on the triangle 0<f,<?2^1- We now argue that this game fails

condition (2.4). Since player / is only indifferent between the actions if Pr(a^—Aol?,.)=.5, and since

Pr(a^.=Aol?,.) cannot be constant in t^ when player y uses a finite number of direction changes, the

there wUl be no open interval on which player i is indifferent between the two actions. The issue is

that whenever player 1 uses a strategy with K direction changes (i.e. alternates between Aq and A

,

K times, starting with Ag), player 2 potentially has the incentive to switch between A,, and A, K
times as well, but starting with A, due to the incentive of player 1 to avoid a match. This can be

represented as K+ 1 direction changes using Definition 2.4, with the first change degenerate.

However, in response to an arbitrary strategy by player 2 with K+l direction changes, player 1

wishes to use a strategy with K+l direction changes. In turn, such a strategy by player 1 will

induce a response by player 2 represented by K+ 2 direction changes. Notice that this logic does
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not change if we reorder the action space for player 2; the fact that player 2 tries to "run away"

from player I's strategy, but then player 1 tries to "catch" player 2, leads to a situation where

strategies can potentially get progressively more complex, and thus our condition (2.4) fails.

3. Existence of Equilibrium in Games with a Continuum of Actions

This section shows that the results about existence in games with a finite number of actions can

be used to construct equilibria of games with a continuum of actions. As discussed in the

introduction, the assumption about finite actions plays a dual role in our analysis. First, it

guarantees existence of an optimal action for every type. The second role is to simplify the

description of strategies so that they can be represented with finite-dimensional vectors. In games

where payoff functions are continuous in actions, we no longer rely on the assumption of finite

actions for the first purpose. The arguments in this section then show how the existence of

equilibrium in a sequence of finite games will imply existence in a game with a continuum of

actions. We also extend the results to classes of games, such as first price auctions, which

potentially have discontinuities in payoffs when an increase in a player's action causes a discrete

change in the probability of "winning."

The properties of the equilibrium strategies implied by the Single Crossing Condition or the

Limited Complexity Condition play a special role in this section. While arbitrary sequences of

functions need not have convergent subsequences, sequences of nondecreasing functions (or more

generally, functions of bounded variation, which can be expressed as the difference between two

nondecreasing functions (BiUingsley, 1986, p. 435)) do have almost-everywhere convergent

subsequences by Helly's Theorem. Thus, our restrictions play two roles in the existence results:

first, they guarantees that the strategies in finite games can be represented with a finite vector so

that Kakutani's fixed point theorem can be applied, and second, they guarantee that sequences of

equilibria to finite games have almost-everywhere convergent subsequences. All that remains to

show is that the limits of these sequences are in fact equilibria to the continuous action game.

3.1. Games with Continuous Payoff Functions

This section extends the results of Section 2 to games with a continuum of actions. The

following theorem shows that in a game of incomplete information, if payoffs are continuous and

all finite-action games have equilibria in ftanctions of bounded variation, then the continuum-action

game will have an equilibrium as well.
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Theorem 3.1 Consider a game of incomplete information which satisfies (2.1). Suppose

that (i) /4= {/4\..y^), where /^=[a^,a.], (ii) for all i, u.(a,t) is continuous in a on [a.,a.], and

(Hi) for any finite /^(Z/4, a PSNE exists in the game where the players choose actions from

/f, where the equilibrium strategies P„(t) are functions of bounded variation.

Then a PSNE exists in the game where players choose actions from /4.

Corollary 3.1.1 Consider a game of incomplete information which satisfies (2.1). Suppose

that (i) /4= (/4\..yr^), where /^=[a.,a.], and (ii) for all i, ufsi,i) is continuous in a on [a^,a.].

Then:

(i) If the Single Crossing Condition (2.2) holds, then there exists a PSNE, P'(t), where each

player's strategy is nondecreasing in her type.

(ii) If the Limited Complexity Condition (2.4) holds for some K, then there exists a PSNE,

P'(t), where each player i's strategy has at most K- direction changes.

While Corollary 3.1.1 does require the regularity assumption that u. is continuous and

integrable, it does not require differentiabiUty or quasi-concavity, two assumptions which often

arise in altemative approaches. Furthermore, it does not place any additional restrictions on the

correlation structure between types above what is required for the (economically interpretable)

condition that best responses are nondecreasing.

Despite the generahty of Corollary 3.1.1, the restriction that payoffs be continuous still rules

out many interesting games. The next section extends this result to games with discontinuous

payoffs such as auctions.

3.2. Games with Discontinuities: Auctions and Pricing Games

This section studies games whose payoffs exhibit a particular type of discontinuity. A player

sees a discrete change in her payoffs depending on whether she is a "winner" (i.e., the high bidder

in a single-unit auction or the low price in a pricing game), or a "loser." Examples include auctions

(first price or all-pay), pricing games, and more general mechanism design problems where the

goal is to allocate resources between multiple players. Winners receive payoffs v,(a,,t), while

losers receive payoffs v^{a^,i). The allocation rule (p^ia) specifies the probabihty that the player

receives the winner's payoffs as a function of the actions taken by all players. We will restrict

attention to games with only two outcomes. Under our assumptions, then, a player's payoffs

given a realization of types and actions is given as follows:

M,(a,t) = (p,(a) v,{a,,i) + (1 - <p.(a)) • v,(a,,t) (3.1)

This formulation highlights the second assumption impUcit in this formulation: payoffs depend on

the other players actions only through the allocation, not through payoffs directly. This

assumption can be relaxed, but it sufficiently comphcates the analysis that we wiU not consider it
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here.

Each player chooses from a set of actions, ^=Qu[q^,a.]. The action 2<min,{ a,
} guarantees

each player zero expected payoffs. We will maintain the following assumption about payoffs:

v,(e.t)=v,(e.t)=Oforallt. (3.2)

For all a.e [a,, 5^] and all t,

(i) v,.(a,,t)>0 implies v,.(a„t) > v,(a,,t), and (ii) v,.(a,,t)<0 implies v,.(a„t)<0. (3.3)

There are several classes of examples which have this structure. In a first-price auction, the winner

receives the object and pays her bid, while losers get payoffs of v,.(a,,t)=0. In Milgrom and

Weber's (1982) formulation of the mineral rights auction, v,.(a,,t) represents the expected payoffs

to the bidder conditional on the vector of type realizations, and the vector t is interpreted as a vector

of signals about each player's true value for the object (where signals and values may be

correlated). In an all-pay auction, the player pays her bid no matter what, but the winner receives

the object. In some pricing games, the lowest price (the highest action) implies that the firm

captures a segment of price-sensitive consumers, while having a higher price implies that the firm

only serves a set of local customers.

We will restrict attention to allocation rules which take the following form:

<p,(a)= y
((Ti.,C7r)<=(l,..,/)\l

s.t tTiricrr=0

l{K|>/-t} + l{KKK|>/-t>K|}/'(^r) nlf i-TTlf 1 (3.4)

In this expression, m,(-) is a strictly increasing function. Player / receives the object with

probabiUty zero if k or more opponents choose actions such that mfa^>mf^a^, and with probability

1 if I-k or more opponents choose actions such that mj{a^<m.{a^. The remaining events are

"ties," in which case p:2"' ""-^[O,!] is the probabiUty that player / wins. We further assume that:

If lG^>0, then P{<5t)<\. (3.5)

This assumption requires that if player / ties for winner with a non-empty subset of players, no

player wins with probability 1. This last assumption simplifies the proof, but can be relaxed.

To interpret expression (3.4), consider the example of a first price auction for a single object.

In this case, ^=1 and mfa^=-a.. That is, the player wins with probability zero if 1 or more

opponents place a higher bid. If ties are broken randomly, the probability of winning given that no

opponents place a higher bid and further the player ties with the subset of opponents Oj is given by

p(crj.) =
i^^- More general mechanism design problems also fall into this framework. When a

player's payoffs satisfy the single crossing property, only direct mechanisms in which the

allocation rule is monotonic wiU be incentive compatible; thus, any incentive-compatible rule for
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allocating k winners from / players will take the form of (3.4). Further, consider an optimal

mechanism to allocate a single object between risk neutral agents whose (independently distributed)

types represent their valuations for the object. In this case, the actions are reports of types, and the

allocation rule determines the winner according to the agent who has the highest "virtual type"

(Myerson, 1981).

Thus, the players' expected payoffs can be written as follows:

C/.(a,,a_,(-),r,)

= jM,(a,,a,(t_,),t)/(t_,|0^t_,

= j[(p,(a,,a_,(t_,)) v,.(a,,t) + (1 - <p,(a,,a_,(t_,))) • Y,(«„t)] • /(t_,|r,)Jt_,

= jv,(«,-,t) • /(t_,|0^t_, + |[v;.(a,,t) - v,(a,,t)] • (p,(a,,a_,(t_,)) • f(tjt,)dt_,

We maintain the following additional assumptions:

For all / and a.e [a,-,a;], v,.(a,.,t) and v,(a,,t) are bounded and continuous in (a,,t), and

Av,.(a,-,t)= V ,.(a,.,t)- V .(a,.,!) is nondecreasing in t and strictly increasing in (-a,-,?,). (3.6)

For all a,e [a,-, a,], all ki<k2 such that kpk^e supp(/'f,.(t_,.)), £'[Av,.(fl!,,t)|f.,k, < t_,. < k2] is

strictly increasing in t- and nondecreasing in k^kj. (3.7)

Since (3.7) is the most restrictive our these assumptions, it is worth pausing to note that it has

in fact been characterized by MUgrom and Weber (1982) for the case where Av,. is nondecreasing in

t, as assumed in (3.6) (log-supermodularity of densities is discussed in more detail in Section 4

and in the Appendix).

Lemma 3.2.1 Consider a conditional density f(t_i\t) which is log-supermodular a.e. Then

E\g^(t)\t.,k^ < t_,. < kj] is nondecreasing in (?,. ,kpk2)/or all g,. nondecreasing if and only if

/(t_,lf,) is log-supermodular a.e. (equivalently, t is affiliated).

With these assumptions in place, we can state our existence result, proved in the Appendix:

Theorem 3.2 Consider a game which satisfies (2.1). Let the action space for each player

be /^=Q\j[qi,ai], assume that the support of the distribution F(t) is a product set, and assume

(3.1)-(3.7). Supposefurther that the Single Crossing Condition, (2.2), holdsfor a,.e [a^,a^].

Then, there exists a PSNE, P*(t), where each player's strategy is nondecreasing in her type.

Once existence is established for the continuous-action game, standard arguments can be used

to verify the usual regularity properties. For example, strategies are strictly increasing on the

interior of the set of actions played with positive probability, and no player sees a gap in the set of

actions played with positive probability by opponents. Further, with appropriate differentiability

assumptions, we can use a differential equations approach to characterize the equilibrium.
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The intuition behind the proof of Theorem 3.2 can be summarized as follows. The only reason

that Theorem 3.1 cannot be applied directly is that the game has a potential discontinuity in a

player's own action. If the opponents use a particular action a with positive probability, then

increasing one's own action to be just higher than a will lead to a discontinuous increase in the

probability of winning. However, observe that if each ^,*(r,) is strictly increasing on T-, expected

payoffs will be continuous in a,., since the Lebesque measure of the sets Uy|j3J(rp<)t| and

|r.b3*(fy)< A:[ changes continuously in k, and since we have assumed that the type distributions

are atomless. If, in contrast, P*{t^ is constant at Z? on a subinterval S of T-, then each player yV/

sees a discontinuity in their expected payoffs at aj=b.

