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ABSTRACT

We study the steady states of a system in which players learn about the

strategies their opponents are playing by updating their Bayesian priors in

light of their observations. Players are matched at random to play a fixed

extensive -form game, and each player observes the realized actions in his own

matches, but not the intended off -path play of his opponents or the realized

actions in other matches. If lifetimes are long and players are very

patient, the steady state distribution of actions approximates those of a

Nash equilibrium.

Keywords: Learning, Nash equilibrium, multi-armed bandits

JEL Classification: C44, C72, D83



1 . Introduc t ion

We study an extensive- form game played repeatedly by a large population

of players who are matched with one another at random, as in Rosenthal

[1979]. As in Fudenberg and Kreps [1991], we suppose that players do not

know the strategies their opponents are using, but learn about them from

their past observations of the opponents' play. At the end of each period,

each player observes the realized actions of his own opponents; players do

not observe play in the other matches. The key feature of such learning is

that the stage game may have information sets that are not reached in the

course of play, and observing the opponents' realized actions does not

reveal how the opponents would have played at the unreached information

sets. Thus, even if the players play the stage game many times, they may

continue to hold incorrect beliefs about the opponents' play unless they

engage in a sufficient amount of "experimentation".

In our model, the total size of the population is constant, while

individuals enter and leave after a finite number of periods. Entering

players believe that they face a fixed but unknown distribution of

opponents' strategies. They have non-doctrinaire prior beliefs about this

distribution which they update using Bayes rule, and their actions in each

period are chosen to maximize the expected present value of their payoffs

given their beliefs. Steady states always exist. When lifetimes are short,

steady state play is mostly determined by the priors, as players have little

chance to learn from experience. Steady states need not be Nash equilibria

if lifetimes are long but players are impatient, because players may not

learn their opponents' off -path play. Instead, steady states with impatient

players correspond to the "self -confirming equilibria" introduced in our

[1990] paper. Our main result is that if lifetimes are long and players



are sufficiently patient, then expected-value maximization implies that

plavers will choose to do enough experimentation that steady states

correspond to Nash equilibria of the stage game.

To motivate these results, fix an extensive-form game of perfect

recall, and suppose that each player knows its structure. Unless he has a

dominant strategy, this knowledge is not enough for a player to decide how

to play; he must also predict the play of his opponents. Nash equilibrium

and its refinements describe a situation where each player's strategy is a

best response to his beliefs about the strategies of his opponents, and each

player's predictions are exactly correct. To understand when equilibrium

analysis is justified therefore requires an explanation of how players'

predictions are formed, and when they are likely to be accurate.

One classic explanation is that an outside "mediator" suggests a

strategy profile to the players, who accept it unless some player could gain

by deviating. A second classic explanation is that the game is dominance

solvable and it is common knowledge that players are Bayesian rational, so

that introspection by the players leads them all to the same predictions. A

more recent explanation, introduced by Aumann [1987] and further developed

by Brandenburger and Dekel [1987], is that predictions will be correct if

they are consistent with Bayesian updating from a common prior distribution.

This paper contributes to the development of a fourth explanation, that

Nash equilibrium is the result of learning from past observations. In our

model, the steady state distributions of strategies played approximate those

of Nash equilibria if players live a long time and are also sufficiently

patient. The intuition for this is roughly the following.

If a player's prior is not degenerate, he will learn a great deal about

the results of any action he chooses many times; this is "passive learning".



If the player is patient, he will choose Co invest in discovering what his

best strategy is. This is accomplished by "active learning" or

"experimentation", meaning that the player will sometimes play actions that

do not maximize the current period's expected payoff given his current

beliefs, so that he may learn whether his beliefs are in fact correct.

Without experimentation, players can persistently maintain incorrect beliefs

about their opponents' off -path play, which is why steady states need not

correspond to equilibria unless players experiment sufficiently often.

Our focus on active learning differentiates the paper from the

literature on learning in rational expectations environments, as pioneered

by Bray [1982]. In that literature, players observe system-wide aggregates,

and thus have no reason to experiment. The focus on active learning also

differentiates the paper from that of Canning [1990], which in other

respects is quite similar. Canning studies two-player simultaneous -move

stage games, and supposes that players live forever but only remember their

last T observations. He shows that when lifetimes are long, the steady

states approximate Nash equilibria. We should also mention the work of

Kalai and Lehrer jMfll^ [1991b] who study Bayesian learning in a setting

where the same players are matched with one another in every period. In

their model, unlike Canning's, active learning is possible, but active

learning is not necessary for their main result, which is that play

eventually resembles that of a Nash equilibrium of the repeated game.

Our study was inspired primarily by Fudenberg and Kreps [1991], who

were the first to emphasize the importance of active learning in justifying

Nash equilibrium. They showed by example how passive learning without

experimentation can lead to steady states that are not Nash. There are two

main differences between their work and ours. First, Fudenberg and Kreps



develop a model of bounded rationality, making ad-hoc assumptions about

players' behavior, while we assume that players are Bayesian expected-

utility maximizers . Second, Fudenberg and Kreps analyze the dynamic

evolution of a system where all players become more experienced over time,

and characterize the states to which the system can converge, while we

analyze the steady states of a stationary system.

The steady state model has several comparative advantages. Our model

can describe situations where the players' lifetimes are moderate and the

inexperienced players have a substantial influence, although we do not study

such situations here. Our model is mathematically more tractable, which

enables us to solve for the optimal Bayesian policies. Finally, in the

Fudenberg and Kreps model, players act as if they are facing a stationary

environment even though the environment is not stationary. In the steady

states we analyze, the players' assumption of stationarity is justified.

Both papers avoid the question of global stability, for which general

2
results seem unlikely. Fudenberg and Kreps do develop several notions of

local stability and establish global convergence for the class of 2x2

simultaneous -move stage games. Our model is rich enough to analyze local

stability, but we should point out that such an analysis would need to

consider the evolution of the system when the players' steady state

assumption is violated.

2 . The Stage Game

The stage game is an I+l -player extensive form game of perfect recall.

Player i - I-i-l is nature. The game tree X, with nodes x € X, is

3
finite. The terminal nodes are z e Z C X. Information sets, denoted by

h e H, form a partition of X\Z. The information sets where player i has

the move are H. c H, while H . = H\H. are information sets for other
1 -11



plavers (or nature). The feasible actions at information set h e H are

denoted A(h) ; A. - u A(h) is the set of all feasible actions for
i h£H

.

1

plaver i, and A .
- u. .A; are the feasible actions for player i's

^ - - 1 jf^i ^ '

opponents

.

A pure strategy for player i, s., is a map from information sets in

H. to actions satisfying s.(h) G A(h) ; S. is the set of all such

1*1
strategies. We let s € S x S

j^
denote a pure strategy profile for all

i = l

players including nature, and s.eS.»x. .S.. Each strategy profile

determines a terminal node f(s) € Z. We suppose that all players know the

structure of the extensive form -- that is, the game tree X, information

partitions H. and actions sets A.. Hence, each player knows the space S

of strategy profiles, and can compute the function f. Each player i

receives a payoff in the stage game that depends on the terminal node.

Player i's payoff function is denoted u. : Z -» R. We let U be the largest

difference in utility levels, U max. , |u. (z) -u. (z! ) .J l.Z.Z'l IL
Let A(») denote the space of probability distributions over a set.

I+l
Then a mixed strategy profile is a e x ACS^). For ease of exposition,

i=l

we assume that nature plays a known mixed strategy a .. . Our main result

(Theorem 5.1, about Nash equilibria) extends in a straightforward way to the

case where nature's move is drawn from a fixed but unknown distribution;

extending Theorem 6.1 requires a modification of the definition of self-

confirming equilibrium.

Let Z(s.) be the subset of terminal nodes that are reachable when s.
1 1

is played, that is, z e Z(s.) if and only if for some

s . 6 S
-1 ., z - 5"(s). Similarly, define X(s.) to be all nodes that are

reachable under s., not merely terminal nodes. In a similar vein, let



H(s.) be the set of all information sets that can be reached if s. is

played. In other words, h € H(s.) if there exists x 6 X(s.) with

X e h.

We will also need to refer to the information sets that are reached

with positive probability under a, denoted H(o) . Notice that if a . is

completely mixed, then H(s.,a .) - H(s.), as every information set that is

potentially reachable given s. has positive probability.

