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ABSTRACT: This paper develops a general approach to robust, regression-based

specification tests for (possibly) dynamic econometric models. The key

feature of the proposed tests is that, in addition to estimation under the

null hypothesis, computation requires only a matrix linear least squares

regression and then an ordinary least squares regression similar to those

employed in popular nonrobust tests. For the leading cases of conditional

mean and/or conditional variance tests, the proposed statistics are robust to

departures from distributional assumptions that are not being tested.

Moreover, the statistics can be computed using any vT-consistent estimator,

resulting in significant simplifications in some otherwise difficult

--contexts. Among the examples covered are conditional mean tests for models

estimated by weighted nonlinear least squares under misspecification of the

conditional variance, tests of jointly parameterized conditional means and

variances estimated by quasi-maximum likelihood under nonnormality , and some

new, computationally simple specification tests for the tobit model.





1 . Introduction

Specification testing has become an integral part of the econometric

model building process. The literature is extensive, and model diagnostics

are available for most procedures used by applied econometricians . The most

popular specification tests are those that can be computed via ordinary least

squares regressions. Examples are the Lagrange Multiplier (LM) test for

nested hypotheses, versions of Hausman's [13] specification tests, White's

[24] information matrix (IM) test, and regression-based versions of various

nonnested hypotheses tests. In fact, Newey [17], Tauchen [21], and White

[26] have shown that all of these tests are asymptotically equivalent to a

particular conditional moment (CM) test. In a maximum likelihood setting

with independent observations, Newey [17] and Tauchen [21] have devised outer

product- type auxiliary regressions for computing CM tests. White [26] has

extended these methods to a general dynamic setting.

The simplicity of most popular regression-based procedures currently

employed, including the Newey-Tauchen-White (NTW) procedure, is not without

cost. In many cases the validity of these tests relies on certain auxiliary

assumptions holding in addition to the relevant null hypothesis. For

example, in a nonlinear regression framework where the dynamic regression

function is correctly specified under the null hypothesis, the usual LM

regression-based statistic is invalid in the presence of conditional cr

unconditional hetercskedasriciry . Except in special cases the NTW outer

product statistic is also invalid. Other examples include the various tests

for heteroskedasticity: currently used regression forms require constancy of



the conditional fourth moment of the regression errors under the null

hypothesis. In addition, the Lagrange Multiplier and other CM tests for

jointly parameterized conditional means and variances are inappropriate under

various departures from normality.

The above situations are all characterized by the same feature:

validity of the tests requires imposition of more than just the hypotheses of

interest under H . In addition, traditional econometric testing procedures

require that the estimators used to compute the statistics are efficient (in

some sense) under the null hypothesis. It is important to stress that this

is not merely nitpicking about regularity conditions.

Due primarily to the work of white [22,23,24,26], Domowitz and White

[7], Hansen [11], and Newey [17], there now exist general methods of

computing robust statistics. In the context of linear regression models,

Pagan and Hall [19] discuss how to compute conditional mean tests that are

robust to heteroskedasticity . Their discussion centers around the use of the

White [22] heteroskedasticity-consistent standard errors. For one degree of

freedom tests the Pagan and Hall suggestion leads to easily computable tests,

and it is certainly an alternative to the current approach for regression

models. But computation of the statistics for tests with more than one

degree of freedom requires explicit inversion of the White covariance matrix

estimator; this matrix must then be used in a quadratic form to obtain the

neteroskedasticity-robust Wald statistic. The tests proposed here are very

much in the spirit cf the LM approach: computation requires estimation of

the model only under the null, so that any particular model can be subjected

to a battery of robust specification tests without ever reestimating the



model. More importantly, the tests can be computed using any standard

regression package.

