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SEMIPARAMETRIC ESTIMATION OF DURATION AND COMPETING RISK MODELS

Introduction

Since Lancaster's (1979) paper on unemployment, duration models

have become commonly used in econometrics. Heckman and Singer (1986)

give a recent survey. While econometricians have emphasized the presence

of unobserved heterogeneity, statisticians have instead emphasized the

use of semiparametric models which do not require parametric specifica-

tion of the baseline hazard. The leading model used has been the Cox

(1972) proportional hazard-partial likelihood specification. While the

model's semiparametric specification makes it potentially attractive, it

has not been widely used in econometrics. Three possible reasons exist:

(i) It is a continuous time specification while most duration data in

econometrics is discrete where the discreteness may well be important,

e.g., unemployment data. (ii) While various ad hoc procedures have been

developed to treat tied failure times within the partial likelihood

framework, they become cumbersome in the presence of many ties. Econo-

metric data often has very many simultaneous failures, e.g., unemployment

data at 26 weeks. (iii) Unobservable heterogeneity cannot be included

without the presence of multiple integrals of the same order as the

number of individuals in the risk set which makes estimation difficult,

if not impossible.

In this paper, we specify and estimate a semiparametric propor-

tional hazards (duration) model. The model specification is semiparame-

tric in the sense that the baseline hazard is nonparametric while the

effect of the covariates takes a particular functional form, which is

typically linear although it need not be. The underlying hazard model is



based on either an ordered probit or ordered logit model where an unknown

parameter is estimated for each time interval over which the model is

specified. A particular advantage of the specification is that the esti-

mates of the parameters of the covariates are invariant to the length of

time intervals which are chosen. Therefore, the grid of time intervals

can be made finer as the sample size increases. We also add parametric

heterogeneity to the underlying hazard modal specification. The hetero-

geneity enters in extremely covenient form since the resulting model does

not require numerical integration in estimation. In the sample of unem-

ployed individuals examined in this paper, the addition of heterogeneity

has very little effect on the results. Whether this finding is general

to nonparametric baseline hazard specifications or is a particular

finding for our sample, awaits future research.

We then consider competing risk models. Here, two or more hazards

exist which may cause failure. We first prove an identification theorem

which gives conditions under which the competing risks model is identi-

fied even if the covariates for the risks are identical. The identifica-

tion condition basically requires the presence of at least one partly

continuous variable among the covariates. This identification result

should diminish the considerable confusion in the literature over whether

competing risks models can always be specified as independent hazards

models. We then specify a semiparametric proportional hazards model

which permits unrestricted correlation among the risks. The basis for

the model is a multivariate ordered probit specification where separate

coefficients are estimated for each baseline hazard in each time interval

of observation. Previous competing risks models which allow for interde-

pendence of the risks have unacceptable restrictions on the form of the



hazards. Alternatively, previous attempts at generalization of the semi-

parametric proportional hazards model to the competing risks situation

have allowed only for restricted forms of interdependence among the

risks.

In Section III, unemployment duration data is analyzed using the

semiparametric duration and competing risks specifications. We first

consider the effects of unemployment insurance (UI) and sociodemographic

characteristics on the duration of unemployment. We find an important

effect arising from the exhaustion of UI benefits at either 26 or 39

weeks. We then follow Katz's (1986) research and divide the hazards into

either new jobs or recalls and estimate the competing risks model.

Unlike Katz, we neither assume independence of the risks nor do we assume

a particular functional form for the baseline hazards. Like Katz, we

find significantly different baseline hazards for the two types of risks.

However, we develop a test procedure for the particular functional form

used by Katz and reject his baseline hazard specification along with his

finding of monotonic positive duration dependence in the new jobs hazard.

I. Specification and Semiparametric Estimation of Duration

We assume observations on failure times over the discrete periods

t = 0,1,2,...,! for individuals i = 1,...,n. For now, we assume that the

predetermined variables of each individual X. do not change with time. 1

Our specification begins with the proportional hazards specification of

Prentice (1976), see also Kalbfleisch and Prentice (1980) where

1 Our method can be extended to the case of non-constant X's in a

straightforward manner. See G. Sueyoshi (1986).



We again find very important effects from the exhaustion of UI at either

26 or 39 weeks of unemployment.

P(t < t. < t + A
|

t. > t)

(1.1) X . (t) = lim = X (x) exp(-X.B )

A->-0

is specified as

t.

(1.2) log f
* X (t) di = X.6 + e .

J o l l

where e. takes an extreme value form. 2 Now let

(1.3) log J J*
X (t) dt = I. t = 1 T,

J o t

so that the probability of failure in period t by individual i is

o —X 8

(K4) J
*Li -4 f(e) *

We treat the baseline hazards, I , as constants in each period and

estimate them along with the parameters 8 • The Cox approach instead

treats the baseline hazard function as a nuisance function and conditions

it out of the estimation procedure by doing multinomial logit estimation

on all the survivors (the risk set) during period t. We, instead,

estimate all the parameters simultaneously. Moffit (1985) has also

2 The extreme value assumption follows directly from the proportional
hazards model specification. Thus, no additional assumption is made
beyond proportional hazard.



estimated the baseline hazard parameters jointly with the regression

parameter, appealing to results of Bailey (1984), but his specification

does not guarantee that the probabilities lie in the unit interval and it

is not clear how heterogeneity can be included in his model.

'

Letting y. = 1 if failure in period t occurs for person i, and

y. =0 otherwise, the log likelihood function takes the form

£
t

-X.B

(1.5) log L = E I y log / f(e) de

it Xt £ t-T
X
i
6

for e with an extreme value distribution then the likelihood function is

of an "ordered" logit form and for e with a standard normal distribution,

the likelihood function takes the familiar ordered probit form. Both

models are extremely easy to estimate since either a closed form for the

integral or an accurate partial fraction expansion is known. In some

exploratory research we have done, the estimates of the ordered logit and

ordered probit models are very similar except in the extreme left tail,

after rescaling, as would be expected from experience in discrete choice

models. Note that once the nonparametric estimates of the £ , together

with their covariance matrix, are known, then the applied investigator

3 Moffitt's (1985) approach is not strictly correct in the case of a

proportional hazards model with covariates present. Our paper's
formulation is consistent for arbitrary discrete periods and equivalent
to the Kaplan-Meier estimator, both for discrete data and as the time
intervals become arbitrarily small. Moffit's model, along with recently
proposed models by Kenan (1985) and Ham and Rea (1986), does not have
these consistency properties.



can determine whether various parametric forms such as the exponential or

Weibull are consistent with the estimates. In fact, any type of parame-

tric approximation to the £ can be estimated and hypotheses of increa-

sing or decreasing duration dependence can be considered in a much more

flexible manner. We use a test procedure of this type in Section III.