In addition to mixed strategies, we define behavior strategies. A

behavior strategy for player i, w., is a map from information sets in H.

to probability distributions over moves, so that 7r.(h) € A(A(h)); 11. is

1*1
the set of all such strategies. As with pure strategies, «• € 11 x H;

,

i=l

and ?r . € n . X. . n . . We also let T.(a) denote the component of

:r.(h) corresponding to the action a e A(h) . Finally, let fCf) € A(Z) be

the probability distribution over terminal nodes induced by the behavior

strategy jr.

Since the game has perfect recall, each mixed strategy a. induces a

unique equivalent behavior strategy denoted ?r.(»|a.). In other words,

w.(h|a.) is the probability distribution over actions at h induced by

a., and 7r.(a|a.) is the probability of the action a € A(h) .

For each node x and each player i, let (a .(i,x)). .. be the

collection of all actions of players other than i (including nature) which

are predecessors of x. (Note that L is equal to the length of the path

to X minus the number of nodes in the path that belong to player i.) If

pure strategy s. is such that x e X(s.), player i believes that the

probability of reaching node x when s. is played and the opponent's

strategies are »r . is



L
(2.1) p.(xi^ ,-) - n ^ Aa (i,x):

1 -1 2^1 -1 -1

Notice the convention we use: each node x is assigned a number p.(x|7r .)

which is the probability of reaching that node if any s. is played for

which X € X(s.)- Naturally if x ^ X(s.) the probability of reaching x

is zero, while Z „, .p.CzlwO-l- The effect of changing s. is not
z€Z(s.) ^1-1 b b ^

1

on the numbers p., but rather the set of nodes X(s.) that can be

reached.

We now model the idea that a player has beliefs about his opponents

play. Let ^. be a probability measure over 11 ., the set of other

players' behavior strategies. Fix s.. Then the marginal probability of a

node X e X(s . ) is

(2.2) Pj_(x1m^) - JPi(xU_.) M.(d»r_.).

This in turn gives rise to preferences

(2.3) u (s /i ) -u (s p ("l/i )) - X p (z|^ )u (z).
^ ^ ^ 111 1 zeZ(si) ^ ^ ^

It is important to note that even though the beliefs ^. are over

opponents' behavior strategies, and thus reflect player i's knowledge that

his opponents choose their randomizations independently, the marginal dist-

ribution p(»]/i.) over nodes can involve correlation between the opponents'

play. For example, if players 2 and 3 simultaneously choose between U and

D, player 1 might assign probability 1/4 to Jr-(U) - »r,(U) - 1, and

probability 3/4 to t-(U) - »r (U) - 1/2. Even though both profiles in the

support of /i suppose independent randomization by players 2 and 3, the

marginal distribution on their joint actions is p(U,U) - 7/16 and



p(U,D) - p(D,U) - p(P,D) - 3/16, which is a correlated distribution. This

correlation reflects a situation where player 1 believes some unobserved

conunon factor has helped determine the play of both of his opponents. Since

the opponents are in fact randomizing independently, we should expect player

i's marginal distribution to reflect this if he obtains sufficiently many

observations, but until observations are accumulated, the correlation in

p(»|/i.) can persist.

Frequently n. will be either a point mass at »r . , or have a

continuous density g. over tt . . In this case we write p(x|n- .).

u.(x,;r .), p(x|g.) and u.(x,g.) respectively.

3 . Steady states

Corresponding to each player (except nature) in the stage game is a

population consisting of a continuum of players in the dynamic game. In

each population, the total mass of players is one. There is a doubly

infinite sequence of periods, ...,-1,0,1,..., and each individual player

lives T periods. Every period 1/T new players enter the i population,

and we make the steady state assumption that there are 1/T players in each

generation, with 1/T players of age T exiting each period.

Every period each player i is randomly and independently matched with

one player from each population i' »* i , with the probability of meeting a

player i' of age t equal to its population fraction 1/T. For example,

if T - 2, each player is as likely to be matched with a "new" player as an

"old" one. Each player i's opponents are drawn independently.

Over his lifetime, each player observes the terminal nodes that are

reached in the games he has played, but does not observe the outcomes in

games played by others. Thus, each player will observe a sequence of

private histories. The private history of player i through time t is



denoted y. - (s.(l),2(l) s.(c),z(c)). Lee Y. denote the set of all

such histories of 1ength no more than T. We let t(y.) denote the length

of a history y. € Y. . New players have the null history 0, and we set

z(0) - 0.

A rule for a player of the i kind is a map r.: Y. -» S. that

specifies player i's choice of pure strategy for each possible observation.

(Note that if t(y.) - T, r.(y ) has no meaning because player i does not

get to play at T + 1
.

)

Suppose for the moment that all players in population i use the same,

arbitrary, deterministic rule r., and face a sequence of opponents whose

play is a random draw from a stationary distribution. (This is in fact the

case in the steady states of our model.) We will soon specialize to the

case where the rules are derived from maximizing expected discounted values

given prior beliefs, but it is helpful to develop the mechanics of the

matching model before introducing that complication.

A steady state for given rules r. specifies fractions ^.(y.) of

each population i in each experience category y. such that after each

player meets one opponent at random and updates his experience accordingly,

the population fractions are unchanged. Specifically, if fl. € A(Y.), the

fraction of population i playing s. is

(3.1) 7^(s.) -
J2 «i(yi)-

(yiiri(yi)=si)

Also define 6 ^ - a ^ . We may then define a map

f: x._ A(Y.) - X. A(Y.) by assigning f[fl].(y.) to be the fraction of

player i's with experience y. after randomly meeting opponents drawn from

S. The new entrants to the population have no experience, so



(3,2) f;s].(0) - 1/T.

The fraction having experience (y .
, r . (

y . ) , z) is the fraction of the exist-

ing $.iy.) that met opponents playing strategies that led to z. Noting

that f . [s.,»] (z) are those strategies, we see that

(3.3) f[^]i(yi.r.(y.).z) - S.(y.)
^k^i^^^k)

s.iG5-:^[ri(yi),.](z)

Finally, it is clear that

(3.4) f[e] .(y. ,s. ,z) - if s. f r.(y.).

Definition 3.1 : 8 e x. A(Y. ) is a steady state if fi - f[e].

To illustrate this definition, consider the game "matching pennies",

with S.. - S„ - {H,T). Suppose that T - 2 and

(3.5) r^(0) - H, r^(H,H) - H, r^(H,T) - T

r2(0) - T. r2(H,T) - T. r2(T.T) - H

(Note that we do not need to specify r..(T,«) or r„(«,H) as such

histories never occur -- young player I's always play H and young player

2's always play T.)

In a steady state we have:

5i(H.H) = eiiO)82(T,T)

(3.6)

^l(O) = 1/2.

S2(0) = 1/2,

ei(H,T) = 5i(0)[fi2(0)*«2(H.T)]

(?2(H,T) = ^2(0)[«l(0)+«l(H,H)]

^2(T,T) = 62{0)ei{H,T)

a system of quadratic equations.

Computation shows that 8 (0) - 1/2, e,(H,H) - 1/10, fi,(H,T) - 4/10,

8^(0) - 1/2, 8 {ii,T) - 3/10, and ^2^'^''^) " ^/lO . from which it follows

that ff^(H) - 8^(0) + fi^(H,H) - 6/10 and 8 ^{U) - 8^(^1,1) - 2/10. Note



that the average play of the player I's and the player 2's corresponds to a

mixed strategy of the stage game, even though all individuals in both

populations use deterministic rules. (Canning [ 1989 ],[ 1990] makes the same

point)

.

Theorem 3.1 : For any rules r. and nature's moves ^-r i • ^ steady state

exists.

Proof : For given ^t i f is a polynomial map from x. A(Y.) to

itself, and so it has a fixed point. I

Given a steady state 6 G x. A(Y.), we may easily compute the

population fractions 6. e A(S.) playing each strategy by (3.1). Converse-

ly, given the steady state fractions we can calculate the experience levels

recursively by

(3.7) ^:(y^('0)) - 1/T

^:(yi.r,(y,).z) -.^(y.) 2. \.i ^(V
s_ierTl[ri(yi),.](z)

e'.iy. ,s. ,z) - if s. ^ r. (y.) .

If we then recalculate 6'. using (3.2) we have a polynomial function f

mapping x. A(S.) to itself. We may equally well characterize a steady

state as a fixed point of f , and calculate the corresponding fixed point

of f using (3.7). Since A(S.) is much smaller than A(Y.), this is of

some practical importance.

