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ABSTRACT

Consider an entrepreneur who needs to raise funds from an investor, but

cannot commit not to withdraw his human capital from the project. The

possibility of a default or quit puts an upper bound on the total future

indebtedness from the entrepreneur to the investor at any date. We

characterize the optimal repayment path and show how it is affected both by

the maturity structure of the project return stream and by the durability and

specificity of project assets. Our results are consistent with the

conventional wisdom about what determines the maturity structure of

(long-term) debt contracts.



Introduction

Consider an individual entrepreneur who has access to a profitable

investment project, but does not have the funds to finance it. In an ideal

world, the entrepreneur would raise the capital from an outside investor

(e.g. a bank), promising in return a sufficient fraction of future cash flows

that the investor breaks even. Such an ex-ante division of surplus may be

unenforceable, however, if the entrepreneur always has the option to

repudiate the contract by withdrawing his human capital from the project.

The possibility of repudiation puts an upper bound on the total amount of

future indebtedness from the entrepreneur to the investor at any date. We

show that the result of this constraint is that some profitable projects will

not be financed. In addition, we characterize the optimal repayment path

between the entrepreneur and the investor when the project is financed, and

show how this repayment path is affected both by the maturity structure of

the project return stream and by the durability and specificity of the

project assets. Our results are consistent with the conventional wisdom

offered by practitioners about what determines the maturity structure of

(long-term) debt contracts.

Throughout the paper, we will focus on the case where the project's

return stream and its liquidation value (which we take to correspond to the

best alternative use of the project assets) are perfectly certain. The

assumption of perfect certainty is very restrictive, but it turns out that

this case is already quite rich. We also suppose that, if the entrepreneur

repudiates a debt contract, he loses control of the project's physical assets

and the investor obtains the right to liquidate them. At this point, the

parties can renegotiate the debt contract. However, renegotiation does not

necessarily lead to an efficient outcome: in particular, the investor may

liquidate even though gross returns exceed liquidation value, because the

debtor cannot credibly promise to pay enough of the gross returns back.

It turns out that the assumption of perfect certainty, combined with

that of (costless) renegotiation, implies that there is a continuum of

optimal debt contracts. Among other things, the parties can write a

succession of short-term contracts which are renegotiated, or a long-term

contract that is never renegotiate! along the equilibrium path. Because of



this indeterminacy, we will concentrate on the flow of debt repayments on the

equilibrium path. In fact, in the case where the entrepreneur and investor

have a common discount rate, and the entrepreneur consumes only at the end of

the project, even this flow exhibits considerable indeterminacy. In

particular, we will show that there is a slowest repayment path (this

involves the largest initial loan from the Investor to the entrepreneur, and

the largest indebtedness from the entrepreneur to the investor at every date

thereafter) and a fastest repayment path (this involves the smallest initial

loan from the investor and the smallest indebtedness from the entrepreneur at

every date thereafter); and the set of optimal repayment paths consists of

everything between these two extremes. The reason for the indeterminacy is

that the constraint that the entrepreneur not repudiate puts an upper bound

only on total future indebtedness at each date; thus, within limits imposed

by the project cash flows, the constraint can still be satisfied if debt

repayments are moved forward in time.

This indeterminacy in debt repayments disappears if we relax the

assumption of a common discount rate. We will see that, if the

entrepreneur's discount rate exceeds the investor's (more precisely, if the

entrepreneur has profitable reinvestment opportunities), the unique optimal

path is the slowest one; while if the investor's discount rate exceeds the

entrepreneur's (more precisely, if the investor has profitable reinvestment

opportunities), the unique optimal path is the fastest one.

As well as characterizing those projects that will be undertaken and

the slowest and fastest repayment paths, we will analyze how the repayment

path varies with the underlying parameters of the model. Among other things,

we show that debt repayments will be pushed into the future as the project's

assets become more durable; as project returns are earned later; or as the

project's assets become less replaceable. These results correspond to the

advice practitioners often give: for example, "lend long if the loan is

supported by durable collateral"; and "match assets with liabilities". We

are not aware of other theoretical models that deliver results of this type.

There is a vast literature on debt, and we do not have space to review

it here. There are a few recent papers which, like this one, use the idea

that creditors may liquidate in the event of default, because the debtor

cannot pay enough of the project returns back. Aghion and Bolton (1991)



analyse debt in terms of control over assets; theirs is a one-period model,

in which inefficient liquidation arises because the debtor has nonpecuniary

benefits of control and, owing to a wealth constraint, cannot bribe the

creditor not to liquidate. Bolton and Scharfstein (1990) develop a model in

which the threat of the witholding of future investment funds encourages an

entrepeneur to repay a loan. They are more concerned with how debt can be

used strategically to influence competition in product markets than with the

nature of dynamic debt contracts. A series of papers by Diamond — see,

e.g., Diamond (1990, 1991a and b) — assumes that borrowers cannot use the

full value of future returns as backing for financial claims. His focus is

rather different from ours: he wishes to explore the relationship between the

unobservable quality of a borrower's project and the maturity/seniority

structure of debt, as well as to ask whether loans should be placed through a

financial intermediary or directly through the market.

Probably the paper in the literature closest to ours is that by Bulow

and Rogoff (1989). Theirs is a model of sovereign debt in which a debtor

country borrows from a creditor country for current consumption, but cannot

commit to repay the loan out of future production. The creditor country has

some bargaining power, however: if the debtor repudiates the loan, the

creditor can retaliate by blockading the debtor country's trade. There are

two main differences between the Bulow-Rogoff paper and ours. First, in

their model there is nothing corresponding to irreversible liquidation, and,

as a result, there is never any ex-post inefficiency, in the sense that no

blockade occurs in equilibrium. In contrast, in our model, if an

inappropriate contract were signed (or if the returns were uncertain), there

could be inefficient liquidation ex post. Second, because of their concern

with sovereign debt, Bulow and Rogoff do not study the role of legally

enforceable, long-term contracts in sustaining optimal repayment paths, or

obtain comparative statics properties concerning how optimal repayment paths

vary with the underlying parameters of the model.

Given that so much has been written on debt, it may be worth rehearsing

in what ways our model is new, and why we believe It Is simpler than what has

gone before. First, ours is a deterministic model, with full information

throughout. Second, returns are exogenous in the sense that what the

entrepreneur can produce with the assets, and what the assets alone can

produce, are fixed. Third, contracts are "complete", in that there are no



missing contingencies. The only potential for distortion is that the

entrepreneur can, at any time, walk away from the contract; and the

punishment for withdrawing his labour is that he loses access to the assets.

It turns out that these rudimentary ingredients are enough to generate a

theory of debt which Is surprisingly rich. The richness comes from the

intertemporal structure: what the entrepreneur — or Indeed the investor,

should she decide to liquidate and not to renegotiate — potentially forfeits

today from repudiating the contract is sensitive to what he anticipates he

can obtain from tomorrow onwards, which in turn will be sensitive to whether

or not he can usefully repudiate the contract again tomorrow, etc.

The paper is organized as follows. We set out a discrete time model in

Sections 2-3, and in Section 4 find the condition under which the project

will be undertaken (Proposition 1). We characterize the set of optimal

repayment paths in Section 5 (Proposition 2); and we also extend the model by

introducing the possibility of reinvestment. The results for the discrete

case are somewhat difficult to interpret, and so in Section 6 we take limits

as the number of periods tends to infinity and the length of each period

tends to zero. For the limiting continuous time model, we are able to obtain

simple formulae for the condition under which the project will be undertaken,

and for the set of optimal repayment paths (Proposition 3). Section 7

examines a number of comparative statics properties — e.g., how the maturity

structure of the debt repayment path varies with the model's underlying

parameters (Propositions 4A-4D). Finally, in Section 8, we discuss what

light the model throws on actual debt contracts, and conclude with some

suggestions

an Appendix.

2
suggestions for further research. Proofs of certain results are gathered in

In this sense, the model resembles recent incomplete contracting theories of
the firm which stress that physical assets are alienable, while human assets
are inalienable; see Grossman and Hart (1986) and Hart and Moore (1990).

2
One important extension of our model is to introduce the possibility of
consumption during the lifetime of the project. This will be the subject of
a companion paper.



2. The Model

Consider an entrepreneur who has access to a profitable investment

project. Suppose that the initial cost of the project is K and the

entrepreneur's initial wealth is w < K. We will assume that the project has

a finite horizon and that time is divided into periods l,2,...,n, which are

of equal length (however, below we will take limits as n » o and the period

length tends to zero). The project's physical assets in combination with the

entrepreneur's human capital yield a perfectly certain flow of nonnegative

returns r..,r„,...,r at dates 1,2,..., n — the end of periods l,2,...,n,

respectively. The project's physical assets also have an alternative use.

At any date i (0 s i < n-1), they can be "liquidated". Liquidation at date

i, which is supposed to be irreversible, yields a perfectly certain flow of

nonnegative returns t. ,1 ,...,£ at the end of periods i+1 , i+2, . . . ,n.

These returns can be interpreted as spot rentals in the used capital market;

the important point is that liquidation avoids the use of the entrepreneur's
3

human capital. Both return streams are illustrated in Figure 1.

Period
1

Date

Period
2

Date 1

'2

I-

Date 2

Period
n-1

n-2

'n-2

Period
n

n-1

n-1

Date n-2 Date n-1

n

Project
returns

Liquidation
returns

Date n

Figure 1

3,.
Liquidation" could involve a new entrepreneur being brought in, with whom a

new debt contract may need to be arranged. In this case, «
i+1>

l^
+z< n

denote the returns net of the new entrepreneur's wages (or, equivalently, the
repayment stream which he makes under the terms of the new debt contract).



Two additional points should be noted: the assets are assumed to

collapse at date n; and, prior to that date, the entrepreneur cannot do

anything without the assets (he has a zero outside wage).

We will normalize the rate of interest to be zero. This implies that

the present value at date 1 of continuing the project until date n is

R
i

s
I

r
y

j=i+i

while the present value of liquidating the project at date i is

n

j=i+l

Since L is decreasing in i, our formulation captures the idea that the

project's physical assets depreciate over time.

We assume:

(A.l) R
Q

> K 2: L
Q

;

i.e. the project has a positive net present value at date and the present

value of its alternative use at date does not exceed its capital cost K.

(K - L can be interpreted as the sunk cost of installing the capital for

specific use in the project.)

We also make the following simplifying assumption:

(A. 2) r
i

£ l
i

=> r
J+1

fc I. for all 1 M £ n-1.