Although there are some fairly general formulas available for robust LM

statistics (e.g. Engle [9], White [24,25]), formulas for general nonlinear

restrictions involve an analytical expression for the derivative of the

implicit constraint function and a generalized inverse. In specific

instances computationally simple robust LM statistics are available. A

notable example is the paper by Davidson and MacKinnon [6], which develops a

regression-based heteroskedasticity-robust LM test in a nonlinear regression

model with independent errors and unconditional heteroskedasticity

.

It is a safe bet that the substantial analytical and computational work

required to obtain robust statistics is a primary reason that they are used

infrequently in applied work. Evidence of this statement is the growing use

of the White [22] heteroskedasticity-robust t-statistics , which are now

computed by many econometrics packages. Only occasionally does one see an LM

test, a Hausman test, or a nonnested hypothesis test carried out in a manner

that is robust to second moment misspecification. This is unfortunate since

these tests are inconsistent for the alternative that the conditional mean is

correctly specified but the conditional variance is misspecified. In other

words , the standard forms of well known tests can result in inference with

the wrong asymptotic size while having no systematic power for testing the

auxiliary assumptions tnat are imposed in addition to h_

.

This paper develops a unified approach to calculating robust statistics

via least squares regressions which I believe is easily accessible to applied

econometricians . The general method suggested here can be viewed as an



extension of the Davidson and MacKinnon [6] approach. In fact, in the

context of nonlinear regression models, their procedure is shown to be valid

for quite general dynamic models with conditional as well as unconditional

heteroskedasticity . In the the same context the approach here can be viewed

as the Lagrange Multiplier version of the robust Wald strategy suggested by

Pagan and Hall [19]. This paper also extends Wooldridge's [30] robust,

regression based conditional mean and conditional variance tests in the

context of quasi-maximum likelihood estimation in multivariante linear

exponential families. The current framework is more general because it

applies anytime a generalized residual function (defined in section 2) is

the basis for the "test.

For the leading cases of conditional first and second moments, the

regression-based tests proposed maintain only the hypotheses of interest

under the null, and they are applicable to specification testing of dynamic

multivariate models of first and second moments without imposing further

assumptions on the conditional distribution (except regularity conditions).

Moreover, in classical situations, these tests are asymptotically equivalent

under the null and local alternatives to their traditional counterparts.

Robustness is obtained without sacrificing asymptotic efficiency.

For some specification tests the current approach does impose auxiliary

assumptions under the null hypothesis. This is the price one pays for the

regression-based nature cf the tests. Still, in most cases encountered so

far, the current framework imposes fewer auxiliary assumptions under the nui]

than popular nonrobust tests. This does not mean that robust tests are not

available in such circumstances, but only that regression-based forms of



these tests are not known. The goal here is to provide a unified approach to

robust, repress ion -based specification tests, and not to robust tests in

general. Nevertheless, the coverage is fairly broad. A general treatment of

robust tests is contained in White [26].

A second aspect of the proposed statistics is that they may be computed

using any ,/T-consistent estimator. The asymptotic distribution of the test

statistic under the null and local alternatives is invariant with respect to

the asymptotic distribution of the estimators used in computation; this can

be viewed as another kind of robustness. Consequently, the methodology leads

to some interesting new tests in cases where the computational burden based

on previous approaches can be prohibitive. This is true whether or not

robustness to violation of auxiliary assumptions is an issue; in fact, the

procedure can be profitably applied to situations which assume correct

specification of the entire conditional distribution provided that the test

statistic can be put into the form considered in section 2. In such cases

the proposed tests have properties similar to Neyman's [18] C(q) tests, but

they are applicable even whether or not the score of the log- likelihood is

the basis for test statistic. When restricted to LM tests, the new

statistics offer generalized residual alternatives to outer product-type C(a)

statistics, provided of course that the score of the log- likelihood can be

put into the appropriate generalized residual form.

Section 2 cf the paper discusses the setup and the general results,

section 3 illustrates the scope cf the methodology with several examples, and

section 4 contains concluding remarks. B.egularity conditions and proofs are

contained in an annendix.



