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ABSTRACT

This papjer proposes alternatives to maximum likelihood estimation of the

censored and truncated regression models (known to economists as "Tobit"

models) . The proposed estimators are based on symmetric censoring or truncation

of the upper tail of the distribution of the dependent variable. Unlike methods

based on the assumption of identically distributed Gaussian errors/ the

estimators are consistent and asymptotically normal for a wide class of error

distributions and for heteroscedasticity of unknown form. The paper gives the

regularity conditions and proofs of these large sample results, demonstrates how

to construct consistent estimators of the asymptotic covariance matrices, and

presents the results of a simulation study for the censored case. Extensions

and limitations of the approach are also considered.





SYMMETRICALLY TRIMMED LEAST SQUARES ESTIMATION

FOR TOBIT MODELsl/

by

James L. Powell

1 . Introduction

Linear regression models with nonnegativity of the dependent variable—known

to economists as "Tobit" models, due to Tobin's [1958] early investigation—are

commonly used in empirical economics, where the nonnegativity constraint is often

binding for prices and quantities studied. When the underlying error terms for

these models are known to be normally distributed (or, more generally, have

distribution functions with a known parametric form), maximum likelihood

estimation and other likelihood-based procedures yield estimators which are

consistent and asymptotically normally distributed (as shown by Amemiya [1973 J

"and Heckman [I979j)» However, such results are quite sensitive to the

"specification of the error distribution; as demonstrated by Goldberger [198OJ and

Arabmazar and Schmidt [1982 J, likelihood-based estimators are in general

inconsistent when the assumed parametric form of the likelihood function is

incorrect. Furthermore, heteroscedasticity of the error terms can also cause

inconsistency of the parameter estimates even when the shape of the error density

is correctly specified, as Hurd [1979J, Maddala and Kelson [1975J, and Arabmazar

and Schmidt [1981 J have shown.



Since economic reasoning generally yields no restrictions concerning the

form of the error distribution or homoscedasticity of the residuals, the

sensititivy of likelihood-based procedures to such assumptions is a serious

concern; thus, several strategies for consistent estimation without these

assumptions have been investigated. One class of estimation methods combines the

likelihood-based approaches with nonparametric estimation of the distribution

function of the residuals; among these are the proposals of Miller [1976 J,

Buckley and James [1979], Duncan [1983], and Fernandez [1985 J. At present, the

large-sample distributions of these estimators are not established, and the

methods appear sensitive to the assumption of identically distributed error

terms. Another approach was adopted in Powell [1984 J, which used a least

absolute deviations criterion to obtain a consistent and asymptotically normal

estimator of the regression coefficient vector. As with the methods cited above,

this approach applies only to the "censored" version of the Tobit model (defined

below), and, like some of the previous methods, involves estimation of the

density function of the error terms (which introduces some ambiguity concerning

2/
the appropriate amount of "smoothing").—

In this study, estimators for the "censored" and "truncated" versions of the

Tobit model are proposed, and are shown to be consistent and asymptotically

normally distributed under suitable conditions. Ihe approach is not completely

general, since it is based upon the assumption of symmetrically (and

independently) distributed error terms; however, this assumption is often

reasonable if the data have been appropriately transformed, and is far more

general than the assumption of normality usually imposed. The estimators will



also be consistent if the residuals are not identically distributed; hence, they

are robust to (bounded) heteroscedasticity of unknovm form.

In the following section, the censored and truncated regression models are

defined, and the corresponding "symmetrically trimmed" estimators are proposed

and discussed. Section 3 gives sufficient conditions for strong consistency and

asymptotic normality of the estimators, and proposes consistent estimators of the

asymptotic covariance matrices for purposes of inference, while section 4

presents the results of a small scale simulation study of the censored

"symmetrically trimmed" estimator. The final section discusses some

generalizations and limitations of the approach adopted here. Proofs of the main

results are given in an appendix.

2. Definitions and Motivation

In order to make the distinction between a censored and a truncated

regression model, it is convenient to formulate both of these models as

appropriately restricted version of a "true" underlying regression equation

(2.1) y* = x'^p^ + u^, t = 1, ..., T,

where x. is a vector of predetermined regressors, p is a conformable vector of
4/ O

unknown parameters, and u, is a scalar error term. In this context a censored

regression model will apply to a sample for which only the values of x, and

y = max{0, y*} are observed, i.e.,

(2.2) y^ = max{0, x^p^ + u^}

,

t = 1, ..., T.



The censored regression model can alternatively be viewed as a linear regression

model for which certain values of the dependent variable are "missing"—namely,

those values for which yf < 0. To these "incomplete" data points, the value zero

is assigned to the dependent variable. If the error term u. is continuously

distributed, then, the censored dependent variable y^ will be continuously

distributed for some fraction of the sample, and will assume the value zero for

the remaining observations.

A truncated regression model corresponds to a sample from (2.1) for which

the data point {y^, x^) is observed only when y1^ > 0; that is, no information

about data points with y1^ < is available. The truncated regression model thus

applies to a sample in which the observed dependent variable is generated from

(2.3) 7t = ^[^0 * ^V ^ ' ^' •••' "'

where Zj. and 6 are defined above and v. has the conditional distribution of u,
t t t

given u+ > -zlP « That is, if the conditional density of Ux given x, is

f(Xlxa., t), the error term v^ will have density

(2.4) g(Xix^, t) = MX < -x'p^)f(X|x^, t)ir^. f(Xix^, t)dXr\
V

where "1 (A)" denotes the indicator function of the event "A" (which takes the

value one if "A" is true and is zero otherwise).

If the trnderlying error terms {u+} were symmetrically distributed about

zero, and if the latent dependent variables {y+} were observable, classical least

squares estimation (under the usual regvdarity conditions) would yield consistent

estimates of the parameter vector p . Censoring or truncation of the dependent



variable, however, introduces an asymmetry in its distribution which is

systematically related to the repressors. The approach taken here is to

symmetrically censor or truncate the dependent variable in such a way that

symmetry of its distribution about xlp is restored, so that least squares will

again yield consistent estimators.

To make this approach more explicit, consider first the case in which the

dependent variable is truncated at zero. In such a truncated sample, data points

for which u. < -^^Pq are omitted; but suppose data points with u. > ^t^n ^^'^^

also excluded from the sample. Then any observations for which xLp < would

automatically be deleted, and any remaining observations would have error terms

lying within the interval (-^tPn» ^tPn^' Because of the symmetry of the

distribution of the original error terms, the residuals for the "symmetrically

truncated" sample will also be sjonmetrically distributed about zero; the

corresponding dependent variable would take values between zero and

2xlp , and woiild be symmetrically distributed about xlp , as illustrated in

Pigure 1

.

Thus, if p were known, a consistent estimator for 6 coxild be obtained as a

solution (for P) to the set of "normal equations"

(2.5) = I l(v^< z;p^)(y^- z;p)x.