4. Value Maximization Given Saves Stationary Beliefs

Our interest is not in arbitrary rules r. but in rules derived from

maximizing the expected discounted sum of per-period payoffs given exogenous



prior beliefs. More precisely, ue suppose chat each player's objective is

to maximize

T
1-6

(4.1) -Lll E J: 6^u,
1-6^ c=l

where u is the realized stage game payoff at t and < 6 < 1. Each

population believes that it faces a fixed (time invariant) probability

distribution of opponents' strategies, but is unsure what the true

distribution is.

Population i's prior beliefs are over behavior strategies. They are

given by a strictly positive density except over ir , for which the prior

is a point mass at ir ("la .. ) . That is, the player knows the probability

distribution over nature's move. It is important to emphasize that player

i's beliefs about player j correspond to the average play of all player j's

and not the play of a particular individual. As in the matching pennies

example of the last section, a mixed distribution over player j's play may

be the result of different subpopulations of the player j's playing

different pure strategies.

For notational convenience, we suppose that all player i's begin the

game with the same prior beliefs g. . All of our results extend immediately

to the case of finitely many subpopulations of player i's with different

initial beliefs.

We let g.(»|z) denote the posterior beliefs starting with prior g.

after z is observed:

(4.2) giC'^.iU) - p.(zU..)g.(T_.)/p.(z|g.)

Let VV(g.) denote the maximized average discounted value (in current

units) starting at g. with K periods remaining. Bellman's equation is



(^.3) v\g.) - "'ax [(1-^ )u (s g )11 s j^es I
Kill

K E Pi^^ISi) v^-\g (.jz))
'^ zeZ(si)

1111
where V°(g.) - 0, and 4'^, - S

(1-6^''^)
/ (l-S^) . Let s'!^(g.) denote a11 K 11

solution of this problem.

T-t(yi)
The optimal policy r.(y.) - s (6i(»lyi))- Note that this

^ ^ i

section is independent of the true value of the steady state. (The steady

state does influence the distribution of observations and hence the

distribution of actions played.) Thus by Theorem 3.1 a steady state exists.

These steady states are not very interesting if lifetimes are short.

For example if T - 1 the entire population consists of inexperienced

players, each of whom plays a best response to his prior beliefs and then

leaves the system. Our interest is in the nature of steady states in the

limit as lifetimes T increase to infinity and 5 goes to one.

For he H ., a e A(h) , let n(a y.) be the number of times the
-

1

' -^ 1

move a has been observed in the history y. . We define n(xiy.) and

n(h|y.) similarly and set n(s.ly.) to be the number of times player i has

played s .

.

Let T_.(»|y.) be the sample average of player i's observations about

his opponent's play. That is, for each h £ H . and a e A(h)

,

'r_^(a|y^) - n(a|y^)/n(h|y^)

with the convention that 0/0 - 1. Let p.(z|y.) be the distribution on

terminal nodes induced by the sample averages n . , that is

P.Czly.) - p.(zlJr .(•ly.)). Since p.(«lv.) reflects the extensive form of
1 ^1 "^1 ' -1 ''i ^1 ''i



the game, it is not in general equal to the sample average on terminal nodes

2 e Z(s.). For example, consider a game where if player 1 moves L, play-

ers 2 and 3 observe player I's move and simultaneously choose H„ or T„

and H^ or T- respectively. If the sample y. is 4 observations at

(L,H H-), 1 observation each of (L,H T.) and (L,T H-), and

observations of (L,!^,!.,), then

p.((L,T2,T3)|y^) - (l/6)(l/6) - 1/36

even though there are no observations on (L,T„,T-) in the sample. Since

player 1 is certain that players 2 and 3 randomize independently, he treats

the observed correlation in the sample as a fluke.

Let g.(»|y.) be the posterior density over opponents' strategies

given sample y. , and let p.(*|y.) be the corresponding distribution on

k
Iterminal nodes. It will often be convenient to abbreviate V.(e. (• y.)) as

k k
I

k I
IV.(y.), s.(g.(» y.)) as s.(y.) and u. (s

. ,
g. (• y . ) ) as u.(s. y.).

5 . Active Learning and Nash Equilibrium

Our goal is to show that if players are patient as well as long lived

then steady states approximate play in a Nash equilibrium. Theorem 5.1

establishes this for the case where lifetimes T go to infinity "more

quickly" than the discount factor tends to 1. We do not know whether the

conclusion of the theorem holds for the other order of limits.

Theorem 5.1 : For any fixed priors g. there is a function T(5) such that

if 5 - 1 and T > T(5 ) , every sequence of steady states 8 has an
m mm j ^ j

accumulation point 5, and every accumulation point is a Nash equilibrium.

An accumulation point exists by compactness; the interesting part of

the theorem is that the accumulation points are Nash equilibria. The idea



of the proof is simply rhat players do enough experimentation to learn the

true best responses to the steady state. The obvious argument is that if a

player is very patient, and a strategy has some probability of being the

best response, the player ought to try it and see. However, the simple

example in Figure 1 shows a complication. Even a very patient player may

optimally choose to never experiment with certain strategies. Moreover,

these unused strategies need not be dominated strategies in the stage game.

In the game of Figure 1, if player 1 assigns a low probability to player 2

playing L„ , his current period's expected payoff is maximized by playing

L.. . Now, if player 1 is patient, he may be willing to incur a short-run

cost to obtain information about player 2's play, but given player I's

beliefs, the lowest-cost way of obtaining this information is by playing

g
R.. , and player 1 may never play M.. . Since not all experiments need be

made, our proof will use a more indirect approach.

Very briefly, our proof derives both upper bounds and lower bounds on

the players' option values, that is, the difference between their expected

payoff in the current round and their expected average present value. We

argue that if s. has positive probability in the limit, most players using

s. do not expect to learn much more about its consequences, and play s.

because it maximizes their current payoff. For these players the option

value of the game is low. However, we also show that if s. is not a best

response to the steady state distribution and players are patient, then they

are very unlikely to observe a sample that makes their option value small,

thus obtaining a contradiction. Intuitively, if some strategy s. is a

better response than s. to the steady state distribution 8 ., and player

i's beliefs assign non-negligible probability to the opponents' strategies

lying in a neighborhood of 8 . , then player i should have a positive
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opcion value from the possibility of playing s., and this option value

will be large if player i is sufficiently patient. Moreover, since player

i's prior assigns positive probability to all neighborhoods of 6 .,

repeated observations from the distribution generated by 6 . should be

unlikely to substantially reduce the probability player i assigns to

neighborhoods of B .

.

The proof of Theorem 5.1 uses five lemmas proven in Appendix B. Before

proving the theorem we first discuss the lemmas. Recall that s.(y.) is

the optimal choice of strategy for a player with k periods of play

remaining and beliefs g.(»|y.).

Lemma 5.2 : There exists a function r\{u) * such that for all y. and S

I
k

I

(5.2.1) max u.(s.y.) - u.(s.(y.)y.)
L

-'^i^^i^
- u.(s^(y.)|y.)

< [6/(1-5)1
"'^^xex(s^(y.)) p('^lyi>''("('^iyi))-

The first inequality follows from the fact that, because it is possible to

achieve average payoff max u.(s.|y.) by ignoring all subsequent observa-
i

tions and playing the strategy that maximizes u.(s.|y.) for the remainder

k
Iof the individual's lifetime, V.(y.) > max u.(s. y.).

1 -' 1 s. 1 1 -^ 1
1

To understand the second inequality, observe that

k k
IV.(y.) - u.(s.(y.) y.) is a measure of the option value, or anticipated

capital gain, to the information generated by playing s.(y.). The second

inequality asserts that as the total number of observations on nodes that

are reachable under s.(y.) becomes large, when weighted by the empirical

probability p that these nodes are reached, the option value becomes

small. The idea behind this conclusion is that once a player has many



observations of play at a given information set, another observation vill

not change his beliefs about that information set very much, as has been

shown by Diaconis and Freedman [1989]. (This relies on the assumption of

non-doctrinaire priors.) In the context of a simple multi-armed bandit

model, their result implies that the option value of each arm is bounded by

a decreasing function of the number of times each arm has been played. The

reason that the third expression in (5.2.1) is more complicated than this is

that in our model players know the extensive form of the game. This means

that they may know that some large samples are not "representative" , and for

these large samples the option value may still be large.