An additional advantage of this specification is that the linear

form of the proportional hazards model in equation (1.2) allows handling

jointly endogenous variables or errors in variables via instrumental

variable techniques. These potential problems commonly occur in empiri-

cal applications of duration models, e.g., Diamond and Hausman (1984).

The parametric hazard approach used in econometrics so far has not per-

mitted a satisfactory treatment of these common econometric problems.

We now introduce heterogeneity into the specification. Note that

while, in principle, heterogeneity can be included in the Cox partial

likelihood framework, it involves multiple integration of order n , where

n is the number of survivors in period t. However, in the specification

of equation (1.2), heterogeneity is straightforward to include and

involves only a single additional order of integration in equation (1.4).

In fact, for the case of a parametric gamma distribution specification of

heterogeneity, a closed form result occurs which involves no numerical

integration. The result is quite similar to Lancaster (1979). Assume a

gamma distribution with mean one and variance 2 = 1/9 . Then rewrite

equation (1.2) in exponential form as

t

(1.6) exp{ log / X
q
(t) dT - X^} = exp(E

±
+ w

±
)



where w, represents the unobserved heterogeneity and n . = exp(w.) is

distributed as a gamma random variable. Then we denote

t

(1.7) I.(t) = 1/ A (t) d-rl exp(-X R)
1 °

i

where I.(t) is the survivor function in the absence of heterogeneity.

Now let s.= w. + e. so that I.(t) = exp(s.) = q. say. Upon integratingill l 11
both sides of this equation with respect to the random variable q, we

find

e
(1.8) / g(q) dq = [1 + (1/8)1. (t)]

I.U)
1

i

Thus, we have a straightforward calculation in closed form since for each

period t in the likelihood function

(1.9) I
±
(t) = exp(-X 0) expU )

The log likelihood then follows directly as the sum of terms for each

person i over the hazard term for each period t and estimation is

straightforward. Preliminary results indicate that maximum likelihood

estimation of with up to 50 I coefficients creates no computational

problems.



The next question that we intend to consider is whether the gamma

heterogeneity specification is sufficiently flexible. Heckman and Singer

(1984a,b) in a series of papers have sharply criticized the specification

of parametric heterogeneity and have proposed a nonparametric specifica-

tion of the heterogeneity. However, their empirical results have all

been done in the context of a heavily restricted parametric specification

of the baseline hazard function. * It may well be the case that a

nonparametric specification of the hazard function reduces or eliminates

the sensitivity of the estimates to a parametric heterogeneity assump-

tion. Such a result would be quite convenient since our model is

considerably easier to estimate than the Heckman-Singer model, and more

importantly, yields an asymptotically normal estimator so that standard

large sample inference can be used.

We now provide theorems which consider the semiparametric single-

risk specifications without and then with heterogeneity. The data setup

is:

(D1 ) t = 1,2,...,T discrete periods.

(D2) (t., X.), for i = 1 N observations where t. denotes the

failure period for observation i and XI is the vector* 1

of predetermined variables. We let y. = 1 if the ith

individual fails in time period t and y . .
= otherwise.* J it

'Manton, Stallard, and Vaupel (1986) find that the specification of the

baseline hazard function is more important in estimation than is specifi-
cation of the heterogeneity distribution. Meyer (1986) has proven iden-
tification of a Heckman-Singer- type of estimator in a model similar to

the one developed in this paper. He is currently implementing the
estimator to assess the sensitivity of the results to specification of
the heterogeneity distribution.



The likelihood function, from equation (1.5) then becomes

N T
£
t "

X
i
6

y.

(1.10) L = n n [ / f(e) de ]

lt:

i=1 t=1 A
t-rX

i
B

We do all asymptotics for fixed T, e.g. T = 50 weeks, and as N becomes

large. For the specification without heterogeneity we make the following

assumptions:

(A1.1) The error distribution F is twice differentiable with the

density function f(.) > almost everywhere.

(A1.2) The X.'s are iid with

(i) Pv (

I

Ix.l
|

< M) = 1 for M <

(ii) For any 6eR , 8*0 and any constant ceR,

P
X
(X6 = c) < 1

(A1.3) 9 = (B ,£ ) is an interior point of a compact set B x L.
o o o

Under these rather standard regularity conditions, we prove the usual

asymptotic properties of the maximum likelihood estimator (MLE)

:

Theorem 1

:

Let 6 = (B , I ) be the MLE. Then

N-»-oo
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We now consider the single risk case with heterogeneity. Thus, the

only change in the specification is that we assume that the distribution

of the error term e depends on an unknown (finite) parameter vector y so

that e ~ F(« |y ) . 0ur assumptions then become:

(A2.1) For all yeT, F(-|y) is twice differentiable with

(i) The density function f(« |y) > almost everywhere.

(ii) {e|f(e|y) = cfl^— |y } for all y * y and for all a,

b, c e R has Lebesgue measure zero.

(A2.2) Same as (A1.2) with the additional assumption that

(iii) At least one component X of X has B * and

positive density in an open neighborhood, conditional

on X = (X , ...,X ,X... , . ..,X. ) almost surely for

(A2.3) 9 = (3 i H , y ) is an interior point of a compact set

B x L x r

.

We are then able to prove the usual asymptotic properties of the MLE:

/^ A /\ A
Theorem 2 : Let 9 = (6, I, y) be the MLE where e ~ F(. |y )

Then

N-vco
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In this section of the paper we have specified a seraiparametric

proportional hazards type model which is well suited for discrete data of

the type which occurs in econometrics. Intuitively, the specification of

the baseline hazard function is a series of dummy variables which

requires no prior assumption of a parametric form. The specification

bears close resemblance to the Cox (1972) specification. However, rather

than conditioning out the baseline hazard, we estimate it jointly with

the coefficients of the predetermined variables. This approach allows us

to eliminate the problems of treating ties which are quite common in

discrete economic data. The approach also allows the introduction of

heterogeneity in a straightforward manner without the necessity of

multiple integration. For the case of parametric heterogeneity specifi-

cations, the resulting likelihood function is straightforward to compute.

Indeed, for the case of gamma heterogeneity the resulting likelihood

function exists in closed form. The one additional assumption which is

required for identification of the semiparametric model with heterogen-

eity is that at least one predetermined variable is partly continuous.

This assumption need not be satisfied in all econometric applications of

our specification.

II. Competing Risk Models

We next consider competing risks models. Competing risks models

occur when failure can arise from two or more sources, e.g., a spell of

umemployment can end with either a new job or withdrawal from the labor
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force as estimated in Diamond and Hausman (1984). Katz (1986) has

considered the case where unemployment ends with either a recall to the

previous job or a new job, and he finds significantly different behavior

with respect to the two risks. Cox and Oakes (1984) give a recent survey

of these models.