In other words, although in early periods, project returns may be less

than the corresponding liquidation rentals, once project returns exceed

liquidation rentals (which they must eventually by (A.l)), they exceed them

in all subsequent periods. (A. 2) allows for projects which are unprofitable

initially and then become profitable, but rules out projects whose

profitability (relative to alternative use) cycles. (Notice that (A. 2)



implies that R. > L. for all ^ i ^ n-1; i.e., once the project is under way

it is efficient to continue it. )

In an ideal world, the entrepreneur would raise the funds for the

project from a single (rich) investor, offering the investor a contract which

divides up the net present value of the project R - K in such a way that

both of them at least break even. We will assume, however, that such an

ex-ante division may not be enforceable because the entrepreneur cannot

commit himself not to withdraw his human capital from the project at a future

date. Moreover, the most extreme penalty that can be exercised against the

entrepreneur if he quits is that control of the project's physical capital

passes to the investor. In other words, we suppose that the entrepreneur has

no other assets that can be seized and that a breach of contract (e.g. a

refusal to work) does not lead to any criminal penalties, such as jail or

physical punishment.

This suggests consideration of the following contract written by the

entrepreneur and the investor. The investor (henceforth known as the

creditor C) agrees to put up an initial sum of money I prior to date and to

give the entrepreneur (henceforth known as the debtor D) control of the

assets. In return, D promises a payment p to C at the end of each period i

= 1,2,..., n. If D makes the payment, he has the right to continue using the

assets for at least one more period, i.e. until p. . is due. However, if D

quits or defaults, control of the assets switches to C, who can then decide
4

whether to liquidate them.

More general contracts could be considered. For example, the contract might
specify that D keeps control of the assets only for the first m < n periods,
and control automatically switches to C at date m+1 (unless there has been a

prior default or breach, in which case C gets control earlier). In the
equilibrium of our deterministic model, it turns out that such contracts need
not be used: either D keeps control for the entire horizon, or the project
never goes ahead.

We also rule out more complex arrangements such as "partial default" —
e.g., control of the assets might be decided by lottery, the terms of which
are sensitive to the amount that D repays. In addition, we ignore the
possibility of "partial liquidation": in our model, the assets are assumed to
be indivisible, but in principle C might be required to pay D some of the
liquidation receipts. It turns out that in equilibrium none of these
possible arrangements helps.



We now consider D' s decision to quit or default in more detail. In

fact both decisions are examples of contract repudiation (i.e. D walks away

from the contract); a quit corresponds to repudiation at the beginning of a

period, and a default to repudiation at the end of a period.

Repudiation at the beginning of a period

At the beginning of each period i (i = l,...,n), D can choose to

repudiate the contract, saying to C: "Future debt payments are so large that

I cannot make a reasonable profit out of this venture. I therefore quit."

In this event, control of the project's physical assets switches to C. It is

important to note that she gets only these assets. That is, we assume that

D' s savings — which for i > 1 include his previous (net) earnings,

i_1
5

£ (r.-p.) — cannot be seized (they are in a private savings account).
j=l J J

Repudiation at the end of a period

We suppose that during any period i (i = 1 n) of the project's

operations, the cash flow r accrues to D in the first instance. At the end

of the period, D owes C the amount p . D can use r. to make this payment —
and thereby earn himself r.-p , which is added to his private savings. (In

the event that r. < p. , D would have to make up the shortfall, p,-r., from
l *i , i i

his own savings if they are sufficient. ) Alternatively, D can choose to

repudiate the contract and not pay p — i.e. he can default. In this case

In fact, a considerable part of our analysis extends to the case where they
can be seized. Our results concerning when the project is undertaken
continue to hold, as do all our results concerning the fastest repayment
path. Also note that a special case of our model is where D contributes the
whole of his w. to the initial investment, and p. = r. for all 1 s i s n —
in which case there are no private savings to be seized.

If they are not sufficient, repudiation at the end of period i would be
involuntary.



the creditor can seize the project's assets, which are assumed to comprise

not only the project's physical capital, but also the current period's cash
7

flow r . Again, it is important to note that this is all that C gets. D'

s

private savings, including his previous earnings, r -p , .... r ;_i"P-_i'

cannot be seized.

Thus, at any date i, D has the choice not only whether to repudiate,

but also when: at the end of period i, or at the beginning of period 1+1.

Fortunately, we can simplify matters. We claim that if r. £ P.. repudiation

at the beginning of period i+1 dominates repudiation at the end of period i;

and vice versa if r. < p,

.

To see this, suppose r. £ p . Then if D repudiates at the end of

period i, he loses the physical assets and r, ; whereas if he pays the p owed

and repudiates at the beginning of period i+1, he loses the physical assets

but can pocket r.-p, , i.e. he loses only p.. On the other hand, if r < p.

,

then it is better for D to repudiate at the end of period i than to repudiate

at the beginning of period i+1 since in the first case he avoids having to

put in P.~r, from his own savings before he loses control of the project's

physical assets.

Given this observation, the relevant moves for D are as summarized in

Figure 2.

Note that the above formulation captures the idea that D can commit his

human capital for just one period in advance. Suppose that we are at the

beginning of period i and r. = 10. (Take the liquidation value L. to be

zero. ) Then D could commit himself to work during period i for a low wage of

2, say, by signing a debt contract specifying p. =8. If D tried to renege

on this contract by repudiating at the end of period i, he would be

unsuccessful since C could seize D' s assets, Including the whole of r, = 10.

On the other hand, D could not commit to work during periods i and i+1 for a

wage of 2 by signing a debt contract specifying (Pt.P 1+1 ) = (8,8). The reason

7
In other words, although the project's cash flow accrues to D in the first

instance, we are assuming that he cannot divert or steal any part of it.



is that he would repudiate this contract at the beginning of period i+1 ; as

we will see, by repudiating, he would be able to renegotiate the second

period wage up to 5.

Repudiation leads to a shift in control of the assets to C. At this

stage she may liquidate the assets (irreversibly) or negotiate a new debt

contract with D. The next step is to describe the renegotiation procedure.

10



r
i
£p

i

D chooses to

repudiate at

the beginning
of period i+1?

Yes

C receives p

D' s final cash
holding = w +r,-p.

C gains control
of assets

D' s initial cash
holding = w

W
i

+ r
i

< P
i
?

No

No No

Yes -> D must
repudiate
at the end
of period i

r
l
<P

i

I

D chooses to
repudiate at
the end of
period i?

C receives p.

D' s final cash
holding = w.+r.-p.

D keeps control
of assets

Yes

C receives r
i

D's final cash
holding = w

C gains control
of assets

Figure 2

11



3. Renegotiation

Suppose D repudiates either at the end of period i (if r, -Pi) or at

the beginning of period i+1 (if r > p ). Let his private savings or wealth

at this point be w. C now has control of the assets and must decide what to

do with them. We suppose that the following (very stylized) renegotiation

game takes place.

First, at the beginning of period i+1, D makes C an offer of a new debt

contract (pl.p^ ...... p'), i.e. in return for having the assets back D

promises to pay p' immediately and p' at the end of period j, for all j £ i+1.

C can either accept or reject this offer. If C accepts, the renegotiation

game is over. If C rejects, C must now decide whether to liquidate

(irreversibly) or to postpone this decision for at least one more period.

Liquidation again ends the game. Postponement leads to a second offer of a

new debt contract, made with equal probability (1/2) by D or C. If this

second offer (p",p" ...... p"), say, is accepted, the game ends (this second

offer is made sufficiently close to the beginning of period i+1 that, if it

is accepted, there is still time for the assets to earn r, .«)• On the other

hand, if this second offer is rejected, the assets lie unused for a period

(i.e. neither r. . nor £, . is earned) and the whole process is then repeated

in period i+2.

Before we analyze the implications of this renegotiation game, some

comments are in order. The game may seem ad hoc, but we believe that almost

any extensive form bargaining game is subject to this criticism. We have

chosen to work with this extensive form for three reasons: first, it is

tractable; second, it gives each party some share of the surplus from

renegotiation; and, third, it is close in spirit to much of the recent

g
Note that we assume that C cannot liquidate after this second round of

offers and earn the period i+1 rental I ; liquidation at this stage earns

the same rental stream I. _ I as liquidation at the beginning of period

i+2.

12



9
literature on bargaining with outside options. In addition, we suspect

that, at least in qualitative terms, our results are reasonably robust to the

extensive form used.

It is also important to note that we have deliberately chosen the

renegotiation extensive form to be exogenously given and not manipulable via

10
the initial debt contract.

We now make the following assumption (closely related to (A. 2)), which

simplifies the analysis of the renegotiation game.

(A. 3) | r
i

"
*i

=>
|

r
i+l

fc

*i+i
for a11 ! - i - n_1 -

We also suppose that C and D are both risk neutral.

Lemma 1 describes the (subgame perfect) equilibrium of the

renegotiation game.

Lemma 1. Take 1 £ i < n. Suppose D repudiates either at the end of period i

or at the beginning of period i+1, and assume that his private wealth (cash

holding) at this point is w. Then in any equilibrium of the renegotiation

game, C's payoff from date i onwards is given by

(3.1) U* = Max (L^ |r ),

and D' s payoff from date i onwards (including his wealth) is given by

9
Noncooperative bargaining with outside options was first investigated by Ken

Binmore, Avner Shaked and John Sutton. For a recent overview, see Section
3.12 of Osborne and Rubinstein (1990).

In the present context, the possibilities for manipulation seem particularly
limited. For example, suppose, as an extreme case, that the initial contract
tries to limit D* s bargaining power by banning offers from him. Then there
is nothing to stop D from defying this ban; since he has lost all his
seizable assets there is no penalty that can be exercised against him.

13



(3.2) U^ =

' w + R.- ui if condition (•) holds
1 C

w if condition (*) does not hold

where condition (*) is as follows:

Condition (*)

There exist p , p. +
. p such that

(3.3) Max (pk
-r

k
. 0) + pk+1

+ + Pn

"*c
Max (L , ±R) for all i+1 £ k £ n-1;

(3.4) Pi
+ •• + Pn * U

C :

(3.5) w _
P, + I Cr - p J i for all i+1 £ k s n.

j=i+l J J

Moreover, if («) holds, an equilibrium consists of a contract

(p' , . . .
,p' ) offered by D and accepted by C, where (p' , . . .

,p' ) is any vector

of prices satisfying (3.3)-(3.5), and (3.4) holds with equality. In this

case the project continues until date n. On the other hand, if (») does not

hold, every equilibrium involves immediate liquidation at date i.