T

= I i(yt < 2x;p„)(yt- 4P)2^.
X 1

Of course, P^ is not known, since it is the object of estimtion; nonetheless,

-using a "self consistency" (Efron [1967]) argument which uses the desired



estimator to perforn the "symmetric truncation," an estimator p„ for the

truncated regression model can be defined to satisfy the asymptotic "first-order

condition

T

(2.6) 0p(T^/^) = j^ l(y^ < 2x;p)(y^ - x;p)x^,

t=1

which sets the sample covariance of the regressors {x.} and the "symmetrically

trimmed" residuals {1 (-xlP < y+ - xlP < x'p)*(y. - 2:!p)} equal to zero

3/
(asymptotically).— Corresponding to this implicit equation is a minimization

problem; letting (- -^)5R„(P)/dp denote the (discontinuous) right-hand side of

(2.6), the form of the function Rm(P) is easily found by integration:

T

(2.7) Ej(P) = I (y^ - ma2{^ y^, x^p}) .

t=1

Thus the symmetrically truncated least squares estimator p„ of P is defined as

any value of p which minimizes Em(P). over the parameter space B (assumed

compact).

Definition of the symmetrically trimmed estimator for a censored sample is

similarly motivated. The error terms of the censored regression model are of the

form u? = max{u, , -x!p }, so "symmetric censoring" would replace u'^ with

min{u'^, 2;!p } whenever x!p > 0, and would delete the observation otherwise.

Equivalently, the dependent variable y, would be replaced with min{y, , 2z! p }

,

as shown in Figure 2; the resulting "normal equations"



T

(2.8) = I l(x'6 > 0)(min{y 2x'J } - x'p)^^' ,to tto tt
t=1

for known P would be modified to

T

(2.9) = I l(x'^ > 0)(min{y^, 2x^p} " ^'^h^,
t=1

since P is unknown. An objective function which yields this implicit equation

is

(2.10) Sj(P) = I (y^ - max{-^ y^, z;p} )'

+ I l(y^> 2x;p)[(-ly^)2- (max{0, z;p})2].

V 1

The symmetrically censored least squares estimator P of P is thus defined to be

any value of P minimizing S ip) over the parameter space B.

A
The reason P and P were defined to be minimizers of S (P) and IL(P),

rather than solutions to (2.6) and (2.9» respectively, is the multiplicity of

(inconsistent) solutions to these latter equations, even as T -> =>. The

"symmetric trimming" approach yields nonconvez minimization problems, (due to the

"^{x'3 > O)" term) so that multiple solutions to the "first-order conditions"

will ezist (for example, P = always satisfies (2.6) and (2.9))' Nevertheless,

under the regularity conditions to be imposed below, it will be shown that the

global minimizers of (2.7) and (2.10) above are unique and close to the true

value Po with high probability as !->•".



It is interesting to compare the "symmetric trimming" technique for the

censored regression model to the "EM algorithm" for computation of maximum

likelihood estimates when the parametric form of the error distribution is

assimed known.— This method computes the maximum likelihood estimate 6* of 6 asTo
an interative solution to the equation

(2.11) P*T= tl-rf-^I A(PV-t
X X

where

y if y >

(2.12) 3-^ (P) =
{

*

E(y* = x'P + u
I
u, < -x'p) otherwise.

^at is, the censored observations, here treated as missing values of y^, are

replaced by the conditional expectations of y* evaluated at the estimated value

P* (as well as other estimates of unknown nuisance parameters). It is the

calculation of the functional form of this conditional expectation that requires

knowledge of the shape of the error density. On the other hand, the

symmetrically censored least squares estimator p„ solves

(2.13) Pj = [I K^^Pj > 0)x^x;r''l l(x;p^ > 0)-min{y^, 2x;Pj}x^;
X X

instead of replacing censored values of the dependent variable in the lower tail

of its distribution, the "symmetric trimming" method replaces uncensored

o"bservations in the upper tail by their estimated "symmetrically censored"

values.

The rationale behind the symmetric trimming approach makes it clear that

consistency of the estimators will require neither homoscedasticity nor known



distributional form of tne error terms. However, symmetry of the error

distribution is clearly essential; furthermore, the true regression function x'P
t

mus t satisfy stronger regularity conditions than are usually imposed for the

estimators to be consistent. Since observations with x'B < are deleted from

the sample (because trimming the "upper tail" in this case amounts to completely

eliminating the observations) , consistency will require that x!P > for a
X o

positive fraction of the observations, and that the corresponding regressors x

be sufficiently variable to identify p uniquely. Also, for the truncated

regression model the underlying error terms (u } must be restricted to have a

distribution which is unimodal as well as symmetric. Such a condition is needed

to ensure the uniqueness of the value p which minimizes En,(P) as T -* ". Figure

3 illustrates the problems that may arise if this assumption is not satisfied;

for the bimodal case pictured in the upper panel, omitting data points for which

y < 2z'P* will yield a symmetric distribution about x'B*, just as trimming byXX X

the rule y < 2x'P yields a symmetric distribution about x'B (in fact, for the
I w X O Lf D

case in which z. = 1, the minimum of the limiting function E,p(P) as T -> => will
X J,

occur at P*, not at the true value P ). ¥hen the error terms are uniformly

distributed, as pictured in the lower panel of Figure 3> there is clearly a

continuum of possible values of x'3 for which truncation of data points with

y. > 2z'P wDuld yield a symmetric distribution about x'3 ; thus such cases will be

ruled out in the regularity conditions given below.

3- Large Sample Properties of the Estimators

Ihe asymptotic theory for the symmetrically trimmed estimators will first be

developed for the symmetrically censored least squares estimator P„. Thus, for

the censored regression model (2.2), the following conditions on P , x,, and uOX X



on

10

are imposed:

Assum-ption P : The true parameter vector ^^ is an interior point of a

compact parameter space B.

Assumption E : The regressors {x;+-} are independently distributed rand

vectors with E llx, II ^ < K for some positive K and ti , and v_, the minimvmi
t o o T

characteristic root of the matrix

has Vm > V whenever T > T„, some positive e„, v , and T .To ^

Assimption E1 : The error terms {u^} are mutually independently distributed,

and, conditionally on x+, are continuously and symmetrically distributed about

zero, with densities which are bounded above and positive at zero, uniformly in

t. That is, if F(X |x^, t) = "P+M is the conditional c.d.f. of u^ given x^, then

dF^(X) = f^{X)iX, where f^(X) = f^*'"^^' ^t^^^ "^

-"^o'
^^'^

^t^^^ ^ ^o
"^s^®"^®^

|X| < Cq, some positive L and C^-

Assumption P is standard for the asymptotic distribution theory of extremum

estimators; only the compactness of B is used in the proof of consistency, but

the argument for asymptotic normality requires p to be in the interior of B.

The assimptions on the regressors are more unusual; however, because the {x+} are

not restricted to be identically distributed, the assumption of their mutual

independence is less restrictive than might first appear. In particiilar, the

condition will be satisfied if the regressors take arbitrarily fixed values (with

probability one), provided they are xmiformly bounded. The condition on the
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ininimuin characteristic root of K is the essential "identification condition"

discussed in the previous section.