The proportional hazards model has been extended to the bivariate

case in ways which allow only quite restricted patterns of interdepen-

dence between the two risks, e.g., Clayton and Cuzick (1985). Applied

studies have either assumed a very restricted parametric form, e.g.,

Diamond and Hausman (1984), or have assumed independence between the two

risks which is also quite unsatisfactory, e.g., Katz (1986). Lastly,

considerable confusion exists over whether the dependent competing risks

models are even identified, with the common claim made that independent

competing risks specifications are adequate since any general model can

be put into this form (an argument reminiscent of the recursivity debate

in simultaneous equations). We prove here that identification does exist

under quite weak regularity conditions. We then specify and estimate a

bivariate ordered probit model with nonparametric baseline hazard

specifications and unrestricted patterns of interdependence between the

stochastic terms in the model.

The competing risks model can be placed into a latent variable

framework similar to the probit model which is familiar to econometri-

cians. Let n, for k = 1,...,K denote K competing risks. Introduce the

latent random variable Y* _> for k = 1,...,K, which would be the length

of the period before failure if the particular risk were the only risk

present. Denote the distribution function of Y* by F (x) = pr(Y* <^ x)

.

However, Y* is a latent variable in general since it cannot necessarily
K.
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be observed. Instead, only the minimum Y* of the theoretical lifetimes

is observed:

(2.1) Y = min (Y*, ..., Y*) = min
k

Y*

The available information includes the actual outcomes and the fact that

if Y is greater than c, then the survivor distribution function, F (c) =

1 - F (c) together with the probability density function gives the

conditional hazard rate function f (c) = f (c)/F (c) for the observable
y y y

variable Y. We now specialize to the case of K = 2 for notational

simplicity. The amount of time until one of the two events occurs is min

Y* with only the smaller of Y* and Y* being observed, although neither

may be observed if censorship occurs. The latent variable model can then

be written as

(2.2) Y* = X
1
B

1

+ e
1

Y
2 " X

2*2
+ e

2

Katz (1986) assumes that the stochastic disturbances, z and e are

independent and thus treats equation (2.2) as two standard duration

models which were discussed above. Diamond and Hausman (1984) allowed

for dependence by assuming that Y* and Y* were distributed as bivariate

log normal random variables. The unfortunate consequence of this assump-

tion is to put very strong and non-testable parametric assumptions on the

form of the hazard functions. We remove these parametric assumptions

through semiparametric estimation of the hazard functions while retaining

dependence among the stochastic disturbances in the model.



14

However, we must first consider the question of whether the compe-

ting risks model is identified for an arbitrary multivariate distribution

function for equation (2.2). Cox (1959) and Tsiastis (1975) have pub-

lished non-identifiability results, and a brief review is given in Cox

and Oakes (1984). However, this previous work proceeded mostly in the

absence of covariates which are typically present in econometric applica-

tions. In fact, it is relatively straightforward to demonstrate that if

X and X do not have identical variables than the model is identified in

the sense that an observationally equivalent independent competing risks

model does not exist. However, in many econometric applications such as

the unemployment problem X = X so that this convenient identifying

assumption does not exist.

However, in Theorems 3 and 4 we prove identification of the

bivariate competing risks model so long as at least one covariate is

partly continuous and certain other regularity conditions are maintained,

even if X = X . Thus, we have solved the long-standing identification

problem for competing risks models, at least for many econometric and

statistical applications with covariates present.

We first consider the semiparametric specification of a bivariate

competing risks model using the notation from the duration model specifi-

cation considered earlier. We again assume the presence of discrete data

with underlying "true" failure times

t.

(2.3) i\ = - log /
1

X 1 (s) ds = XB , + e

,

t
1 ° 1 1

t
2

I 2 = - log / X 2 (s) ds = Xg_ + z

h ° 2 2
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Suppose that the failure type is of type 1 so that t = min(t ,t ).

The probability of this outcome is

t 1
. -XB.
t 1 <*>

(2.4) / / f(e
1

, z
2

) de
2

de
1£l

t-r
x3

i "'V
where m(e

1
) is such that the implied failure time of type 2 is greater

than the implied failure time of type 1 for a given e . Given a

realization of e* and assuming linearity, we solve for the implied

failure time,

t*

(2.5) XB + e* = -log / X*(s) ds

where t* e (t-1 ,t)

.

5

Thus, we find

(2.6) XB
1

+ e* = tl._
1

+ <
1
(^ l

t
- i\_

y
)

where < is defined by

(2.7) 4^ = t^- +Kl Ul " i^,)

We then use equation (2.6) to solve for k..

(2.8) kc

1

= (XB
1

+ e*
1

- l\_^)/U\ -
£j._

1
)

and we then solve for the support of e such that t exceeds t*

I 2 - I 2

(2.9) E * > t 2 -XB
2

+
[ f _ ^ [e* - (il -ap )] = „( e «)

t t-1

We have thus solved for m(s ) in equation (2.4) so that the probability

of failure type 1 in period t is

5 The linearity assumption is tested later to assure that it is accurate
enough for estimation purposes.
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zj. -xe
1

«

(2. 10)
| \ f(e

1

,e
2

) de
2

de
1

a -

1

2

pi . i

*t *t-1

Thus, the specification estimates two sets of £ ' s which gives a semi-

parametric version of the respective hazards. We specify the density

function f(e ,e ) to be possibly correlated permitting dependence among

the stochastic disturbances. It is important to note that the parametric

assumption of f does not impose parametric forms on the cause specific

hazards as it did in the previous Diamond-Hausman (1984) specification.

We now specify the log likelihood function which corresponds to

this specification of the competing risks model. The data setup is:

(D1 ) t = 1,2,-...,T discrete periods

(D2) ( t. , d. , X.
.

, X„. ) for i = 1 ,2 N where t. is the period

of failure, d. = denotes failure by the first risk while

d. = 1 denotes failure by the second risk, XI. is the vector
1 ' 1i

of covariates for the first risk while X' . is the vector of
2i

covariates for the second risk. We let y.^ = 1 if the ith
it

individual fails at time period t. and y.^ = otherwise.
it

The log likelihood function is
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(2.11)

el - y
N T /t li"1

log L = E E yit
[(1-d.)logj f f(e y e

2
) de

1

de
2

i=1 t=1
1 -X R f P 2 _v R 1 + rCr _fol_Y R£l
t-rxu 6

i

[*Vx
2±

B
2
3+I(e ra t-

x
ii

B
i

)}x
t

]

*t" X
2iB 2

+ d.log I f f(e 1( e
2

) de
1

de
2

^ 2t-rX
2i6 2 ^ Ul

t"
X
1i

B
1

] + [(£ 2- (i 2-X2i6 2
))/X

t
]

1 "2

where

°> < l\ <, l\ < ... < lli < <*>,

< £2 < £ 2 < ... < £ 2 < 00>

and X = U| - ^t-1
)/U

t
" *t-1 ) for * = 2 '---' T_1 with

X
1

= A
T

=
1

(A3.1) The error distribution F is twice differentiable with the density-

function f ( . ) > almost everywhere.