Let P*(t) denote the equilibrium strategies. Our argument establishes that for each player /,

almost every tj^e r,. sees zero probabiUty of a tie at her optimal action P*(t^). Ruling out the

possibility of such mass points in the limit involves showing that mass cannot be "adding up" close

to a particular action as the action space gets finer. Recall that a sequence of nondecreasing

functions has an almost-everywhere convergent subsequence, and further this subsequence

converges uniformly except on a set of arbitrarily small measure. Thus, if a player's limiting

strategy involves a mass point at some action b, then given a d>0, a positive mass of players must

be using a strategy on [b-d,b+d] as the action grid gets fine. But then, other players have an

incentive to "jump over" that player's action b rather than using an action less than a'—d: with an

action only slightly higher than b+d, the other players can beat all of the types playing on [b~d,

b+d\. But this will in turn undermine the incentives of the first player to choose an action on [b—d,

b+d].

This result then generalizes the best available existence results about first price auctions.

Previous studies (Maskin and Riley (1993, 1996); Lebrun (1995, 1996), Bajari (1996a)) have

analyzed independent private values auctions, as well as affiliated private values auctions and

common value auctions with conditionally independent signals about the object's value (Maskin

and Riley (1993, 1996). The work closest to ours is Lizzeri and Persico (1997), who have

independently established existence and uniqueness of equilibria in a class of games similar to the

one studied above, but with the restriction to two bidders (further, their approach is based on

differential equations, while differentiability of utility functions is not assumed here). The

approach taken in this paper is different from those of the existing literature, in that it separates out

the issue of monotonicity of strategies and existence, showing that monotonicity implies existence.

Thus, the only role played by assumptions about the joint distribution over types is to guarantee

that the single crossing property holds.

The next section analyzes applications, including first price auctions. To preview, however.
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the weakest general conditions for private value auctions requires (i) log-supermodular utility

functions, which amounts to log-concave utility functions if utility takes the form V^it-a^, and (ii)

affiliated types. In the more general "mineral rights" auctions, which allow for utihty functions of

the form v.(a,-,t), for two bidders we require that v,(a,,t) be supermodular in (a,,f,) and {a^,t^,

strictly increasing in (-a.,t^, and that values are affiliated. We are not aware of general conditions

for monotonicity in the mineral rights auction with more than two bidders; however, our numerical

results indicate that monotonicity holds in the relevant range (i.e., near equilibrium) for several

examples with log-normally distributed values and signals.

4. Characterizing the Single Crossing Condition in Applications

This section characterizes the single crossing condition in several classes of games of

incomplete information. It applies results from Athey (1995, 1996) to describe conditions on the

primitives of a game, that is, the utility functions of the players and the joint distribution of types,

which are sufficient for the expected value of the utility fianction to satisfy SCP-IR when all other

players use nondecreasing strategies. Thus, applying Theorems 2.1, 3.1, and 3.2, we are able to

characterize classes of games which have PSNE.

The results in this section are grouped according to the structure of the problem: additively

separable problems (such as investment games), multiplicatively separable problems (such as

private value auctions), and non-separable problems (such as mineral rights auctions). Table 7.1

in the Appendix summari2:e our analysis from this section, stating the conditions to check for

games of incomplete information which take a variety of structures. The results are applications of

theorems about comparative statics in stochastic problems from Athey (1995, 1996). AH of these

results can be appUed to derive sufficient, and sometimes necessary, conditions on payoff

functions and type distributions so that the game satisfies the Single Crossing Condition.

The results make use of the properties supermodularity and log-supermodularity. Since we
will be interested in product sets, we will state the definitions for that case. Let X= x X„ and

n=l,..,N

consider an order for each X„, which wiU be denoted >. Suppose that each set X^ is a totally

ordered set. An example of such a product set is SK" with the usual order, where x>y if x>.y^ for

n=l,..,N. We will use the operations "meet" (v) and "join" (a), defmed for product sets as

follows: xvy = (max(x,,>',),..,max(x„,>'j) and x Ay = {Tmn{x^,y^),..,^nnix„,yJ).

Definition 4.1 A function h-.X-^SH is supermodular if, for all x,yeZ,

hixvy)-\-h{xAy)>h(x) + h(y). A non-negative function h:X-^3{ is log-supermodular'^ if,

for allx,yeX, h(x v y) h(x a y) > h(x) h{y)

.

^ Karlin and Rinott (1980) called log-supermodularity multivariate total positivity of order 2.
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Clearly, a non-negative function h(x) is log-supermodular if ln(h{x)) is supermodular. When

kSi"-^^, and we order vectors in the usual way, Topkis (1978) proves that if h is twice

differentiable, h is supermodular if and only if -^^Kx) > for all / # j. For the moment, four

additional facts about these properties are important: (1) if h(x,t) is supermodular or log-

supermodular, then h(x,t) satisfies SCP-IR; (2) sums of supermodular functions are

supermodular, while products of log-supermodular functions are log-supermodular; (3) if h(x) is

supermodular (resp. log-supermodular), then so is /z(a,(x,),..,a„(xj), where a,() is

nondecreasing; (4) a density is log-supermodular if and only if the random variables are ajfiliated

(as defined in Milgrom and Weber, 1982)7

4.1. General Characterizations

4.1.1. Additively separable expected payoffs

First consider games where payoffs are given by M,(a,t) = gi(a.,t^) + /z,(a,t), and C/,(a,.,a_,(-),?,)

= gi(a.,t^) + H.{a^,t^. A game which fits into this framework is an all-pay auction, where gi{a.,t) is

the expected utiUty from losing the auction and having to pay a,, while H.{a.,t) gives the expected

retums to winning as opposed to losing the auction, weighted by the probability of winning.

Since the sum of supermodular functions is supermodular, and since supermodularity imphes

the SCP-IR, supermodularity of g,. and //,. will imply the SCP-IR. The following result, due to

Milgrom and Shannon (1994), shows function that supermodularity is the "right" property for

additive problems.

Lemma 4.1: Consider g., //,:9t^—>9?. g^{a^,t)+H^(a^,ti) satisfies single crossing of
incremental retums (SCP-IR) in (a^;t-)for all H- which are supermodular in a., ifand only if g.

is supermodular.

For example, in an aU-pay auction, we might wish to characterize conditions on g,. which are

sufficient for the SCP-IR to hold without specifying any additional structure on opponent strategies

besides monotonicity, and allowing for general type distributions. Supermodularity is the weakest

condition on g,. which guarantees SCP-IR of payoffs across an unrestricted class of functions i/,..

The next step is to characterize when expected values of payoff functions are supermodular.

The following Lemma apphes results from Athey (1995, 1996) to this problem:

^ See Whitt (1982) and Karlin and Rinott (1980) for related discussions of this property in statistics. Log-

supermodularity of a density is also equivalent to the as monotone likelihood ratio property (MLRP) (Milgrom,

1981). A probability density y(j;0) satisfies the MLEIP if the likelihood ratio y(r;0j)//(r;0J is nondecreasing in t for

all 0,>6li.
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Lemma 4.2 (i) k.{a.,i)f.{i_\t.)di_. is supermodular in(aJ^for allk-whichare

supermodular in (a,, rp, _/=!,..,/, if and only if i ^(t_,|?,)^t_,. is nondecreasing in t.for all S

such that l^Ct,,) is nondecreasing.

(ii) UA^) " log-supermodular, thenl ^(t_,|f,)<it_,. is nondecreasing in tjor all S such that

l^(t_,.) is nondecreasing t_,,

Athey (1995) provides a more thorough characterization of supermodularity in stochastic problems

based on altemative assumptions about the payoff functions; Lemma 4.2 is most apphcable for

games of incomplete information, and it does not rely on higher order derivatives of the payoffs.

Together, the above results can be used to characterize the single crossing condition in a class

of games with additively separable payoffs.

Theorem 4.3 Consider a game of incomplete information which satisfies (2.1). Suppose

that payoffs are given by M,(a,t) = g,(a,,?,)+/z,.(a,t). Then if (i) for all i, g. and h^ are

supermodular in (a.,t^, (ii) h. is supermodular in (a^,a^ and (a.,tj), i^j, and (Hi) the joint

distribution over types fit) is log-supermodular, then the game satisfies the Single Crossing

Condition (2.2).

Proof: Apply Lemmas 4.1 and 4.2, letting k{a.,t) = h.(a.,a_^(t_),t), recalling Fact (3)

from above, which guarantees that for nondecreasing a_,(t_,.), supermodularity of /i,. implies

supermodularity of k^.

While Theorem 4.3 can be used to estabUsh existence of equilibrium, the games studied in

Theorem 4.3 also satisfy Vives' (1990) sufficient condition for existence of PSNE. When payoffs

are supermodular, a pointwise increase in aj(tj) increases the returns to a,, for all r,., and thus the

game is supermodular in strategies under the pointwise order. Under those conditions, Vives

applies theorems about existence of equihbria in supermodular games without relying on the

Single Crossing Condition, and thus without reference to assumptions about the joint distribution

over types. However, Vives' result rehes crucially on the assumption that payoffs are

supermodular, and it will not be apphcable to the other classes of games, including games with

log-supermodular or single-crossing payoff functions, as well as the additively separable aU-pay

auction with independent private values (which rehes on Lemma 4.1 dkectly). Further, because

monotonicity of strategies is of independent interest in many games, we wUl at times be interested

in applying Lenmia 4.2 and Theorem 4.3 even in games with supermodular payoffs.

In terms of apphcations, many of the supermodular games with complete information which

have been studied by economists (see Topkis (1979), Vives (1990), and Milgrom and Roberts

(1990) for examples) can also be studied as games of incomplete information. For example,

pricing or quantity games have variations where firms have incomplete information about their
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rivals production costs or information about demand. Games between two players whose choices

are strategic substitutes can also be considered, such as a Coumot quantity game between two

firms whose quantities decrease the marginal revenue of the opponents, but where the firms have

incomplete information about rivals costs.

4.1.2. Multiplicatively separable expected payoffs

The next class of games we consider is a class where player /'s payoffs can be written as the

product of two nonnegative terms, so that u.(si,t)=g.(a.,t.yh.(a,t) and C/,.(a,,a_,.(-).0 =

gi(a^,t)-H.(ai,t.). A game which fits into this framework is a private-value first price auction,

where H^{a.,t) = Pr{bid a,, wins the auction given t.]; other examples include pricing games where

firms' products are imperfect substitutes.

The theory of comparative statics for additively separable problems can be applied to

multiplicatively separable problems merely by taking logarithms, i.e., ln([/,(a,.,a_,(),r.)) =

ln(g,.(a,-,f,))+ln(/f,.(^,,?,.)), and applying Lemma 4.1. Thus, for multiplicatively separable problems,

log-supermodularity is the right property to require in order to guarantee the SCP-IR.

The methods for analyzing log-supermodularity in stochastic problems are different from those

for supermodular functions; however, the sufficient conditions are in the end quite similar. The

following characterization theorem follows from Athey (1996):

Lemma 4.4: Letk^.'3{'-^'^S{^ where f(i) is a probability density. For i=l,..,I, let k-:'3i''*^^—^Si^

and let f.{t_.\t,) be the conditional density o/t_, given t.. Then the following conditions hold:

(i) \ k-(aj,t)f-(t_-\t-)dt_- is log-supermodular in (a-,t)for all i=l,..,I and all k-log-

supermodular, ifand only iff(t) is log-supermodular.

(ii) \ k-(aj,t)f-(t_.\t.)dt_- is log-supermodular in (a^,t) for allf{t) log-supermodular, ifand only

ifk(a^,t) is log-supermodular.

Log-supermodularity is an especially convenient property for working with expectations

because it is preserved by multiplication; thus, multiplying the integrand by an indicator function

lj(t_,.) preserves log-supermodularity so long as the set 5 is a sublattice (see Topkis, 1978); a

common example of a sublattice is a cube in 9t". For more discussion see Athey (1996).

We can pull these results together into the following set of sufficient conditions for the Single

Crossing Condition to hold, in a manner similar to Theorem 4.3.

Theorem 4.5 Consider a game of incomplete information which satisfies (2.1). Suppose

that payoffs are given by u.(a,t) = g.(a,.,f,)-/z,(a,t). Then if (i) for all i, g,. and /i, are nonnegative

and log-supermodular, and (ii) the joint distribution over types f{t) is log-supermodular, then

the game satisfies the Single Crossing Condition (2.2).