Lemma 1 is quite intuitive. The formula for C's payoff corresponds to

that found in much of the outside option literature: C receives 50% of the

surplus from bargaining unless this falls below C's outside option, in which

case C receives the latter. In contrast to the outside option literature,

however, bargaining does not guarantee a first-best efficient outcome, since

D is liquidity-constrained. In fact, Lemma 1 tells us that the first-best is

achieved if and only if (») holds. Note also that C s payoff U is

14



independent of D*s wealth w; this is a feature of our particular bargaining

model, but it would not be true of every model of efficient bargaining, given

that D is wealth-constrained.

Condition («) says that there is a contract (p , ...,p ) which is such

that (a) C receives at least as much as the project's date i liquidation value

((3.4)); (b) D never runs out of money ((3.5)); and (c) D has no incentive to

repudiate in the future ((3.3)). To understand (3.3), note that if p s r ,

(3.3) says that D has no incentive to repudiate at the beginning of period

k+1 (doing so would make C's utility uj, as opposed to p . +...+ p ); while,

if p > r. , (3.3) says that D has no incentive to repudiate at the end of
Jc

period k (doing so would make C's utility UU + r.as opposed to p +...+ p ).

Lemma 1 is proved in the Appendix. It is worth indicating the main

steps of the proof, however. First, the formula for U_ is established by

induction. Next, it is shown that in equilibrium the parties can restrict

attention to contracts that are repudiation-proof , i.e. that are such that

the debtor never wishes to repudiate along the equilibrium path. The reason

is that, if repudiation occurs, the parties can always, given the assumption

of perfect certainty, anticipate what will happen next (renegotiation or

liquidation) and include this as part of the initial contract.

The third step is to show that D and C will never sign a contract that

leads to early termination of the project, i.e. prior to date n. The reason

is straightforward. Either the project is losing money when it is terminated

(in the sense that r < t) — in which case, by assumption (A. 2), it has been

losing money all along and the parties should have terminated it earlier, at

date i. Or it is making money (r £ £), and, again by (A. 2), it will continue

to do so until date n. But In this case, D can bribe C not to liquidate on a

period-by-period basis. (Recall our earlier observation that D can in effect

commit his human capital for one period in advance.

)

Finally, then, given these observations, D and C's decision at date i

is a simple one: liquidate immediately unless there exists a

repudiation-proof contract which involves continuation of the project until

date n and which provides the creditor with at least U_. But this is

precisely the content of condition (»).

15



We illustrate Lemma 1 with an example, in which n = i+2 — i.e., there

are two remaining periods.

Example 1

r
i+l

=? r
i +2

=26

<i + l=
8 W8

Date i Date i+1 Date i+2=n

The example deliberately leaves r. . unspecified. Suppose r exceeds

6 — say it equals 8. In this case, the parties will agree to continue the

project whatever D' s wealth w. To see why, notice that, by (3.1), C's payoff

is 17 = 5( r
i+1

+r
1+? ) > *5 +1

+^
i+? - Then D can simply offer C half the cash

flow in each subsequent period: the contract p' = 0, p' . = 4, p'
+?

= 13

satisfies (*).

Now suppose r, . is less than 6. C's payoff is 16 = I,
+ . +t -

?
>

r(r. „+r. „). Provided that r, , is at least 3, D can offer C half the
2 l+l i+2 i+1

cash flow in the last period, and L. minus this amount in the previous

period: the contract p' = 0, p' = 3, p' „= 13 satisfies (*). (This isr *i *i+l .i+2
feasible since, given that r £ 3, D has no incentive to repudiate at the

end of period i+1.) Again, the project is continued whatever D' s wealth w.

However, if r. . is lower than 3 — say equal to 2 — then the parties

cannot necessarily agree to continue the project. The most that D can

credibly offer C in the last period is p' = 13 (if p' > 13, D will

repudiate at the beginning of period i+2). This means that D must offer C at

least 3 in the previous period to persuade her not to liquidate at date i.

But since r.
+

. = 2, this is possible only if w fc 1. In particular, if w £ 1,

it is easy to see that the contract p' = 1, p' = 2, p' = 13 satisfies (*)

and so the parties agree to continue the project. On the other hand, if w <

1, (*) is not satisfied and so liquidation occurs at date 1.
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4. Is the project undertaken?

Having analyzed the renegotiation game, we now consider whether the

project will be undertaken at all. Consider the negotiation between D and C

prior to date 0. For simplicity, suppose that D has all the bargaining power

in this initial negotiation, i.e. C's net (present value of) profit is zero

(this is reasonable if there are many creditors who can potentially finance

the project prior to date 0).

Much the same logic applies to the date negotiation as applied to the

date i renegotiation, and we can therefore use Lemma 1 directly. In

particular, for the project to go ahead there must exist a debt contract p ,

p , ..., p which is repudiation-proof at each date i fe 1; that is, as in

(3.3),

(4.1) Max (p.-r., 0) + p, A . + ... + p * U* for all 1 s i < n-1.IX 1 + 1 XI u

In addition, D must not have an incentive to repudiate at date the

instant after the sunk cost K-L has been incurred but before the period 1

cash flows have been realized:

(4.2) Pi
+ P2

+ ••• + Pn * U
C-

U

C's zero-profit condition means that D intially borrows p +...+p . If

this loan is to be enough to buy the assets at date 0, then

(4.3) w
Q

+ Pj + ... + pn
£ K.

And if the project is to go ahead, it will never be terminated; hence for D

subsequently not to run out of cash,

i

(4.4) w_ + p, + ... + p - K + E (r. - p.) £ for all 1 s 1 s n.
*l *n ^ j

K
j

This is a new condition since repudiation directly after renegotiation at
the beginning of period i+1 was not an issue in Lemma 1.

17



In sum, the project will be undertaken if and only if there exist

p , ...,p satisfying (4.1) - (4.4). These sets of inequalities can be

written more compactly. Inequalities (4.1) and (4.2) can be combined to give

(4.5) p
4

+ ... + pn
* Min (uj"\ uj + i^) for all 1 s 1 s n.

12

And inequalities (4.3) and (4.4) can be combined to give

(4.6) p
i

+ ... + pn
£ K - w

Q
- R

Q
+ R for ill 1 s H n.

13

Hence we have proved:

Proposition 1 The project will be undertaken if and only if there exist

p , ...,p satisfying (4.5) and (4.6) — that is, if and only if

(4.7) K £ w
Q

+ R
Q

- R + Min (U* \ U* + r^ for all 1 £ i £ n

where U* = Max (L. , ^R. )

12
(4.1) represents pairs of inequalities, which, together with (4.2), have

been combined in different pairings to give (4.5). Our choice of IT, is

unimportant (provided it is nonnegative): notice that IT, = Max [I ,r /2)
n n

n c n .

13
Assumption (A.l) ensures that (4.4) is automatically satisfied when i = n.
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Corollary 1 The project is always undertaken if K = Ln and r. £ I for all

1 a= i as n — regardless of the size of D' s initial wealth w .

Proof Given r, £ I. , it follows that U„ a= U„ + r. for all 1 as i a; n.
i l C C i

Hence for each i, the RHS of (4.7) is no less than

R
o " R

i-i
+ Max ((Li-r K-i }

£ R
o " R

i-i
+ L

i-1

— which in turn is no less than Ln
= K (since r. £ I. for 1 s j < i-1).

Hence (4.7) is satisfied for all 1 as i as n, and by Proposition 1 the project

is undertaken.

Q.E.D.

Corollary 1 tells us that inefficiency arises only if either (a) there

is an intial sunk cost of investment (K > Ln ), and/or (b) the project's

initial returns are smaller than the returns from the assets' alternative use

(in particular, r.. < I.). The intuition behind Corollary 1 is that D can

always commit himself to work for one period at a wage less than or equal to

that period's return r — and, given that r always exceeds I, this means that

D can in effect bribe C each period not to liquidate.
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Equilibrium Repayment Paths

From now on we shall assume that the condition for the project to go

ahead, (4.7), is satisfied. The question arises: what kinds of debt contract

work? We will concentrate attention on the set of possible equilibrium

repayment paths p , ...,p rather than on the debt contracts themselves. Or

to put it another way, we will Ignore debt contracts that are renegotiated in

equilibrium, and concentrate on those which are repudiation-proof (i.e.

(4.5) is satisfied) and feasible (i.e. (4.6) is satisfied).

It turns out that there is a continuum of repayment paths p , ...p

which satisfy (4.5) and (4.6).

The slowest repayment path, p p , is the one in which at each date

the total outstanding debt is maximized. It is found by setting p +...+p

equal to its upper bound, the RHS of (4.5), to obtain:

5„ <r-

(51) Vz = Mi" K3
' "S"

2
* Vz] - Pn - Vr

p, = Mi„ [U°. Uj * r
J

-

j2
5j.

In this contract, the total outstanding debt at each date i is set equal to

the most that D can credibly promise to repay — viz., Min (U
~

, U + r ).

In particular, this allows D initially to borrow the largest amount p +...+p
1

In
that he can: Min (U

c>
U
c

+ r ). Notice that, for the project to be

undertaken, this initial loan must be enough both to cover D* s shortfall K-w

(i.e. satisfy (4.3)) and to ensure that he never runs out of cash at any

subsequent date (i.e. satisfy (4.4)).
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In other words, one way to understand condition (4.7) in Proposition 1

is to see that it is the condition guaranteeing that along the slowest

repayment path D is always solvent.

It is straightforward to write out p. p in terms of r , ...,r and

I I , but the formulae are intricate and rather unlnformative. If,
1 n
however, we let the length of each period tend to zero and the number of

periods tend to infinity, then the form of the slowest repayment path becomes

quite simple; see Section 6.

The fastest repayment path, £.,...,£, is the one in which at each date

the total outstanding debt is minimized. It is found by setting p.+...+p

equal to its lower bound, the RHS of (4.6), to obtain:

g. = r, for all 1 £ i < n,

(5.2)

P = K -w.. - (r+ . . . + r . )cn 1 n-1

Here, D initially borrows the smallest amount that he needs to finance the

project, viz. K-w . Thereafter, D repays at the maximum feasible rate for

the first n-1 dates: p = r, . Notice that at the last date, D's repayment

p = K - w_ - (r +...+r _ 1
) may be negative, i.e. D may receive a payment

from C at date n. In other words, D uses C like a savings bank — depositing

all project cash flows with C from date 1 to date n-1, and then receiving all

accumulated interest at the end.