(A3. 2) X = (X ,X ) are k = (k + k ) vector iid random variables such

k
1

k
2

that for any 6 e R , 8 e R ajid any c , c z R,

P
X

(X
1

6
1

=C
1
)<1and P

X
2

(X
2
6
2 = C

2
)

<
1

(Note that this assumption includes the case of X = X ).

(A3. 3) 6 = (g . . „ . Ji
1

, £.
2

) is an interior point of a compact set
o 1 o 2o o o

B x B x L 1 x L2 .

We then prove the usual properties of the MLE

:



18

/% A A A A
Theorem 3 : Let 6 = (3,, &,, Jl

1
, £ z

) be the MLE with error distribution

F(£y z
2
). Then

/S (• - e
o

) * » (o. [u.JLgJfft]-
1

).

N->-oo

We now move to the more common case where the error distribution

depends on a finite vector of unknown parameters, e.g., the standard

bivariate normal distribution with unknown correlation coefficient. We

now give a set of conditions for identification where we require at least

one continuous variable in both X and X . Also, if X = X , we require

additional assumptions on the distribution function F. Our set of

conditions is

(A4.1) For all ysT, F(«,« |y) is twice differentiable with

(i) A density function f(«,«|y) > almost everywhere.

(ii) {(e
l

,e
2
)|f(e

1

,e
2
|Y) = c f (

1

b

1

,

2
-

2
\y q

)} for Y *

y and all constants a, b, c's in eR have Lebesgue measure

(R2 ) zero.

(A4.2) X = (X ,X ) are iid k = k + k_ vector random variables such

that

k
1

k
2

(i) For any 6 e R , 3_ z R and any constants c , c z R

Px/ X
1
6

1

C
1

J
<

1
'

P
X
2

(X
2
S
2 = C

2
} < 1
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(ii) At least one component X,, of X, has $ ,, t and has
1h

1

1 1 hl

positive density in an open neighborhood conditional on

(XrV " U
11

X
1h

l

-1'
X
1h

1

+ 1*
•'•' X

k
1

'

X2T-'" X
2k

2

) '

almost surely P

(x
1

,x
2

)

(iii) The analogous condition holds for at least one component X_,
2h

2

of X
2

(A4.3) 8 is an interior point of a compact set, B, x B_ x L 1 x L2 x r .

o \ Z

For the case of X = X , the following modifications in the assumptions

are made

:

e - a e - a

(A4.1-) (i) {ejF^e, — |r)+ F
2

(e, ~£ Iy)-^ =

e - a e - a e - a c - a

F1<-^ • -b^ It.)-, + F
2 i-^f ~rf hrj-al

for y * T an(3 all constants a, b, c's in R has Lebesgue

measure (R) zero where F and F denote the partial

derivatives.

(A4.2') (ii) and (iii)

At least one component X... of X. has 8 1h
* and has

positive density in an open neighborhood conditional on

3^= (X
11

,...,X
lh_ l

,X
lh+1

X
1k

) almost surely Pj .

Thus the additional required assumption allows us to sort out the

marginal distributions of F( . , . ) . We then have our last theorem on the

properties of the MLE:
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"> A.
Theorem 4 : Let 6 = (3

1
, $

2
, O- , I 2

, y) be the MLE with the error

distribution J?(e.,e
2 \y ). Then

/i » - e„) * .(o, [ii« If^]" 1

.

N-)-oo

Lastly in this section we consider a Monte Carlo type example to

ascertain whether the linearity approximation used in equations (2.4)-

(2.11) is sufficiently accurate for estimation purposes. Our sample

consists of 1055 observations each with the same two predetermined

variables for each of the two risks. The predetermined variables were

taken from the data set employed in Section III of this paper. We assume

a bivariate normal distribution with each variance set equal to one and

correlation coefficient p . It is easy to show that the model satisfies

the assumptions in (A4). The model is estimated over 20 periods for each

risk so that 11 and 12 parameters are estimated for the respective

baseline hazard in addition to the unknown parameters for the covariates.

The results of one estimation are:

Table 2.1: Test of Linearity Approximation

(Standard Errors)

Risk 1 Risk 2

Actual Estimated Actual Estimated

6
01

0.10 0.08 0. 15 0.14
(0.02) (0.02)

6 02
-1.00 -1.00 -.50 -.51

(.09) (.23)

p 0.60 0.72

(0.66)
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Overall, the various samples which we estimated over gave similar

results. The estimates of the parameters for the predetermined exogenous

variables are quite accurate, p is usually estimated accurately but the

reported precision is not high. The parameters of the baseline hazards

(not shown here) are always estimated very accurately with the average

asymptotic "t statistic" about 3. As expected, the precision of the

parameters of the baseline hazard decreases in the right hand tails as

fewer observations remain in the extreme tails. Overall, we conclude

that maximum likelihood estimation of the bivariate competing risks model

using the linearity assumption leads to quite accurate parameter esti-

mates. We now proceed to use of the single and competing risks models on

unemployment data.

III. Results

Our data are derived from a sample created from the Panel Study of

Income Dynamics (PSID) by Katz (1986). Katz emphasizes in his study that

recalls from unemployment to a previous job should be treated differently

than new jobs. Thus, he formulates a competing risks model where recalls

and new jobs are treated separately, rather than being combined into a

single risk model as most of the previous unemployment duration litera-

ture had assumed. By separating the overall reemployment hazard into

these two parts, Katz is able to test the implications of job search

models without the potential biases which can arise from the convolution

of the two risks. Indeed, his results find strong positive duration

dependence in the "new job finding rate" when the recall rate is sepa-

rated into another risk. He also finds evidence of duration effects for

unemployment insurance (UI) near the point of exhaustion of UI benefits.
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However, the econometric specification used by Katz for the compe-

ting risk model is quite restrictive along two dimensions. First, he

assumes that the hazards for recalls and for new jobs are independent.

Second, for each of the baseline hazard specifications in the independent

proportional hazards models for recalls and new jobs, Katz uses a modifi-

cation of the one parameter Weibull specification, first used in the

econometric literature by Lancaster (1979). Given his emphasis on the

estimated shape of the hazard functions, this restrictive specification

is very unappealing. Our proposed method permits non-parametric estima-

tion of the baseline hazards removing these restriction while also

allowing stochastic dependence between the two hazards.