We will apply this result to private values auctions and pricing games in Section 4.2.
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4.1.3. Nonseparable Expected Payoffs

This section analyzes games which do not fit into the classes of additively or multiplicatively

separable games analyzed above. Of course, we can always apply the above results about payoffs

of the form M,(a,t)=g,.(a„0+^.(3't) or u.(a,t)=g.(a.,t)h.(a,t), letting g.(a.,t,)=l. However, the

requirements on h. which must be satisfied to apply Theorems 4.3 and 4.5 are stronger than

necessary if gi{a^,t^ is constant. Further, some games (such as the mineral rights auction) do not

satisfy the conditions of Theorems 4.3 and 4.5. This section shows that weaker conditions on the

utility fiinction suffice, if either (i) there are only two players, as in the noisy signaling game

studied in Section 4.2.3, or if (ii) u.{si,i) takes a very special form. In particular, in many-player

games, u. must depend on the opponents' types and actions through a single index, denoted s^.

That is, M,.(a,,a_,(t_,.),t) = k.{a.,s^,t.;QL_^. For example, in a first price mineral rights auction with

identical bidders using symmetric strategies, aj(-)=ai{-) for all j,l^i. Then, k.{a.,s^,t-,Cf._^ =

E^
^

[v,.(a;,t)|max{/'^.:;V/}=5,.]- 1,
^^ ,i('^<)-

That is, s. is the value of the highest opponent type,

and payoffs depend on opponent types only through the realization of this type and the associated

action. In a multi-unit auction, 5,. might be a different order statistic of the distribution. In other

appUcations, 5, might be a sufficient statistic for t_,..

Our theorem makes use of a weak version of the SCP-IR. Formally:

Definition 4.2 h(x,6) satisfies (Milgrom and Shannon's) weak single crossing property of
incremental returns (WSCP-IR) in {x;6) if, for all x^yx^ g{6)=h{Xfj,6)-h(x,j6) satisfies the

following condition for all 6[f>6i^: g(6i)>0 implies g(6^)>0.

The following Lemma is proved in Athey (1996).

Lemma 4.6: Consider a function /:,.:9t'-^SR and a conditional density fis^U) whose support

does not change with t^, and suppose f (sjit) is log-supermodular. Suppose further that

k.{a^.,s.,t) is supermodular in (a^t^) and satisfies WSCP-IR in (ajsj. Then

J^,.(a,.,5,.,r.)/^ (j,.|r.)rfr. satisfies SCP-IR in (a.,tj.^

Lemma 4.6 can be applied to games of incomplete information, and the following theorem will

be used in our study of mineral rights auctions as well as noisy signaling games.

Theorem 4.7 Consider a game of incomplete information which satisfies (2.1). Suppose
thatfor all i=l,..I, there exists a random variable s^ and a family offunctions ki(-;a._,):S(^—^Si

indexed by opponent strategies, such that (i) U^(a.,a_i(-),t^)=E^ [/:(a,.,5,.,?,.;a_,.)|?,.]; (ii) when

«_,.(•) is nondecreasing, k{a.,Sj,t:,(X_) is supermodular in (a.;t^ and satisfies WSCP-IR in (af,s);

and (Hi) the conditional density f (jj?,) is log-supermodular and the support does not change

with f,. Then the game satisfies the Single Crossing Condition (2.2).

^ Athey (1996) further shows that none of the hypotheses can be weakened without strengthening the others; see

Table 7.1 in the Appendix.
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4.2. Applications

4.2.1. Auctions

4.2.1.1. Private Values Auctions

Consider a first-price, private value auction, where each player i (/=!,..,/) observes his own

value ?,., and values are drawn from a distribution satisfying (2. 1). Each player's utility function is

given by V,.(a,,?,). Suppose players j^i use nondecreasing strategies. Writing the objective

function when ties are resolved randomly is cumbersome, so for the moment consider the game

where the auctioneer keeps the object in the case of ties. Then, let H,.(a,lr,.) = Pr(a,.>a^.(r^.) for: jH\t^.

To see when the conditions of Theorem 4.5 are satisfied, consider first the utility function. If

utility takes the form V^(a,.,r,.)=V;(r.-a,.), where V,(0)>0 and ln(V^.) is concave and strictly increasing,

it is straightforward to verify that V,. will be log-supermodular in (f,,a,). Next, consider the issue of

when /f(a,lf,) is log-supermodular. Since the strategies are nondecreasing (and recalling Fact 3,

that log-supermodularity is preserved by monotone transformations of the variables), H{a^\t^) wiU

be log-supermodular if the joint distribution of types, F(t), is log-supermodular. A sufficient (but

not necessary) condition for this is that/(t) is log-supermodular, i.e., types are affihated (this can

be shown using Lemma 4.4, letting g.{zX)=\t<a.^{i))

•

Now, consider the case where ties are resolved uniformly. Then define /i,(a,t) as follows (and

likewise for players 2,..,/):

^(^)=t---iT-v^-ri(a-A)-iK<.]+A-iK=.])

Thus, the probability that player i wins the auction when she has type ?,. and chooses an action a,, is

given as Prfo, Wm^t^] = H{a\t{) =E^ , [/r(a,,a_,(t_,))]. If the types are affiliated, then Lemma

4.4 impUes that this probabiUty will be log-supermodular in (a,,?,) if the integrand is log-

supermodular in (flpt). Log-supermodularity can be verified pairwise, so that (using the

symmetry) we need only to check log-supermodularity of /j(aj,a_,(t_,)) in {a^,t^ and {tj,t^ for

l^i^l. This can be verified directly.

Thus, we have the following proposition (the assumption of the proposition that V,(<2,,?,.) is

nonnegative is innocuous since the agent knows Vfa.,t^ after observing her type and thus can

always choose an action a. which yields nonnegative payoffs).

Proposition 4.8 Consider a private values, first price auction, where (2.1) holds. Suppose

further that (i)for all i, the utility Junctions VJ(^ai,t) are non-negative and log-supermodular,

(ii) types are affiliated (f(t) is log-supermodular), and (Hi) ties are broken uniformly. Then:

(1) The game satisfies the Single Crossing Condition (2.2), and a PSNE exists in allfinite-
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action games.

(2) If, in addition, for all i (iv) V, is strictly increasing in (—a-,t^), (v) V^ is bounded and
continuous, and (vi) the support off(t) is a product set, then (3.1)-(3.7) are satisfied and
there exists a PSNE in continuous-action games.

Now consider a generalization of Proposition 4.3 to multi-unit auctions, where each agent

demands a single unit. For example, in a 2-unit auction, the players with the highest two bids win

an object. Unfortunately, this complicates the analysis of log-supermodularity of the function

Pr(a, winsif,.). However, if the types are drawn independently, then Pr(a,. winsk,) does not depend

on ?,., and the expected payoff function reduces to V^{a.,t)-Pr(a. wins). This is always log-

supermodular if V,(a,,f,.) is log-supermodular; thus, for the case of independent types, the extension

to multi-unit auctions is immediate.

4.2.1.2. All-Pay Auction

In this section, we consider an altemative auction format, the all-pay auction. In this auction,

the highest bidder receives the object, but all bidders pay their bids. This game has been used to

model activities such as lobbying. To keep the analysis simple, we will use an independent private

values formulation. Let V^{a.,t^ take the form V,(?-a,). Then a player's expected payoffs from

action a. can be written as follows:

V;.(-a,)-hy,a,-a,)-Pr(fl,wins)

This game has an additively separable form, and thus by Lemma 4.1, we look for the

components of the objective function to be supermodular. Since Pr(a. wins) is nonnegative and

nondecreasing in a,., it is straightforward to verify that y.(f-a,.)-Pr(a,. wins) is supermodular if

V;(f-a,) is increasing in t. and supermodular in (a,,^,). In turn, V,.(?-a,) is supermodular if and

only if it is concave, that is, the bidder is risk averse.

Observe that we have not discussed the interactions between the players' strategies in

determining the function Pr(a,. wins); since types are independent and bidder valuations are private,

this is not important for establishing the single crossing conclusion, in contrast to Theorem 4.3.

However, it is not true that a pointwise increase in player 7' s strategy leads to a pointwise increase

in player /'s best response, and thus the game is not supermodular in strategies.

Summarizing, we have the following proposition:

Proposition 4.9 Consider a private values, all-pay auction, where (2.1) holds. Suppose

further that (i) for all i, the utility functions V.{t-a) are concave, and V,.(0)^0, (H) types are

independent, and (Hi) ties are broken uniformly. Then:

(1) The game satisfies the Single Crossing Condition (2.2), and a PSNE exists in all finite-

action games.

(2) If in addition, for all i (iv) V^ is strictly increasing, (v) V, is bounded and continuous, and
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(vi) the support off{i) is a product set, then (3.1)-(3.7) are satisfied and there exists a PSNE
in continuous-action games.

4.2.1.3. First Price Mineral Rights Auctions

We now generalize our analysis of auctions to consider Milgrom and Weber's (1982) model of

a mineral rights auction (their general existence and characterization results treat the /-bidder,

symmetric case and several other special cases), allowing for risk averse, asymmetric bidders

whose utility functions are not necessarily differentiable.

We begin with the two bidder case. Suppose each agent's utility (written y,.(a.,f,,?2)) is

supermodular in (a,,^,) and (a,,?2)' ^^^ ^^^ ^e interpreted as the player's expected payoffs

conditional on both players' signals.^ When player two uses the bidding function cc^it^, player

I's expected payoffs given her signal can be written as follows (assuming ties are broken

randomly):

^,(a„a2(-),?,)=JM(«pA,?2)-4,>a,(,,)(^2)-/2(^2h)^^2

h

-\\v,{a„t„t^)-I^^^,„^,{t^)-f{t^\t,)dt^

h

her bid fromA„ to A„ , given x^.
Li H

To keep things simple, consider the finite-action game. Figure 7 illustrates how player I's

incremental returns to increasing her bid from A^ to A^ (where m^<mu) change with the

signal of the opponent, given that the opponent's strategy is consistent with x^. There are several

regions to consider. When the opponent bids less than A^ , the outcome of the auction is

unchanged by the increase in bid, but

Returns to player 1 from increasing player 1 simply pays more. For a risk

neutral bidder, this would be a constant.

When the opponent bids more than

A^ , the outcome of the auction is also

not changed by the bid increase: player 1

loses in both cases and pays nothing. In

the intermediate cases, there are the

regions which involve ties at either the

low or the high bid, and the region where

Figure 7: Player I's payoff function satisfies WSCP-ER in

(ai;t2).

^ To see an example where these assumptions on the payoff function are satisfied, let V^(a,,t)

= J v^(z- a, )g(z|f,,fJ )^z, where z is affiliated with f, and /j, and v, is nondecreasing and concave. To see why, note

that ti and fj each induce a first order stochastic dominance shift on G, and v, is supermodular in (a„z). By Athey

(1995), supermodularity of the expectation in (a,-,/]) and (a„r2) follows.
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the bid increase causes player 1 to change from losing for certain, to winning for certain. Within

each of these regions, expected payoffs are nondecreasing in the opponent's type since this

increases the expected value of the object to bidder 1

.

When bidder two plays a nondecreasing strategy, bidder one's payoff function given a

realization of fj satisfies WSCP-IR in (af.^j)- ^^^ ^^ i^ supermodular in (a,;?,). We can further

apply Lemma 3.2.1 to show that the conditional expected payoffs for a bidder are always strictly

increasing in his type so long as v.(a,.,t) is nondecreasing in t, thus satisfying (3.7). This gives the

following result:

Proposition 4.10 Consider a 2-bidder first price "mineral rights" auction, where (2.1)

holds. Suppose fiirther that (i) for all i, the utility functions V,(a,,t) are supermodular in (a.,tj),

7=1,2, and nondecreasing in t, (ii) types are affiliated (f(t) is log-supermodular), and (Hi) ties

are broken uniformly. Then:

(1) The game satisfies the Single Crossing Condition (2.2), and a PSNE exists in all finite-

action games.