As example of this possibility, consider the game in Figure 2. In this

game, if player 1 plays D, then players 2 and 3 simultaneously choose

between L and R; player 4 only gets to move if players 2 and 3 both play

R. Now suppose that player 1 has played D 200 times, and that he has

observed 100 draws of (D,L,R), and 100 draws of (D.R.L). Then if his

prior beliefs on U„ and IT. are uniform, his posteriors will be concen-

trated in the neighborhood of players 2 and 3 each playing the strategy

(1/2 L, 1/2 R) . Given these beliefs, player 1 believes there is a

substantial (about 1/A) probability that playing D will lead to player 4's

information set, so that information about player 4's play is potentially

valuable, yet player 1 has not received any observations of player 4's play.

The point is that because player 1 knows that players 2 and 3 play simul-

9
taneously, he treats the observed correlation in their play as a fluke.

Of course, if players 2 and 3 do choose their strategies independently,

the sort of spurious correlation in this example should be unlikely, so that

most large samples should lead to small option values. This is established

by Corollary 5.5 below.



Figure 2



The final important remark about Lemrca 5.2 is that it places weaker and

weaker bounds on the option value as 6 goes to 1, as a very patient

player will have gains from learning when faced with even a small amount of

uncertainty. This property is what has prevented us from extending our

proof of Theorem 5.1 to limits where S goes to 1 faster than T goes to

infinity.

Lemma 5.2 provides an upper bound on expected gains from learning about

the consequences of a strategy; the next lemma provides a lower bound.

Define

P(s^,A,y^) - max
J
gi(f -i ly i)dT_i

^i (7r_j_|ui(s|,?r_i)>ui(si(yi) ,7r_i)+A)

to be the largest posterior probability (given the sample y.) that a

strategy yields a gain of A over s.. If this probability is large and

the player is patient, the option value ought to be large.

Lenuna 5.3 : For all £ > and A > 0, there are i. < 1 and K such that

for all 6 e [i,l) and for all k > K

k vH(yi) - Ui(sH(yi)|yi)
(5.3.1) A . P(s^(y.),A,y.) - e < _i_i

]_.,

Now we turn to the issue of what fraction of the population has sampled

frequently enough to have discovered (approximately) the true distribution

of opponents play. Stating the desired result requires some additional

notation. Fix a horizon T , a plan r. for the i kind of player, and
m 1

the population fraction of opponents' actions S_.. From (3.7) we can

calculate the corresponding steady state fractions 6. for the population

i. Let Y. C Y. be a subset of the histories for player i. We define11 '^ '



11 ^. 1 1

to be the steady state fraction of population i in category Y. . First we

examine the relationship between the probabilities of nodes as measured by

maximum likelihood, and the true population value.

Lemma 5.4 : For all e > and functions rj such that r)(n) -»

as n - <= there is an N such that for all T , 6 . , r. , and s.
m -1 1 1

(5.4.1) e^ (max_ p. (x|y. )r;(n(x|y. )) > c, and n(s.|y.)>N) < c

This asserts that few people have a large sample on the strategy s., few

hits on a reachable node, and a high maximum likelihood estimate of hitting

it. Notice the nature of the assertions: the fraction of the population

that both have a large sample and an unrepresentative one is small. It need

not be true that of those that have a large sample most have a

representative sample. Since the sampling rule is endogenous, we must allow

the possibility that sampling continues only if the sample is unusual (e.g.,

keep flipping until tails have been observed)

.

Our next step is to combine Lemmas 5.2 and 5.4 to conclude that players

are unlikely to repeatedly play a strategy solely for its option value.

Intuitively, if strategy s. has already been played many times, the

player's observations y. should have provided enough observations at the

relevant nodes that the player is unlikely to learn very much by playing s.

again. As we explained earlier, the reason this conclusion only holds for

most large samples, as opposed to all of them, is that since players know

the extensive form of the game, they may know that their sample is

"unrepresentative" of the true distribution.



Corollary 5 5 : For all e > there exists N such that for all T and
m

all 6.

m k Ic I iTi I

^.(V.(y.) - u.(s^(y.)|y.) > 6e/(l-5), n(r.|y.) > N) < £,

where k - T - t(y.) is the number of periods remaining given history y.

.

Proof of Corollary : Substitute the second inequality of (5.2.1) into

inequality (5.4.1). |

This corollary shows that even very patient players will eventually exhaust

the option value of a strategy they have played many times; of course, the

N required to satisfy (5.5) may grow large as 5 -» 1

.

Our next lemma asserts that regardless of sample size, players are

unlikely to become convinced of "wrong" beliefs. Given h e H . and

a € A(h) , we can calculate n .(a|^ .) to be the conditional probability

that a is chosen, given that h is reached, and p.(x|fi .) to be the

probability of reaching node x. Define

B^(7™.) - {IT . :||p.(z|?°.) - p.(z|jr . ) 11 < e for all zeZ)

to be the beliefs n . that yield approximately the same distribution over

terminal nodes as 6 . . Let
-1

^^^i'^i) -
J Si^'^-ilV^'^-i

B^(5:^.)

be the corresponding posterior probability, and let Q {6 .|0) be the prior

probability. The result of Diaconis and Freedman mentioned earlier implies

that along any sample path, the posterior beliefs converge to a point mass

on the empirical distribution; the strong law of large numbers implies that

players are unlikely to have a sample that both reaches an information set

many times and gives misleading (that is, biased) information about play



there. These two facts underly the following lemina. Note well the order of

quantifiers here: a single 7 can be used for all sair.ples y., steady

states S , and lifetimes T .

m

Lenma 5.6 : For all c there exists a 7 such that for all y. , ^ . , r.
'i -1 1

and T
m

/m .
^ i / T") I V ,^i .Tin

I ,^ ^ ,

i'^e^ -i'^i^/^f^ -i' * - t' - «

Our last lemma asserts that if the population fraction playing a

strategy is positive, the population fraction that has played it a number of

times must be sizeable as well.

Lemma 5.7 : Let T - « be the length of life, and 6 be a subsequence of

steady states that converge to 6, and let r. be the corresponding rules.

Then

(5.7.1) fi^ln.Cs. |y.) > N and r°'(y.) - s.) > 7™(s.) - (N/T )

With these lemmas in hand, we can now prove Theorem 5.1: Any limit

point $ of steady states is a Nash equilibrium. Here is a rough sketch of

the proof: If S is not a Nash equilibrium, then some player i must be

able to gain at least 3A > by not playing some strategy s. that 6

assigns positive probability. If player i's beliefs assign probability

close to 1 to a neighborhood of 6, he would assign a non-negligible

probability to the event that his opponents' strategies are such that he

could gain at least A by deviating; call this event E. Now player i's

prior beliefs are nondoctinaire , and hence assign a non-zero probability to

E, and from Lemma 5.6, for most samples player i's posterior does not

assign E a vanishingly small weight. For all such samples, Lemma 5.3



implies chat player i's expected gain from learning is not negligible

provided his discount factor is sufficiently high and he has sufficiently

many periods of life remaining.

However, since ^(s.) is positive, Lemma 5.7 implies chat a non-

negligible fraction of the player i's have played s. many cimes and intend

to play ic again. From Corollary 5.5, if S is large, most of chese

players muse have negligible expected gains from learning about s., which

concradicts the conclusion of the last paragraph that player i is unlikely

to have samples that give him a negligible gain from learning.

Proof of Theorem 5.1 : We will first show that for each A > there is a

function T(i5,A) such that if 5 - 1 and T > T(5 ,A) any accumulation
m mm

point 6 of the sceady states 6 has the property that no player can gain

more than 3a by deviating from 6.. That is, for all players i, all s. e

supporter.) and all s '. , \i.{s.,6 .) > u.(s!,fi .) -3A. The existence of the
1 111-1 11-1

desired function T(5) will follow from a diagonalization argument.