Continuity of the error distributions is assumed for convenience; it

suffices that the distributions be continuous only in a neighborhood of zero

(uniformly in t) . The bounds on the density function f.i'k) essentially require

the heteroscedasticity of the errors to be bounded away from zero and infinity

(taking the inverse of the conditional density at zero to be the relevant scale

parameter), but these restrictions can also be weakened; with some extra

conditions on the regressors, uniform positivity of the error densities at zero

can be replaced by the condition

1
^

i 1 Pr(|u |< O > K >

^ t=1 ^

for some K and e in (O, e ), with e defined in Assumption E. finally, note

that no assumption concerning the ezistence of moments of u is needed; since the

range of the "symmetrically trimmed" dependent variable is bounded by linear

functions of s , it is enough that the regressors have sufficiently bounded

moments.

¥ith these conditions, the following results can be established:

Theorem 1 : Ibr the censored regression model (2.2) under Assumptions P, E,

A
and El , the symmetrically censored least squares estimator p„ is strongly

A
consistent and asymptotically normal; that is, if P minimizes S_(P), defined in

(2.10), then
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A
(i) lim P„ = P almost surely, and

(ii) L-^/^C^-/T(P^ - h^ ^ "^°' ^^'

where

-1 /2
and I'm is any square root of the inverse of

D, ^ I ELl(x;P^ > 0).nin{u2, (^VS^^'"''

The proof of this and the following theorems are given in the mathematical

appendix below.

Turning now to the truncated regression model (2.3)~(2.4), additional

restrictions must be imposed on the error distributions to show consistency and

asymptotic normality of the symmetrically trimmed estimator P^,:

Assumption E2 ; In addition to the conditions of Assumption E1 , the error

densities {f. (X)} are unimodal, with strict unimodality, uniformly in t, in some

neighborhood of zero. That is, f, (Xp) *• f+C^^) if |X.
|

> IXpl, and there exists

some a > and some function h(X), strictly decreasing in [0, o J, such that

^^(^2^ - f^i>^^) > h{\X^\) - h(|X^l) when \\^\ < \X^\ < a^.
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With these additional conditions, results similar to those in Theorem 1 can

be established for the truncated case.

Theorem 2: For the truncated regression model (2.5)~(2.4) under Assumptions

P, E, and E2, the symmetrically truncated least squares estimator P^ is strongly

consistent and asymptotically normal; that is, if p minimizes P^ (p ) , defined in

(2.7), then

(i) lim p = p almost surely, and

(ii) Z-^/2(^^ . Y^).»^(P^ - P^) ^ N(0, I), where

w^ = ^ I eLi(-x;p^ < v^ < ^;p,)x,x;j,

X

t t t

and Zl ' is any square root of the inverse of

Zj= ;iELi(-x;p^< v^< x;p^)v2x^x;].

In order to use the asymptotic normality of Pm and P_ to construct large

sample hypothesis tests for the parameter vector p , consistent estimators of the

asymptotic covariance matrices must be derived. For the censored regression

model, "natural" estimators of relevant matrices Cm and Dm exist; they are

(3.1) Cj^I 1(0 <y, < 2x;p^)x^z;
X



and
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, AAA

A 1 r. , .
**

, .'^2 *

(3.2) Dy ^I 1(^;Pt > O)*'^^^^^'
(^i^T^^^^t^^

where as usual, u^ = y^ - x^Prp-

These estimators are consistent with no further conditions on the censored

regression model.

A A
Theorem 3 : Under the conditions of Theorem 1 , the estimators Cm and D™,

A

defined in (3.1) and (3.2) are strongly consistent, i.e., C^ - Cm = o(l ) and

A

E - Dm = o(l ) almost surely.

For the truncated regression model, estimation of the matrices Wm and Z™ is

also straightforward:

(3.3) \=^Il(y, <2::;Pt)v;

_ 1lli(-;p, < v^<x;p^)v;

and

(3.4) Zj = ^ I 1 (-z;Pt ^
"^T

^ ^t^T^^^t ""t^'
X
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for V - y+ - ^+Pm- I't is only the estimation of the matrix Y„ that is

problematic, since this involves estimation of the density functions of the error

terms. Since density function estimation necessarily involves some ambiguity

about the amount of "smoothing" to be applied to the empirical distribution

function of the residuals, a single "natural" estimator of Vrp cannot be defined.

Instead, a class of consistent estimators can be constructed by combining

-— kernel density estimation with the heteroscedasticity-consistent covariance

matrix estimators of Eicker [1967] and White [1980 J. Specifically, let

(3.5) v^ =-jv I i(x;pt > °^(^t^T^

:-i
•c-'[l(y^ < c^) - l(2x;p^ < y^ < 2x;p^.c^)Jx^x;

_ 1

there v ,
= y ,

- ^l^m as before and c„ is a (possibly stochastic)—'^ sequence to be

specified more fully below. Heuristically, the density functions of the {v.} at

{zip }— that is, {f+(2lp )/F,(xlP )}—are estimated by the fraction of residuals

\ falling into the intervals (-^^P^t "^t^T
"^

'^T^
^^

^^t^T' ^t^T
"^

^T^'
'^^"^^'^®^

by the width of these intervals, Cn,.

Of course, different sequences (Cm) of smoothing constants will yield

different estimators of ¥_; thus, some conditions must be imposed on (cm) for the

corresponding estimator to be consistent. The following condition will suffice:
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Assunption W : Corresponding to the sequence of interval widths {c,^} is some

monstochastic sequence {c,t,} such that (l - c^/crp) = o (l ) and

c^= 0(1), c-^ = o(/T).

That is, the sequence {c™} tends to zero (in probability) at a rate slower than

T~ ' . With this condition, as well as a stronger condition on the moments of

the regressors, the estimator V_, can be shown to be (weakly) consistent.

Theorem 4 : Under the conditions of Theorem 2, the estimators V.' and Zm,

defined in (3-3) and (3-4), are strongly consistent, i.e., W - W = o(l ) and

Zn, - Z_ = 0(1 ) almost surely. In addition, if Assumption R holds with ti = 3 and

if Assxmption ¥ holds, the estimator V_ is weakly consistent, i.e.,

V, -Vj = o^(l).

Of course, the {cm) sequence must still be specified for the estimator Vm to

"be -operational. Even restricting the sequence to be of the form

(3.6) c^ = (c^T"^)aj, =0 ^ °' < Y < .5,

for a^ some estimator of the scale of {v, } , the constants c and v must be
T t

chosen in some manner. Also, there is no guarantee that the matrix (vr_ - Vm)

will be positive definite for finite T, though the associated covariance matrix

estimator, (W„ => V^)' Z|p(W_ - V_)~ , should be positive definite in general.
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Thus, further research on the finite sample properties of V^ is needed before it

can be used with confidence in applications.

Given the conditions imposed in Theorems 1 through 4 above, normal sampling

theory can be used to construct hypothesis tests concerning P^ without prior

knowledge of the likelihood function of the data. In addition, the estimators p

and P can be used to test the null hypothesis of homoscedastic , normally-

distributed error terms by comparing these estimators with the corresponding

maximum likelihood estimators, as suggested by Hausman [1978 J. Of course,

rejection of this null hypothesis may occur for reasons which cause the

symmetrically- trimmed estimators to be inconsistent as well— e.g., asjnnmetry of

7/
the error distribution, or misspecification of the regression function.—

4-. Finite Sample Behavior of the Symmetrically Censored Estimator

Having established the limiting behavior of the symmetrically trimmed

estimators under the regularity conditions imposed above, it is useful next

to consider the degree to which these large sample results apply to sample

sizes likely to be encountered in practice. To this end, a small-scale

simulation study of a bivariate regression model was conducted, using a

variety of assumptions concerning sample size, degree of censoring, and error

distribution. It is, of course, impossible to completely characterize the

A
finite-sample distribution of g^, under the weak conditions imposed above;

A
nonetheless, the behavior of p^ iJi a few special cases may serve as a guide

to its finite sample behavior, and perhaps as well to the sampling behavior

of the symmetrically truncated estimator p^.