The sample is taken from waves 14 and 15 of the Panel Study of

Income Dynamics (PSID) . We adopt Katz's data definitions, in particular

whether a particular unemployment spell ends by recall, a new job, or is

censored by the date of the interview. The unemployment spells occured

in either 1980 or 1981. Potential sampling problems for unemployment

spells in the PSID are discussed in Katz (1986). He concludes that these

potential problems are extremely minor in affecting his results.

The data set consists of 1055 observations. The sample is limited

to heads of households between the ages of 20 and 65. Variable defini-

tions and means are given in Table 3.1. Note that our sample is identi-

cal to the Katz (1986) sample with nonwhites being oversampled because of

the sample frame of the PSID. Recalls are the most important way in

which unemployment ends in the sample: 57% of the spells end in recall.
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Of the remaining spells, 23% end in a new job while the remaining 20% of

unemployment spells are censored by the interview date. The basic out-

comes are given in Table 3.2. Note the increases in exit from unemploy-

ment at 26 and 39 weeks which are the exhaustion points of UI benefits.

We now present Kaplan-Meier estimates of the hazard functions for

the different exits from unemployment. The Kaplan-Meier estimator is the

nonparametric hazard estimated by the number of exits from unemployment

divided by the population still in unemployment in that period. Thus, it

is the sample analogue of the theoretical hazard without controlling for

observed and unobserved differences across individuals. We first present

the sample hazard function for the single risk case in Figure 3.1. Here

both recalls and new jobs are grouped together as exits from unemploy-

ment. Note the prominent spikes at the UI exhaustion points of 26 weeks

and 39 weeks. In Figure 3.2 the sample hazards are estimated separately

for recalls and for new jobs. Note that the hazard for recalls is

decreasing throughout much of its range while the new job hazard is much

closer to being constant over most of its range, although it has both

increasing and decreasing portions over its range. In Figures 3.3 and

3.4 we divide the sample into two parts based on eligibility for UI. For

non-UI recipients the shapes of the hazard functions are now largely

missing the spikes at 26 and 39 weeks which appeared in the total sample.

However, these spikes are again quite prominent in the UI eligible

sample. The interpretation of the increased hazard at UI exhaustion

points is more problematic for recalls than it is for new job exists from

unemployment. Katz (1986) discusses briefly reasons for the observed

spikes in the recall hazards.
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We now turn to estimation of the semiparametric single risk model

from Section I. We estimate the single risk model without heterogeneity

of equation (1.4). We report estimates where f(t) is based on either the

normal (ordered probit) or extreme value (ordered logit) distribution

functions to determine the sensitivity of the results to choice of this

distribution. We then reestimate the model allowing for parametric

heterogeneity using the one parameter gamma function as in equation

(1.8). In addition to 17 predetermined variables, we also estimate 40

weekly values of I for the baseline hazard. Tests using different

censoring points for the baseline hazard demonstrated that the results

are insensitive to the end point of the baseline hazard, as would be

expected given its nonparametric specification.

The estimates are given in Table 3.3. UI has the expected effect

of leading to longer spells of unemployment. The sociodemographic and

industry variables are all estimated precisely. After rescaling, the

estimated hazard functions are quite similar. Thus, we infer that the

choice between a normal and an extreme value distribution function

matters only in the extreme tails of the distribution. When we allow for

gamma heterogeneity, the variance of the distribution is estimated to be

1.23. While both the asymptotic t statistic and the LR statistic indi-

cate that heterogeneity improves the model fit significantly over the no

heterogeneity extreme value model, it is interesting to note that the

probit model fits the data better than either of the extreme value

specifications, with or without heterogeneity. We also infer that

allowing for parametric heterogeneity has only a minor effect on the

estimated hazard functions. These results are demonstrated graphically
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in Figure 3.5 where the three estimated hazard functions are quite

similar to each other. The extreme value distribution model, with and

without heterogeneity, is compared in Table 3.4 where the cumulative

distribution functions and asymptotic standard errors are presented from

an average across all 1055 individuals using the parameter estimates from

Table 3.5. Note that the estimates of the distribution functions are

virtually identical and well within one standard error at each week. We

thus conclude tentatively, at least in this one sample, that the results

are much less sensitive to specification of heterogeneity when a nonpara-

raetric specification is used for the baseline hazard function. Thus,

when we consider competing risks specifications we do not attempt to

include separate distributions for unobserved heterogeneity in our

models. 6

We now turn to estimation of the competing risks models where new

jobs and recalls are distinguished as two separate ways to exit from

unemployment. We use the bivariate specification of equations (2.3) and

(2.4) where the distribution function is assumed to be joint standard

normal. Therefore, the only unknown parameter of the distribution

function is p , the correlation coefficient. The log likelihood function

is given in equation (2.11) from which we do maximum likelihhod estima-

tion. We specify the model in two different ways: the first specifica-

tion again allows for 40 parameters for each of the two competing risks

6 Inclusion of heterogeneity in the competing risks specification of
equation (2.11) is straightforward, at least in principle. However,
estimation would require numerical evaluation of integrals which would be
quite time consuming in practice.
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while the second specification adds four additional parameters to allow

for interactions at 26 and 39 weeks for UI recipients to allow for the

effects of UI exhaustion. We present only the results for the second

specification since the previous investigation of the Kaplin-Meier

estimates demonstrated that the UI interaction variables are quite

important.

The parameter estimates for the semiparametric competing risks

model are given in Table 3.5. Note that the presence of UI has an

important effect for both new jobs and for recall. As we would expect,

the effect of UI is larger on exit from unemployment to new jobs than it

is on exit from unemployment to recall. Race and marital status also

have important effects with the estimated directions as expected.

Lastly, note that the UI interaction effects at both 26 and 39 weeks are

estimated to be quite large and significant. Thus, we again conclude

that the effect of UI exhaustion has important effects on exit probabili-

ties from unemployment.