Thus, we fix a A > and a sequence of positive numbers t -• 0, and

let k(£ ,A) satisfy the conditions of Lemma 5.3 for £ - e and A. Let
m m

/ 1 _r N 2
N(5) satisfy the conditions of Corollary 5.5 for S and e' - -i

'

6

so that

(5.1.1)
^I'^i^yi^

- ^iCSi(yj_)lyi) > (^-'5). n(r°(y.)|y^) > N(5))

Finally, choose T(£ ,6, A) - [k(£ ,A) -( N((5) ]/(l-5) .

m m

Extracting a subsequence if necessary, we suppose that 6 is a limit

of steady states 7™ for (5 ,T ), with 5-1 and T > T(e ,5 ,A). Wemm m m m m

claim that no player can gain more than 3A by not playing some

s. G supporter.). If this claim is false, then for m sufficiently large



there is an s! such that u.(s'.,6 .) > u.(s.,^ .) + 2A. Since
1 11-1 11-1

S.(s.) > 8.(s.)/2 for sufficiently large m, it follows that for all

sufficiently large m and all sufficiently small e > 0, any profile for

i's opponents that is within e of ^ . gives a gain of at least A from

playing si instead of s.. Thus for any sample y .
, the maximized

probability P(s.,A,y.) that some deviation from s. yields a gain of at

least A is at least the posterior probability Q (6 .|y.) that player i

assigns to profiles in the set B (8 .). From Lemma 5.6, there is a 7 >

such that for all T and 8
,m

«"{qJ(^. Iy^)/Qj(^j0) < 7) ^ ^.(s.)/4,

This shows that not too many player i's can have observed samples that have

caused them to substantially lower the probability they assign to an e-

neighborhood of the true steady state. Moreover, Q (6 .|0) >Q>0 since

the prior is uniformly bounded away from zero by our assumption of non-

doctrinaire priors. Using this fact and our earlier observation that

P(s^,A,y^) > Qj(^ilyi). we have

(5.1.2) fi^(P(s^,A,y.) < 7Q) ^ ^^(s.)/4, so that

6^(P(s^,A.y.) > 7Q) > 1 - ^.(s.)/4

Inequality (5.1.2) gives us a lower bound on the fraction of player i's

who assign a non-negligible probability to any strategy yielding a A

improvement over s.. Our next steps are to argue that (i) since s. has

positive probability in the limit, there must be a non-negligible proportion

of the population that has played s. many times, intends to play it again,

and assign a non-negligible probability to any strategy improving on s.,

and (ii) there must therefore be a non-negligible proportion of the

players who play s. even though they have played it many times before and



have a non-negligible expected gain from learning. This last conclusion

will then be shou-n to contradict (5.1.1).

To carry out this program, use Lemma 5.7 and the facts that

7"(s.) > 7.(s.)/2 and N(5 )/T < N(<5 )/T(f ,5 ,A) < 1 - 5 to conclude1111 mm mmm m

(5.1.3) (?"(n(s ly ) > N(5^) , r^y ) - s ) > 7. (s )/2 - (1-6 ).
1 11 m 11 1 11 m

From DeMorgan's law, the probability of the intersection of the events in

(5.1.2) and (5.1.3) is at least the sura of the individual probabilities

minus 1 , so that

(5.1. A) «^(P(s.,A,y.) > 72, n(s.|y.) > N(5^). r^(y.)-s.)

> ^.(s )/4 - il-SJ.
1 1 m .

By construction, 1 - k(£ ,A)/T > 1 - k(e ,A)/T(« ,S ,A) > 5 , i.e., at
ED m m ID 111 m

least a S fraction of the player i's have at least k periods of life

remaining (since each generation is of the same size). From Lemma 5.3, when

5 is sufficiently large, the expected gains to learning of all players who

have at least k periods of life are bounded below by a function of A • P;

substituting this function into (5.1.4) and using DeMorgan's law again yields

(5.1.5) ^"([V^y.) - u (s^(y )|y ) > (A7Q- €„)/(l-f„)
] .Ill 1111 m m

n(s.|y.) > N(SJ, r°(y.) - s.)

> ? (s )/4-2(l-5 ).11m
If we now choose m large enough that (1-5 ) < (A7Q-£ )/(l-« ) and

ni mm
7.(s.)/4 - 2(1-5 ) > (1-5 )^/5 , we conclude thatII m mm

6^{[V^(y.) • u.(s'^(y.)|y.) > (1-5 )].
1 1 -^ 1 11-^1-^1 m

n(s.|y.) >N(5^).r^(y.) -s.)



which contradicts (5.1.1) because Che event in this display implies the

event whose probability is bounded in (5.1.1).

6 . Conclusion

We conclude by examining the scope of Theorem 5.1. Can every Nash

equilibriuni of every finite game be realized as a limit of steady states as

T -• 00 and 6 * 17 Is it really necessary for 6 -• 1 to achieve Nash

equilibrium in the limit as T -> «?

Concerning the issue of which Nash equilibria can be obtained as limits

of steady states, we do not have a complete answer. It is easy to see that

limits of steady states can be mixed as well as pure strategy equilibria.

Since any limit point must be a Nash equilibrium, this must be the case in

any game that does not have a pure strategy equilibrium. However, whether

as T - « and S -* 1 it is actually possible to attain some refinement of

Nash equilibrium must await further research.

If T is not large, players do not have much data, and play may be

quite arbitrary and heavily influenced by priors. What if T -» w, but 8

is not close to one? In this case players will have a great deal of

information about those strategies they have chosen to play, but players may

not have much incentive to invest in exploring many strategies. Consequent-

ly, play may fail to be Nash because untested beliefs about opponents' play

off the equilibrium path are not correct.

To see that for 5/1 a sequence of steady states may fail to

converge to Nash equilibrium, we consider an example due to Fudenberg and

Kreps [1991]. Consider the 3-person game shown in Figure 3. Suppose that

the prior of player 1 is that player 3 will play R with very high



(1.1.1)

(3,0,0) (0,3,0) (3,0,0) (0,3,0)

Figure 3



probability (> 2/3) , while char of player 2 is that 3 will play L with

verv high probability. If i5 -
, or is very small, consider a candidate

for a steady state in which all player I's always play A.. and all player

2's always play A„ . This is optimal in the first period of life given the

priors and low discount factor, and as a result no information about player

3 is gained, and the proposed play is again optimal in the second period of

life and so forth. Consequently, regardless of T this constitutes a

steady state. On the other hand, in any Nash equilibrium either 1 must play

D or 2 must play D„

.

We conclude with a brief examination of the consequences of the fact

that as T -» =0 players must have a great deal of information about chose

strategies they have chosen to play. Formally, let H(a) be the informa-

tion sees reached vich posicive probability when the mixed strategy profile

a is plaved, let A(c7) - -W A(h) be the actions at those information
h€H(c7)

sets and let X(c7) - -^ (x|x6h) be the corresponding nodes. Let
heH(cr)

:r.(»|c7 .) be the behavior strategy for i's opponents that corresponds to

a .. Let us say that the beliefs u . (over t .) are confirmed for s.
-1 '

1 -1 1

and a . if
-

1

max 7 , ,r||»r .(a) - jt .(ala .)|U.(d?r .) - 0,

-1 1 -1

chac is, /i. puts probability one on the same play of opponents as does

a . at those information sets that are reached when is., a .) is played.
-1 1 -L "^ -^

Tnis captures the idea that untested beliefs about opponents' play off of

the equilibrium path can be incorrect.

Theorem 6.1 : For fixed priors g. and 5 < 1 as T -* " every sequence

6 of steady states has an accumulation point 6; if 6 . {s .) > there

exist beliefs u. that are confirmed for s. and d . and such that s.
1 1-11



maximizes u. ( • i ^i. ) .

1 1

Remark : This notion of equilibrium is equivalent to the self -confirming

equilibrium defined and characterized in Fudenberg and Levine [1991].

The idea of the proof should already be clear from our discussion of

the proof of Theorem 5.1: Long-lived players will eventually stop

experimenting and play to maximize their current expected payoff given their

beliefs, and their beliefs about the payoff from any strategy they play many

times are approximately correct. The formal proof is in Appendix C.



ENDNOTES

This concept is closely related to the "conjectural equilibria" of

Battagalli and Guatoli [1988], the "rationalizable conjectural equilibria"

of Rubinstein and Wolinsky [1990], and the "private beliefs equilibrium" of

Kalai and Lehrer [199?r.

2
See, however. Canning [1989].

3
To avoid a trivial special case in one of our proofs, we will suppose

»^Z > 1.

We denote the actions so that A(h) n A(h') - ^ for h ^ h'

.

This is known as Kuhn's theorem (Kuhn [1953]). Recent presentations

of this result can be found in Fudenberg and Tirole [1991] and Kreps [1990],

among other places.

Boylan [1990] has shown that this deterministic system is the limit of

a stochastic finite-population random-matching model as the number of

players goes to infinity.