2 . General Results

Let { (y , z ): t—1,2,...) be a sequence of observable random vectors with

y lxJ , z lxK. y is the vector of endogenous variables. Interest lies in

explaining y in terms of the explanatory variables z and (in a time series

context) past values of y and z . For time series applications, let x =

(z , v ,,z , y.,,z,) denote the predetermined variables. Note that
v t'^t-l' t-1' ,J 1' V v

current z can be excluded from x or, if there are no "exogenous" variables,

one may take x e (y y . . . ,y ) . For cross section applications set x

z and assume that the observations are independently distributed.

The conditional distribution of y given x always exists and is denoted
t t

D (-|x ). Assume that the researcher is interested in testing hypotheses

about a certain aspect of D , for example the conditional expectation and/or

the conditional variance. Note that, because at time t the conditioning set

contains ( (y^.z .),..., (y.,z) } or [y . ,yt _ 2
. • • .Y^ the assumption is

that interest lies in getting the dynamics of the relevant aspects of D^

correctly specified. For cross section applications this point is

irrelevant.

For motivational purposes and to illustrate the notation, it is useful

to introduce a couple of examples. The first example concerns specification

testing cf a conditional mean. Suppose interest lies in testing hypotheses

about the conditional expectation cf y^_ (taken to be a scalar for simplicity)

given x_ . The parametric model is

(m
c
(x

t
,a): a e A. t=l,2,...}, (2.1)

where A c R , and the null hypothesis is



H
Q

: E(y
t
|x

t
) - m

t
(x

t
,a

o
), some q

q
g A, t-1 ,

2

(2.2)

A

If a_ is a VT-consistent estimator of a under H„ then the residuals are
I o U

A A

defined as u (y ,x ,q ) ^ y - m (x ,a ) . A test of H can be based on the

sample covariance

T A A

t"
1

^ vvvVWW (2 - 3)

- 1 A A

- T I A'u (2.4)
t-1

where X (x .q.tt) is a lxQ vector function of "misspecification indicators"
A A

that can depend on a and a nuisance parameter estimator n The standard LM

approachleads to a test based on the (uncentered) r-squared from the

regression

A A A

u on V m , A t-1 T. (2.5)
t Q t t

If a is asymptotically equivalent to the NLS estimator then under H. and

2 2
conditional homoskedasticity , TR is asymptotically y^.. Thus, the LMJ u J

Q

approach effectively takes the null hypothesis to be

HI: H. holds and V(v |x ) - a
1

for some a
1

> 0, t=l ,

2

(2.6)
U (J t t o o

but it is inconsistent for the alternative

H' : K
n
holds but K' does not.

It also essentially reauires that a„. be the NLS estimator.
i

The Nevey-Taucher.-White regression fcr the same problem is

1 or. u V m , u A t=l ,....T. (2.7)
t Q t t t

A

In general, R' is also required for TP.
i
from this regression to be

2
asmDtoticaily x^> although there are some cases, such as testine for serial

Q



correlation in a static regression model with static conditional

heteroskedasticity (i.e. V(y |x ) «= V(y |z )), where the NTW regression is

A

robust. The validity of the NTW procedure also generally relies on a being

the NLS estimator.

As pointed out by Pagan and Hall [19], a robust test is available from

the regression (2.5). The White [22] heteroskedasticity-robust covariance

matrix estimator can be used to compute a robust Wald statistic for the

A A

hypothesis that A can be excluded from the regression (2.5). When A is a

scalar this is simple because a robust test statistic is simply the robust
A A

t-statistic on A . When A is a vector computation of the robust Wald

statistic is somewhat more complicated since it involves inversion of the

White covariance matrix estimator as well as explicit construction of the

appropriate quadratic form. In addition, the Wald procedure is valid
A

essentially only when a is the NLS estimator.

The regression-based heteroskedasticity-robust form of the test, which

in addition is valid for any 7T-consistent estimator, is a special case of

Example 3.1 discussed in section 3.