The fastest repayment path provides another way of understanding

condition (4.7) in Proposition 1. At each date i, D has the smallest amount

of total outstanding debt commensurate with his solvency constraint — viz.

,

K-w - (r.+. . ,+r, . ). This must not exceed what he can credibly
i-1 i

promise to repay: Min (U , U + r.). In other words, condition (4.7)

guarantees that along the fastest repayment path D never wishes to repudiate.

All other repayment paths lie between the fastest and the slowest:
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Proposition 2 Assume that (4.7) holds. Then the set of all equilibrium

repayment paths p , ...,p satisfies

n n n

(5.3) Z p s Ep * Ep. for all 1 s 1 * n,

j=i J j=i J
J=i J

where £.•-•••£ a™* p p are defined in (5.1) and (5.2) respectively.

We now present two examples to illustrate Propositions 1 and 2.

Example 2

Suppose n = 3; and r = 10, 1=1 for all i, for some constant I < 10:

rj-10 r
2
=10 r

3
=10

ifi i
z
=t *

3
««

date date 1 date 2 date 3

Also assume that K = Ln
= 3£. Corollary 1 tells us that the project will be

undertaken, regardless of D' s initial wealth w .

We consider two possible values for I: I - 4 and 1 = 6.

First, suppose I = 4. Then U = 15, U = 10, and U? = 5. From (5.1),

the slowest repayment path is p
1
= p„ = p\, = 5. And from (5.2), the fastest

repayment path is p. = 10, p?
= 10, and p^ = -w

Q
-8 (which is less than zero).

The intuition here is clear. Any slower path than (5,5,5) would

involve p > 5 or p. + p. > 10 or p + p + p > 15. But none of these is
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feasible: D would repudiate at the beginning of periods 3, 2 or 1,

respectively. On the other hand, there is no faster path than (d , p_, P^):

D cannot borrow less than K - w and still finance the project, and the

project cash flows do not allow D to pay back more than 10 at date 1 or more

than 20 at dates 1 and 2 combined.

1 2.
Now suppose 1 = 6. Then U„ = 18, U_ = 12, and UZ = 6. From (5.1), the

slowest repayment path is p
1

= p„ = p„ = 6. And from (5.2), the fastest

repayment path is p = 10, p« = 10, and p„ = -w -2.

Note that the slowest repayment path when I = 6 is "slower" than when

I = 4; i.e. D borrows more initially, and owes more at each date. The reason

is that, given a higher L at each date, it is credible for D to make

payments later. In particular, when 1 = 6, p„ = 6 does not lead to

repudiation at the beginning of period 3 since C is guaranteed a payment of 6

from liquidation at that date. For the same reason, D has no incentive to

repudiate at the beginning of period 2 given p + p = 12, or at the

beginning of period 1 given p. + p„ + p„= 18.

Example 3

Suppose n = 4 and the returns are as follows:

rr° r
2
=1 r

3
=1 ° r

4
=26

V8 V8 V8 V8

date date 1 date 2 date 3 date 4

Here U° = 32, uj = 24, IT£ = 18, and uj? = 13. From (5.1), the slowest

repayment path Is Pj =5, p2
= 1, p3

= 5, and p4
= 13. And from (5.2), the

fastest repayment path is p. =0,

may or may not be less than zero)

fastest repayment path is p
{
= °» E2

= 1 » E3
= 10 > and E4

= K~wn-11 (which
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To understand why (5, 1, 5, 13) is the slowest path, note that D cannot

credibly offer more than rr. = 13 at date 4 since this would give him an

incentive to repudiate at the beginning of period 4. For similar reasons, D

cannot credibly offer more than xr„ = 5 at date 3. At the end of period 2,

it is credible for D to pay 1 since this makes him indifferent between

repudiating and not (if he repudiates, he pays r + UZ = 1 + 18 = 19; if he

does not repudiate, he pays p?
+ p„ + p. = 19) — but he would repudiate

given any payment above 1. Finally, at the end of period 1, it is credible

for D to pay p = 5, since p.+p_+p^

going to have to pay Up = 24 anyway.

for D to pay p = 5, since p.+p^+p^+p = 24, whereas if he repudiates he is

Knowing that the slowest path is (5, 1, 5, 13), we can easily find the

condition for the project to go ahead. Although D can borrow up to 5+1+5+13 =

24, he cannot use all of this to finance the project initially, because he

needs to retain a "cash cushion" of 5 in order to cover the date 1 debt

repayment p (given that r. =0). In other words, the maximum amount, M,

that that D can borrow from C for the purpose of buying assets is M = 19. We

shall call M the debt capacity of the project; the project can go ahead only

if K s wn+^ - *n this example, it is straightforward to confirm that

condition (4.7) from Proposition 1 does indeed reduce to K £ w +19.

One can also arrive at the condition for the project to go ahead by

checking that the fastest path, (0, 1, 10, K-w -11), is repudiation-proof.

In this example, the binding constraint concerns repudiation at the beginning

of period 3. This constraint is satisfied as long as £„ + p. £ lit — i.e.,

provided K - w - 1 £ 18, which is just (4.7).

Resolving the indeterminacy of the repayment path: two extensions

The indeterminacy in the repayment paths exhibited in Proposition 2

disappears if we vary the basic model a little. We close this section with

two simple extensions, (El) and (E2). The first extension selects out the

slowest repayment path, p , ...,p , as the unique optimum; and the second
14

extension selects the fastest, p p .—1 —

n

14
Another way to reduce the indeterminacy is by introducing an optimal
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Extension El: Reinvestment Opportunities for the Debtor

Suppose D can reinvest cash flows from the project and receive a

positive rate of return. To make matters very simple, assume that a dollar

invested at the end of period i yields 1+fi > 1 dollars at the end of period

i+1 (1 = 0, 1, . . . ,n-l). In contrast, any cash flows reinvested by the

creditor yield the going rate of interest of zero.

With this reinvestment opportunity for D, it is straightforward to show

that (4.5) is still a necessary condition for a contract to be

repudiation-proof. Moreover, it is easy to show that the formula for IT, in
17

(3.1) is unchanged by the presence of a reinvestment opportunity. However,

(4.6) — which combined (4.3) and (4.4) — does change, since D' s private

savings now earn a positive rate of return. In particular, although (4.3)

does not change, condition (4.4) becomes:

consumption decision by D during the lifetime of the project. We will study
this in a companion paper. (Also, if the returns r and/or I were stochastic,
then we conjecture that this would typically lead to a unique repayment path.
On this, see Hart and Moore (1989).)

We continue to assume that reinvested cash is part of D' s private savings,
which cannot be seized by C in the event of repudiation.

To see this, note first that the argument that D never repudiates at the end

of period i if r. £ p. , and never repudiates at the beginning of period i+1

if r. < p. , remains unchanged. Second, suppose that (4.5) is violated for at

least one i. Choose the largest such i. Then D would be better off

repudiating either at the beginning of period i (if p +...+p > U ~
) or at

X 11 w
the end of period i (if p.+...+p > Up + r ).

17
This is a simple matter of checking that each step of the induction argument

in the proof of Lemma 1 still applies.
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w
i+1

w^

n

j=l J
- K (1+H)' I (r - p Ml+|0

j=l J J

i-j

or

w
i+1

(1+^)

w„

i . 1 . n i r

K + Ii- fP Z p. E *-j
J-l* (l+fi)

J; J j=i+l J j=l (1+M>
J

(4.4') for all 1 £ i s n.

— where, recall, w is D's cash holding at the start of period i+1

Since D has all the bargaining power in the negotiation prior to date

0, D will choose a solution p p to (4.3), (4.4') and (4.5) which

maximizes his objective function w (his final wealth after date n).

Notice that the weights on p, in (4.4') are increasing in j. Therefore by

standard arguments, any first-order stochastic dominance shift in p , ...,p
n

(i.e., any shift that increases £ p for all i) will increase w for all i.

J-l
J

Hence it follows from (5.3) that D's wealth at date n will be maximized if he

chooses p , n

In other words, when D has a period by period reinvestment opportunity,

there is a uniquely optimal path of debt repayments and it is given by the

slowest path in Proposition 2. This is very intuitive — the more slowly D

repays C the greater D's opportunity to make profitable reinvestments.

Note that, although the magnitude of n has no effect on the optimal

repayment path p , , p , it does affect which projects will be undertaken

(the higher n is, the more likely the project will be undertaken since the

constraint (4.4') is relaxed). As fi -> 0, however, the conditions for the

project to be undertaken become the same as in Proposition 1.
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Extension E2: Reinvestment Opportunities for the Creditor

Suppose now, in contrast to Extension (El), that C, rather than D, has

a profitable reinvestment opportunity. The easiest way to formalize this is

to suppose that C continues to earn a zero rate of interest on wealth, while

D loses money, i.e. some fraction ? of D's savings disappear every period.

We assume, however, that D always has the option to earn the same return as C

by investing his savings with C.

This modification in the model means that, before date n, it is never

efficient for D to hold on to any of his cash. So in equilibrium , assuming

that the project goes ahead, D always borrows the smallest amount possible at

date 0, and pays C the full project returns until date n-1 — whatever debt

contract has been signed. The only possible variation across equilibrium

repayment paths could be in the amount that C repays D at date n. But we

know that C must break even overall, and so there can only be one equilibrium

repayment path in which the project goes ahead — viz. , the fastest path

p. p (see (5.2)).

Thus, when C has a profitable reinvestment opportunity, there is a

uniquely optimal flow of net payments from D to C, and it is given by the

fastest repayment path in Proposition 2. Since none of D' s savings disappear

in equilibrium, the introduction of £ has no effect on which projects will be

undertaken; these are still given by Proposition 1.

Remark

Let us return to our basic model in which D and C have the same

discount rate. As we have noted, there are many different contracts which

support a particular repayment path p,.,..,p . As well as the long-term

contract which specifies the repayments in question and which never has to be

renegotiated, there are short-term contracts which trigger repudiation and

which are renegotiated along the equilibrium path — for example, the
n

contract which specifies that D owes C £ p. at date 1 will support the
i=l
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repayment path p , . . . ,p .

Two points are worth noting. First, in the case of a short-term

contract, it may be important that the debtor has the option to refinance the

loan with an outside creditor. (This possibility is not important in the

case of a repudiation-proof long-term contract. ) For instance, take Example

3, with K-w = 19 (i.e. the project can just go ahead). The fastest

repayment path is (0,1,10,8), which allows D to borrow 19 initially.