(2) If, in addition, for all i (iv) V, is strictly increasing in (—a^,t^, (v) V,. is bounded and
continuous, and (vi) the support off{t) is a product set, then (3.1)-(3.7) are satisfied and
there exists a PSNE in continuous-action games.

What happens when we try to extend this model to more than two bidders? If the bidders face

a symmetric distribution, and all opponents use the same bidding function, then only the maximum

signal of all of the opponents wiU be relevant to bidder one. Define 5, = max(f2,-.,^„). MUgrom

and Weber (1982) show that (t^,s^) are affiliated when the distribution is symmetric. Further, if

the opponents are using the same strategies, whichever opponent has the highest signal will

necessarily have the highest bid. It is straightforward to extend Milgrom and Weber's arguments

to show that i^(a,,f,,j',) = £'[v^(a,,f,,..,f„)|5,] is increasing in {t^,s^) and supermodular in (flp?,)

whenever V, is nondecreasing in t and is supermodular in (a,,?,), /=!,..,«. Then we can apply

Proposition 4.9 to this problem exactly as if there were only two bidders.

Unfortunately, when players use asymmetric strategies, affiliation of the signals is not

sufficient to guarantee that (f,,^,) are affiliated, nor is their joint distribution function log-

supermodular. Thus, in some regions, a small increase in the signal received by a given player

might increase the likeUhood that a given bid is higher than all opponents. However, this potential

competing effect may not be the dominant one in particular examples; thus, one can proceed by

positing that the single crossing condition holds, characterize the equilibrium under that

hypothesis, and then verify that the single crossing condition is in fact satisfied for the functional

forms and ranges of parameters of interest. Thus, separating the single crossing condition from

the existence theorem allows us to proceed even in the absence of general sufficient conditions for

the single crossing condition.
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In the case where players are risk neutral, we rewrite the n-bidder problem another way in

order to highlight the difficulty. Let ^(a^,t) = E[zi |t] - a, , where z, is player 1
' s true value for the

object. This is nondecreasing in t by Lemma 3.2.1. Then, we can rewrite player I's expected

payoffs as follows (ignoring ties):

[E[E[z,\t]\t„aj(tj) < a,]- a,) • Pr(a/f^.) < a,\t,). (4.2)

Applying Lemma 4.4 to this problem in a manner analogous to the private value auction, we

know that Pr(aj(tj) <cii\tA is log-supermodular when the density is affiliated and the strategies are

nondecreasing. To isolate the issue with the first term of (4.2), we draw a distinction between the

two ways that a, affects this term. We can restrict attention to actions by player 1 less than or

equal to the player's conditional expected payoff. Note that £'[£|^z,|t]|r,,a^(rp<a] l-c is log-

supermodular in (?,,c), since by Lemma 3.2.1, the first term is nondecreasing in ?,. However, our

assumptions do not imply that £'l£|z,|t]p,,a^.(f^.) < a, I
- c is log-supermodular in (Op?,). Thus,

the single crossing property will require that the interactions between a, and f, which we know

work in the right direction are strong enough to outweigh any competing effects.

4.2.2. Pricing Games

This section studies pricing games with incomplete information, where constant marginal costs

are the private information of the players of the game. Spulber (1995) recently analyzed how

incomplete information about a firms' cost parameters alters the results of a Bertrand pricing

model, showing that firms price above marginal cost and have positive expected profits. Spulber'

s

model assumes that costs are independently and identically distributed, and that values are private;

now we show that this model can be easily generalized to asymmetric, affiliated signals.

Let ti represent the marginal cost of firm i. Consider a general demand function for firm /,

D'(pi,..,p,), where the firms produce goods which are only imperfect substitutes. When the

opponents use price functions Pj{tj), firm I's problem can now be written as follows:

max [p,
- r,]

J-
• Jz)'(/7„p2(?2),..,p,(r,))/(r2,..,r,|?,)rft_,

By Lemma 4.4, the expected demand function is log-supermodular if the cost parameters are

affiliated and D^(p^,..,p,) is log-supermodular. The interpretation of the latter condition is that the

elasticity of demand is a non-increasing function of the other firms' prices. As discussed in

Milgrom and Roberts (1990b), demand functions which satisfy this criteria include logit, CES,

transcendental logarithmic, and a set of Unear demand functions (see Topkis (1979)). Another

special case is the case of perfect substitutes, where demand to the lowest-price firm is given by
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D(P), where P is the lowest price offered in the market, and all other firms get zero demand.

Then, since [p-t-] is log-supermodular, we have the following result (noting that the case with

perfect substitutes is formally like a first-price auction):

Proposition 4.11 Consider a pricing game as described above, where (2.1) holds.

Suppose further that (i) for all i, the demandfunctions D'(p^,..,p,) are non-negative and log-

supermodular, (ii) types are affiliated (f[t) is log-supermodular), (Hi) in the case ofperfect

substitutes, ties are broken uniformly. Then:

(1) The game satisfies the Single Crossing Condition (2.2), and a PSNE equilibrium exists

when either D' is continuous or when the action set is finite.

(2) For the case where goods are perfect substitutes, if in addition, for all i, (iv) D(P) is

strictly decreasing in P, (v) D(P) is bounded and continuous, and (vi) the support off(t) is a

product set, then (3.1)-(3.7) are satisfied and there exists a PSNE in continuous-action

games.

This example can also be extended to problems with incomplete information about demand

elasticities.

4.2.3. Noisy Signaling Games

Consider a signaling game between two players, the sender (player 1) and the receiver (player

2), where player 2 observes the signal of player 1 only with noise. Examples of noisy signaling

games include games of limit pricing (Matthews and Mirman (1983)), where an entrant does not

know the cost of the incumbent, but can draw inferences about the incumbent's cost by observing

a noisy signal of the incumbent's product market decision (the noise might be due to demand

shocks). In another example, Maggi (1996) studies the value of commitment in a game where one

player gets to move first, committing herself to an action, but the move is only imperfectly

observed by the opponent. This model is used to show that incomplete information about the first

mover's type (i.e. production cost) can restore some value to commitment, in contrast to Bagwell

(1995)'s result that commitment has no value in a game of complete information but imperfecdy

observed actions.

Consider a game where Player 1 observes his own type and chooses an action. Player 2

observes a noisy signal of player I's action and then chooses an action in response. Player 1

receives payoffs M,(a,,a2'^)' while player 2 receives payoffs M2(^i'^2'^i) ("^ the limit pricing

game, the player's action is not important, but the type f, represents the unknown production cost;

in the commitment game, player I's type is not important to player 2, but the action (i.e. output)

is). Player 2's "type," t^, is simply a signal about a,, which does not direcdy affect payoffs. Let

/,(r2la,) be the density of the signal t^ conditional on the action a^. Thus the expected payoff to

player 1 from choosing action a^ when player 2 uses strategy a2{t^ is as follows:
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{u^(a^,a2(t2),t^)f^(t2\a^)dt2 . hstf2(tj\t2,a^(-)) be the conditional density of f, given the signal t^

and the belief that player 1 uses strategy ai(-)> calculated using Bayes' rule. Then, the expected

payoffs to player 2 from choosing action a^ when player 1 uses strategy «,(?,) is as follows:

Suppose that «,(?,) is nondecreasing. Further, suppose that /jC^jla,) is log-supermodular

(equivalent to the MLRP). Then, the induced density /jCrilrj.^CO) will also be log-supermodular.

Sufficient conditions for the single crossing property in this scenario are then given as follows:

Proposition 4.12 Consider a noisy signaling game as described above, where (2.1) holds.

Suppose further that (i) M2(^i.«2'^i) satisfies WSCP-IR in (a2,a^) and (a2,t^), (ii)f(t2\a^) is log-

supermodular and the support does not move with a,, and either (iii)(a) «[(«,,Gj'^i) '^

supermodular in fflj'^) <^"^ '" fop^i). (^f ^l^^ (iii)(b) u^(a^,a2,t^) is nonnegative and log-

supermodular. Then the game satisfies the Single Crossing Condition (2.2).

Proof: Lemma 4.6 implies that under our assumption that Uj satisfies WSCP-IR in

(aj'.^i) and ia2,t^), \u2(a^(t^),t^,a2)f2it^\t2,oc^{))dtJ satisfies SCP-IR in (a2;f2) when a,(r,)

is nondecreasing.

It remains to establish that player I's expected payoffs satisfy (2.2). Under assumption

(iii)(a), we can check that
J M,(j:,«2(^2)'0/i(^2b)^^2 ^^ supermodular in (x,t^) and (y,?i).

Since supermodularity is preserved by arbitrary sums, m, supermodular in (Oi,?,) implies

supermodularity of \ u^(x,a2it2),tx)fi{t2\y)dt2 in (jc,r,). If 02(^2) i^ nondecreasing, the

assumption that m, is supermodular in (^2.^1) implies that u^{a^,a2{t2),t^) is supermodular

in(?2'^i)- But Lemma 4.2 implies that JMj(A;,a2(^2)'^i)/i(^2|>')^^2 is supermodular in

Under assumption (iii)(b), we can apply Lemma 4.4 to establish that

\ u^(a^,a2(t2),t^)f(t2\a^)dt2 will be log-supermodular when u^ and/j are log-supermodular

and CX2{-) is nondecreasing.

5. Numerical Computation of Equilibria: First Price Auctions

In this section, we consider the issue of computation of equilibria of first price auctions. Since

the existence result considered in this paper applies to a wider class of economic environments

(arbitrary asymmetries, correlated values) than had been previously analyzed theoretically or

numerically, we can take a few first steps towards numerically characterizing the equilibria to such

auction games. This numerical exploration can potentially suggest avenues for future theorizing

about characterizations of equilibria, and we give some examples of suggestive numerical results

about affiliated private values and common value auctions with asymmetries in the covariance

structure of types.
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Prior to Marshall et al (1994), there were no general numerical algorithms available for

computing equilibria to asymmetric first price auctions with continuous bidding units, and in fact

existence was not known for some of the kinds of asymmetries considered in their paper. Marshall

et al (1994) argue that numerical computation of equilibria in asymmetric first price auctions in the

independent private values case is difficult, but can be done. They summarize some of the

difficulties as follows:

Although these solutions belong to a class of 'two-point boundary problems' for which
their exist efficient numerical solution techniques, they all suffer from major pathologies at

the origin. First, forward extrapolation produces 'nuisance' solutions (linear in our case)

that do not satisfy the terminal conditions and act as 'attractors' on the algorithm. Second,

and not unrelated, backward solutions are well-behaved except in neighborhoods of the

origin where they become highly unstable with the consequence that standard (backwards)

"shooting" by interpolation does not work.

Marshall et al (1994) then devise a technique which makes use of "backward series expansions"

and a transformation of the problem which is more numerically stable than the original problem.

Their algorithm requires analytical input to transform the problem appropriately. Generalizing their

algorithm to the case of more than two type distributions, or to correlated values, would require

non-trivial extensions of their numerical and analytic algorithms.

In contrast to the problem of computing the solution to a set of differential equations, the

algorithm for computing the equilibria to the auction game with finite actions constructed in this

paper involves few conceptual subtleties. We simply want to find the matrix X so that X=BR(X),

where the calculation of BR(X) is a simple exercise (both in terms of programming time and

computation time); it can be broken down into a sequence of single variable optimization problems,

one for each jump point of each player. That is, for each player /, let xi be the smallest value of t^

at which the player prefers action A, to A^ (computing expected payoffs to each action according to

V,(a,;X,f,.)), and then proceed to find x^, searching over ?,.>x|.io In mineral rights auctions,

where players must compute the expected value of the object conditional on winning against the

opponents' current strategies, the conditional expectations must be numerically computed; we

looked at signals and values which had a log-normal distribution. ^ ^

The more difficult part of the problem is solving the nonlinear set of equations X=BR(X). The

theory of numerical analysis 12 suggests a number of standard ways to solving this problem. Thus,

here we will only sketch a few of the numerical issues which arise. First, since we have no global

1" The algorithm also checks for the cases where a particular action is never used for any type.