The "base case" simulations took the dependent variable y , to be



generated from equation (2.2), with the parameter vector P having two

components (an intercept term of zero and a slope of one), the sample size

T=200, and the error terms being genereated as i.i.d. standard Gaussian

variates.— In this base case, the regression vectors were of the form

xl.= {^,z±.), where z+ assumed evenly-spaced values in the interval L-b,bJ,

where b was chosen to set the sample variance of z, equal to one (i.e.,

b"='1.7). While no claim is made that this design is "typical" in applications

of the censored regression model, certain aspects do correspond to data

configurations encountered in practice — specifically, the relatively low

2
"signal-to-noise ratio" (for uncensored data, the overall E is .5» and this

falls to .2 for the subsample with x|P_ > 0) and the moderately large number

of observations per parameter.

For this design, and its variants, the symmetrically censored least

squares (SCLS) estimator P_ and the Tobit maximum likelihood estimator (TOBIT

MLE) for an assumed Gaussian error distribution were calculated for 201

replications of the experiment. The results are summarized under the heading

"Design 1" in Table 1 below. The other entries of Table 1 summarize the results

for other designs which maintain the homoscedastic Gaussian error distribution.

For each design, the "true" parameter values are reported, along with the sample

means, standard deviations, root mean-squared errors (R14SE), lower, middle, and

upper quartiles (LQ, Median, and UQ), respectively, and median absolute errors

(MAE) for the 201 replications.
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One feature of the tabulated results which is not surprising is the

relative efficiency of the Gaussian KLE (which is the "true" KLE for these

designs) to the SCLS estimator for all entries in the table. Comparison of

the SCLS estimator to the MLE using the RKSE criterion is considerably less

favorable to SCLS than the same comparison using the KAE criterion,

suggesting that the tail behavior of the SCLS estimator is an important

determinant of this efficiency. The magnitude of the relative efficiency is

about what would be expected if the data were uncensored and classical least

squares estimates for the entire sample were compared to least squares

estimates based only upon those observations with x^P > 0; that is, the

approximate three- to-one efficiency advantage of the MLE can largely be

attributed to the exclusion (on average) of half of the observations having

A more surprising result is the finite sample bias of the SCLS

estimator, with bias in the opposite direction (i.e., upward bias in slope,

downward bias in intercept) from the classical least squares bias for

censored data. While

this bias represents a small conponent in the EMSE of the estimator, it is

interesting in that it reflects an asymmetry in the sampling distribution of

P,j, (as evidenced by the tabulated quartiles) rather than a "recentering" of

this distribution away from the true parameter values. In fact, this

asymmetry is caused by the interaction of the x'p < "exclusion" rule with

the magnitude of the estimated ^^ components. Specifically, SCLS estimates

with high slope and low intercept components rely on fewer observations for

their numerical values than those with low slope and high intercept terms
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(since the condition "j^jPm > 0" occurs more frequently in the latter case);

as a result, high slope estimates have greater dispersion than low slope

estimates, and the corresponding distribution is skewed upward. Though this

is a second-order effect in terms of MSE efficiency, it does mean that

conclusions concerning the "center" of the sampling distributions will depend

upon the particular notion of center (i.e., mean or median) used.

The remaining designs in Table 1 indicate the variation in the sampling

distribution of P_ when the sample size, signal-to-noise ratio, censoring

proportion, and number of regressors changes. In the second design, a 30%

reduction of the sample size results in an increase of about /2 in the

standard deviations, and of more than /2 in the mean biases, in accord with

the asymptotic theory (which specifies the standard deviations of the

—1 /P —1 /P
estimators to be 0(T~ ' ) and the bias to be o(T~ ' )). Doubling the scale

2
of the errors (which reduces the population K of the uncensored regression

to .2, and the E for the observations with z'p > to =06) has much moreto

drastic effects on the bias and variability of the SCLS estimator, as

illustrated by design 3; on the other hand, reduction of the censoring

proportion to 25% (hy increasing the intercept of the regression to one in

design 4) substantially reduces the bias of the SCLS estimator and greatly

improves its efficiency relative to the MLE (of course, as the censoring

proportion tends to zero, this efficiency will tend to one, as both estimators

reduce to classical least squares estimators).

The last two entries of Table 1 illustrate the interaction of number of

parameters with sample size in the performance of the SCLS estimator. In

these designs, an additional regressor w , , taking on the repeating sequence
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{-1 . 1 » 1 >"''»••• ^ of values; v. thus had zero mean, unit variance, and was

uncorrelated with z^ (both for the entire sample and the subsample vath

xlp > O), and its coefficient in the regression function was taken to be

zero, leaving the explanatory power of the regression unaffected. Comparison

of designs 5 and 6 with designs 1 and 2 suggest that the convergence of the

sampling distribution is slower than 0(p/n); that is, the sample size must

increase more than proportionately to the number of regressors to achieve the

same precision of the sampling distribution.

In Table 2, the design parameters of the base case — T=200, censoring

proportion = 50^, and overall error variance = 1 (except for design 8, which

used the standard Cauchy distribution) — are held fixed, and the effects of

departures of the error distribution from normality and homoscedasticity are

investigated. For these experiments, the RMSE or MAE efficiency of the SCLS

estimator to the Gaussian MLE depends upon whether the inconsistency of the

latter is numerically large relative to its dispersion. In the Laplace

example (design 6), the 3% bias in the MLE slope coefficient (which reflects

an actual recentering of the sampling distribution rather than asymmetry) is

a small component of its EMSE, which is less than that for the SCLS

estimator; with Cauchy errors, the performance of the Gaussian MLE

deteriorates drastically relative to symmetrically censored least squares.

For the ^0% normal mixtures of designs 9 and 10, the MLE is more efficient

for a relative scale (ratio of the standard deviations of the contaminating

and contaminated distributions) of 3, but less efficient for a relative scale

of 9« It is interesting to note that the performance of the SCLS estimator

improves for these heavy- tailed distributions; holding the error variance

constant, an increase in kurtosis of the error distribution reduces the

variance of the "symmetrically trimmed" errors sgn(u^)'min {|u^|, |x^P |},



and so inproves the SCLS performance.

Designs 11 and 12 make the scale of the error terms a linear function of

x'P , while maintaining an overall variance T J E(u ) of unity. For these
X ^

designs, the "relative scale" is the ratio of the standard deviation of the

2 2
200th observation to the first (e.g., in design 11, E(u2qq) =3E(u. ) ). With

increasing heteroscedasticity (design 11), most of the error variability is

associated with positive i|P_ values, and the SCLS estimator performs

relatively poorly; for decreasing heteroscedasticity (design 12), this

conclusion is reversed. In both of these designs, the bias of the Gaussian

MLE is much more pronounced, suggesting that failure of the homoscedasticity

assimiption may have more serious consequences than failure of Gaussianity in

censored regression models.