As a second example, consider testing for heteroskedasticity. The null

hypothesis is taken to be

2 2
H • E(yjx ) = m (x ,a ) and V(v |x ) - a , a e A, c > 0, t=l , 2 , . . .

.

b i_ t ttO t t 00
Again let u^(y ,x^,a) be the residual function, and let A(x_,£,7r) be a IxQ

_ 2vector or Heteroskedasticity indicators, where 6 = (a' ,a )' . A general class

of tests is based or.

T

T I A^(x^,f„,r_)' iu_(y_,x^,Q_) - O ]

^ u l. i 1 Z. Z. Z. T T



V

Ta J- A A r. A f.

- t"
1

I y (u - O
t«l

A
2 -12

where a = T X u
r

• A standard LM-type statistic is obtained from the
t=l

centered r-squared from the regression

Art A

u
t

on 1, X
t

, t=l T. (2.8)

2 2
TR is asymptotically v under

C L^

o A 2
H': Hn holds and, in addition, E[(u ) |x ] = k > 0, t=l , 2 , . .

.

l

t ' t o

where u y - m^Cx ,q ). Regression (2.8) yields the "studentized" version

of the Breusch-Pagan [2] test as derived by Koenker [16]. The studentized

form of the test is robust to certain departures from normality, and it is

now widely used in the literature (see, e.g.. Engle [8], Pagan and Hall [19],

and Pagan, Trivedi, and Hall [20]). Unfortunately, this form of the test is

not completely robust in the sense defined in this paper. The constancy of

o 4
E[(u_) |x is an auxiliarv assumption imposed under HA that is required for

t t J u

(2.8) to lead to a valid test. Normality of u conditional on x rules out
t t

heterokurtosis under H_ , but it is easy to construct examples to illustrate

that the auxiliary assumption of homokurtosis is binding. If the regression

o . ,. .

errors u_ nave a conditional t- distribution witr. constant variance but

decrees of freedom that otherwise deoend on x then K_ holds but K' does not.
t

Hsieh [14] and Pagan and Hall [19] have noted that just as with conditional

mean tests, the white [22] covariance matrix car. be used tc compute

heteroskedasticity tests that are robust tc heterokurtosis. However, except

when A^ is a scalar, computation of the statistic requires several matrix



operations. Pagan, Trivedi, and Hall [20] report the White [22] t-statistic
A

in a model for the variance of inflation when X is a scalar. An alternative

robust form of the test is provided in Example 3.2 in section 3. It is

A.

almost as easy to compute as the nonrobust form even when A is a vector, but

it allows for heterokurtosis under the null.

There are other examples where the goal is to test hypotheses about

certain aspects of a conditional distribution but auxiliary assumptions are

maintained under the null hypothesis in order to obtain a simple

regression-based test. Because the limiting distributions of test statistics

are usually sensitive to violations of the auxiliary assumptions, it is

important to use robust forms of tests for which Hn includes only the

hypotheses of interest. To be attractive these tests must be easy to compute

under reasonably broad circumstances. The remainder of this section develops

a general approach to constructing robust, regression-based tests.

Many specification tests, including those for conditional means and

variances, have asymptotically equivalent versions that can be derived as

follows. Let ^>,_(y^,x ,8) be an Lxl random function defined on a parameter
t t t

p
set 9 C R . The null hypothesis of interest is expressed as

H • El© (v ,x ,8 )|x ] « 0, for some S € 9, t-1,2, (2.9)
U ' t " t t O t

'

o

By definition, S is the "true" parameter vector under H„. Because the null
o -

hypothesis specifies that the conditional expectation of c (y .x
, 6 ) given

_ne prece tcnrinSw VansD^6s x_ is zero, it is natural tc Cci. c a

For the conditional near, tests in a nonlinear

regression model, 1=1, 6 = a, and a (y^,x , 0) u„(y ,x ,o) = y -

10



2
m (x ,a). The tests for heteroskedasticity take L 1, 8 = (Q ' >a )'

, and

2 2
<^

t
(yt

.x .0) E u
t
(a) - a .