1 To approximate the relevant conditional expectations and probabilities, we made use of the library of routines

made available by Vassilis Hajivassiliou as a companion to Hajivassiliou, McFadden, and Ruud (1996).

2 See Judd (forthcoming) for an excellent treatment of numerical analysis in economics.
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Sequence of Auctions: Jump Points: 10, 20, and 50
2 bidders, F(tl)=tl and F(t2)-t2*4

"contraction mapping" theorem, the algorithm X''''=BR(X*) is not guaranteed to converge for any

starting value, and indeed it does not appear to in numerical trials. However, variations on the

algorithm X*^'= ABR(X*^) + (l-A)X*)) were effective at generating starting values for other

algorithms. Methods based on quasi-Newton approaches can also be used. There are potentially

large computational benefits to using an analytic Jacobian since the Jacobian is sparse. In

particular, the point at which player / jumps to action A^, denoted x'^, affects only the following

elements of the best response of opponent 7?^/: x'^.p jc'„, and j:'„+,. Thus, to determine the effect

of changing each component of x' on the equation X-BR(X), it is necessary to call the function

BR() only three times. This allows us to compute a Jacobian of dimension M-I x M-I with only

/•3 function calls. The number of bidding increments can thus be increased without a affecting the

number of function calls required by the nonlinear equation solver, while the computation time for

the function BR(X) will increase linearly in M. However, even with this modification,

computation could be slow for the mineral rights examples considered below. A final alternative is

a simplex method, which was reliable in trials.

The first set of

approximations we report

were motivated by Marshall

et al (1994). We computed

the same set of auctions

studied in their paper, and

compared the calculations

for equilibrium bid

functions and expected

revenue. Marshall et al

(1994) chose a set of

distributional assumptions

motivated by the case where

five bidders draw values

from uniform [0,1], and a

subset of the bidders

collude, bidding as a group

with the group's value being

the maximum of the values

of the participants. A
comparison of the expected

0.6

.fS^
0.5 ^^

9) ^^^
•° 0.3 - J^0.2 ar^sr**--

"

4^
-
,^—1 1 1 1

--so jp - 1

-50 jp - 4

- 20 jp - 1

-•-•20 jp - 4

— 10 jp - 1

--10 jp - 4

Figure 8: First Price Auction games between two coalitions.

Coal- n Indiv. Our results, A/=100 Marshall et al Results: |

ition Bidders Expected Revenue Expected Revenue

F{x)=:e F{x)=x Auction Coal- Indiv. Auction Coal- Indiv

-eo- ition bidders -eer ition bidders

a = \ n=4 .6664 .0334 .0334 .6668 .0335 .0333

a=l n=3 .6508 .0344 .0374 .6510 .0352 .0371

a = 3 n=2 .6085 .0405 .0487 .6089 .0406 .0488

a = 4 n=l .5055 .0574 .0840 .5057 .0567 .0860
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revenue calculations for several auctions is presented in Figure 8. The table indicates that the

expected revenue from the auction with discrete and continuous bidding units is within .001 in aU

cases. Thus, in these auctions, the difference between the continuous and discrete games is small.

Figure 6 shows how the equilibria to the discrete game change as more bidding units are allowed.

Now consider an auction with affiliated private values, where the types are distributed

/n(t)~A^()X,Z).i3 There are several potentially interesting asymmetries: those arising from

differences in means, and those arising from differences in variances (which also affect the mean

of t), and those arising from differences in covariances. The numerical results for differences in

means and variances are not surprising: in the trials we conducted, types with higher means always

bid less aggressively and get higher expected revenue. Changes in variances affect the shape of the

distribution, so the higher variance types may be less aggressive in some regions and more in

others, but they tend to do better overall. Differences in covariances are perhaps slightly more

subtle, but no less intuitive. We will illustrate this case with an example. Suppose that two

bidders have types which are highly correlated, while a third bidder has a type which is less

correlated with the other two. Then the two bidders with highly correlated types bid more

aggressively and win more often than the third bidder, who also gets higher expected revenue.

The intuition is simple: the two bidders whose types are more highly correlated are always

concerned with competing with one another, even when their values are high.

Variable Mean Variance Matrix

Hh) 1 .5 .25

Hh) .5 1 .25

Kh) .25 .25 1

Expected

Player 1 Player 2 Player 3 Auctioneer

0.4691 0.4691 0.5008 1.4190

Revenue
Prob. of 0.3283 0.3283 0.3434

Winning

Figure 9: Private values first price auction where the

bidders have positively correlated values.

Private Values Auction

•Bidders 1

and 2

•Bidder 3

10

Next, we can consider pure "common values" auctions, where each player sees a private signal

about the common value. Although we do not have a theorem guaranteeing that the single crossing

property holds, we can numerically verify that it holds in the neighborhood of the equilibrium we

'^ See Wilson (1996) for a theoretical study of equilibrium in oral auctions with log-normal values.
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compute for a particular game; the numerical analysis indicates that it does hold in all of the

auctions we consider here. Let z be the common value. Though our numerical algorithms allow

for general variance-covariance structures, it is perhaps more intuitive to consider a particular

example of a signal structure. Suppose each player i receives a signal ln(s) = ln(z)+ln(e,), where

cov(z,e,)=0. The assumption of a common value implies that signals will be positively correlated,

and further, the errors e, may also be correlated. We can vary the informativeness of each player's

signal as well as the correlation of the signals. An interesting observation is that our result of

private values auctions, that the "more independent" bidder (bidder 3) does better, is no longer

true. While the "more correlated" bidders (bidders 1 and 2) still compete more aggressively, this

aggressiveness has a new effect for bidder 3 which does not arise in the private value auction. In

the private value auction, the competition between bidders 1 and 2 was most disadvantageous to

those two bidders; bidder 3 won less often, but received higher expected payoffs upon winning

due to his less aggressive bidding. But in the common value auction, having two more aggressive

opponents is especially bad news due to the winner's curse. Across a range of parameter values,

the expected revenue for the bidder with an independent signal was close to that of the two bidders

with correlated signals. Following is an example where bidder 3 does worse.

Variable Mean Variance Matrix

ln(e^) .75 .1

ln(e,) .1 .75

ln(e,) .75

Hz) .25

Expected

Player 1 Player 2 Player 3 Auctioneer

0.0315 0.0315 0.019 1.005

Revenue
Prob. of 0.378 0.378 0.242

Winning

Figure 10: Common values first price auction where

two bidders received positively correlated signals of the

true value, and a third bidder receives an independent

signal.

Common Value Auction: Two Bidders Have
Correlated Signals

1.4

1.2

1

« 0.8

" 0.6

0.4

0.2

SA^SS««i-fi.i ^.., ;. V ^ ^ iW

-

J cov(e1,e2)=.1

• Bidder 3:

cov(e3,ei)=0,

i = 1.2 X
- ^--^

1

0.5 1.5

Another set of experiments we conducted concerned the effect of the precision of each player's

signal about the true value of the object. We first examined the case of two bidders, one of whom

receives a signal which is more precise than the others; we then looked at the effect of a third

bidder on equilibrium strategies on expected revenue.

Notice in this auction that the player with the more precise signal, player 1 , bids slightly less

aggressively. However, since her beliefs are more sensitive to her signals, her conditional
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expected value is more variable than that of player 2, and so she is more likely to see high expected

values. Thus, she wins just over half of the auctions. Despite the fact that she wins just over half,

she achieves much higher revenue in each auction. It is perhaps surprising that player 2, despite

having less precise information, still wins so frequently. ^^

Variable Mean Variance Matrix

ln{e,) .10
ln{e^) .3

Hz) 1

Expected

Player 1 Player 2 Auctioneer

0.333 .166 1.150

Revenue
Prob. of 0.528 .471

Winning

Common Value Auction: Two Bidders

Whose Signais Have Different

Precisions

"5 _
m

2.5

Bids

-»

bi

to

'

Bidder 1:

In(e1)-N(0,.1)

0.5
-

-

Bidder 2:

;

In(e2)-N(0,.3)

2 4Figure 11: Common values auction where one

bidder receives a signal which is more precise than the

other bidder's signal.

Returning to the pure common values model, we consider a final experiment, where we add a

third player with a more precise signal (var(e3))=.l). The strategies of the players look very

different than in the two-bidder model. Now, the two well-informed players bid more

aggressively than the player with the noisier signal; this exacerbates the winner's curse for player

2. In addition, the bidder with the less precise signal wins less often and receives very little

expected revenue relative to the two-bidder example.

In general, we can perform numerical computations for a variety of auctions. By changing the

covariance structure between signals and values, we can vary the importance of the winner's curse,

the informativeness of the signals, and the mean values. Further characterizations of mineral rights

auctions with heterogeneous bidders await future research.

^^ We also examined the effect of lessening the importance of the winner's curse in this example. We allowed the

bidders to have different values for the object, z, and Zj, where cov0n(zi),ln(z2))=.5, and all other parameters of the

model are the same as the latter example. The qualitative nature of the equilibrium remained unchanged, with player

1 bidding less aggressively and winning just over half the auctions. However, expected revenue went up for each

bidder. Player 1 has expected revenue of .65, while player 2 has expected revenue of .56. There are two effects here:

the bidders' values are less correlated with one another, so they do not expect as much competition. Second, the

winner's curse has less bite. For the auctioneer, the first effect is most important: the auctioneer receives expected

revenue of .99, less than in the pure common values auction.
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Variable Mean Variance Matrix

Ke,) .10
Inie^) .3

ln{e,) .1

Hz) 1

Expected

Player 1 Player 2 Player 3 Auctioneer

0.130 0.030 0.130 1.335

Revenue
Prob. of 0.369 0.260 0.369

Winning

Figure 12: Common values auction where two

bidders receive more precise signals than the third

bidder.

6. Conclusions

Common Value Auction: Bidders 1

and 3 Have More Precise Signals

This paper has introduced a restriction on a class of games called the Single Crossing

Condition for games of incomplete information, where in response to nondecreasing strategies by

opponents, players choose their actions as nondecreasing functions of their types. We have shown

that pure strategy Nash equilibria will exist in such games when the set of available actions is

finite, and further, with appropriate continuity or in auction games, a sequence of equilibria of

finite-action games will have a subsequence which converges to an equilibrium. We have further

estabUshed that similar results can be obtained for games which satisfy our "Limited Complexity

Condition." The formulation of games of incomplete information developed in this paper has the

following advantages: (1) existence of pure strategy Nash equilibria can be verified by checking

general and economically interpretable conditions, (2) the results for finite-action games require

very few regularity assumptions, and (3) the equihbria are straightforward to numerically calculate

for finite-action games, and these approximate the continuous equihbria for continuous games and

auctions. The application of these results to first price auction games led to a generalization of the

existing Uterature on the existence of equihbria in auctions with heterogeneous bidders with

correlated signals and/or common values. The condition for monotonicity of strategies, the single

crossing property, can be characterized for many commonly studied games using the results of

Athey (1995, 1996). Finally, numerical analysis can be used to analyze behavior in auction games

whose properties have not been fiilly characterized in the existing literature.
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7 Appendix

7.1 Single Crossing in Games ofIncomplete Information

The following table summarizes the results of Section 4.1, which provides characterizations of

the single crossing condition games of incomplete information, identifying conditions on utility

functions and probabiUty distributions which are necessary and sufficient for the single crossing

property of incremental returns. The results are applications of theorems from Athey (1995, 1996)

to games of incomplete information. In order to conveniently state the set of theorems about the

SCP-IR in stochastic problems, it will be useful to state the following definition.

Definition 7.1 Two hypotheses HI and H2 are a minimal pair of sufficient

conditions relative to the conclusion C if the following statements are true:

(i) HI and H2 imply C.

(ii) IfH2 fails, then C must fail somewhere that HI is satisfied.

(Hi) IfHI fails, then C must fail somewhere that H2 is satisfied.