We next consider the question of the importance of Katz's (1985)

assumption of independence of the hazards and the assumption of a one

parameter Weibull specification for the baseline hazard. The estimated

p is .057 so that the assumption of stochastic independence would not be

rejected with usual significance levels. However, the assumption of the

Weibull distribution fares less well. In Table 3.6 we present the

estimated cumulative distribution functions which correspond to the

baseline hazards. We do not find that they have a monotonic downward or
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upward hazard form which is implied by the specification of a one para-

meter Weibull family. When we graph the baseline hazard estimates from

the estimates of the semiparametric hazard model in Figure 3.6 for

individuals who receive UI and Figure 3.7 for individuals who do not

receive UI, we note that the monotonic upward or downward shapes are not

present. In particular, the new job baseline hazards are initially

rising followed by a decline which is followed by another rise. They

appear to be far from monotonic, especially for individuals who receive

UI. The Weibull specification requires either increasing or decreasing

duration dependence; the only question is which direction the duration

dependence will go. Our estimates indicate that the requirement of

either monotonic increasing or decreasing duration dependence is violated

in the data. Thus, we conclude that the Weibull specification is too

simple for the PSID unemployment data. The semiparametric estimates

indicate that Katz's (1986) finding of "strong positive duration

dependence in the new job hazard" for the UI sample appears to arise from

the Weibull specification rather than actual individual behavior.

We now turn to a formal test of the Weibull specification. The

basis of the test is to determine whether a Weibull specification is

consistent with our nonparametric baseline hazard estimates. To do the

test, we employ minimum x
2 type tests. First denote the semiparametric

hazard estimates as Jl
1 and £ 2 . From our previous theorems we know that
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(4.1) NU.fl)

where Q corresponds to the lower right hand block of the inverse of the

Fisher information matrix. The Weibull specification can be written

6 - 1

(4.2) Z
3 = 6 .,t

3 =g.(6.) for 6. > for j = 1, 2
D1 3 3 3

To estimate the unknown 6 .'s we use minimum chi square estimation

(4.3) min W =

6
1

,6
2

A 1 - g
l

(6
1

)

£ - g„(S

J

2 2

A
> n -l Jl

1 - 9,(6,)

a. g
2
(6

2
)

The estimated 6 .'s for the UI and no UI samples are given in Table 3.7.

The value of W is then distributed under the null hypothesis of the

Weibull specification as asympototic x
2 with k

1
+ k - 4 degrees of

freedom where k. is the number of estimated baseline hazard parameters.

Since W is estimated to be 98.954 which is well above its expected value

of 63 under the null hypothesis, we reject the Weibull specification. In

Figure 3.8 and 3.9, we graph the estimated semiparametric baseline

hazards together with the Weibull estimates of the baseline hazards. 7

The difference between them is quite striking.

7 Our estimated shapes of the Weibull hazard specifications are quite
similar to the Katz (1986) estimates. In particular, the new job hazard
for UI recipients is upward sloping which is Katz's main empirical
finding.
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We recommend this general approach to estimation and testing of

baseline hazard functions. Semiparametric estimation puts no restric-

tions on the shape of the underlying hazard function in discrete data.

Given the semiparametric hazard estimates, the econometrician can then

test any particular functional hazard specification given our approach.

Difficult analysis of residuals is eliminated since the semiparametric

hazard estimates will use all the discrete data information. Further-

more, the estimation of particular functional forms of alternative hazard

specifications is quite straightforward since it requires only genera-

lized least squares type of estimation rather than repeated remaximiza-

tion of the likelihood function under each different baseline hazard

specification. Tests of duration dependence are thus easy to carry out

without undue parametric restrictions.
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V. Conclusions

Our approach begins with the Cox proportional hazard model which has

been widely used in econometrics. We take account of the discrete nature

of much of econometric duration data, and we make use of the typically

very large samples which occur in econometrics. Both situations differ

from biostatistics where data is often recorded continuously and samples

are often quite small. We generalize the single risk Cox model to allow

for both nonparametric estimation of the baseline hazard and for parame-

tric heterogeneity. Our findings indicate that much applied econometric

work has probably used excessively restricted specifications of the

hazard functions. The one or two parameter specifications which are most

often used seem too simple for the actual data. On the other hand, our

preliminary findings indicate that the addition of heterogeneity has only

a minor effect on the results. Attention to unobserved heterogeneity may

be less important when nonparametric hazard specifications are used.

We then extend the semiparametric specification approach to compe-

ting risks models. We first prove that the competing risks model is

identified even if both risks have identical predetermined variables so

long as at least one variable is partly continuous. We then specify a

semiparametric model which allows for unrestricted correlation across the

stochastic disturbances in the competing risks. Lastly, we develop an

estimation method which appears to work well in a Monte Carlo example and

on actual data.

Simple models of labor market behavior often lead to predictions of

monotonic hazard functions for duration of unemployment. Our procedure
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permits a very flexible approach to estimation of such models and tests

of the monotonicity hypotheses. Our results from a sample drawn from the

PSID tend to reject the monotonic hazard predictions. We also find,

along with previous authors, strong evidence of important UI exhaustion

effects. These findings point to the need for more realistic models of

labor market behavior for the unemployed.
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APPENDIX

AI. Single Risk Model

t = 1,...,T discrete periods

(t., X.) i = 1,...,N -observations

NT *t
"X

i
e

log L = I Y. y log
[ / f(e) de]

i=1 t=1
1

£
t-1

_X
i
e

Theorem 1 .

1

Let 6 = (3, I) be the MLE. Then under assumptions (A1 . 1 ) , (A1.2),

and (A1.3),

/i <? - .„>* » (o, [u.11^]- 1

,.

^

>

N-voo

Proof

Identification

Let e * e .

o

If 3 = 3 , £ * I , then there is some t s.t.

I. - XB £^-X3to ot o

f(e) de # / f(e) de a.s. P

£ - XB £ . - XB
t-1 o ot-1 o

X

Thus the model is identified.

If 3 * 3 , then by Assumption (A1.2.ii),

P
x

(X(3 - B
Q

) = c) < 1
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This implies that there exists some constant c s.t.

P
x

(X(8 - B ) < c
Q

) >

P v (X(8 - 8 ) > c ) > 0.
X o o

This in turn implies that for any % ,

t ot o

p[ / f(e) de -
/ f(e) de] < 1, t= 1.....T

Vr xe ^ot-r^-

Theorem 2

Let 6 = (B, SL , y) be the MLE where

E ~ F(.|y
o
).

Then under assumptions (A2.1) (A2.2), and (A2.3),

Proof

Identification

Case of Y = Y : Same as in Theorem 1

.

o

Case of y * Y : Suppose (£ , 8 ) are the values of the parameters such

that for all t,
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FU
t

+ Xg|y) = FU
tQ

+ X'6
o |t q

) a.s. P
x

.

Clearly, this implies that for t = 1,

(A.1) F(Jl
1

+ X6|y) = F(£
1Q

+ X6
o |y q

) a.s. P
x

.