The validity of (2.9) can be tested by choosing functions of the

predetermined variables x and checking whether the sample covariances

:ombetween these functions and
<f> (y ,x ,6 ) are significantly different frc

zero. In order to cover a broad range of circumstances that are of interest

to economists , it is useful to allow the misspecification indicators to

depend on 8 and some nuisance parameters. Let n G IT denote a Nxl vector of

nuisance parameters. Let A (x ,8,n) be an LxQ matrix of misspecification

indicators and let C (x ,8 ,ir) be an LxL, symmetric and positive semi-definite

weighting matrix. Assume the availability of an estimator 8 such that

1/2
"

T ' (#„ - 8 ) -= (1) under H_. Also assume that the nuisance parameter
1 o p U

estimator jr_ is such that T (7r_ - tt_) = (1) under H rt , where (?r_:
T T T p u T

A

T=l , 2 , . . . } is a nonstochastic sequence in II. It is because r need not have

an interpretable probability limit under H_ that n is called a nuisance

parameter

.

A computable test statistic is the Qxl vector

-, 1 AAA
T l A'CA (2-10)

t-1
u u

"

A A A

where "*" denotes that each function is evaluated at 8 or (6',-k')'
1 1 x

(dependence of the summaries in (2.10) or. the sample size T is suppressed for

convenience) . For the conditional mean tests and the heteroskedasticity

tests, A_(x_,£,7r) is the IxQ vector denoted ^(x^, 8 ,?r) .

From the point of view of simply obtaining tests with known asymptotic

size under H the p.s.d. matrix C could be absorbed into A . But the
" t t



structure in (2.10) is exploited below to generate regression-based tests

with the additional property that they are asymptotically equivalent to

better known tests in classical circumstances. In the examples discussed

thus far C (x ,ff,n) = 1. Section 3 covers some cases where it is profitable

to allow C to be random.

To use (2.10) as the basis for a test of (2.9), the limiting

distribution of

AAAT

£_ m t"
1/2

V A'C 6 (2.11)S T £ t t*t

A

under H
n

is needed. In general, finding the asymptotic distribution of £

under H entails finding the limiting distribution of

C - T"
1/2

I A
C'CV (2.12)

t«l

(values with "o" superscripts are evaluated at 6 or (f
,
-k ' )' ) and the

1/2
A

1/2
A

limiting distribution of T (8 - 6 ) (the limiting distribution of T (.n

A

- n ) does not affect the limiting distribution of £ under H^) . Because £

is the standardized sum of a vector martingale difference sequence under H
n ,

its limiting distribution is generally derivable from a central limit theorem

(provided that {A^'C^<p^} is also weakly dependent in an appropriate sense).
L. l_ l_

1/2
A

In standard cases T (.6- - 6 ) will also be asymptotically normal. Given

o 1/2
A

the asymptotic covariance matrices of £ T and T (0 - 8 ) and

differentiability assumptions on A^_, C_ , and e^. it is possible to derive the

asymptotic covariance matrix of £,,, by a standard mean value expansion. In

principle, deriving a quadratic form in £„, which has an asymptotic chi-square

distribution is straightforward. But nothing guarantees that the resulting

test statistic is easy to compute.



In certain instances test statistics based on £ can be computed from

simple OLS regressions. The Newey-Tauchen-White approach can be applied when
a

# is the maximum likelihood estimator and the conditional density of y
A A A

given x^ is correctly specified under H_. In addition to <j> , A , and C the
A

score s of the conditional log-likelihood is needed for computation. The

NTW regression is simply

A AAA
1 on S{_, 4>'

t
C A , t=l,...,T (2.13)