Consider now the short-term debt contract which specifies that, having

borrowed 19, D must pay the entire amount back at date 1. In the absence of

outside financing, D is forced to repudiate at the end of period 1. Notice

that C's return from liquidation at this point, 24 (= U ), is strictly

greater than the most D can credibly promise to repay later, p„+p +p. = 19.

Hence, C will liquidate. However, if D has access to a competitive captial

market, then he can raise 19 at the end of period 1 by (credibly) promising a

new creditor the repayment path (p„,p„,p ) = (1,5,13), and thereby avoid
18

repudiation.

Second, although there are many contracts which support a particular

repayment path, not every contract will do. Again, take Example 3, with

K-w. =19. On the one hand, a contract which specifies too high a repayment

early on — e.g. D borrows 19 initially, and promises to repay p. > 19 at

date 1 — will lead to premature liquidation regardless of whether outside

financing is possible. On the other hand, a contract which specifies

repayments too late — e.g. the contract (p ,p„,p„,p. ) = (0,0,0,19) — will

prevent C from breaking even.

18
If "partial liquidation" were admitted (see footnote 4), then the debt

contract could specify that, in the event of liquidation at date 1, C must
pay D an amount 5 from the liquidation receipts. In these circumstances, the
short-term contract given in the text would work, even without assuming that
D has access to a perfect capital market.
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6. The Continuous Time Model

We now consider a continuous time version of the model in Sections 2-4.

We continue to assume that the project has a finite horizon, but now suppose

that the project return r(t) is a piecewise continuous function defined on

[0,T]. On the other hand, liquidation yields a flow of returns lit), where

lit) is a piecewise continuous function on [0,T]. As before, we take the

interest rate to be zero, so that the present value at date t of continuing

the project to the end is

R(t) =
j

r(x) dx;

and the present value of liquidating the project at date t is

T

L(t) s
| lix) dr.

t

We continue to denote the initial cost of the project by K and D' s initial

wealth by w .

We make the natural generalizations of (A.1)-(A.3):

(A.l'J R(0) > K 2: L(0).

(A. 2') r(t) £ lit) => r(x) > £(x) for all x > t.

(A. 3') | r(t) £ lit) => | r(x) > Hz) for all x > t.

Two particular times will turn out to be important in what follows:

Definition : t = t is the time at which ^R(t) = L(t)
1— unless either ^RCt) always exceeds L(t), in which case t = 0;

1
or L(t) always exceeds ^R(t), in which case t = T.

(Note that assumption (A. 3') ensures th -t t is uniquely defined.)
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Definition: t = t is the earliest time at which r(t) £ lit).

(More precisely, t = inf { x |r(x) £ £(x) }.)

(Assumptions (A. 1') and (A. 2') ensure that t_ < T; and assumption (A. 2')

ensures that t is uniquely defined.

)

We now introduce two examples, to which we will return later:

Example 4

Suppose T = 16; K = 80; £(t) = 5; and r(t) = t.

flows

f*lt

Figure 3: Example 4

time

Note that this example satisfies Assumptions (A. 1' )-(A.3' ); In particular,

16 16
R(0) = J" xdx = 128 exceeds L(0) = S 5dx = 80 = K.
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In this example t = 4 -

And t = 5.

16 16
- since £R(4) = ^ J" xdx = 60, and L(4) = / 5dx = 60.

4 4

Example 5

Suppose T = 80; K = 480; £(t) = 6; and r(t) =

for £ t < 20

10 for 20 s t < 60

7 for 60 s t £ 80.

flows

io'

\

c(0

lib)

1

i

to 6o
Figure 4: Example 5

T*%o
» time

Note that this example satisfies Assumptions (A. 1' )-(A.3' ) ; In particular,

R(0) = 40x10 + 20x7 = 540 exceeds L(0) = 80x6 = 480 = K.

In this example t = 80 — since L(t) always exceeds =R(t)

And t = 20.
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Examples 4 and 5 show that t does not necessarily come before t or vice

versa. (In Example 4, t < t; in Example 5, t < t.

)

Given the continuous model, consider the following discrete

approximation. Divide the interval [0,T] into n subintervals:

M]- (!• 4]
and K 1^ t

]

Define r , t. as the total project and liquidation return in the i

sub-interval

:

il il
n n

r =
|

r(x) dx and I =
j £(x) dr.

(1-1)- (1-1)-
n n

For each t > 0, define i"(t) to be the i such that t e l(i-l)-, i- I . (The

(t) denotes that we are workir

discrete approximation.

)

small superscript n on i"(t) denotes that we are working with the n

We will apply the analysis of Sections 2-5 to this discrete

approximation, and then take limits as n -> co.

It is convenient to work with the total outstanding debt owed by D at any

time, rather than current debt payments. Given a debt contract (p p )

in the discrete case, for each < t s T define the outstanding debt

P
n
(t) h p

4
+ ... + pn

where i = i
n
(t)

to be the total due to be repaid by D on or after time t.
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Proposition 3

(1) Consider the n discrete approximation to the continuous case. For

sufficiently large n, a necessary (resp. sufficient) condition for the

project to be undertaken is that K s w + M (resp. K < wn + M) — where.

putting t* = min (t,t).

(6.1) M = Maxw
T t* T

r(x)dx , I" r(x)dx + f £(x)dx

t*

= the debt capacity of the project.

(2a) Consider the slowest repayment path in the n discrete approximation

As n -> co, the initial amount that D borrows from C converges to

Max f ^R(O), L(0)
|

And at any subsequent time < t £ T, the outstanding debt that D owes C

converges to

T

£(x)dx if t < t

(6.2) P(t) =

(J

II r(x)dx if t i t.

That is, in the limit the rate, p(t) - ^P(t). at which D repays C is given

by p(t) = lit) if < t < t, and by p(t) = ^r(t) If t s t s T.
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(2b) Consider the fastest repayment path in the n discrete approximation.

As n -) o, the initial amount that D borrows from C converges to K-w . And at

any subsequent time < t £ T, the outstanding debt that D owes C converges

to

(6.3) P(t) = K - w
Q

- f r(x)dx.

That is, in the limit the rate, p(t), at which D repays C is given by p(t) =

r(t), for < t < T. And at t = T, C pays D the amount w +R(0)-K — which is

positive, by Assumption (A. 1').

Proposition 3 is proved in the Appendix. The interpretation of it is

as follows. For simplicity, consider only the case t > 0; i.e., L(0) > ^R(O).

(The interpretation of the other case, t = 0, is similar, but simpler. ) In

the slowest repayment path contract, D borrows L(0) initially and pays at the

1
rate of lit) for t < t and zr(t) for t > t. In other words, D compensates C

for the depreciation of her collateral before date t and afterwards gives C

half the project cash flows. Note that D has no incentive to repudiate at

any date since D' s future debt obligations (given by L(t) for t < t, and by

zR(t) for t £ t) exactly equal U (t) = max L(t), rR(t) , the amount that C

would obtain in liquidation or renegotiation. (This argument shows that a

higher debt burden would not be sustainable; D would have an incentive to

repudiate — that is, the above really is the slowest path.

)

Note that initially D* s cash flows fall short of current debt

repayments in the slowest path. In fact, this happens over the range where D

pays lit) and r(t) < Ut) (i.e. t £ t and t s t); that is, in the interval

(0,t*), where t* = min (t, t). How does D cover these repayments? The

answer is that D needs to put aside part of the initial sum borrowed L(0) in

a savings account, out of which he makes interest payments. The size of the

necessary savings account is
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t
•

I

U{t) - r(x)ldx,

implying that the amount left of L(0) which can be used to buy project assets

— the debt capacity — Is

t* t* T

L(0) -
|

(ut) - r(x)]dx = f r(x) dx + F *(x) dx.

t*

But this is precisely the formula for M in Proposition 3.

The intuition for the fastest path is as in Section 5. D borrows the

smallest amount that he needs to finance the project, deposits all project

cash flows with C before date T and then receives all accumulated interest

from C at date T (net of the initial amount borrowed).

We now return to Examples 4 and 5, and apply Proposition 3.

Example 4

16 4 16

68.t= 4; t = 5; t* = 4; and M = Max
|
| f xdx, f xdx + f 5dx 1 =

Hence by Proposition 3 part (1), w must equal at least K-M = 12 in

order for the project to be undertaken.

Part (2a) of the proposition tells us that the slowest repayment path

has D borrowing Max (=R(0), L(0)) = 80 = K initially, and then repaying at a
^

1
rate of lit) = 5 before time 4, and at a rate of =r(t) = t/2 thereafter.

Z
4

Notice that D has an initial cash cushion of w_, of which S (5-x)dx = 12 is

used to sustain the repayments up until time 4.
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According to Proposition 3 part (2b), the fastest repayment path has D

borrowing the minimum amount of 80-w initially, and then repaying at the

maximum feasible rate of r(t) = t until time T = 16. At the end, C pays D an

amount w +R(0)-K = W-+48 — which comprises D's equity share (i.e. his initial

contribution w ) plus the profit from the project (i.e. R(0)-K = 48): C breaks

even on her investment.

Example 5

60 80 80

t = 80; t = 20; t* - 20; and M = Max [^ f 10dr + i f 7dx, f 6dT:] = 360.

20 60 20

Hence by Proposition 3 part (1), w must equal at least K-M = 120 in

order for the project to be undertaken.

Part (2a) of the proposition tells us that the slowest repayment path

has D borrowing Max (Jt(0), L(0)) = 480 = K initially, and then repaying at a

rate of £ = 6 until the end. Notice that D has an initial cash cushion of
20

w , of which S 6dx = 120 is used to sustain the repayments up until time 6.

According to Proposition 3 part (2b), the fastest repayment path has D

borrowing the minimum amount of 480-w initially, and then repaying at the

maximum feasible rates of r(t) = 10 for 20 £ t < 60, followed by r(t) = 7

until time T = 80. At the end, C pays D an amount w +R(0)-K = w +60 — which

comprises D's equity share (i.e. his initial contribution w ) plus the profit

from the project (i.e. R(0)-K = 60): C breaks even on her investment.
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7 . Comparative Statics Properties

We now investigate some comparative statics properties. For

simplicity, we shall work with the continuous time version of the model given

in the last section. We want to know how shifts in the model's exogenous

parameters affect:

(1) the condition for the project to be undertaken

(that is, the debt capacity M in (6.1));

and (2) the form of the repayment paths.