Several readers have asked us the following questions: Won't players

update their beliefs in the course of period- t play as they observe the

actions of their opponents? And shouldn't they therefore deviate from the

original play of r.(y.)? The answers are that yes, players will update

their beliefs in the course of period-t play, but that the optimal plan at

the beginning of the period, r.(y.), already takes this revision into

account. Intuitively, player i can foresee that his posterior beliefs



will be ac every information set, and his optimal plan will thus maximize

his expected utility at each information set, conditional on that informa-

tion set being reached. (Remember that r.(y.) is a strategy for the

extensive- form game, that is, it specifies a feasible action at every

information set. It does not specify the "same" action at every information

set; indeed by definition an action that is feasible at one information set

cannot be feasible at another.)

As an aside, we note that this example also shows why our learning

model does not yield results in the spirit of forward induction (Kohlberg

and Mertens [1986]). Forward induction interprets all deviations from the

path of play as attempts to gain in the current round. Since L. strictly

dominates R.. , forward induction argues that player 2 will believe that

player 1 has played M whenever player 2's information set is reached, and

hence that player 2 will play L„ ; this will lead player 1 to play M. . In

contrast, in our model player 1 deviated from L.. to gain information that

will help him in future rounds, and the cheapest way to do this is to play

R- . When R.. is more likely than M.. , R„ is optimal for player 2.

9
Fudenberg and Kreps [1991], ch. 9, develop a learning model in which

players do not know the extensive form of the game. We believe that Theorem

5.1 would extend to this context, but Theorem 6.1 (on self -confirming

equilibrium) would not.

The more obvious probability space would have elements corresponding

to what player i would see if he plays s. in period t for each date t

of his life. Then, for each sample path, the realized terminal node the

player sees the first time he plays s. depends on the period in which the



strategy is first used. Our alternative generates the same probability

distribution over observations.



APPENDIX A

Lemma A .

1

If X. ,y. € B
1 'i +

i-1
n ,x.-n. ,y. < I. , (n: ,v.) x.-y. (n. .^,x.)
i-i 1 i-i-'i' 1-1 j-i'j 1 1 j-i+i J

so if X. < 1
1

Proof:

i-1
n. .x.-n. ,y. < Z. ^ (n. ,y.) x. -y.1-1 1 1-1-^1 1-1 J-1 J 1 1

1-1 1 1-1^

1

I Trn tt'' tt'1 tt" I- y,n. -x. - n. ^y. + n. .x. - y,n. „x.^1 1-2 1 1-1-^1 1-1 1 -^1 1-2 1

-
yi'" i-2^i-V2yii ^ "i-2^l^ryii

- yiy2i"i-3^-"i-3yii ^ yi"i-3^i''2-y2i -^ "i-2^'^ryii

< z" ,(n^"J-y.) ix.-y. |(n" . ,x.).
1-1 j-1 J 1 1 j-i+1 J

Lemma A. 2 : Suppose that A(7r|y) is a likelihood function for r given a

sample y, that g (tt) and h (»r) are two prior densities both of which

are bounded above by g and bounded below by g > 0. If gCfly) and

h(7r|y) are the corresponding posterior densities

Proof : Proceeds via the calculations

g(7r|y) ^ A(:r|y)gQ(>r) /a (>r
|

y)h°(7r)d^r

:£ (i/g)^

-(g/g)^

^ ^
jA(7r|y)(hQ(ir)-gO(7r))d7r

/A(ir|y)gO(^)d^

I [i-S]J"MT|y)d»r
^ * T \

£j A(7r|y)d?r



APPENDIX B

We begin Che proof of the various lenunas by demonstrating the basic

fact that in large samples the posterior is uniformly close to the empirical

distribution: this is used in several places below.

Lemma B.l : For all strictly positive priors g. there is a nonincreasing

function r?(n) - as n - «> such that for all samples y. , information

sets h, and actions a e A(h) strategies s., and terminal nodes

z e Z(s.),

(B.1.1) /1Ip.(z|t_.) - p.(2|y.)|| g.(^_.ly.)d;r_.

< ^^(g.x PiCxIy^) n(-n(x\y^)). and

(B.l. 2) Jlk.j_(a) - ^^.(a|y.)|| g. (7r_ . |y . )d^_ . < »?(n(h |y . ) ) .

Remark : Diaconis and Freedman [1989] show that for all samples, Bayes

estimates of multinomial probabilities converge to the sample average at a

rate that is independent of the particular sample so long as the prior

assigns strictly positive density to all distributions. One complication in

our model is chat even if strategy s. has been played many times, there

may be information sets h that are reachable under s. but have not been

reached in the sample. A second complication Is caused by the fact that the

distribution on terminal nodes generated by the sample average strategies r

does not equal the sample average on the terminal nodes. This explains the

complicated form of the right-hand side of (B.1.1).

Proof : Fix a strategy s. and terminal node z e Z(s.). Let

(a .(i,2)) be the actions by other players (including nature) that lead

to z, and let x(l) through x(L) be the nodes where those actions are



taken. It follows from (2.1) and Lemma A.l in Appendix A chat

(B.1.3) ||p.(zU_.) - p.(z|y.)||

^
, i ,

< Y p.(x(i)|y )||,:_.(a_.(i,z)) - :^^.(a_.(i,z)|y.)||

For each h € H . and « < l/#A(h) let B be the sphere in

A(A(h)) of radius t in the sup norm centered at jt .(h), and let 11

be the set of behavior strategies for information sets other than h. Since

\n .(a)-7r .(ajy.)! < £ on the set B x II" for all a e A(h)
,

- 1 -1 '
' X ' i

(B.l.^) /li'^.i(a) - ^'.(a|y.)|| g . (^, .
I y . )d;:_ .

< £ + f g . ( T .
I y . ) dJT .

,

J ''i -1 -^ 1 -1

-B^xn"^

Suppose first that g. is a non-doctrinaire prior for which jr .(h) is

independent of -k .(h'), h »< h' . Then the corresponding posterior g.

consists of a product g. - IL g. where g. is a multinomial. Diaconis

and Freedman [1989] show that for a multinomial, if £ < l/#A(h) the

posterior odds ratio

; g^(»r .(h)|y.)d7r .(h)/J i5(^ . (h) |y . )d^ . (h)

-B^ B^
£ £

goes to zero as the sample size n.(h|y.) - « at an exponential rate that

is independent of the particular sample. Since the multinomials are

independent, the posterior odds ratio studied by Diaconis and Freedman

equals

J
gi('r-ilyi)d'r-i

-B xn""

J
gi('f-ilyi)tif-i

Li(B,^lVi).

h
B xn -h



Now consider an arbitrary strictly positive prior g.. Since both g.

and R. are bounded above and below, we can conclude from Lemma A. 2 that

there is a constant k > 1 such that for all y. and rr . ,

g^('f.Jyi)A < g^('r.^ly^) < k|^(?r_^|y^).

Thus
,

J
gi('f-ilyi)d"i

-B^T-^ 2 hi—i < k^ L.(B^|y.).

J
gi('f-iiyi)dw_i

B>^1

and hence goes to zero at the same exponential rate. In particular, for all

e > there is an rj (n) - such that (B.l.A) is less than

£ + rj* (n(h|y. ) )/L. Choose N so that rj ^ (n) < 1/t for n > N . Then

fj(n) - r?
'^ (n) for N, + ...+N ,<n<N, +N„+...+N satisfies

' ^ 1 t-1 12 t

T7(n) - and (B.1.4) less than r7(n(h|y
. ) )/L. We conclude from (B.1.4)

that (B.1.2) is valid.

Now we combine (B.1.2) with (B.1.3) to obtain (B.1.1): Let h(i) be

the information set containing x(i), and note that

n.(h(i) |y.) > n.(x(i) ly.). Then

(B.1.5) ;|lp.(z|^_.) - p.(z|y.)|| gi(T_.|y.)d^_.,

L

^i?i
P^(x(i)|y^) r7(n(h(i)iy^)/L

^xeJSi) ^i^^'^i^ ''(-(-lyi))-

Lemma 5.2 : There exists a function r7(n) -» such that for all y. and S
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(5,2.1) max^ u.(s.!y.) - u. (s . (y . ) |y .

)

i

< V^(y.) - u.(s^(y.)!y.)

< [6/(1-6)] ni^\£X(s^(y ))
P^^'w ^^'''^'^'^^ly^^^

I
k

Proof : The first inequality follows from the fact that u.(s. y.) < V.(y.)

since playing s. for the rest of the game is feasible and yields

u.(s.|v.) in expected value each period.
1 1 ' 1

To demonstrate the second inequality, observe that because the V.'s

k- 1 k
are average payoffs V. (y.) i V.(y.). It follows from the Bellman

equation ('4.3) that

(l-«lj^)V^(y.) < (l-.^j^) u.(s^(y.)|y^) +

4., V p.(z) [V^"-'-(y.,z) - V^'-'-(y.)],

zeZ(s j_)

or since
(t>

< 6

,

vj(y.) < u.(sj(y.)|y.)