Note, however, that under Assumption (A2.2.iii), (A.1) implies

(A. 2) lim F(£
1

+ X6 + 6 h
(X
h

+A) |y) - F(l
}

+ XB + B
h
xjy )

A->-0 1

= lim F(£ + XS + 6. (X + A) |y ) - F(4 + XS + B, X, |y )

10 o ho h ' o 10 o ho h ! o
A->-0 -

A

for all X in an open neighborhood in R. And this in turn implies

(A.3) 1 fU
1

t XS + B
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o
+ B hQ

xjy^
h ho

This contradicts Assumption (A2.1.ii) since equation (A3) implies that

the set

{
e |f(e|y) = cf <£-j=-* |y o )}

has a positive Lebesgue measure for some c, a, be R. QED.

All. Competing Risks Model
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where - <*> < l\ < i\ < ... < ll n <,
'1 ~2 "50

- < l\ < l\ < ... < t|
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X
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= *50= 1
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Theorem 3
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1
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z
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, H 2 ) be MLE with error distribution F(e e )

Then under assumptions (A3.1), (A3. 2) (A3. 3),

Proof
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Proof
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for a set of (X^X2
) with positive Lebesgue measure, where

e, = (0, . . . , 0, 1 , 0, . . . , 0) is the hth basis vector. This, however,
h
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for a set (X 1
) with positive Lebesgue measure. This however, implies
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Table 3.1: Variable Definitions and Means-Standard Deviations
of the PSID Layoff Unemployment Spell Sample

(n = 1055)

Variable Description
Mean

Standard Deviation

Duration

Age

Sex

Education

Dependents

Race

UI

Married

= observed spell duration
in weeks

= age of individual in years

= 1 if female

= years of schooling

= number of dependents

= 1 if nonwhite

= 1 if worker received UI

during spell

= 1 if married

17.335
(22.447)

33.154
(10.607)

0.167
(0.373)

11.341

(2. 170)

3.038
( 1.640)

0.506
(0.500)

0.636
(0.481)

0.632
(0.482)

Industry Dummy Variables (at onset of spell)

Equipment

Durables

Trade

Transportation

Mining

Service

Construction

=1 if in transportation equipment

=1 if in other durable goods
manufacturing

=1 if in wholesale or retail trade

= 1 if in transportation or public
utilities

=1 if in mining or argiculture

= 1 if in services

= 1 if in construction

0,,118

0. , 123

0. 103

0. 080

0. 034

0. 172

0. 180
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Occupation Dummy Variables (at onset of spell)

Laborer

Craft

Clerical

Manager

Professional

1 if laborer or operative 0.508

1 if craftman or kindred worker 0.228

1 if clerical, services or 0.186

sales worker

1 if manager 0.045

1 if professional or 0.039

technical worker

Source: Authors' calculation from PSID sample and Katz (1986)
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Table 3.2: Failure Times for the PSID Layoff Unemployment Spell Sample

Weeks New Job Recall Censored Tota

1 10 93 103

2 8 118 126

3 8 55 63

4 23 58 81

5 3 18 21

6 11 26 37

7 1 6 7

8 22 38 60

9 6 13 1 20

10 7 10 17

11 4 4 8

12 13 32 1 46

13 10 19 9 38

14 9 2 11

15 4 14 2 20

16 10 9 3 22

17 8 7 18 33

18 5 2 6 13

19 2 3 5

20 9 12 4 25

21 3 1 7 11

22 5 7 9 21

23 1 2 3

24 7 10 4 21

25 2 1 2 5

26 18 15 21 54

27 2 1 3

28 2 2

29 1 1 2

30 9 4 9 22

31 3 3

32 1 1 2

33 1 1

34 2 1 3 6

35 2 8 10

36 2 1 3

37 1 2 3

38 1 1

39 5 4 7 16

40 4 1 1 6

41 1 1

42 2 7

43 1 4 2 7

44

45 1 1
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Table 3.2: Failure Times for the PSID Layoff Unemployment Spell Sample
Cont'd

Weeks New Job Recall Censored Tota

46

47 2 2

48 1 1

49 1 1 2

50 1 1 2

51

52 4 23 27

53 1 1

54

55 2 2

56 1 1

57 1 1

58

59

60 1 1 2

61 2 2

62

63
64

65 1 1

66 1 1 2

67 1 1 2

68

69 1 1

70 4 3 33 40

Totals 245 603 207 1055
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Table 3.3 Parameter Estimates - Single Risk Model

Variable
(Standard Error)

Normal
(Probit)

Extreme
Value

Extreme w/
Heterogeneity

Age

Sex

Education

Race

Married

UI

Craft

Clerical

Professional

Manager

Equipment

Durables

Trade

Transporation

-0.012 -0.012 -0.022

(0.003) (0.003) (0.007)

0. 133 0.208 0.172
(0. 102) (0. 117) (0. 187)

0.008 0.004 0.022
(0.018) (0.019 (0.032)

0.330 0.348 0.580
(0.072) (0.080) (0. 150)

-0.113 -0.130 -0.204

(0.086) (0.098) (0. 157)

0.029 0.026 0.055
(0.013) (0.014) (0.025)

-0.046 -0.031 -0.128
(0.093 (0.096) (0. 170)

-0.074 -0. 110 -0.100
(0. 118) (0. 139) (0.207)

-0.256 -0.373 -0.414
(0.222) (0.241

)

(0.375)

-0.168 -0.236 -0.263)
(0. 189) (0.209) (0.331)

0.140 0.100 0.200
(0. 119) (0. 125) (0.219)

0.168 0. 109 0.299
(0. 114) (0. 120) (0.212)

0.489 0.403 0.887
(0. 138) (0. 162) (0.266)

0.464 0.395 0.847
(0.140) (0. 152) (0.269)
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Table 3.3 Parameter Estimates - Single Risk Model
Cont'd

Variable Normal Extreme Extreme w/
(Standard Error) (Probit) Value Heterogeneity

Mining 0.017 -0.020 -0.004
(0. 182) (0. 182) (0.340)

Service 0.522 0.442 0.908
(0. 134) (0. 153) (0.257)

Construction 0.344 0.177 0.671

(0. 121 ) (0. 127) (0.232)

02 - - 1.23

(0.38)

Log Likelihood -2956.071 -2959.911 -2956.280

Obs 1055



46

Table 3.4: CDFs for the Extreme Value and Heterogeneity Distributions

Average Across Complete Sample: 1055 Individuals

Weeks

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

30

31

32

33

34

35

36

37

38

39

40

Extreme Value

CDF Std. Error

0.0976 0.0081

0.2172 0.0115
0.2771 0.0128
0.3539 0.0137
0.3738 0.0140
0.4088 0.0144
0.4155 0.0145
0.4724 0.0150
0.4905 0.0151

0.5067 0.0151
0.5143 0.0151

0.5571 0.0152
0.5847 0.0152
0.5934 0.0152
0.6109 0.0152
0.6295 0.0151
0.6441 0.0149
0.6513 0.0150
0.6534 0.0150
0.6757 0.0149
0.6800 0.0148