This definition summarizes a strong relationship between two hypotheses and a conclusion; not

only are the hypotheses sufficient for the conclusion, but further neither can be relaxed in the

context of the other.

To read the following table:

In each row: HI and H2 are a minimal pair of sufficient conditions (Definition 7.1) relative to

the conclusion C; further, C is equivalent to the single crossing result in column 4.

Notation and Definitions: Bold variables are vectors in Si"; italicized variables are real

numbers; / is non-negative; a.e. indicates "for almost all (Lebesque) t"; spm. indicates

supermodular, and log-spm. indicates log-supermodular (Definition 4.1); sets are increasing in the

strong set order (Definition 2.2); SCP-IR (WSCP-IR) indicates (weak) single crossing of

incremental returns to a,. (Defmitions 2.1 and 4.2); arrows indicate weak monotonicity.

Observe: Suppose aj{tj) is nondecreasing for all j^i. Then if u^{a.,aj,t^,t^ satisfies SCP-IR
(WSCP-IR) in {a.,a) and (a,;/,), then kJiai,ti,t)=u.{a.,aj{,t),t^,t) satisfies SCP-IR (WSCP-IR) in

{a.,t^. If M,(3't) is log-spm., then A:,.(a,,t)=M.(a,,a_,.(t_,.),t) is log-spm. If u^{si,i) is spm. in {a^,a^

for j^i and (a,.,/;,.) for;=l,..,/, then A:.(a,.,t)=M,.(a„a_,.(t_,.),t) is spm. in (a,.,rp,y=l,..,/.
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Table 7.1: The Single Crossing Condition in Games of Incomplete Information

Assume: /(t)>0 and j/(t)dt finite for all S; for 1.3 and 2.2, F is a probability distribution.

HI:
Hypothesis

must hold a.e..

H2
Hypothesis

on/ (a.e.)

C: Conclusion

Holds for /=!,..,/, whenever

«,(•) nondecreasing, j^i.

Equivalent Single

Crossing Conclusion:

i's objective is SCP-
IR in (a,;?.), /=1,..,/.

Two-Player Games

1. Assume: h.{a^,aj,t^,t) is spm. in {a.,t).

h.{a.,aj,,t) is

SCP-IR in

{a-a), {a:,t).

y(t) is log-

spm.
H,ia,t,)=jh,ia,ajitp„t^)fit)t)dt.

is SCP-IR in (a,.;^.

same.

2. h.(a.,aj,t,,tj)>0

is log-spm.
m is log-

spm.
H,ia,t,)=jh,ia,ajitj),t,tj)fitj\t;)dtj

is log-spm. in ia.;t).

H,ia.,t,)-g,ia.,t,) is

SCP-IR for all

g.:Si-^S{^ log-spm.

3. h,(a,,aj,t.,tj) is

spm. in (a,.,aj.),

(«„0,/=l,2.

(implied by/
log-spm.)

H,ia,t,)=lh,ia,a^itj),t,tj)fit)t,)dtj

is spm. in ia.;t).

//,(«,,0 + g,(«„g
is SCP-IR for all

g.-.Si-^Sl spm.

Games Where Opponent Behavior is Summarized with Sufficient Statistic, s,6 9t

4. Assume: k-{a^,t^,s^ is spm. in (a,,?,). j

k,(a,,ti,s,) is

SCP-IR in

/(5,lr,.) is log-

spm.
JA:,(a,,r,,5,)/(5,lr,)J5, is SCP-IR in same.

5. Assume: supp[Fj(5;l?,)] is constant in t.; k.(a.,t.,s) is spm. in (a,,r,). i

k,(a,,t,,s) is

WSCP-IR in

fXs,\t-) is log-

spm.
JA:.(a,.,r,,5,)/(5,lr.)J5, is SCP-IR in same.

Multiplayer-Player Games

6. ft.(a,t)>0 is

log-spm.

/(t) is log-

spm.
/f,(a,,f,.)=

J/i,(«„a_,(t_,),t)/.(t_,k,)rft_, is log-

spm. in (a,.,r,.).

H.ia,,t,)-g.ia.,t,) is

SCP-IR for all

gf.Si—^Si^ log-spm.

7. h^(a,t) is spm.

in(a,.,a.),7?ii,

& in (a-tj).

J^F(t_,;0 t
f,. for all S s.t.

i.(U T t.,

(implied by

fit) log-spm.)

J;^,(a,,a_,(t_,),t)/(t_,lgrft_, is spm.

in (a,.,f,.).

^,(a„?,) + g,(a„^)

is SCP-IR for all

g.:Si^3i spm.

8. /i,.(a,t) is spm.

in(a,.,ap,y?ej,

& in (a-t),

j=U..J.

y(t) is log-

spm.

is spm. in (a,,f,.) V 5 sublattice.

is SCP-IR for all

g,.:9?->SR spm.
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72 Proofs

Proof of Lemma 2.2

The proof continues from the text, showing that the conditions for Kakutani are satisfied:

Nonempty. EstabHshed in our above definition of r(X).

Closed graph. It is clear from the definition (2.3) that V,(a,.;X,f,) is continuous in the elements

ofX under our assumption (2.1), which guarantees that there are no mass points in the type

distribution. Consider a sequence (X*, Y*) which converges to (X,Y), such that Y*e ^X*") for

all it. We wish to show that Ye r(X). To do this, we show that for each player and almost every

type, the action assigned by Y is a best response to X. Consider player /, and a type t.e 7^\{y'}.

Then there exists an m e {0,..,M} such that >'i<?,< y^+i . Since y'"* converges to y', there must

exist an K such that, for all k>K, y'^<t<. y^* , , and thus A^ is one of r/s best responses to X*

since Y*e r(X*). But, since V,{a:,X,t;) is continuous in X, if V,{A^;X\t;)>V^{A^,-X,0 for all

A:>/^and all m\ then V,{A^;X,t;)>V,{A^.;X,t;).

T is convex-valued. Here we show that the fact that af^itJiX) is nondecreasing in the strong

set order implies that r,.(X) is convex. Fix X and suppose that w,y e r,.(X). Let z=X w+(l-A) y

for Ae (0,1). Observe that since convex combinations of nondecreasing vectors are nondecreasing

vectors, ze Z,.. Now, for m=0,..,M, we show that A^ is an optimal action on iz„,z„+i). This will

imply that there exists an optimal strategy which is consistent with z, and thus by definition

ze r.(X). A consequence of the strong set order for subsets of 91 which will be important for our

analysis is that, if A<^C<sD, then AnD cC

There are four cases to consider, (i) If w„=w„^] and y„=y„+i, then z„=z„+i and there is nothing to

show, (ii) Suppose that w^ov^+i and y„<y„+i. This implies that A^ is optimal on (w^,w„+i) and

(y„,y„+i). Then, since af^it^C) is nondecreasing in the strong set order in t., it must be that A^ is

optimal on (min(w„,>'„),max(x„^,,y„^,)). Thus, A„ is optimal on (z„,z„+,). (iii) Suppose that

Wm=Wn,^i and y„<y„^,. If }'„^w„^,<>'„^„ then A„ must be optimal on (z„,z„^,). If

^m+i<>'m<>'m+i' ^^^^ a /otti such that an optimal action for some r,. e {w^^^,y^) is A^. But since

af*(r,|X) is nondecreasing in the strong set order in ?,., we must have A^ optimal on (y„,y„+i) and

A„ optimal at w„^,. But this implies that A„ is opfimal on (w^+py^^,) and thus on (z„,z„^.,). (iv)

If 3'm<>'m+i< ^m+1' ^^erc is some k<m such that A^ is optimal for some t. e Cy„+,,wJ, which

implies by the strong set order that A„ is optimal on Cy„,*v„+,), and thus on (z„,z„+,).

Thus, j3,.(f,,z) = A„,(, ^jis a nondecreasing strategy consistent with z which assigns optimal actions

to almost every type; we can fill in optimal behavior at the jump points, implying that ze r,(X).

Apply Kakutani. Since H" is a compact, convex subset of {M+1)I -dimensional Euclidean

space, and since the correspondence is nonempty, has a closed graph, and is convex-valued, then

we can apply Kakutani' s fixed point theorem to guarantee that a fixed point exists.
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Proof of Theorem 2.2

First, consider a strategy a.{Q and the corresponding vector zg Zf which represents the direction

changes of «,(?,) (Definition 2.4), which describes the points where the strategy experiences a

direction change. For 0<k<K such that k is even, we know that the player's strategy will be

nondecreasing on [z^.Z^+j]. Then, for each m=l,..,M, if there is some n>m such that A„ is played

on [z„z,^,], let x^^^ = mf{z, < t, < z,+,|a,(0 > A^}. Otherwise, let x^^^ = z,^,. Now consider

k odd, k<K. Then, for each m=l,..,Af, if there is some n<M-m such that A„ is played on

[z„z,„], let x^^„ = inf{zt < t, < z,+,|a,(0 ^ ^a/-.}- Otherwise, let x^^„ = z,^,.

Since x does not specify behavior for f,.e {x}, a given xe xf^*^^" corresponds to more than one

strategy. As above, we can define behavior consistent with x. Let l*(t,x) = max{/|A:, < t} . Then,

for all t-s 7^\{x}, find the integers 0<^<Arand l<m<M such that r(f,.,x) = k-M+m. If this k is

even, let j3,.(?,,x) = A^, while if k is odd, let )8,(r,,x) = Af^_^. Any function j3,.(f,.,x) which

assigns this behavior on 7^\{x} is said to be consistent with x.

Using the representation just developed, let E(K)=2,^^'^'^'^ x-- xXf ^^'^'\ Since convex

combinations of nondecreasing vectors are nondecreasing, Z1(K) is a convex subset of Euclidean

space. Define F: Z(K)—> 2(K) as follows. For each player /, ifX represents strategies for dllj^i

that have at most Kj direction changes, then r(X) contains the representation of all best responses

for player / with no more than K. direction changes (this vector exists and is unique by (2.4)). The

arguments ofLemma 2.2 can be followed exactly to show that the correspondence has a closed

graph; convexity follows by uniqueness. Then, we can follow the proof ofLemma 2.2 exactly to

guarantee existence of a fixed point for the correspondence F, and then to construct the

corresponding pure strategy Nash equilibrium of the original game.

Proof of Theorem 3.1

Proof: For each player /, consider a sequence of action sets {z^"}, where

// "= {o; + f^(a. - O;) : m = 0,..,10"} . Let /f^i^'",..^'"). For each n, the function

j3;„:r,.-»/^''"c [a,.,a;.] is of bounded variation by assumption; this is equivalent to the statement that

there exist two nondecreasing functions, j3. and j3, „, such that j3.„ = j8, „-/?. . Kelly's

Selection Theorem (Billingsley (1968), p. 227) guarantees that a sequence of nondecreasing,

bounded fiinctions on J^rfK has a subsequence which converges almost everywhere to a

nondecreasing function (and in particular, it converges at continuity points of the limiting

function). Thus, we can find a subsequence of {1,2,..} and a function of bounded variation p
such that {^.„} converges to j3* except at points of discontinuity of p. Since there are a finite

number of players, there must exist a subsequence {«} such that {PiJ.ti),..,P,J,t,)} converges

almost everywhere to P'(t). Consider this subsequence.

We wish to show that for each player and almost every type, the action assigned by P*(t) is a best
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response to P*(t). Let Z'=|r,.|3n s.t. t- € (x'-"}}, and note that Z is countable (it is a subset of the

rationals) and thus has measure zero. Let D' be the set of all actions which are in z^" for some

finite n. Consider player /, and a type r,.e T,. \Z', such that p. (t) is continuous at f,. (recall that

discontinuities occur only on a set of measure 0). Let b=P'{t^; Kelly's Selection Theorem implies

A,n(0 converges to b.