+ 6/(1-6) V p.(z) [V^"\y z) - V^'\y )]

zezTsi)

The final sum represents the expected value of new information. Note

k k
Ithat V.(y.) - V. (g. (• ly . ) ) ; that is, the value function depends only on

the current beliefs about ir . . Consequently, the value of new information

should be small if the expected change in beliefs is small. To make this

idea precise, we introduce the £^ norm on densities

llg-g-lll - Jilgi('f.i) - 6i'('f.i)ll d^.i- It is standard that V^(g.) is

Lipshitz in g. with Lipshitz constant U equal to the largest difference

in any two payoffs. Consequently



3^

^.eZ(s.) P.^^) '^'i-^y,,z) - V^-^y.)

We may then calculate

eZCs.)^!^"^ ii5iv-iv/-'^ tiv-.^i^ii^^

p.(z|y.) ||g.(.|(y.,z)) - g.(.|y.))|i^

- PiCzly^) /l|[Pi(z|T_.)g.(rr_.|y.)/p.(z|y.) - g.(rr_.|y.) ||d^_.

^ /l|Pi(z^..) - p.(zly.)|| g^(^_.iy.)d,r_^ +

Jllp^c^lyi) - p^c^ly^)!! g^(^,^\y^)<i^.^

< 2;||p.(zi;r_.) - p.(z|y.)|| g. (7r_ . |y . )d^_ .
,

where the last inequality follows from

Pi(zly^) -/P^(zk_.) g.(7r_. |y^)d»r_..

We can now take n to be the function whose existence is proved in Lemma

B.l, multiplied by the constant 2U(#Z)

.

|

Lemma 5.3 : For all e > and A > 0, there are i. < 1 and K such that

for all 6 6 [i.,1) and for all k > K

(5.3.1) A . P(s^y.),A.y.) - e < -1-1
J

LJi L.Ill l-£

Proof : From classical statistics, for all e and A there exists a t

and a t-period test procedure for the hypothesis

I k
w . e (?r . u.(s.,»r .) > u.(s.(y.),:r .)+A) such that the type I and type II
-1 -i' 1 1 -1 1 1 -'i^ -1 '^ '^

errors are less than £/2U for all steady states 8 . . Consider the policy

of first running this test, and then playing s. for the remaining k-t

periods if the hypothesis is accepted and playing s.(y.) otherwise. For



t k k
nocarional convenience, let 0(t,k) - (5 -S )/(!-£ ) be the weight placed

on the last k-t periods. Then the hypothesis - testing policy yields a

utility of at least

(5.3.2) - (l-^(t,k))U

+ ^(t,K) [u.(s^(y.),y.) + (l-c/7^)A • P(sJ(y. ) ,A,y^) - e/2] < vj(y.)

since the hypothesis-testing value cannot exceed the value of the optimal

policy.

Rearranging terms and using ^(t,k) < 1, 1-e < 1, we find that

(5.3.3) AP(sJ(y.),A,y.) < l/[^(t ,k) (1- c/2U) ] .

[(l-^(t,k))U-i(t,k)u.(s^(y.),y.) + £/2 + ^(t,k) V^(y.)]

< £ , .
a-Mt.Vn „ . 1:^ |vk<„

, . u,<s^y,,|v.)
^ *( = .k)<l-./2U) TTTTTOT "i"!' -l-i"l".'f

Ue can choose ^ and k((5) such that for each S € (i.,1) the conclusion

of the lemma follows. |

We turn now to sampling theory: what fraction of the population can

have such a badly biased sample that maximum likelihood estimation yields a

poor estimate of the true steady state values? Stating the desired result

requires some additional notation. Fix a horizon T , a plan r. for the

i kind of player, and the population fraction of opponents' actions ^_- •

From (3.7) we can calculate the corresponding steady state fractions 6.

for population i. Let Y. C Y. be a subset of the histories for player i.

We define

1 L y.eY. 1 'i

to be the steady state fraction of population i in category Y.

.



Len-JT.a B , 2 : For all c > and t] (r.) ^ as n -> » there is an N for

all i™. , r", s. and T such that if h e H .. a e A(h) then-111 m -

1

(B.2.1) e^(\ir^ .(a\y.)-'^ (a\l .)| > t, and n(h|y.) > N) < £.

If X e X(s.)
1

(B.2.2) ^"(nCxIy.) < [p.(x|?".) - £]n(s.|y.), and n(s.|y.) >N) < t,
1 ^ i-'i' "'i^ -i' I'-'i 1-^1

(B.2.3) ^'f(n'ax||p^(x|yi)-pi(xU^.)|| > e. and n(s.|y.) > N) < e, and
X ^ ^

(B.2.4) ^f (max p. (x |?^. )f?(n(x |y . ) ) > e, and n(s.|y.)>N) < e.
1 X 1 ~i 1 11

The first statement says that the population fraction having both a badly

biased sample on a € A(h) and a large number of observations on h is

uniformly small regardless of 6 . . The second says that the population

fraction that has both played a strategy making x likely many times, and

has seen x only rarely is uniformly small regardless of 6 . . Notice what

is asserted: the fraction both with a large sample and a biased sample is

small. It need not be true that of those who have a large sample most have

an unbiased sample.

Proof of Lemma B.2 : Since each period's actions are i.i.d., we can model

the distribution on opponents' actions faced by player i by a probability

space whose elements are what he will see the k time he arrives at inform-

ation set h. The Glivenko-Cantelli theorem shows that the empirical

distribution at each information set h converges to the distribution

induced by ^ . as the number of observations n(h|y.) -» », at a rate that

holds uniformly over all values of 6 . and the finite number of informa-^ -1

tion sets. It remains to explain why the rate is uniform over all "sampling

rules" r.(y.). This follows from the fact that the desired inequalities

hold even if player i is informed of the entire sample path of each



information sec before choosing his rule: Through such anticipatory

sampling he may be able to ensure that most of the long samples are biased,

but since there are few paths where the empirical distribution is not close

to the theoretical one after N samples, there is no sampling rule for

which the probability of long and biased samples is large.

A similar argument yields (B.2.2), except that now we use a probability

space in which the elements are what player i will see the k time he

plays strategy s..

Next we turn to (B.2.3). By Lemma A.l if (a .(i,x)) are the moves

by other players or nature and x(l) x(L) are the nodes leading to x

(B.2.5) llp^CxIy.) - Fi(x|fi^.)|l

L
< T p.(x(i)|^.)||^];.(a .(i,x)|y)-^ .(a .(i.x)|7^.)

1 -1 " -1 -1 ' -L -1 -1

^i?.

L
min(p.(x(i)|^.),||^^j^(a_.(i,x)|y ) - ^_^(a_^(i ,x) |'^^)

|| )

where the last step follows from i>.,ir . ,if . < 1. From (B.2.5) it follows
t^ "^1 -1 -1

that if

^fx Up (xly ) - p(x|i^ )|| > i occurs.

minlp.CxlT^^). ||:^];^(a|y.)-7r_^(a|^^)i) > £/L

for some x e X(s.) and a e A(h) with x e h. Consequently, if we can

show how to find N for each such x and a so that

(B.2.6) ^^lp.(x|e^.)>£.||^^.(a|y.)-^_.(a|'^.)||>2e/3L,n(s.|y.)>N) < i/L

then (B.2.3) will follow.



Choose N' so that (B.2.1) holds for 2t/3L, and choose N so tha;

(B.2.2) holds for f/3L and so that N > N /e . If xGh

,

n(h|y.) > n(x|y.). Consequently, if p.(x(i)|e_.) > £. by (B.2.2).

(B.2.7) ^""{nChlv.) < N, and n(s.!y.)>N) < t/2L.

On the other hand by (B.2.1)

(B.2.8) e^{\n'^ .(a\y.)-n^.(a\7^.)\ > 2£/3L and n(h|y.)>N,) < 2C/3L

We conclude

(B.2.9) «"'(|^^.(a|y ) -w™. (a |?".
) |
>2£/3L,n(s .

] y . )>N) < e/L

whenever p.(x(i)|^ .) > e, which proves (B.2.6), and consequently (B.2.3).