2 2
and one uses TR as asymptotically v • If interest lies in the case where

A

the entire conditional density is correctly specified under H and 8 is the

maximum likelihood estimator of 8 , then the Newey-Tauchen-White approach is

computationally easier than the present approach. It should be noted,
A

however, that the NTW regression is valid only when 8 is the MLE , whereas
A

the procedure described below is valid when 8 is any Jl- consistent estimator

of 6 . Wooldridge [31] discusses a C(q) version of the NTW statistic that

A

allows 8 to be any ,/T- consistent estimator. Another possible drawback to

the NTW regression is that there is growing evidence that it can yield tests

with poor finite sample properties even in the best possible circumstances

(Davidson and MacKinnon [6], Bollerslev and Wooldridge [1] , Kennan and

Neumann [15]). This is at least in part because the NTW regression ignores

the generalized residual structure in (2.2) in always using the outer product

of the gradient in computing an estimate of the information matrix.

A relatively simple statistic that typically imposes fewer assumptions
A

than the NTW approach is available if |„ is appropriately modified. Assume

that 8 G int(9) and that <?_ is differentiable on int(S) . Define $ (x , 6 ) =

1 1.



E
[
V fl^ (y >

x ># )| x ]• Then, instead of basing a test statistic on the
v t t t O t

A
1/2

A

covariance of the weighted misspecification indicator C A and the weighted

"1/2" A
1/2

A

generalized residuals C
<f> , the idea is to first purge from C A its

A * *rt A A A

linear projection onto C $ , where $ = $ (x , 0„). That is, consider thef j t t t t t' T'

modified statistic

~ t
L

t t T J

t
r
t

where

B„

1 A A A

y *'c $
^, t 1

1

t-i

1 T A A A

y *'c aA c t z

(2.14)

(2.15)

is the PxQ matrix of regression coefficients from the matrix regression

:i/2
"

1/2C/ A
t

on C
t
' *

t
t-1,. .,T. (2.16)

| can be written more concisely as

*i - T
" 1/2

JA't
t=l

:i/2:

(2.17)

where A = C [A - $ B ], t=l T are the LxQ matrix residuals from the

A
1/2

A

regression (2.16) and 4> m C <}> . Note that by construction A is weighted
t t t t

by C
1/2

.

It is important to realize that £ and £ are not always asymptotically
A A

eouivalent in the sense that £_ - £_ -* under H„ . The indicators A and
r i o t

A A A

[A - $ B_] generally vield tests with different power functions.
t L. I

Nevertheless, the robust form of the test almost always has a straightforward

interpretation. I return to this issue below.
A

Ever, when ~^, and £„. are not asympotically equivalent £„. can be used as

the basis for a useful specification test. The computational simplicity of a

14



limiting x quadratic form in f is a consequence of the following theorem.

Theorem 2.1 : Assume that the following conditions hold under H

(i) Regularity conditions A.l in the appendix;

(ii) For some 6 e int(6)

,

o

(a) E[*
t (yt

,x
t
,0

o
)|x

t
]
- 0, t-1 , 2 , . . .

;

(b) * t(vV " E[V (y
t
,xfV |x

t
] '

t=1
>
2 ----;

(c) T
1/2

(0 - 6 ) = 0(1), T
1/2

(tt_ - tt°) = (1).lop Tip
Then

where

In addition,

t-=l

tii
c c z

,0,0 .,^,0,0

t T J

t
r
t

-1 T

I E[$°'C°A°-

o
p
(l)

TP 2 d 2
TR

u "* *Q'

2
where R is the uncentered r- squared from the regression

on [cy2
ij rcy 2

(l - ;jT ) t-l,...,T

(2.18)

(2.19)

and B is given by (2.15)

Equation (2.18) has a very useful interpretation. Viewing |_ as a

action of ?, ?r, and E evaluated at the estimators 6^,, r.^, :nH B e Gua t icr.