While the results in Table 2 are not unambiguous with respect to the

relative merits of the SCLS estimator to the misspecified KLE, there is

reason to beleive that, for practical purposes, the foregoing results present

an overly-favorable picture of the performance of the Gaussian MLE. As Ruud

[1984 J notes, more substantial biases of misspecified maximum likelihood

estimation result when the joint distribution of the regressors is

asymmetric, with low and high values of xlp being associated with different

components of the z. vector. The designs in Table 2, which were based upon a

single symmetrically distributed covariate, do not allow for this source of

bias, which is likely to be important in empirical applications.

In any case, the performance of the symmetrically censored least

squares estimator is much better than that of a two-step estimator (based

upon a normality assumption) which uses only those observations with y^ >

in the second step. A simulation study by Paarsch [1984], which used designs



very similar to those used here, found a substantial efficiency loss of this

two-step estimator relative to Gaussian maximum likelihood. In terms of both

relative efficiency and comutational ease, then, the symmetrically censored

least squares estimator is preferable to this two-step procedure.

5. Extensions and Limitations

The "symmetric trimming" approach to estimation of Tobit models can be

generalized in a number of respects. An obvious extension would be to permit

more general loss functions than squared error loss. That is, suppose p{K) is a

symmetric, convex loss function which is strictly convex at zero; then for the

truncated regression model, the analogue to Em (P ) of (2.7) would be

"^

.1

(5.1) Rj(P; p) = I p(y^ - max{-^ y^, x^p})

2
which reduces to EmCP) when p(X) = X . A similar analogue to S^(p) of (2.10) is

T .

(5.2) Sj(P; p) = I p(y^ - min{ly^, x^p} )

X"" I

T

I
t=1

T /

+ I 1(y^ > 2x;P)Lp(-2 y^) - p(max{0, x^.?})].

When p(X) = |X|, the minimand in (5*2) reduces to the objective function which

defines the censored LAD estimator,

T

(5.3) Sm(P; LAD) = I ly+ - max{0, xlp}
|

;

t=1 ^ ^



under somewhat different conditions (which did not require symmetry of the error

distribution), the corresponding estimator was shown in Powell [1984 J to be

consistent and asymptoticallj'- normal. On the other hand, if the loss function

p{X) is twice continuously differentiable, then the results of Theorems 1 and 2

can be proved as well for the estimators minimizing (5 -2) and (5-1 ), with

q/
appropriate modification of the asymptotic covariance matrices.—'

To a certain extent, the "symmetric trimming" approach can be extended to

other limited dependent variable models as well. The censored and truncated

regression models considered above presume that the dependent variable is known

to be censored (or truncated) to the left of zero. Such a sample selection

mechanism may be relevant in some econometric contexts (e.g., individual labor

supply or demand for a specific commodity), but there are other situations in

which the censoring (or truncation) point vrould vary with each individual. A

prominent example is the analysis of survival data; such data are often left-

truncated at the individual's age at the start of the study, and right censored

at the sum of the duration of the study and the individual's age when it begins.

The symmetrically trimmed estimators are easily adapted to limited dependent

variable models with known limit values. In the survival model described above,

let L. and D, be the lower truncation and upper censoring point for the t

observation, so that the dependent variable y, is generated from the model

(5.4) y^ = min{x^Pp + v^, U^} , t = 1, ..., T,

where v, has density function

(5.5) g,(x) H 1 (X > L^ - x;p^)f^(x)Lp,(L^ - x;p^)j-i
, .
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for F^(*) and f+(*) satisfying Assumption E2. The corresponding symmetrically

trimmed least squares estimator would minimize

(5.6) R*(P) ^ 1 l(x;P < -^(U^ + ^t^^^^t ~ ^^^^^t * ^t^' "^t^^^^
X

-I l(x;p >^(U^^L^))(y^-mxn4(y^.U^), x;p}

X

.Ii(x;p >;(u^.L^)).i(;(y, ^u^x .;p)
X

2-1

•[%(yt
- U^))-" - (min{0, x;p - U^})^J

and consistency and asymptotic normality for this estimator could be proved using

appropriate modifications of the corresponding assumptions for p and p„.

In the model considered ahove, the upper and lower "cutoff" points U, and

L. are assxmed to he observable for each t; however, many limited dependent
X

"variable models in use do not share this feature. In survival analysis, for

example, it is often assimed that the censoring point is observed only for those

data points which are in fact censored, on the grounds that, once an uncensored

observation occurs, the value of the "potential" cutoff point is no longer

relevant-!— As another example, a model commonly used in economics has a

censoring (truncation) mechanism which is not identical to the regression

equation of interest; in such a model (more properly termed a "sample selection"

model, since the range of the observed dependent variable is not necessarily

restricted), the complete data point (y^, z^) from the linear model

7^ = 2;^pp + u^ is observed only if some (unobserved) index function I, exceeds
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zero, and the dependent variable is censored (or the data point is truncated)

otherwise. The index function I* is typicallj' written in linear form

I = zlct + e., depending upon observed regressors z., unobserved parameters a ,

t t t- Li

and an error term e, which is independent across t, but is neither independent ,

of, nor perfectly correlated with, the residual u, in the equation of interest.

Unfortunately, the "symmetric trimming" approach outlined in Section 2 does

not appear to extend to models with unobserved cutoff points. In the sample

selection model described above, only the sign of I. and not its value is

observed, so "symmetric trimming" of the sample is not feasible, since it is not

possible to determine whether I, < 2x!a , which is the trimming rule

corresponding to y. < 2xlp in the simpler Tobit models considered previously.

This example illustrates the difficulty of estimation of (a', p') in the model

with I, * y!? when the joint distribution of the error terms is unknown.—

'

Finally, the approach can naturally be extended to the nonlinear regression

model, i.e., one in which the linear regression function is h,(x,, P ). ¥ith

some additional regularity conditions on the form of h,(»)(such as

differentiability and uniform boundedness of moments of h.(') and IIBh./Spil over t

and B), the results of Theorems 1 through 4 should hold if "sip" and "x." are

replaced by "h,(z., p)" and "Bh./5p" throughout. Of course, just as in the

standard regression model, the symmetric trimming approach will not be robust to

misspecification of the regression fxmction h.(«); nonetheless, theoretical

considerations are more likely to suggest the paper form of the regression

function than the functional form of the error distribution in empirical

applications, so the approach proposed here addresses the more difficiilt of these

two specification problems.
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APPENDIX

Proofs of Theorems in Text

Proof of Theorem 1

A

(j_) Strong Consistency ; The proof of consistency of P follows the approach of

Amemiya [''973 J and White [1980 J by showing that, in large samples, the objective

function S„ (p ) is minimized by a sequence of values which converge a.s. to p .