Concerning (2), since there is a continuum of equilibrium repayment

paths, clear-cut comparative statics results for any given path are obviously

ruled out. Instead, we look for comparative statics results for the extreme

paths — viz., the slowest, P(t), from (6.2); and the fastest, P(t), from

(6.3). The behaviour of these particular paths is of independent interest,

since, as we saw at the end of Section 5, P(t) and P(t) respectively turn out

to be uniquely optimal in two reasonable extensions of the basic model.

We investigate four comparative statics experiments: (A) the assets

become longer-lived (or more durable); (B) the project returns become more

front-loaded; (C) the assets become more replaceable; and (D) the debtor's

initial wealth rises. In the course of answering (C) and (D), we shall

develop the model a little further.

(A) The assets become more durable

We say that the assets become longer-lived, or more durable, if L(t)

rises for all £ t £ T. Note that this definition is consistent

1*>
Here, "rises" should be understood to mean weakly rises. This convention

applies throughout this section, whenever we use "rises", "falls", "faster",
"slower", "more likely", "less likely".
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with L(0) staying the same — i.e., the initial liquidation value of the

assets may not change as the assets become longer-lived. In the Appendix we

prove:

Proposition 4A In the continuous time model, if the assets become more

durable:

(1) The project is more likely to be undertaken: M rises.

(2a) The slowest repayment path becomes slower: P(t) rises for all Ost^T.

(2b) The fastest repayment path, P(t), is unaffected (assuming that the

initial cost of the project, K, is the same).

Intuitively, as the assets become more durable, they provide the

creditor with the security to wait longer before being repaid. This means

that the slowest repayment path can be slower (part 2a). And hence the

debtor need not set aside as much of his initial borrowing to finance early

debt repayments, leaving more to finance the initial investment (part 1).

The fastest repayment path is determined entirely by the return r(t), which

is being kept fixed (see Proposition 3, part 2b).

(B) The project returns become more front-loaded

We say that the project returns become more front-loaded if R(0)-R(t)

rises for all £ t s T. Note that this definition is consistent with R(0)

staying the same — i.e., although the returns arrive faster, in total they

may stay the same. In the Appendix we prove:
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Proposition 4B In the continuous time model, if the project returns become

more front-loaded:

(1) The project is more likely to be undertaken: M rises.

(2a) If R(0) does not change, the slowest repayment path becomes faster:

P(t) falls for all CKt^T. In this case, P(0) is unchanged at

Max L(0), =R(0) , and so the cumulative repayment P(0)-P(t) rises

for all CKUT.

(2b) The fastest repayment path becomes faster: P(t) falls for all CKtsT.

P(0) is unchanged at K-w , and so the cumulative repayment P(0)-P(t)

rises for all CKtsT.

As the project returns become more front-loaded, clearly the fastest

repayment path can be faster (part 2b). But equally, the creditor has less

to bargain over later on, and so the slowest repayment path also has to be

faster (part 2a). The fact that the project returns come in earlier implies

that the liquidation value of the assets is high at the very time when the

creditor most needs leverage: this additional security means that the project

is more likely to be undertaken (part 1).

(C) The assets become more replaceable

Consider next what happens if we drop the assumption that D cannot

replace the assets if C seizes them (i.e. D' s outside wage is zero). The

ideal way to represent this would be by giving D an outside option, i.e.

allowing D to terminate the relationship with C, and to start a relationship

with a new creditor and new assets. One would then consider how the optimal

repayment path varies with the attractiveness of this outside option. Such

an analysis is unfortunately outside the scope of the present paper: the

problem is that what D can achieve with a new creditor and new assets depends

on what D can achieve if he replaces the new creditor with an even newer
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creditor and even newer assets, and so on. Instead, therefore, we proceed in

a much more indirect (and rudimentary) fashion by considering the following

simple extension to the basic model:

Extension E3: Alternative divisions of surplus

In the basic model, our renegotiation process in the event of

repudiation implies that D and C split the surplus from bargaining 50:50

(unless C's payoff falls below her outside option). We can easily allow for

different divisions of surplus by assuming that if D* s initial offer is

turned down and C elects not to liquidate, D makes a second offer with

probability (1-6) and C with probability 6, where £ 6 £ 1. (2.1) then

becomes, in the continuous case, U (t) = Max (L(t), GR(t)). The rest of
20

the analysis extends in a natural way.

We claim that a decrease in 9, i.e. a reduction in C's bargaining

power, corresponds to an increase in asset replaceability. To see why,

consider the limiting case where the assets are completely replaceable: there

is a frictionless second-hand market for the project's physical capital. D

can always repudiate, replace the assets at their liquidation value L(t) and

take out a new loan (on competitive terms) to finance this. Under these

conditions, C's payoff can never exceed L(t) at any date, and so U (t) = L(t)

for all t; i.e. it is as if 8 = 0.

In short, we will treat the parameter G as a proxy for the degree of

asset replaceability. In the Appendix we prove:

20
In particular, Assumption (A. 3') becomes

6r(t) £ *(t) => 6r(x) > Ux) for all x > t,

which we assume holds for all G in the region of interest, t = t(G) is

defined as the earliest time at which GR(t) £ L(t). In Proposition 3(1), the

debt capacity M becomes Max JgR(0), R(0) - R(t*(G)) + L(t»(G))|, where t*(G) =

min (t(G), t). In Proposition 3(2a), P(t) becomes GR(t) if t £ t(G).
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Proposition 4C In Extension E3 of the continuous time model, if the assets

become more replaceable:

(1) The project is less likely to be undertaken: M falls.

(2a) The slowest repayment path becomes faster: P(t) falls for all O^tsT.

(2b) The fastest repayment path, P(t), is unaffected.

The intuition for Propostion 4C is much the same as that for

Proposition 4A. As the assets become more replaceable, they provide the

creditor with less security, which means that not only must the slowest

repayment path be faster (part 2a), but also the debtor must set aside more

of his initial borrowing to finance early debt repayments, leaving less to

finance the initial investment (part 1). Again, the fastest repayment path

is determined entirely by the return r(t), which is being kept fixed.

(D) The debtor's initial wealth rises

It follows immediately from Proposition 3 that as the debtor's initial

wealth w rises, the project is more likely to be undertaken, the slowest

repayment path, P(t), is unaffected, and the fastest repayment path becomes

faster in that P(t) falls for all s t s T.

It is of interest to introduce another simple extension of the basic

model:

\
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Extension E4: Choice of project scale

We have assumed up to now that the project is of fixed size. Suppose,

in contrast, that the scale of the project is a choice variable A, and that

the project exhibits constant returns to scale. Given Assumption (Al), the

optimal first-best scale is Infinite. In the second-best, the scale will be

pushed to the point A* (say) where the condition for the project to be

undertaken holds with equality — i.e., from part 1 of Proposition 3,

A*K = w
Q

+ A*^ 1
or A* = w

Q
/(K-M), provided K > M. If K s M, then A* will

be infinite and the first-best can be attained — for example, if r(t) £ lit)

for all s t £ T, and K = L(0) (c.f. Corollary 1). Let us assume for now

that K > M.

The slowest and fastest repayment paths are given by parts 2a and 2b of

Proposition 3, where P(t) and P(t) are now both multiples of w . In

particular, for the slowest path initial borrowing is given by

A» Max (Jr(0),L(0)| = —— Max (1r(0) ,L(0) 1 ;

V- )
(K_M ) V- )

and for the fastest path initial borrowing is given by A*K - w = w M/(K-M)

We have therefore shown:

Proposition 4D In Extension E4 of the continuous time model, if the debtor's

initial wealth increases, then all of the following rise proportionately: (1)

the equilibrium scale of the project; (2a) the slowest repayment path, and

the corresponding amount intially borrowed; and (2b) the fastest repayment

path, and the corresponding amount intially borrowed.

21
Note that, given the constant returns to scale assumption, the project's

debt capacity M and capital cost K are both multiplied by A*.
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Discussion

It would be very desirable to see how our theory fits the facts.

Unfortunately, we are not aware of any systematic empirical study relating,

say, the maturity structure of debt with the intertemporal profiles of

project returns and asset values; and we ourselves have not conducted such an

enquiry. Nonetheless, we have tried to discover what might be construed as
22

the "received wisdom" in the world of making and taking out loans. It turns

out that certain apparently quite robust rules of behaviour conform well with

the predictions of our theory.

A basic truth, which is worth rehearsing, is that banks are more likely

to lend if the project is a good one, and/or the collateralized assets are

valuable, and/or the entrepreneur can supply a large fraction of the initial
23

investment. These conclusions marry with the comparative statics results

from Section 7: see Propositions 4B(1), 4A(1) and 4D, which say that a

22
The evidence we looked at was of four kinds. First, in 1980, 1982, 1984 and

1987, the National Federation of Independent Business (NFIB) gathered data on
the small business/commercial bank relationship from surveys of random
samples of their 500,000 members. The results are contained in their 1985
and 1988 reports, Credit. Banks and Small Businesses: 1980-1984 and Small
Businesses and Banks : The United States . See also Leeth and Scott (1989).

Second, there are guides on how to borrow: see, for example, Smollen,
Rollinson, and Rubel, Sourceguide for Borrowing Capital (1977). Also, INC.

Magazine has run a regular feature called "Anatomy of a Start-Up", which
describes, among other details, how the start-up of a particular new business
was financed. Third, there are publications offering advice on how to

lend. The -Journal of Commercial Bank Lending regularly features "Lending
to ..." articles giving advice to commercial lenders about how to lend to a
particular industry. Among other things,- the articles explain the financing
needs of the industry, suggest sources of collateral, and provide statistics
reflecting the historical ability of the industry to repay its loans (e.g.,
ratios of cash flow to current maturities of long-term debt). Fourth, we
looked at examples of firms which had defaulted and renegotiated their loans:
see, for example, "How to Renegotiate Your Loan" INC. (November 1988); and
"Heartbreak Hill" INC. (April 1988).

23
See JCBL publications, "Lending to .."; the 1985 NFIB report, Tables 1 and 2

(pp. 4-5), Tables 12 and 13 (pp. 24-29); the 1988 NFIB report, Table 3.7 (p.

23); and Smollen, Rollinson and Rubel* s 1977 Sourceguide for Borrowing , p. 21.
Also, for more formal empirical work on the determinants of debt levels, see
Long and Malitz (1985) and Titman and Vessels (1988).
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project is more likely to be undertaken if, respectively, the total returns

R(0) are high, the (initial resale) value L(0) of the assets is high, or the

entrepreneur's wealth w is high.