(2. IS) demonstrates that the asymptotic distribution of this vector is

id when the estimators are replaced by their probability limits. Note

; original statistic {^ does not generally nave this property.

un.cn£

15



Theorem (2.1) can be applied as follows:

A A AAA A

(1) Given A , C , <f> , 6- and n_, compute A , C tf> , and $ . DefineLL-tJ. i- t- l» w I—

A
t

= ?/% *
t

- C^, and ^ = C^;

(2) Run the matrix regression

A on * t=l,...,T (2.20)

and save the residuals, say A
;

(3) Run the regression

1 on £'
t
A
t

t-1 T

2 2
and use TR - T - RSS as asymptotically xn under H assuming that A does

not contain redundant indicators

.

It must be emphasized that condition (ii.b), which requires that

EfV <j> (y ,x ,6 )|x " be computable under the null hvpothesis, can impose
U c t t O c

additional restrictions on $ that must be satisfied in order for (l)-(3) to

be a valid procedure under Hn . If additional assumptions are used in forming

$ (x ,8 ) then the "implicit null hypothesis" includes more than just (2.9).
t i_ o

But as shown in Wooldridge [30], $^ is always computable under the relevant

null hypothesis for conditional mean (hence conditional probability) or

conditional variance testing in a linear exponential family. These are

leading - but certainly not the only - cases where one would like to be

robust agair.st other distributional misspecifications . Example 3.3 in

section 3 snows that no auxiliary assumptions are needed to compute

regression-based specification tests of jointly parameterized mean and

variance functions that are robust to nonnormalitv.

16



In many other situations $ (x
, 8 ) is easily computed if some additional

and in many cases standard assumptions are imposed under H For example, in

3
the nonlinear regression example suppose that 4> (y ,x ,6) E [y - m (x ,a)]

where 6 contains a and any conditional variance parameters. $ (6 ) is easily

seen to be $ (6 ) -= -3V m (a )v(y |x ). Most tests for skewness in theto ato tt
literature impose homoskedasticity or some other conditional variance

assumption under the null, and <J> (8 ) is readily computed once a model for

V(y |x ) has been specified. Tests for skewness are typically carried out

after the first two moments are thought to be correctly specified. If this

is the case, Theorem 2.1 imposes no auxiliary assumptions under the null.

However, it should be noted that the choice of A^_ is limited in this example
L

A. A

by the form of $ . If A is linearly related to $ then the modifiedJ t t J t

indicator A is simply zero. In a linear model with conditional
A A

homoskedasticity and repressors w , $ is proportional to w . Thus , A

cannot contain linear combinations of w . In particular, if w contains
t

F t

unity then the choice At = 1 is unavailable; this rules out a standard test

for unconditional skewness based on X u -- ^ Newey-Tauchen-White test would
t=l

Z

allow more flexibility in the choice of A^ for this example.

As another example, consider testing for nonconstancy of the conditional

first absolute moment of the regression errors. Under H„

,

E[jy^ n^(>-_.Q ) |
jx ]

— n > C. The generalized residual is <j> (y^.x^.tf) =

!y_ - m_(x_.a)| - k where 9 = (a' ,*)' . Although e_(f) is not strictly

differentiabie in a, it is differentiabie almost surely under the usual

assumptions imposed in these contexts. The quasi -gradient with respect to a

is V 6 (6) - (liy -m (a ) > 0] - lfy -m (a ) < 0])V m (a ) . Underat tto tto 'ato



conditional symmetry of the distribution of y given x

E(l[y
t
-m

t
(a

o
) > 0]|x

t
) = E(l[y

t
- m

t
(o

o
) < 0] |x

t ) , so that E[V^
t
(«

o
) |x

t
]
=

0. Also, E[V <j> (8 )|x ]
= 1, and * (x , 6 ) is simply (0,1). If m is the/clol t t o l.

A

conditional mean function and a is an M- estimator other than the NLS

estimator (e.g. the least absolute deviations estimator) then conditional
A

symmetry is needed anyway for a to be consistent for a .