Since ^,„(?,) is an equilibrium strategy for any n, f/,(A>(^,)'P-,>(t-,)>^) ^

f/,(a',P_,„(t_,.),?,) for every a'^/f". Because payoffs are continuous and since P_^„(t_,.) converges

to pl,(t_,) for almost all t_,., ",(A>(O.P-,>(U.O converges to M,.(^.Pl,(t_,),0 for almost all t_,..

Since the type distribution is atomless, this in turn implies that C/,(Z?,pi,. (•),?,.)>[/.(«', Pl, (),?,) for all

aeD'. Now consider an action a'^D'. Note that there exists a sequence {a*}, a'^eD', which

converges to a". But (/,(&, P*,(),r,)>[/,.(a*, Pl,(-),^,) for all k by our previous arguments. Thus, by

continuity of U. in a,, U^ib, p:,(),f,)>t/,(a", Pl, (),?,)

•

Q.E.D.

Proof of Theorem 3.2

Following the proof of Theorem 3.1, we will consider a sequence of games with successively finer

action spaces, indexed by {«}, where z^'" is the action space for player i in game n, and a PSNE

of this game in nondecreasing strategies is described by P„(t). The sequence {«} is chosen so that

it converges almost everywhere to a set of strategies denoted P'(t).

To simplify the exposition of the proof, we make an initial transformation of the problem, so that

the allocation rule given in equation (3.4) is restricted to the rule /n,(a,) = a,. Since m. is assumed

to be strictly increasing, and since all properties we have required of our primitives in (3.1)-(3.7)

are robust to (strictly) monotone transformations of the action, we can simply rescale the action

space and redefine our functions v ,. and v . appropriately; for simplicity, we will not adjust the

notation for v . and v,.

.

To begin, we introduce some notation. Define:

^iM'^-i) = <?,(«,'?-/,«(*-,)) w;(a,.t_,)^<p,(«„P%(U)

Av,(a,,t) = v,(a,,t) - v,(a,,t) v(a,,f,) =
J

v,(fl,,t) /(t.,|?,)a_,

Further, we define several events, taken from the perspective of player i, playing against

opponents' equilibrium strategies. For each of the following, we introduce notation for the event

that, when players {/}\/ use strategies P_,,„(-). the realization of t_,. and the outcome of the tie-

breaking mechanism (described by piCj) in (3.4)) are such that the action a. produces the stated

outcome:

W^„(a,): Player / wins using a. (either by winning a tie or winning outright).

T?^(a,): Player / ties for winner at a,, and player i wins the tie.
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T,^„(a,): Player / ties for winner at a, and player / loses the tie.

Thus, if e„ is the minimum bidding increment, W,,„(a,) = { W,.„(a -e„)u T,:^„ (a -e„)u T,"^ (a.) } . Let

W'(a), Tj^'Ca,.), and T/-*(a,) represent the corresponding events when i plays against the

opponents' limiting strategies.

In our analysis, it will sometimes be useful to define expected payoffs conditional on zero-

probability events. We will use the following convention:

4Av,(a,,t)|?,,l^(a,)]^Um4Av,(a,,t)|f,,\^(aJu{t_,G[L,,t^

In order to establish that "mass points" are inconsistent with equilibrium, we make use of revealed

preference to show that each player could do better than use actions which support the mass point.

In particular, each type who uses an action which is a mass point in the opponents' limiting

strategies might also see nonnegative expected payoffs from increasing her action a small amount,

"jumping over" another player's mass point. A difficulty may arise if there is a set of actions

which win with probability for a given player / in a given finite game, which might happen when

playing against a more aggressive opponent. In such a case, player f's lowest types may be

indifferent between a set of actions, all of which generate zero expected payoffs, even though

action a,, which wins with probability zero might also satisfy^j Av,. (a., t)|?.,W^ „(«,.)] <0; such a

player might not wish to increase her action a little bit to guarantee a win, since increasing the

probability of winning above zero may be undesirable nearby action a.. The following Lemma
shows that there exist equilibria to the finite-action games where all actions would give positive

returns to winning, even when winning is a zero-probability event.

Lemma 3.2.2 If /^' " is finite for all i, we can find a PSNE of this game (described by

strategies P„(t)) which satisfies the following: (i) each player's equilibrium strategy, )3, „(?,),

is a nondecreasing function of t.. (ii) For all / and almost all ?,.,

E[Av,{p,Jt,)^)\t,,wM.n(h))\^o.

Now restrict attention to sequences
{ P„(t)} which satisfy condition (ii) ofLemma 3.2.2. The next

Lemma will show that the following "no mass point" condition is satisfied:

For each player /, for all a.s^, Pr()3,.*(r,.) = a,.)-Pr(T}^'(a,.)) = 0. (NMP)

This condition requires that for every possible action of player /, either player / uses the action with

probability zero, or else the probability of a tie for winner with an opponent at the action is zero. If

ties occur at a. with probability zero, then Pr( W;*(a,.)) will be continuous at a,.. The proof of

Lemma 3.2.3 will make use of the fact that if a mass point occurs in the limiting strategies, there

must be something "close" to a mass point in finite games with a large enough number of actions.

Lemma 3.2.3: Construct P*(t) as the limit of equilibrium strategies to finite games.
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P„(t), which satisfy conditions (i) and (ii) from Lemma 3.2.2. Then P'(t) satisfies (NMP).

The following Lemmas estabUsh that under (NMP), P'(t) describe equilibrium behavior for almost

all types.

Lemma 3.2.4: Under (NMP), for all / and almost all t. such that Pj„(t.) converges to

P'(t,), the following conditions hold: (i) f/,.(^,.,P*,. (),?,) is continuous in a. at a~fi*{t^, and

(ii) £/,( A,„(0. P-.>(-),0 converges to C/,(A'(^)'Pl,(-),0-

Lemma 3.2.5: Under (NMP), A*(0 is a best response to Pl,(-) for almost all f..

Together with our previous arguments, Lemma 3.2.5 implies that a game satisfying the hypotheses

of this theorem will have a set of strategies, P*(t), which assign optimal actions to almost every

type of each bidder. Since behavior on a set of measure zero does not matter to opponents, we

complete the argument by showing that these strategies in fact assign optimal actions to every type

t- of each bidder /, such that t^ r, . Standard arguments shnilar to those in the proof ofLemma

3.2.3 can be used to establish that, for each /, Piil3'(t^=b)=0 for all 6 e int{a,.: Pr(W,.'(a.))>0}

(otherwise, types who chose actions just below b would prefer an action just above £», as in

Lemma 3.2.3, but there must be some types playing actions just below b, otherwise b would not

be optimal for player i). Now consider c =inf{a,: Pr(W,'(a,.))>0}. Condition (NMP) guarantees

that if Pr(j3,'(?,) = c)>0, then Pr(W;*(c))=0. But this in turn impUes that at most the lowest type of

each of player /'s opponents use c, so the opponents see discontinuities in their payoffs only for

their lowest types.

Proofs of Lemmas:

Proof of Lemma 3.2.2

We proceed by constructing such an equilibrium from the limit of a sequence of equilibria of

constrained games, where in each constrained game, the lowest types of each player must choose

action Q. We first show that, using minor modifications of our Theorem 2. 1 , each constrained

game has a fixed point; it then follows from continuity of the payoffs in opponent strategies that the

limit of the sequence of constrained games is an equilibrium in the unconstrained games.

Observe that the constrained strategies of the players will by definition be nondecreasing, since

action Q is the lowest available action and the constraint requires that the lowest types use Q; thus

we do not need to modify our notation from Section 2 for representing nondecreasing strategies

with finite vectors. We then define the constrained best response of player / to an arbitrary

(constrained or unconstrained) strategy by opponents represented by X:

'af%\X) t,>U+5

af\t\X,5) = (2u af«(f,|X) f, = t, +5 (7.1)

[Q t<t;+5
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Using this notation, we modify our correspondence, as follows:

f,.(X,<5)={y: 3 a.(^,) which is consistent with y such that a,(0^ «f''(^,|X,5) } . (7.2)

It is straightforward using our definitions to show that an equivalent, second definition is:

f,(X,5)={y: 3 zer,(X) such thaty^=max(t,+5,zj}. (7.3)

We now show that the conditions for Kakutani are satisfied for each r(X , 5) .

Nonempty: We know from Theorem 2. 1 that r,(X) is nonempty. Thus, we can construct

elements of r.(X,5), as can be easily seen in (7.3).

Closed graph: Recall that r,.(X) has a closed graph. Take a sequence such that lim^(X*,Y'')=

(X,Y), such that Y*g f(X\5) for all k. We argued in Theorem 2.1 that y,.(«.;X,r.) is continuous

in the elements of X. We need to show that for each player and almost every type, the action

assigned by Y is in af^(r,.|X,5). Consider player i. Let a,.(^,;y') be a nondecreasing strategy

consistent with y'. Suppose first that t-Kt^+S. Then since y'* e r,(X'',5) for all k, the definition

of the correspondence implies that that >'|'*>f, for all k, and thus (x^(tf,y')=Qe a^'^(t.\X,5). Now
consider tp>ti+5 such that r,.e T}.{y'}. Then there exists an m g {0,..,M} such that y^ < t. < j^^,

.

Since y''* converges to y', there must exist an K such that, for all k>K, y'^ < t- < y'^_^_^ , and thus

A„e af^(r,.|X,5) since Y*er(X*). Since ?,>£,.+5, this in turn implies af''(?,. |X*). But, since

y,.(a,;X,f,) is continuous in X, if y,.(A„;X*,r.)>y,.(^„,;X*,r,.) for all k>K and all m, then

y,.(A„;X,r,.)>y,(^„-;X,f,.). This implies A„e afi^X) and thus A„e af^(r,.|X,5), as desired.

Convexity: The proof of Theorem 2.1 showed that the fact that af^(rjX) is nondecreasing in the

strong set order implies that the correspondence T is convex-valued. Since the definition of

f,.(X,6) is identical to that of r(X) except that af''(r,.|X,5) is used instead of af^it^), all we

need to show is that af'^{t^,5) is nondecreasing in the strong set order. Consider tl<t". If

l+5<t;<t;', then af\t\X,5)=af''{t\X) for t=t;,t;', and thus 5f (r,'IX,5)<s5,^^(f."IX,5). If

ti+5>t', then df'^(tf\X,S)=Q. The definition of the strong set order asks us to verify that if c>&,

then whenever c e af'^(t.\X,S) and be af'^(t"\X,5), then we also must have b e df'^(t.\X,5) and

ce df'^(t."\X,5). But, since the only element of af''(?/IX,5) is the lowest available action, Q, this

is satisfied trivially. Thus, df'^(tj\X,5) is nondecreasing in the strong set order, and our arguments

from Theorem 2.1 show that r,.(X,5) must then be convex.

Fixed point exists: By Kakutani' s fixed point theorem, r(X,5) has a fixed point.

Construction of Equilibrium: Consider a sequence X* such that X*" e r(X*,l//:) for each k.

(Thus, if each player / uses actions consistent with X*, he will use action Q for types less than

tj+l/k.) Such an X* is guaranteed to exist for each k since r(X,5) has a fixed point for all d>0.

Since each X* is an element of a compact subset of finite-dimensional Euclidean space, we can find

a subsequence of{fe} such that {X*} converges to a matrix X, and we simply need to establish that

Xe r(X). Without loss of generality, let {^} denote that subsequence.
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We show that, for each player and almost every type, actions consistent with x' are in a^''(t.\X).

Consider t. such that t.s 7^\{x'}. Then there exists an m e {0,..,M} such that x'^ < t. < jc^^,. Since

x'* converges to x', there must exist an K such that, for all loK, x^* < t. < a;^*, and t.>ti+l/k.

Find such a k>K. Then A„e af''(t.\X'',l/k) since X'^e HX*^). By definition and since t,>i+l/k,

A„e af^it-lX'). But, since V,(a,.;X,f,.) is continuous in X, if V,.(A„;X\f,.)>y.(A„.;X*,r.) for all

k>K and all m', then V.(A^;X,t)>Vi(A^.;X,t). This implies A„e af'CrJX), as desired.