More interesting, and equally striking, Is the evidence relating the
24

maturity of debt with the purpose of the loan and the nature of the assets.

Long-term loans are usually used for fixed-asset aquisition — of property,

leasehold improvements, machinery, and the like. (Debt with the longest term

is typically on property: real-estate mortgages. ) Short-term loans, on the

other hand, tend to be used for working capital purposes — e.g., for payroll

needs, for financing inventory, for smoothing seasonal imbalances — and the

collateral is usually made up of such things as the inventories or the

accounts receivable.

All this squares well with our model. Proposition 4A(2) predicts that

if assets are longer-lived (keeping the initial resale value L(0) fixed),

then this will not only allow more projects to be undertaken, but will also

support longer-term debt. Conversely, if the assets are short-lived, as in

the case of inventories (which may not retain their value, or which can

relatively easily be disposed of), or accounts receivable, then the debt is

likely to be short-term.

The evidence concerning short-term financing also supports Proposition

4B(2), which says that the faster the returns arrive (keeping the total

return R(0) fixed), the shorter will be the maturity of the debt. A firm

which is raising money for payroll needs, for purchasing inventory, or for

smoothing seasonal imbalances, is typically the kind of firm whose returns

will be coming in soon. Our Proposition 4B(2) suggests that, ceteris

paribus, it is just this kind of firm which will be taking out short-term

loans.

There is evidence that firms borrow more than they need strictly need to

24
See the 1985 NFIB report, Tables 6 and 7 (pp. 16-20), Table 10 (pp. 22-23),

and Tables 12 and 13 (pp. 24-29). See also the 1988 NFIB report, Table 3.11
(p. 30).
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cover the cost of their investment projects, in order to provide themselves
25

with a "financial cushion". This fits in with our prediction in Propostion

3(2a) about the nature of the slowest equilibrium repayment path — indeed,

it is true of most paths.

Another conventional wisdom is that general, non-specific assets are

good for debt; and that specific or intangible assets are good for equity

financing. (Although our model does not have room for equity per se , equity

can be interpreted as long term debt, in the sense that minority equity

holders have weak control rights. ) One way of capturing the intangibility of
27

assets is to suppose that intangible assets are hard to replace. Under this

interpretation, Propositions 4C(1) and 4C(2) do indeed imply that, as the

degree of intangibility rises, more projects will be undertaken, more debt
28

can be raised, and the debt will be longer-term.

As far as we know, ours is the first model to deliver these kinds of

predictions. We would particularly like to stress that we have provided an

explanation for the fundamental maxim: "assets should be matched with

liabilities". To be precise, in Proposition 3(2) we have shown that

liabilities (viz., the debt repayments p(t) in our model) should be matched

either with the return stream r(t) (in the case of the fastest repayment

path), or with the rate of depreciation tit) of the collateral (in the case

of the slowest repayment path).

25
See the 1988 NFIB report, Table 3.11, page 30.

See Titman and Vessels (1988) and Williamson (1988).

27
For example, a successful retail store whose location is the intangible

might find it hard to move.

28
However, this is not the only interpretation of intangibility or specificity.

An increase in asset specificity might correspond to a reduction in asset
durability, in the sense that if D's assets are very specific to his needs,
then these assets will have low resale value. Under this alternative
interpretation, Propositions 4A(1) and 4A(2) imply that, as the degree of
specificity rises, fewer projects will be undertaken, less debt can be
raised, and the debt will be shorter-term.
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There is one important caveat. We have concentrated on the equilibrium

repayment paths. As was pointed out in Sections 3-5, in a deterministic

model such as ours, we can without loss of generality focus on debt contracts

that are repudiation proof — that is, on contracts that are actually

executed in full. However, other contracts, which are renegotiated, could

have yielded the same intertemporal allocation. For example, the optimal

repayment paths that we have identified could have been implemented using a

sequence of (renegotiated) shorter-term debt contracts, provided that the

debtor always has access to the credit market.

The indeterminacy in optimal debt contracts disappears if there is

uncertainty about project returns or liquidation values. The uncertainty

case was the subject of our earlier paper, Hart and Moore (1989). The

analysis in that paper was intricate; we were unable to go beyond a

29
three-stage model, and there were relatively few clear-cut results. There

were some general findings from the uncertainty model, however, which we

believe would apply broadly to any intertemporal model of debt based on

control. We found that a key tension between short-term and long-term debt

is the following. On the one hand, short-term debt gives the creditor early

leverage over the project's return stream, which is good because it can keep

the total indebtedness low. On the other hand, short-term debt may give too

much control to the creditor in certain states, and lead to premature

liquidation — that is, the creditor may liquidate early because the debtor
30

cannot credibly promise to repay later. In this sense, long-term debt

contracts protect the debtor from the creditor. An important next step in

the research is to formulate a tractable, multi-period model of debt with

29
Indeed, it was because of our dlsatisfaction on this score that we

reformulated our model, and turned to the deterministic case. There are some
significant other differences between the two papers. In the earlier paper,
the debtor could steal the returns; it was only the threat of losing future
returns that forced him to disgorge money to the creditor. We now believe
that the focus on stealing was a little misplaced, and that it is the
inalienability of the debtor's human capital — the fact that he can always
quit — which is the root of the commitment problem.

30
Notice that this explains an important cost of default . Hitherto, the costs

of default were usually either seen as legal costs and the like, or were left
simply as an unexplained loss of value.
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uncertainty.

We end by mentioning two other directions for further research. First,

our analysis has focussed on a single creditor. If there were multiple

creditors, then presumably the process of renegotiating a delinquent debt

contract would be more difficult. This may bring benefits as well as costs.

For example, in the present model, had the creditor(s) been able to precommit

never to renegotiate and always to liquidate (possibly on account of there

being a large number of creditors, each of them individually unwilling to

forgive debt), then it would have been possible to attain first-best: D would
31

never repudiate for fear of losing his future share of the returns r(t).

This benefit of having multiple creditors would, in a world of uncertainty,

be offset by a cost: inefficient liquidation may occur when the debtor is

unable to meet his debt obligations, even though the future prospects may be

good.

Second, it is fruitful to introduce the possibility that the borrower

consumes during the lifetime of the project. One leading application is to

lifetime consumption. People may be unable to borrow enough from their

future income fully to smooth their lifetime consumption, because they cannot

necessarily commit to repay in later life. They can always save, and so the

distortion from first-best will be in the direction of too small a level of

consumption early on. Preliminary work suggests that the debt contracts that

support such (second-best) consumption paths will be types of mortgages,

where the maturity of the loan is typically fixed at somewhat less than the

length of the borrower's working life. This seems consonant with actual

practice, and will be the subject of a companion paper.

31
There are counterarguments, however. It is common for delinquent debtors to

buy the assets back at a liquidation sale. Alternatively, a new (large)
creditor could buy the assets at price L(t) and then go back to D in order to
generate (and share) the future return R(t). Either way, the debtor's
original disincentive to repudiate is removed.
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APPENDIX

In the Appendix, we gather together the proofs of Lemma 1, Proposition

3, and Propositions 4A-4C.

Proof of Lemma 1

We first establish (3.1) by an induction argument. Suppose that (3.1)

holds from date i+1 onwards, where i s n-2. We show that it holds at date i

too.

Consider the extensive form renegotiation game. C always has the

option to turn down D' s initial offer and decline to liquidate at date i.

Then with probability (1/2) C gets to make an offer. Her best offer is:

p, = 0, p = r , with control reverting to C at the beginning of period

i+2; i.e., she lets D have the assets for another period for the amount r ,

but then forces a default (c.f. footnote 4). D is indifferent between

accepting this offer and rejecting it, since, if he accepts, D is forced to

hand over all the period i cash flow r, plus the assets to C, whereas if D

rejects the offer the assets lie unused for a period (there is no period i+1

cash flow) and C again has possession of the assets at i+1. (It follows that

any offer more favourable to C, e.g., p > 0, p = r ...... would be

rejected by D. ) C's payoff from the above offer is r, + U , by the

induction hypothesis.

On the other hand, with probability (1/2) D makes a second offer. D*

s

best offer is p = 0, p. = 0, with control reverting to C at the beginning

of period i+2, i.e., D pays nothing for use of the assets during period i+1.
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C is indifferent between accepting and rejecting this offer, since, if she

rejects it, the assets lie unused for the period anyway (i.e. they generate

no return). C's payoff, given this offer, is U„

It follows that C's expected payoff from turning down D's initial offer

and declining to liquidate at date i is |(uj.
+ 1

+ r
i+1 ]

+ |u*
+1

= U*
+1

+ |r
i+r

Since C also has the option to liquidate at date i, it follows that D must

offer C at least Max U
+

+
2
r i+i> L

i
at tne beginning of period i+1 to get

her to accept his initial offer. Since D has no Incentive to offer more, it

follows that

(t) U*=Max (Uj
+1 +|r

i + 1
, 4).

To see that (t) implies (3.1), note that this is immediate if U =

z(r, +...+ r ). On the other hand, suppose U = L. . > 5(1" + ...+ r )

According to Assumption (A. 2) this can happen only if rr. < I, , which implies

that L + - r < L.
+

+ I. = L . But then (t) again implies (3.1).

The final, trivial step of the induction hypothesis is to check that

(3.1) holds at i = n-1.

We now complete the proof of Lemma 1. First, suppose that (•) holds.

Then p. p can be chosen to satisfy (3.3), (3.4), and (3.5) with

equality. Let D offer this contract at the beginning of the renegotiation

game. C will accept since (3.3) - (3.5) imply that the contract is feasible,

gives D no incentive to repudiate at a future date, and yields a payoff to C

of U (her reservation utility). Moreover, this contract yields a first-best

efficient outcome (the project continues until date n), and so there is no
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better contract offer that D can make.

Next, suppose that (•) does not hold. To show that immediate

liquidation is the only subgame perfect equilibrium outcome, suppose in

contrast that there is a subgame perfect equilibrium which involves

continuation of the project until date m, where i < m s n, at which time

liquidation occurs if m < n. Let the stream of payments from D to C along

the equilibrium path be p, , . . . ,p ., . . . ,p . (If, along the equilibrium path, D
l J m

does not repudiate at date J, p. is simply D' s payment to C at the end of

period j. On the other hand, if D repudiates at the beginning of period J+l,

having made a payment to C at the end of period j, and then, as a result of

renegotiation, makes a further payment to C at the beginning of period j+l,

p. is the sum of these two payments. Finally, if D repudiates at the end of

period j, thus losing r, to C, and D then makes a further payment to C at the

beginning of period j+l after renegotiation, p is r plus this further

payment. )

We start by supposing that m = n. It is immediate that the payment

stream p. p must yield C at least her reservation utility U (otherwise

she would not have agreed to the renegotiation); i.e. (3.4) is satisfied.