First, note that minimization of S^ (P ) is equivalent to minimiztion of the
J.

normalized function

(A.1) Q^(P) =^ [S^(P) - S^(P^)J,

which can be written more explicitly as

T

(A.2) Q^(P)H^ I {l4y^< min{2;p, x;p^})[(y^-z;p)^-(y^-x;p^)2j

- l(x;P < ^ y, < x;p^)[(^ yj2-(max{0, .;p})2 - ij^-.'^^f]

^ ^^^;po 4 ^t < -;p)L(yt-^p^' - ^1 ^/ ^ (--^°' -;Po>)'-'

•Dl^2 / r r\ ..to -1 n2 n .+ 1(-^ y^ > max{3:;.P,z^^})[(maz{0, z^p})^ - (maxlO, ^\^^)) \)

2
ify inspection, each term in the simi is bounded by llz.ll (llpH + lip II ) , so by Lemma

X



2.3 of ¥hite Ll980j,

(A.3) liJD iQrp(P) - eLg^(P)J| =

uniformly in p B by the compactness of B. Since E[q„(P )J = 0, p will be

strongly consistent if, for any e > 0, E[Q^(P)J is strictly greater than zero

uniformly in P for np - p H > e and all T sufficiently large, by Lemma 2.2 of

White [1980].

After some manipulations (which exploit the symmetry of the conditional

distribution of the errors), the conditional expectation of Qm(P) given the

regressors can be written as

(A.4) ELQj(P)1z^,...,XjJ

;J^
{iK^<o<z;p)L4?p^Sx;p)2dF^(0

to

f^O

- 1(0 < 4P„ < x;p)L/!^Sz;6)2dF^(0

-sip +22:;p .
p

t
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to

-xlp +2x;p

to

^
/-x;p .2.;p ^ L(x;6a;pj2(x.x;p^)2 - (x.x;p^-2x;p)2jdF^U)j}

to t

where

(A.5) 6 H p - p^

here and throughout the appendix, and where ^.(X) is the conditional c.d.f. of u,

given X.. All of the integrals in this expression are nonnegative, so

(A.6) ELQj(P)ki,...,X^J

X TO

^^-;po > ^' ^^ > -? > °)/!x-?
^(^s)'Li-(Vx;p^)^jdF (o

to

^K^o^^o' -;p> -;Po)/!x;p K^)''^^^^^)^

where e is chosen as in Assumptions E and El. Without loss of generality, let
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z^ = min{E^, Cq}; then, for any t: in (O, e^J,

(A. 7) ErQrj,(P) |x^,...,x,p]

S
, ,2

^0 2,, ,, , s2.
^(^;Po >

^o' ^;Po > ^P > o)i(u;6| > o/o" Tni-(xA^)'Jt^dx

"o „ 2

t

linally, let K = |- e^(K
)5/2(4-^t))^

^^^ j. (jg^^ned in Assumption R. Then taking

expectations with respect to the distribution of the regressors and applying

Holder's and Jensen's inequalities yields

(A.8) e[Qt,(P)]

X

> Kx^ 1 I ELi (z;P^ > e^)-1 ( ix;6| > t)IIx^Ii2J^

X
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> Ki^i^l eLi(x;p^ > E^)-i(|x;6| > r)(x;6)2|i6ir2j}5

where v™, the smallest characteristic root of the matrix N„, is bounded below by

V for large T by Assumption R. Thus, whenever II 6 II lip - p H > e, choosing x so
o o

that T < V E shows that E[Qn,(P)J is uniformly bounded away from zero for all T

> T , as desired.

(ii) Asymptotic Normalit;y : The proofs of asymptotic normality here and below

are based on the approach of Huber fS^Tj, suitably modified to apply to the non-

identically distributed case. (For complete details of the modifications

required, the reader is referred to Appendix A of Powell [1984]). Define

(A.9) (I'di^, x^, p) 2 l(x;.p > 0)x^(min{y^, 2x^p} - x^p)

= 1 (z^p > 0)x^(nin{max{u^ - x^5, -2;^p} , x^p} );

then Ruber's argument requires that

(A.10) ^ I 4,(u^, x^, p^) = 0^(1).

But the left-hand side of (A. 10), multiplied by -2 /t", is the gradient of the

objective function S^ (P ) defining P„s so it is equal to the zero vector for large
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T by Assumption P and the strong consistency of P„.

Other conditions for application of Ruber's argument involve the quantities

^.(P, d) = sup Hiu., X., p) - (|;(u^, X,, y)'I

^ llp-ylKd ^ ^ ^ ^

and

^rp(P) - T ^ EL'i'U^, x^, P)J.

Aside from some technical conditions which are easily verified in this situation

(such as the measurability of the {|i^}), Ruber's argument is valid if the first

two moments of \i^ are 0(d), and X^(p) > a lip - p^ll (some a > O), for all p near

P , d near zero, and T > T .

Simple algebraic manipulations show that

(A. 11) ^^(P, d) = -sup lll(x^p > 0)x^(nin{y^ - x;.p , x^p} )

Hp-ylld

1 (x^Y > 0)z^(min{y^ - x'^y , x^y} )ll

< llx^ll^d,

so that

(A.12) eLh^(P, d)J < k//(4-t,)^^

ELh,(P, d)j2 <K//(4-^)d2.

so both are 0(d) for d near zero. Furthermore,

(A.13) >.j(p) = -Cj(p - p^) + o(iip . p^n^),
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where C™ is the matrix defined in the statement of tne theorem. This holds

because

(A.14) i^^^i^) + Cy(p - p^)ll

X O

f^o f^ x.p

t to

<E 41 l(|x;pj < |x;6i)x^{/'^rp'''^^*^-xl6)dFJX)
X o

t ' t

X X

X X X

< 4L^E nl I L^^(x;6)2jll

< 4L (K
)V(4+Ti) „2„2_00

Thus Xj(p)«np - P^^ll" > a > for all p in a suitably small neighborhood of p ,

since C™ is positive definite for large T by Assumption E and E1 . The argimient
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leading to Ruber's [I957j Lemma 3 thus yields the asymptotic relation

(A.15) V r^%- Po^ = /tI '^K' -t' Po^ ' %^'^'

Application of the Liapunov form of the central limit theorem yields the result,

where the covariance matrix is calculated in the usual way.

Proof of Theorem 2:

(i) Strong Consistency : The argument is the same as for Theorem 1 above; strong

consistency of P^ holds if p uniquely minimizes T"^e[r^(P) - IL, (P )] = e[m_(P)J

uniformly in P for T sufficiently large. By some tedious algebra, it can be

shown that the following inequality holds:

(A.16) ELMj(p)lz^,...,ZyJ

> T I ^4F,(x;p^)j-^{i(x;p^ > 0, .;p < o)j"/\U'j^-xf - x^jdF^a)

x'6
Ks^p^ < 0, x\p > o)/q* L(3c;p-x)^ - ).^JdF^(\)

i(r;p^ > 0, z;p > o)J^^^ L(k;6|-\)^ - x^jdp^(\)},
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Using the conditions m E2, it can be shown that, by choosing: t sufficiently-

close to zero,

(A.17) eLk^(p)J > T^LhCj) - h(^)J il ELi(x;p^ > t^).l(|x;5| > t)J,

which corresponds to inequality (A. 7) above. The same reasoning as in (A. 8) thus

shows that ELKj(P)J > uniformly in p for lip - p^H > e and T > T^^ , as desired.