Finally, we show that the equilibrium we have constructed satisfies the desired property, that

conditional expected payoffs always converge to a nonnegative number. In our sequence above,

V,iA„X,t.)>V,(A„.-X,t,) for all foK, and in particular, V,{A^-X,t;)>V,(Q-X,t). We know that

for each k, A^>Q wins with positive probability. Thus by (3.3) and revealed preference,

4Av,(A„,t)|?,, W^(A„;X*)]>0 for all k, which in turn implies lim,4Av,(A„,t)|r,, V^(A„;X*)]>0, as

desired.

Proof of Lemma 3.2.3:

Consider player 1, and suppose that Pr(/?,'(?,) = &)-Pr(T,^'(£»)) > 0. This implies that there is a

second player, let this be player 2, such that FriPjiQ - b)>0. For simplicity, suppose all other

players use b with probability 0, though the argument can be easily extended.

Observe that since each )8, „(?,) is measurable and converges almost everywhere to P*(t), the

sequence converges uniformly to P'it) except on a set of arbitrarily small measure (Royden,

1988, p. 73). Thus, if P'(t.) = Z? on an open interval S-, for every 77>0 there exists an E^ with

measure less than rj such that, for all d>0, there exists an A'^ such that, for all n>Nj,

IA n(^/)
- ^1 < ^ on 5^,. Further, since each Pi„it.) is nondecreasing in t., we know that there is

an open interval S'czS^ such that |A,„(^,)
-

^I < ^ on S'.

A little notation, for /=1,2:

a^{d,n) = min{a,. : a,, e /i^ and a^>b — d\

Find a set of types E such that P„(-) converges uniformly to P*() except for types te E,

and such that sup,^ {Pr(t_,.eE_,.l?,.)}<iLpr(T.^*(Z7)). Define C,=sup,^ {Pr(t_.eE_,.lr.)}.

S,= {t:.p:{t:) = b)

5, =int{r,6 5,\E,}.

t_,(?,,iV) = inf{sup{t_, : p.^tj) < A,(0 y/ ^ /}}

Now, pick a t. e 5,., and find a ?/<f. such that f/e 5,.. Pick any d, choose N^ such that, for all

7=1,..,/, all n>N„ and all t^^E., |^.„(?.)-j3/(f.)|<d, and further, Pr(i8^.„(f.)€ (b-d,b+d)

V7=3, ..,/)< i^Pr(T;^'(^)). (Recall that players 3,..,/ play action b with probability zero in the

limit). Then, the following series of inequalities holds for all n>Nj:
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mjj4Av,(6-rf,t_,,4;,W^.„(A>(0)]}

<£[Av,(Z;-J,t_,,r,)|r,,t_,<t.,a;,iVj]

(7.4)

The first inequality holds since by Lemma 3.2.2, each member of the set is nonnegative; the

second inequality holds since Av is nonincreasing and \p.^{t')-b\<d; the third inequaUty holds

because by (3.6) and (3.7), expected payoffs are continuous and nondecreasing in the set of types

defeated, and so the smallest expected payoffs must correspond to the smallest set of types

potentially defeated, h_. < i_.it,Nj)\. The relation is an inequality rather than an equality since

the player might tie rather than win against these types, but winning against the highest of these

rather than having a tie will increase expected payoffs under assumption (3.7). The last inequality

follows by (3.7), since expected returns to winning are strictly increasing in t..

It follows from its definition that t_^(t.,N) is nondecreasing in N; but then, by continuity of Av

and since iV^ is decreasing with d, we can find a d small enough such that

e\ Av-(b + i/,t_,.,f,.) f,.,t_,. < i_i(t',NM>0 as well. Thus, define the following constant, which based

on the preceding analysis is strictly positive for r,.e 5, and d small enough:

K(t,,d)=E[Av.{b + d,t_„t,)\t,,t_, < t_,(r;,iVj]

Since Av is nonincreasing in actions and following the arguments from the previous paragraph,

K(t.,d) is nonincreasing in d. Then, define the following positive constant, which is also

nonincreasing in d (recalling that by definition {].<-j^Pr(Tj^'(Z7))):

%it,d) = ^L K(t,d)- (Pr(T,^'(^)|r,) - C,) (7.5)

Finally, pick a d>0 small enough such that, for t- e S- , and n>N^, the following inequalities hold:

Y^t.,d) > v,(fl',f,) -Ub + d,t,) + J[Av,(a', t) - Av,{b + rf, t)J/(t.,|r,)rft_,

for Sill a'e[b-d,b+d\. (7.6)

E[Av,ib + d,t_,,t,)\t,,W,„ib + d) \ W.Ja,{d,n))]

> \ ^Av.ib + J,t_,,0|?„t_, < t_,(?;, Arj]=i <?,,J) (7.7)

It is possible to satisfy (7.6) since Jl^t.^,d) is nonincreasing in d, and since b+d-a approaches zero

as d gets small and Av is continuous in actions. The inequality in (7.7) can be satisfied by

assumption (3.7), which states that the expected value of payoffs is nondecreasing in the set of
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types over which we condition, since t_,.(f/, //^) must by definition be less than the highest vector

of opponent types who use action b+d.

Pick an n>Nj. The action b-\-d will be preferred to a'e (b-d,b+d) if:

J
v,(Z7 + d,t)- /(t_,|r,)rft_, + j Av,(^ + J.t) w,Jb + rf,t_,) /(t_,|r,)rft_,

^
J
v,(«',t) /(t_,|r,)rft_, +

J
Av,(a',t) • w,„(a',t_,) • /(t_,|r,Mt.,

This can be rewritten as follows:

E{Av,ib + d,t)\t,,W,„{b + d) \ W,„(a')]-Pi[w,„(b + d) \ W,Ja%)

>Ua,h)-Ub + d,t,) (7.8)

+ 4Av,(a',t) - Av,(Z; + d,t)\t,, W,Sa')] Pr(l^,(a')|r,)

Consider first a=a^(d,n), the lowest feasible action chosen by a type in S-. Observe that

Pr(w^.„(^ + ^) \ W^„(a,(rf,«))|?,)>i(Pr('r;^'(Z?))-Q for n>Nj, since all opponent types who choose

action b in the limit must choose actions on [a.{d,n),b+d) for n>Nj. Thus, by choosing action

b+d rather than a.(d,n), player / chooses a strictly higher action than those types she would lose to

or tie with using action 5,(<i,«); at worst, all of the types who choose action b in the limit choose

action d^{d,n) with grid n, and player / defeats those players she would have otherwise tied with

by increasing her action to b-\-d.

Combining the latter argument with equations (7.7) and (7.5) allows us to conclude that the LHS

of (7.8) is strictly greater than Yft^,d) for d small enough. On the other hand, by (7.6), the RHS
of (7.8) is strictly less than 'Yi{t^,d) for d small enough. Thus, for the chosen d and for n large

enough, type t. will not choose action a.{d,n). But this then implies that all t.G 5,. will choose

actions on {a^{d,n) ,b+d) for /=1,2. That will in turn imply that (recalling that d was chosen so

that Vr{Pjitj)e (b-d,b+d) y/=3,..,/)<^ Pr(T,^'(^)), and letting e„ be the minimum action

increment for the game with action space indexed by n):

Pr(w.„(b + d) \ W.^{a' + ej\t,)>^(FriT,'\b))-Q.

Thus, the arguments of the previous paragraph apply again: no types t^e 5,. will choose action

a'+e„. The argument can be repeated for both players, "unraveling" back to the point where for

/=1,2, no types r,.e S- choose actions on (b-d,b+d), a contradiction.

Proof of Lemma 3.2.4: Part (i): Consider a,.e/^.. Recall that:

C/,KP:,O,0 = v,(a,,r,) + 4Av,(a,,t)|r,,l^*(a,)]Pr(w^*(«,)K) (7-9)

Suppose first that Pr(Tl'\b))=0. Then, by our assumption (3.5), Pr{T^(b))=0 as well, that is, the

probability of a tie for winner at b is zero for player /. This will in turn imply that Pr( W;.*(a,)) is
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continuous at a=b. Since v,. and v, are continuous, (7.9) will be continuous as well.

Now suppose that Pr(T,.^'(Z7))>0. But then, by (NMP), PT{p'{t))=b)=0, and the set of types for

whom payoffs are discontinuous at b has measure zero. Since the number of opponents is finite,

the set of actions b such that T'r(r.'''(b))>0 is also countable, and so the set of types for whom

payoffs are discontinuous has measure zero.

Part (ii): Consider t. such that jS, „(f,) converges to P'(t^ and Pr(W,*(a,)) is continuous at

a=l3'(t.) (the latter condition is true for almost every f, by part (i)). First, note that

w;(o.p:,(-),o-f^.( A>(0> P-,,„(-),o

= [t/,(A'(0,p:,(-),0-t/,(A>(O.Pl,(-),0] (7.10)

+[c/,( A>(0. p:,(-),o-f/,( A.(0. P-,>(-),g].

The first term of the RHS of (7. 10) goes to zero as n gets large by continuity of f/,(a,, Pl,() ,t) in a.

in the relevant region (part (i)). So it remains to consider the second term of the RHS of (7.10).

This term will converge to zero if f/,(^.'P-i,n()'0 converges uniformly (across a. in a

neighborhood of P'it)) to f/,(^,, Pl,(-).0- To see that uniform convergence holds, pick a rj, d>0,

and find an A'^ and a set E of measure less than t] such that for all n>Nj, \p*(tj)-Pj J^tj)\<d,

j=l,..J, except for t in set E. Then, for such n>Nj, the following inequalities hold:

-

J^ _^^
max(|Av,(s,,t)|,|Av,(a;.,t)|)/(t_,|r,)rft_,+

> max (7.11)

> max
I ^

Av,(a,,t)[w,„(a,,t) - w;(a,,t)]/(t_,|0^t_,

=
r^.^ . Jt^<(«<'P-.-,«(-),o - f/,(«„p:,o,o|

The first term of KJ^'t) can be made arbitrarily small by decreasing d, since/ and Av,. are

bounded and since Pr(W,.*((3,)) is continuous at a/=P*(t). The second term can be made arbitrarily

small by choosing rj small enough. This establishes that there is a uniform bound on

I^KP-,,„(-),0-f/,(«.PH(-),Ol for a,e [A'(^,)-^.A'(^,)+^-

Proof of Lemma 3.2.5: We know that for every n and for almost all t.,

^.(A>(0'P-,.„(-),0^f/,(a',P-,,„(-),0 for every a'e^". Thus, if a'eD' (Where D' is the set of all

actions a so that for large enough N, a' is an available action for «>A0, then Lemma 3.2.4 (ii)
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implies that U,(P:(t,),fi:,(-),t)>U^(a',fi:,(-),t,).

Now consider an action a'^ D'. If C/,(a',pi,.(-),?,)=0. then it suffices to compare P*{t.) to the

action Q, which is always available by assumption. If U.(a, P!.,(-).0 is continuous at a', and we

can find a sequence {a*}, a'^sD', which converges to a, so that f/,(a*, P_,,„ (•),?,) converges to

t/,(fl',p:,(0.O, as desired.

Suppose that Pr( j3J(rp=a')>0 (a mass point exists at a') for somey^t/, and t/,.(a',p*,.(),r,.)>0. This

can be true only if £[Av,(a',t_,.,f,.)|^., M^*(a')]>0- Then, by continuity of Av,. and by (3.7), there

exists an &>0 such that £|Av,(a' + S,t_.,t.)\t., W*ia' + 5)]>0, where 5 is chosen such that a'+5 is

used on a set of measure zero by the other players in the limit and such that a'+5 g D'. But, a +5

wins against, instead of ties with, playerj at a'. This leads to a discrete increase in the probability

that player / wins. Thus, for small enough 5, U^{a+5, Pl, (•),?,)>[/,(«', Pl,(-),0- Since a'+5 e D',

by our earlier arguments we know that (/.( )8*(?,) , P',(0>O - Uf^a+5, P',(0,O •
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