To show (B.2.4) we proceed as in (B.2.5): If p.(x|tf .)r) < e/2 we are

done. Let N. be large enough that r7(n) < c/2 for n > N.. , then choose

N so that (B.2.2) holds for e' < e/2 such that (e/2-£')N > N

Our next step is to argue that the players are unlikely to have a large

but inaccurate sample, so that they are unlikely to be confident of an

incorrect forecast. We wish this to be true uniformly over the population

fractions 6., which will follow from the uniform version of the strong law

of large numbers, that is, the Glivenko-Cantelli theorem.

Recall that 6.{Y.) is the steady state fraction of population i

whose histories y. lie in Y. . Because our aggregate system is determin-

istic, 5.(Y.) is equal to the expected frequency with which the "old" (age

T ) players encounter events in Y. . In particular, for a set Y. that

consists of all subhistories of a set of terminal histories (i.e., histories

of length T ) and a particular terminal history y. , define J(y.,Y.) to

be the number of times that a subhistory of y. lies in Y. . Then we have



(B.A) J ( V . , Y . ) ^ .

m m

SO that to bound the population fractions, it suffices to bound the

probabilities of the corresponding length-T histories.

Our goal is to relate 6. representing the population fractions with

each experience to the fractions p. that determine the probability

distributions over observations.

Lemma 5 . ^ : For all £ > and T}(n) -0 as n - « there is an N such

1 r- 1 T ^ Tm ni ,that for all T , S . , r. , and s.
tn -1 1 1

e^ (max p^(x|y^)T7(n(x|y^)) > (, and n(s^|y^)>N) < e

Proof : Letting r; - sup rjCn) by (B.2.3) we may choose N large enough

that

m
I
Tni > II

-
SA Jf"" , P.(x|y.)-p.(x|fi .)h>«/2 and n(s |y )>N) < c/2
1 xGa(Sj^;i 11 -1 11

so that the conclusion follows from (B.2.4).

Lemma 5.6 : For all « there exists a 7 such that for all y. , 6 . , r.^1 -1 1

and T
m

Proof : Fix g. and e and let B B (fi .)• We must find 7 so that
"1 e -1

regardless of y . , 8 . , v . and T" •'1-11 m

1

fo gi('f-ilyi)dT-i

D
^

h h^''-'^
dn.

.< (.

Since g. is bounded away from 0, and £ is fixed, it suffices to find a



-D

7' so that

Define B - (w .1 ||p.(z|e .) - p.CzU . ) ||
< c) and recall that B - n B .

By (B.1.1) of Lemma B.l, Lemma 5.4, and »*Z>1 , we may find an N so that

6(^{;i|p.(z|7_.) - p.(2^_.)||g.(^_.|y.)d^_. > 2^/3, n(s.Iy.) > N) < e/#Z

Now I J||p.(z|ff .) - p.(z|w Ollg-Cf lyOd"' . may be written as the sum

of integrals over B and -B , so in particular I > If. fh if

z

Since fg-CTr .|y.)dfl- .
- 1, I > li/Z also follows from'"i-i-^i -1

r„ E. (t . y.)d5r . < 1/3. Ue conclude
•^ B "1 - 1 '^ 1 -

1

z

^i*-^B Si^'^-ilyi)'^'^.! ^ 1/2' "(s. |y.) > N) < £/#Z.

z

If we take 7' - min(l/3, min
|^ |y ) < N) -^B Si^'^. i lyi)*^'^. i ' •

' 1
' 1 -^ 1 z

z

Since (f„g.(»r .|y.)d?r . > 7' ) Cn (/„ g.(>r .|y.)d»r . >7') it follows that
•'B°i -1-^1 -L z 'B "1 -1-^1 -L

z

fi^(Jgg.(7r_.|y.)d,r_. < 7') < £.

Lemma 5.7 : Let T - « be a sequence of lifetimes, and 6 be a
m

subsequence of steady states that converge to 5, and let r. be the

corresponding rules. If fi.(s.) > 0, then

(5.7.1) e™(n(s.|y.) > N and r'!'(y.) - s.) > ~^.{s.) - (N/T )
1 1 -^ 1 1-^1 1 11 ' m

Proof : Since ^.(s.) > there exists an e > and m such that
1 1

fi.(s.) > It for all m > m. Now fix N. For any history y. , there are

at most N subhistories y! for which r.(y'.) - s., and n(s. y.) < N.
' X 1/1 1 i-'i

Since fi.(y.) < 1/T , equation (B.4) shows that



(5.7.2) ^"'(n(s. !y.) < N and r"'(v.) - s.) < N/T

Since tf.(s.) is the stun of the fractions playing s. with n(s.|y.) < N"

and those playing s. with n(s.|y.) > N, (5.7.1) follows. |

The following lemma is used in Appendix C;

Lemma B .

3

: For all £ > there is an N such that for all T , 5 ., r.
m 1 L

and s. if heH . and aeA(h)

b\ (;ik_.(a) - ,r_.(aU_.)|| g. (t_ .
| y . )d^_ . > e

and n(h|y. ) > N) < e

Proof: This combines B.2.1 from Lemma B.2 with B.1.2 from Lemma B.l. I



APPENDIX C

Theorem 6.1 : For fixed strictly positive priors g. and 5 < 1 as T - »

every sequence 8 of steady states has an accumulation point 6 ; if

6.(s.) > there exist beliefs u. that are confirmed for s. and 6 .

1 1 1 1 -1

and such that s. maximizes u.(« u.).
1 1 1

Tm
Proof of Theorem 6.1 : Let 6 be a subsequence of steady states that

converge to 6, and let r. be the corresponding optimal rules. Suppose

7.(s.) > 0.
1 1

We will say that s. is a static £-best response to marginal beliefs

p . if, for all s '.

,

'^j_(s^,p^) + £ > u^(s^,p^).

Fix T)(r\) so that Lemma 5.4 holds. Fix e. By Lemma 5.2 and the fact that

m . . ,
r. IS optimal

(6.1.1)

5XaVv^ ^#Z(s^)Ue/(l-5)

.{r.(y.) - s., s. is not an -*-

c best response to p.(»|y.).

and n(s.y.) > N) < e1-^1

Let X .(s.) be the nodes hit (in the limit) with positive probability

when s. is played: X .(s.) - (X(s.,fl .))• Let
L *^ -^ -111-1

p 113-n p(x|5 .). We may assume m is large enough that
Si,xeX.i(si) -1

p(x|^.) > p/2 for x G X .(s.) and |l»r .(a|^.) - tt^ . (a |7_ . ) ||

< t. Note

that for x 6 h, n(h|y.) > n(x|y.). Consequently, by (5.4.1) of Lemma 5.4,

for any « we may find an N so that

(6.1.2)) e
m
i

max _ ,,(n(h|yi)) > 2£/p, and n(s
j_ ly^) > N

ieH_inH(si_,5_i)
' < £



Ue mav cake N large enough to satisfy the conclusion of Lemina B.3.

(6.1.3) «"( -^^^ J||;r.i(a) - 7r_i(a|«-i)||gi(7r_i|yi)(Hr_i > 3£, and
ae^_i(si)

n(s. |y.) > N) < 2c .

Since 0.(s.) > 0, choosing m large enough that N/T < c'/2 and

(^ . (s. ) -^"'(s. ) ) < e'/2 it follows from Lemma 5.7 that

(6.1. A) e"(n(s.|y.) > N and r"'(y.)-s.) > e'.

Combining (6.1.1) through (5.1.4) yields

(6.1.5) ^.(r.(y.) - s., s. is a static 2MUt/(l-(5) best-response to11 -'ill ^

-"^^ ;||^ (a) - TT (a|7 .)||g.(x |y)d;r < 2e and n(s |y ) > N)
aeA_j^(si) "1- "1 -11-1 -1 11

> t' - 2(.

If we take 3c < t' , we conclude that for some y.s. is a 2#Z(s

.

)Uc/(l-5)•^11 1

best response to p • (•
1
g. (• |y . ) ) with

max 7 ,
,r||7r .(a) - ir .(a|7 .)||g.(ir .|y^)d7r . < 3c.

acA .(s.)**" -1 -1 -I'lioi^ -1 •'i -1
-1 1

Taking « -»
, we see that as a measure on ir ., g.(»|y.) has a weak

limit point n . . Then s. is a best response to p. (•!/;.), that is,

maximizes u. (• ,u.) , and
1 1

^^^ =7 r Jh -(a) - ^ .(a|7 .)|| M.(dT .) - 0.
IaGA .(s.) -1 -1 -1 " 1 -1

-1 1
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