(ii) Asymptotic formality : The proof here again follows that in Theorem 1 ; in

this case, defining

(A.18) 4.(v^, x^, P) = l(y^ < 2x:p)(y^ - x;p)x^

the condition

(A.19) ^ I (^(v^, x^, pj) = 0p(l)

must again be established; but the left-hand side of (A.I 9)? multiplied by -2 /T,

is the (left) derivative of the objective function Em(P) evaluated at p„, so

(a. 19) can be established using the facts that p_ minimizes E_ (P ) and that the

fiistribution of v. continuous (a similar argument is given for Lemma A. 2 of

Ruppert and Carroll Ll980j).
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For this problem, the appropriate quantities J^+(P, d) and X^^i?) can be shown

to satisfy

(A. 20) ^^(p, d) < ^I llx^^d

and

(A.21 ) II\^(P) + (W^ - V^)(p - P^)ll = 0(llp - P^I|2)

for p near p , so

1

(A.22) (Wj - Vj)/T(P - P^) = ^ I (|.(v^ , x^ , |) + Op(l )

as before, and application of Liapunov's central limit theorem yields the result.

Proof of Theorem 3:

Only the consistency of D„ will be demonstrated here; consistency of C„ can

A
be shown in an analogous way. First, note that !)„, is asymptotically equivalent

to the matriz

(A.23) A^ = ^ I l(x;p^ > 0)-min{u2, ix\p ^)^}x^x'^;

X

that is, each element of the difference matriz r_ - A_ converges to zero almost

surely. This holds since, defining 6 = p - p , the (i,j) element of the

difference satisfies
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(A. 24) |[Et - ^T^ij'

-^I K^P, > 0)niin{u2, (-;P,)^}x,,x .J

<1I1(KP,I < K^DL^P,)^^ K^T^'JI^it^^t

4? ^K^o ^ K^tI)-^^I^I < ^Po^^-^^K^t) ^ K^T^'jl^it^;it

A
.

** 2

-^I iu;p, > K^D-iHuJ > x;p^)L-2(x;p^)(x;6^) ^ {.•6^)^}h.^..^

< I J Ilz^ll'^ll6j0(llp^ll + I16„II).

But since Ellz, D
''^ is imiformly bounded, these terms converge to zero almost

X
A A

surely by the strong consistency of Pm* Consistency of Dm then follows from the

almost sure convergence of A„ - e[a_,J = Arp - D„ to zero by Markov's strong law of

large numbers.

Proof of Theorem 4 :

Again, strong consistency of ¥ and Z^ can be demonstrated in the same way

A
"it was shown for I)™ in the preceeding proof. To prove consistency of ¥„» it will
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first be shown that V is asynptotically equivalent to

(A.25) r^^I i(x;p^> o)(x;p^)x^x;.c-^Li(y, < cj ^ 1(0 < y,-2x;p^ < c^)j,

~ ~ ~ ~ p
First, note that (c^/c^)V is asymptotically equivalent to V , since (c^''c_) ->• 1;

next, note that each element of (cn,/Cn,)V_ - T satisfies

(A.26) IL(c^/cj)Vj - r^J..

,2-1

X

X

<ll hz^ii^ c-^ni^n ^ 1 J iiz^ii^op^iic-^i (|v^+ x;p^-c„| < 0^-0^(1))
X X

+ ^I »2^ll5lip^Ilc-1.l(iv^.z;p^-Cj| < CjLo (1) + c-^ll6jO llz^nj),
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where 6 = P^ - P • Chebvshev's inequality and the fact that /T(P^ - P ) = o (1 )

can thus be used to show that the difference between V and T converges to zero

in probability.

Hie expected value of T is

(A.27) E[r^ = E{E[r^|x^,...,x^]}

E[-^I i(x;p^ > o)(x;p^)x^x;[F^(x;p^)rV'^ c-;f,(>. - .;^^)dx]

E[-il i(x;p^ > o)(x;p^)x^z;[F^(x;p^)]-VV,(c^ - x;6^)dx]

= Vj+ 0(1)

by dominated convergence, while

(A.28) Var([r^.^)

X

. 1(0< v^.x'^^< c^)]}

BO each element of T - V converges to zero in quadratic mean.
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Density Function of y. in Truncated

and "Symmetrically Truncated" Sample
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and Uniform Cases.



43

TABLE 1

Results of Simulations for Designs With Homocedastic Gaussian Errors

Design 1 - Scale=l, T=200, Censoring=50%

Tobit MLE
Intercept

Slope

True
.000

1.000

Mean
-.005
1.003

SD
.093
.097

RMSE
.093
.097

LQ
-.071
.934

Median
.008

1.000

UQ
.065

1.053

MAE
.069
.063

SCLS
Intercept

Slope

True
.000

1.000

Mean
-.080
1.060

SD
.411

.325

RMSE
.418

.331

LQ
-.135
.844

Median
.028

.988

UQ
.145

1.182

MAE
.167

.171

Design 2 - Scale=l, T=100, Censoring=50%

Tobit MLE
Intercept

Slope

SCLS
Intercept

Slope

True Mean
.000 -.001

1.000 1.009

True
.000

1.000

Mean
-.129
1.101

SD RMSE
.142 .142

.141 .142

SD RMSE
.566 .580

.463 .474

LQ Median UQ MAE
.088 .008 .109 .102
.903 .994 1.108 .102

LQ Median UQ MAE
.300 .074 .233 .263
.780 .994 1.252 .273

Design 3 - Scale=2, T=200, Censoring=50%

Tobit MLE
Intercept

Slope

SCLS
Intercept

Slope

True Mean
.000 -.011

1.000 .987

True Mean
.000 -.903

1.000 1.622

SD RMSE LQ
.194 .195 -.135

.161 .162 .875

SD RMSE LQ
2.974 3.108 -.821
1.887 1.987 .847

Median UQ MAE
.012 .145 .141

.980 1.100 .117

Median UQ MAE
-.079 .208 .311
1.132 1.665 .342

Design 4 - Scale=l, T=200, Censoring=25%

Tobit MT.E True Mean SD RMSE LQ Median UQ MAE
Intercept 1.000 .999 .080 .080 .949 1.000 1.046 .050

Slope 1.000 1.002 .077 .077 .946 1.003 1.055 .054

SCLS True Mean SD RMSE LQ Median UQ MAE
Intercept 1.000 .981 .123 .124 .919 .997 1.063 .072

Slope 1.000 1.019 .126 .128 .928 1.016 1.096 .085
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TABLE 1 (continued)

Design 5 - Scale=l, T=200, Censoring=50%, Two Slope Coefficients

Tobit MLE True Mean SD RMSE LQ Median UQ MAE
Intercept .000 -.001 .102 .102 -.067 .004 .077 .069

Slope 1 1.000 .996 .095 .095 .942 .995 1.056 .057
Slope 2 .000 -.011 .083 .084 -.071 -.011 .045 .062

SCLS True Mean SD RMSE LQ Median UQ MAE
Intercept .000 -.174 .497 .527 -.322 -.023 .129 .200

Slope 1 1.000 1.124 .380 .399 .878 1.042 1.256 .193
Slope 2 .000 -.015 .128 .129 -.098 -.015 .064 .080

Design 6 - Scale=l/ T=300, Censoring=50%, Two Slope Coefficients

Tobit MLE True Mean SD RMSE LQ Median UQ MAE
Intercept .000 -.002 .082 .082 -.056 .008 .055 .056