0.6931 0.0148
0.6943 0.0148
0.7137 0.0146
0.7172 0.0146
0.7561 0.0146
0.7587 0.0146
0.7614 0.0146
0.7627 0.0146
0.7800 0.0146
0.7870 0.0145
0.7974 0.0145
0.8217 0.0146
0.8325 0.0148
0.8381 . 1 48

0.8477 0.0149
0.8504 0.0151
0.8533 0.0153
0.8566 0.0153
0.8634 0.0156

Heterogeneity
CDF Std. Error

0,,0976 0.,0075

0,.2169 0.,0109

0.,2768 0,.0123

0,,3535 0.,0134

0,.3733 0,,0138
0,.4083 0.,0145

0,,4149 0.,0146

0,.4718 0..0155

0..4898 0.,0158

0,.5060 0.,0161

0.,5136 0..0162

0,,5564 0.,0169

0.,5841 0.,0173

0.,5929 0.,0174

0,,6104 0.,0176

0.,6290 0.,0176

0.,6437 0.,0177

0,,6510 0.,0179

0.,6531 0.,0180

0.,6754 0.,0181

0.,6797 0.,0180

0,,6929 0..0181

0..6940 0.,0182

0..7135 0..0181

0.,7170 0.,0181

0.,7560 0..0186

0.,7586 0.,0186

0.,7613 0.,0187

0.,7626 0..0186

0.,7799 0. 0188
0.,7870 0.,0187
0.,7974 0. 0187
0..8216 0. 0187
0..8323 0.,0188

0. 8378 0. 0187
0.,8474 0. 0188

0.,8501 0..0190

0. 8529 0. 0191

0. 8562 0..0189

0. 8630 0. 0189

Note: Reported standard errors are asymptotic standard errors.
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Competing Risks

Table 3.5 Parameter Estimates - UI Interaction Model

Recall

-0.0145
(0.0087)

0.0364
(0.0195)

0.2661
(0.0801

)

-0.0023
(0.0265)

0.0871
(0.0779)

-0.2646
(0.0938)

-2.530
(.479)

-3.526
(1.131)

New Job

Age 0.0099
(0.0037)

Ed -0.0798
(0.0309

Race 0.3588
(0. 1243)

Deps 0.0546
(0.0364)

UI 0.2451
(0. 1051 )

Marry -0. 1534

(0. 1525)

UI Interaction -1 .924

(26 weeks) (.478)

UI Interaction -3.555
(39

P

weeks) (1.930)

0.057
(1.18)

Log LF -3286.364

Observations 1055

Note: Asymptotic standard error in parentheses.
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Table 3.6 Estimated CDFS

No UI Interactions
New Job Recall

UI Interactions
New Job Recall

1 0.0044 0.0773
2 0.0094 0.1780
3 0.0154 0.2299
4 0.0355 0.2869
5 0.0385 0.3051
6 0.0499 0.3319
7 0.0510 0.3382
8 0.0767 0.3792
9 0.0843 0.3937
10 0.0935 0.4050
11 0.0989 0.4096
12 0. 117" 0.4473
13 0.1328 0.4703
14 0. 1328 0.4817
15 0. 1396 0.4994
16 0.1575 0.5111

17 0. 1723 0.5205
18 0.1823 0.5234
19 0. 1864 0.5234
20 0.2056 0.5417
21 0.2122 0.5432
22 0.2238 0.5547
23 0.2262 0.5547
24 0.2438 0.5723
25 0.2491 0. 5741

26* 0.2730 0.5841
27 0.2730 0.5886
28 0.2730 0.5932
29 0.2763 0.5932
30 0.3058 0.6026
31 0.3068 0.6026
32 0.3107 0.6026
33 0.3145 0.6026
34 0.3223 0.6Q53
35 0.3304 0.6053
36 0.3391 0.6084
37 0.3391 0.6114

38 0.3435 0.6114
39* 0.3613 0.6183
40 0.3815 0.6218

0.0044 0.0733
0.0094 0. 1780
0.0154 0.2299
0.0355 0.3869
0.0385 0.3051
0.0499 0.3319
0.0510 0.3382
0.0767 0.3792
0.0843 0.3937
0.0935 0.4050
0.0989 0.4096
0. 1174 0.4473
0. 1328 0.4703
0. 1328 0.4817
0. 1396 0.4994
0. 1575 0.5111
0. 1723 0.5205
0. 1823 0.5234
0.1864 0.5234
0.2056 0.5417
0.2122 0.5432
0.2238 0.5547
0.2262 0.5547
0.2438 0.5723
0.2491 0.5741
0.3235 0.6149
o. sj.y^ 0.6193
0.3235 0.62J6
0.3271 0.6238
0.3598 0.6330
0.3598 0.6330
0.3639 0.6330
0.3680 0.6330
0.3763 0.6357
0. JU<*o o «?57
0.3939 0.6386
0.3939 0.6416
0.3987 0.6416
0.4284 0.6591

0.4495 0.6625
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Table 3.7 Weibull Specification Test

«i2- 1

t
L (& iV 6 i2 ) = 6

±1
t

Non-UI Recipients

New Job Recall

6
1

0.007 0.077
(0.005) (0.007)

6
2

1.253 0.596

(0.251) (0.051)

x
2 = 98.954

UI Recipients

New Job Recall

6
1

0.005 0.076

(0.005) (0.010)

8
2

1.446 0.645

(0.345) (0.068)

X
2 = 117.620
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Figure 3.1 - Sample Hazard Rates for R2-Employment

Single Risk Model
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Figure 3.2 - Sample Hazard Rates for Re-Employment

Dual Risk Model
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Figure 3.3 - Sample Hazard Rates for Re-Employment

Dual Risk Model - Individuals Receive UI
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Figure 3.4 - Sample Hazard Rates for Re-Employment

Dual Risk Model - Individuals Do Not Receive UI
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Figure 3.5 - Estimated Hazard Rates for Re-Employment

Single Risk, Various Models
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Figure 3.6 - Estimated Hazard Rates for Re-Employment

Dual Risk Model - Individuals Receive UI
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Figure 3.7 - Estimated Hazard Rates for Re-Employment

Dual Risk Model - Individuals Do Not Receive UI
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Figure 3.8 - Comparison of Semiparametric Baseline Hazard

and Fitted Two-Parameter Weibull Hazard for

New Job Duration - Individuals Receive UI
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Figure 3.9 - Comparison of Semiparametric Baseline Hazard

and Fitted Two-Parameter Weibull Hazard for

Recall Duration - Individuals Receive UI
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