Also p.,...,p must satisfy D' s budget constraint at each date (otherwise D

couldn't have made the payments in equilibrium); i.e. (3.5) is satisfied. It

is also easy to see that the payment stream satisfies (3.3). Suppose (3.3)

is violated for some i+1 £ k s n-1, and p £ r. . Then D will never make the

payments p. .,..., p ; instead he will repudiate the contract at the beginning

of period k+1 and give C a total of in, instead. On the other hand, suppose

(3.3) is violated for some i+1 £ k s n-1, and p > r. . Then D will never

make the payments p , ...,p ; instead he will repudiate at the end of period k
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and give C a total of IT, instead.

We have thus found a payment steam satisfying (3.3) - (3.5), which

violates our assumption that (*) does not hold. It follows that, contrary to

our hypothesis, m = n is impossible (if (•) does not hold).

It remains to consider the case m < n. In this case, control of the

assets passes to C at the beginning of period m+1 and C chooses to liquidate.

Suppose first that r , £ I ,. Then, by Assumption (A.l), r. £ L for all
m+l m+l K K

m+1 £ k £ n. But, given this, it is easy to show that (•) is satisfied at

date m. (Simply choose p = l-V •P_i =Ur _U
C ,P -2 =UC

_U
C '

.... p „ = irU - irH , p =0. It is easy to check that Assumptions (A.l)
m+l L L m

and (A. 2) imply that p £ r for all m + 1 £ k £ n, and so (3.3) - (3.5) are

automatically satisfied by p p .) But this means that D and C will
m n

renegotiate rather than liquidate at date m, which contradicts the maintained

hypothesis that liquidation occurs at date m.

It follows that r , < £ ,. Hence, by Assumption (A.l), r. < I, for
m+1 m+1 *

„ J J

of C's
. r m n

all j s m. This means that the sum, U„ + U„ = w + Y r, + L I,
C D

I j=i+l J m
J

and D' s payoffs from date i to date m (including D' s wealth w) is less than

w + L.. But we know that U fc L . Therefore D is worse off than if he had

simply kept his w. In conclusion, D would never offer C a new contract at

date i which involved liquidation at date m < n; he would prefer immediate

liquidation at date i.

Q.E.D.
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Proof of Proposition 3

Take the n discrete approximation, and for < t £ T define

n . n
j

u"(t) = Max ( I I i I r) where i = l
n
(t).

J=I+1
J j=i+l J

n

Notice that for < t < t and for n sufficiently large, u"(t) = £ I where
L

j=i+l J

1
n

n
i = i

n
(t). And for t s t s T, u"(t) = i £ r where 1 = i (t). Hence the

L * j=i+l J

RHS of (4.7) for i = i"(t) converges to w + M(t), where

M(t) =

f R(0) - R(t) + L(t) if < t < t

R(0) - ^R(t) if t £ t £ T.

By Proposition 1, we therefore have that, for sufficiently large n, a

necessary (resp. sufficient) condition for the project to be undertaken is

that K £ w + M (resp. K < w + M) where M = minimum M(t).

0<t£T

We distinguish two cases: t > and t = 0.

First, suppose t > 0. By Assumption (A. 2'), R(t) - L(t) is maximized

at t = t, and is decreasing in t for t > t. Also, =R(t) is decreasing in t.

Hence M = minimum (X,Y) — where

1U i
n
(t) = n, let Up(t) = — c.f. the latter part of footnote 12.
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X =

' R(0) - R(t) + L(t) if t < t

R(0) - R(t) + L(t) if t a t,

and Y = R(0) - ^R(t). Notice X never exceeds R(0) - R(t) + L(t), which in

turn equals Y (since L(t) = ^R(t)). Hence M = X = R(0) - R(t») + L(t«).

where t* = min (t,t). Notice that, since t > and t* £ t, Assumption (A. 3')

implies L(t*) £ J*Ut*); and so M a R(0) - ^Ut*) * ^(0)- 0ur expression for

M, R(0) - R(t*) + L(t*), thus agrees with the expression given in part (1) of

Proposition 3.

Second, suppose t = 0. ^R(t) is decreasing in t, and so M equals

JKO), which, from the definition of t, is no less than L(0). Thus, using

the fact that t = implies t* = 0, we obtain the expression for M given in

part (1) of Proposition 3.

To prove part (2a), we appeal to Proposition 2 and (5.1) — or,

equivalently, to (4.5) as an equality. We have just (indirectly) shown that

the RHS of (4.5) for i = i (t) converges to

L(t) if < t < t

. ^R(t) if t s t £ T
v 2

— which is the expression for P(t) in Proposition 3. Such a repayment path

allows D initially to borrow from C an amount Max (JKO), L(0)).

To prove part (2b), we appeal to Proposition 2 and (5.2) — or,

equivalently, to (4.6) as an equality. Take any t > 0. The RHS of (4.6)
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for i = i"(t) converges to K - w - R(0) + R(t) — the expression for P(t) in

Proposition 3. Such a repayment path allows D initially to borrow from C an

amount K-w .

Q.E.D.

Proof of Proposition 4A

Let a subscript 1 (resp. 2) denote the value of a variable before

(resp. after) the assets become more durable. In particular, then, we are

assuming that

(a) LjCt) =£ L
2
(t) for all s t s T.

We first prove part (1) of Proposition 4A. Appealing to Proposition

3(1), we need to show that M ^ M . It is useful to define, for £ t £ T,

j J"

r(x)dx + F £
i
(T)dT 1X (t) = minimum

| \ r(x)dx +
| I, (x)dx

|
for i = 1,2.

0£Ut

Notice that, by (A. 2'), M, equals the maximum of =R(0) and

R(0) - R(t*) + L^t*) = X
i
(t*) = X

i
(t

i
).

We divide the proof into cases:

Case 1 : tj i t*. This implies XjCtj) £ X^tjP "" which « hY assumption (a),

is no more than X (t*). Hence M s M
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Case 2 : t < t*

Case 2A : t* = t £ tj. By (A. 2'), this implies XjU*) = XjCT). But

X. (T) is no more than X.(t*) — which, by assumption (a), is

no more than X
?
(t*). Hence M

1

s M_.

Case 2B : t* = t < t . Here, by the definition of t , X (t ) =

1 1
R(0) - ^R(t ), which is no more than R(0) - ^(t*) since

t < t». By (A. 3'), since t» ^ l^ R(0) - |rU£) =s

R(0) - R(t») + L
2
(t
2

5 - Hence M
l

~ M
2

-

Part (2a) of Proposition 4A follows from the fact that, by Proposition

3(2a), P. (t) s Max I L (t), ^(t) 1, which increases as i goes from 1 to 2.

Part (2b) of Proposition 4B is immediate from Proposition 3(2b), since

R(*) is unchanged.

Q.E.D.
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Proof of Proposition 4B

Let a subscript 1 (resp. 2) denote the value of a variable before

(resp. after) the returns become more front-loaded. In particular, then, we

are assuming that

(b) R^O) - R^t) £ R
2
(0) - R

2
(t) for all s t s T.

We first prove part (1) of Proposition 4B. Appealing to Proposition

3(1), we need to show that M £ M . It is useful to define, for £ t £ T,

| [ r^xjdx + f £(x)dx
|

Y
i
(t) s minimum

|
|

r, (x)dx +
| £(x)dx

|
for i = 1,2.

Notice that, by (A. 2'), M equals the maximum of =R (0) and

RAO) - R^t*) + L(t*) = Y^t*) = Y
i
(t

i
).

We divide the proof into cases:

Case 1 : tj £ t*. This implies Y (t ) £ ^-t^V ~ which, by assumption (b),

is no more than Y (t*). Hence M £ M .

Case 2 : t < t*

Case 2A : t* = tj s ty By (A. 2' ), this implies Y (t*) = Y (T). But

YAT) is no more than Y.(t*) — which, by assumption (b), is no

more than Y
2
(t£). Hence M £ M
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Case 2B : t* = t < t . Here, by the definition of t , Y (t ) =

is no more
1?1

{0) + MR
1
(0) ~ R

l
(t

l
)
]'

which
'
since S < t

2'
i!

than ^(0) + i|R
1
(0D - R (t»)|. By assumption (b), this i«

no more than ^Ro (0) + |[h
2
(0) - ^(t*)] ~ which, by (A. 3'),Z2

is in turn no more than R
2
(0) - R (t*) + L(t*), since t* s t .

Hence Mj £ M2>

To prove part (2a) of Proposition 4B, notice that, if R (0) = R
2
(0),

R (t) i R_(t) for all < t £ T. The result then follows from the fact that,

by Proposition 3(2a), P (t) = Max

from 1 to 2.

L(t), sR (t) |, which decreases as i goes

Part (2b) of Proposition 4B is immediate from Proposition 3(2b).

Q.E.D.

Proof of Proposition 4C

Let t = t(e) be the earliest time at which 6R(t) £ L(t). Let t*(6) s

min (t(0),_t). From (the modified) Proposition 3(1), the debt capacity equals

Max
[
6R(0), R(0) - R(t*(6)) + L(t*(G)) I = M(6), say. To prove part (1) of

Proposition 4C, we need to show that M(0) is increasing in 6.

If ts t(G) then M(6) = Max |eR(0), R(0) - R(t) + L(t)l , which is

increasing in 6 (maintaining the inequality t s t(G)). If t(8) < t then

M(e) = Max |eR(0), R(0) - R(t(G)) + L(t(9))|, which is also increasing in G —
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using the facts that t(G) is decreasing in 6, and r(t(e)) < £(t(6)) because

t(9) < t. t(9) and M(6) are continuous in 6; and so part (1) of Proposition

4C is proved.

To prove part (2a) of Proposition 4C, note that from (the modified)

proposition 3(2a), in the slowest repayment path the outstanding debt at any

time s t s T is Max I GR(t), L(t)
|

h P(t|6), say. Clearly, P(t|6) is

increasing in 6.

Part (2b) of Proposition 4C simply reflects the fact that, in (the

modified) Proposition 3(2b), P(t) is independent of G.

Q.E.D.

All
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