Slope 1 1.000 .998 .083 .083 .940 .996 1.055 .059

Slope 2 .000 .003 .066 .066 .-.037 .003 .041 .040

SCLS True Mean SD RMSE LQ Median UQ MAE
Intercept .000 -.120 .407 .425 -.252 -.011 .117 .160

Slope 1 1.000 1.086 .315 .326 .897 1.020 1.222 .146
Slope 2 .000 .002 .094 .094 -.058 .004 .061 .058
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TABLE 2

Results of Simulations for Designs Without Homocedastic Gaussian Errors

Design 7 - Laplace/ T=200, Censoring=50%

Tobit MLE
Intercept

Slope

True
.000

1.000

Mean
-.037
1.052

SD
.101
.109

RMSE
.108

.121

LQ
-.102
.974

Median
-.032
1.047

UQ
.032

1.125

MAE
.071
.081

SCLS
Intercept

Slope

True
.000

1.000

Mean
-.033
1.034

SD
.203

.197

RMSE
.205

.200

LQ
-.148
.894

Median
.018

1.005

UQ
.110

1.168

MAE
.122

.129

Design 8 - Std. Cauchy, T=200, Censoring=50%

Tobit MLE True Mean SD RMSE LQ Median UQ MAE
Intercept .000 -29.506 183.108 185.470 -10.522 -4.333 -2.045 4.422

Slope 1.000 25.826 166.976 168.812 2.559 4.241 7.768 3.241

SCLS True Mean SD RMSE LQ Median UQ MAE
Intercept .000 -.352 1.588 1.626 -.404 -.002 .185 .248

Slope 1.000 1.439 2.537 2.575 .834 1.052 1.353 .240

Design 9 - Normal Mixture; Relative Scale=4, T=200, Censoring:=50%

Tobit MLE True Mean SD RMSE LQ Median UQ MAE
Intercept .000 -.065 .098 .118 -.126 -.052 .005 .072

Slope 1.000 1.087 .124 .152 .999 1.074 1.161 .095

SCLS True Mean SD RMSE LQ Median UQ MAE
Intercept .000 -.013 .215 .215 -.122 .024 .130 .130

Slope 1.000 1.019 .191 .192 .896 1.001 1.123 .110

Design 10 - Normal Mixture, Relative Scale=9/ T=200, Censoring=50%

Tobit MLE True Mean SD RMSE LQ Median UQ MAE
Intercept .000 -.180 .125 .219 -.237 -.159 -.086 .160

Slope 1.000 1.194 .166 .255 1.078 1.174 1.268 .174

SCLS True Mean SD RMSE LQ Median UQ MAE
Intercept .000 -.020 .108 .110 -.082 -.007 .054 .066

Slope 1.000 1.019 .118 .120 .936 1.009 1.092 .069
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TABLE 2 (continuec3)

2 2
Design 11 - Heterosceciastic Normal, 3E(u ) =E(u ) , T=200, Censoring=50%

Tobit MLE
Intercept

Slope

SCLS
Intercept

SloE>e

True Mean
.000 -.274

1.000 1.283

True Mean
.000 -.228

1.000 1.166

SD RMSE LQ
.135 .306 -.361

.139 .315 1.187

SD RMSE LQ
.613 .654 -.334
.476 .504 .833

Mecaian UQ MAE
-.256 .171 .261
1.285 1.378 .285

Median UQ MAE
.021 .125 .208

1.109 1.306 .234

2 2
Design 12 - Heteroscedastic Normal, E(u ) =3E(u ) , T=200, Censoring=50%

Tobit MLE
Intercept

Slope

True
.000

1.000

Mean
.193
.807

SD
.075

.071

RMSE
.207

.206

LQ
.144
.754

Median
.197

.806

UQ
.242
.856

MAE
.197
.195

SCLS
Intercept

Slope

True
.000

1.000

Mean
-.010
1.014

SD
.211

.161

RMSE
.211

.162

LQ
-.113
,887

Median
-.003
1.004

UQ
.154

1.117

MAE
.136

.117
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roOTNOTES

1/ This research was supported by National Science Foundation Grants No.

SES79-12965 and SES79-13976 at Stanford University and SES83-09292 at the

Massachusetts Institute of Technology. I would like to thank T. Amemiya,

T. W. Anderson; T. Bresnahan, C. Cameron/ J. Hausman, T. MaCurdy,

D. McFadden, W. Newey, J. Rotemberg, P. Ruud/ T. Stoker/ R. Turner, and a

referee for their helpful comments.

2/ These references are by no means exhaustive; alternative estimation

methods are given by Kalbfleisch and Prentice [1980], Koul, Suslara, and

Van Ryzin [1981], and Ruud [1983], among others..

3/ Since the right-hand side of (2.6) is discontinuous, it nay not be possible

to find a value of B which sets it to zero for a particular sample. In the

asymptotic theory to follow, it is sufficient for the summation in (2.6),

Lon
6^

-1/2

when normalized by — and evaluated at the proposed solution g / to converge

to the zero vector in probability at a faster rate than T

4/ A more detailed discussion of the EM algorithm is given by Dempster, Laird,

and Ri±)in [1977].

5/ If C and D„ have limits C and D , then result (ii) can be written in the— T T CO 00

more familiar form T(B„ - 6 ) ->- N(0, CDC ).
'

»J>
Q * ' CO 00 00 '
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6/ The scaling sequence c_, niay depend/ for example/ upon some concomittant

estimate of the scale of the residuals.

7/ Turner [1983] has applied symmetrically censored least squares estiiretion

to data on the share of fringe benefits in labor compensation. The

successive approximation formula (2.13) was used iteratively to compute the

regression coefficients/ and standard errors were obtained using ^ and D .

above. The resulting estimates/ while generally of the same sign as the

maximum likelihood estimates assuming Gaussian errors, differed

substantially in their relative magnitudes, indicating failure of the

assumptions of normality or homoscedasticity.

8/ Gaussian deviates were generated by the sine-cosine transform, as applied

-'-- to uniform deviates generated by a linear congruential scheme; deviates

-' for the other error distributions below were generated by the

inverse-transform method. The symmetrically censored least squares

- estimator was calculated throughout using (2.13) as a recursion formula,

with classical least squares estimates as starting values. The Tobit '

maximum likelihood estimates used the Newton-Raphson iteration, again with

least squares as starting values.

9/ Of course, if the loss function 'p{') is not scale equivariant, some

concommitant estimate of scale may be needed, conplicating the asynptotic

theory.
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10/ This argument is somewhat more compelling in the case of an i.i.d.

dependent variable than in the regression context/ where conditioning on

the censoring points is similar to conditioning on the observed values of

the regressors. In practice » even if the data do not include censoring

values for the uncensored observations/ such values can usually be imputed

as the potential survival time assuming the individual had lived to the

completion of the study.

11/ Cosslett [1984a] has recently proposed a consistent/ nonparametric two-step

estiirator of the general sample selection model/ but its large-sample

distribution is not yet known. Chamberlain [1984] and Cosslett [1984b]

have investigated the maximum attainable efficiency for selection models

when the error distribution is unknown.
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