Assumption (ii.c) is perhaps more properly listed as a regularity

condition, but it is placed in the text to emphasize the generality of

Theorem 2.1. Having ./T- cons is tent estimators of 8 and ix is a fairly weak

requirement, and allows relatively simple specification tests when 8 (as

well as n ) has-been estimated by an- inefficient procedure (under classical

assumptions). An application to the tobit model is given in section 3. The

tobit example has the feature of imposing correct specification of the

conditional distribution under Hn but, unlike the usual LM or NTW

regressions, Theorem 2.1 can be used when an estimator other than the MLE is

available

.

A yet unresolved issue is the relationship between £ and £ . There is

a simple characterization of their asymptotic equivalence under H
n

. The

proof of the following lemma follows immediately from the construction of | .

Lemma 2.2 : Let the conditions of Theorem 2.1 hold. If, in addition,

T
I / 1-\ — a a a

(iii) l'
l/l

I VC^ - 0(1),
t-1

t u u p

tnen

C T
- £T

= o
p
(l), (2.21)
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When (iii) holds, £ and f are asymptotically equivalent under H_

.

Condition (iii) is usefully interpreted as the sample covariance between

"1/2 A A
1/2

A

(C ' $ : t=l,..,T) and (C '
tf> : t=l,...,T) being asymptotically zero. It is

trivially satisfied if

T

X *.(*)'C (0,»r U (0) - (2.22)
t-1

x

is the defining first-order condition for 6 . This is frequently the case,

A

in particular when 6 is a quasi -maximum likelihood estimator (QMLE) of the

parameters of a conditional mean (see Wooldridge [30]) or of the parameters

of a jointly parameterized conditional mean and conditional variance (see

Example 3.3 below). In these examples (2.21) also holds (trivially) for

local alternatives, so that the difference between the test based on £ and,

A

say, the NTW test based on £ , is simply that different estimators have been

used for the moment matrices appearing in the quadratic form. Consequently,

under the conditions required for the classical test to be valid, the two

procedures are asymptotically equivalent under local alternatives ; robustness

is achieved without losing asymptotic efficiency. In addition to having

known asymptotic size under H_ , the robust test has a limiting noncentral

chi-square distribution even when the auxiliary assumptions are violated

under local alternatives (e.g. heteroskedasticity is present in a dynamic

regression model).

Lemma 2.2 does not directly provide a description of the local behavior

of £„ when (iii) fails tc held under local alternatives, but viewed from a

slightly different angle it provides useful insight. Note that Theorem 2.1

implies that the quadratic form in £ has an asymptotic chi-square

19



distribution under H
n

regardless of whether or not (iii) holds; the issue is

how to characterize the directions of misspecification that £ has power

against when (iii) does not hold. Fortunately, it is frequently the case

that £ is asymptotically equivalent to some well-known statistic under local

alternatives, when classical assumptions hold. This facilitates interpreting

a rejection when (iii) fails to hold.

To characterize the local behavior of f , it is useful to be somewhat

more explicit about the nature of the local alternatives. Let 6 and n be

/ * / * O
nonstochastic sequences such that JT(6 - 8 ) - 0(1) and jT(n - n ) - 0(1).

{#„,: T—1,2,...} indexes the sequence of local alternatives, but, as with 6

under H_ , 6 need not uniquely index the nonnull probability measure. k is

the plim of the estimator n under the sequence of local alternatives (H ,

:

T—1,2,...}. Assume that the conditions of Theorem 2.1 are supplemented with

conditions of the form

T
. , ^ r , T

%
f-li * * 1 f -l i, ol
v t=l J o v t=l

as T -< co for various functions G . This corresponds to standard assumptions

in the analysis of the local behavior of test statistics. The arguments of

Theorem 2.1 can be used to show that under the sequence of local alternatives

Tl-

-1/2 £ * * * * *
i~ - T 7

I [A_ - $_BT ]' C^ + o^(l) (2.23)

where

* !i * * * I

" x i ***
B
T

= ^ El£ ^-*-J I EL** C
i-
AJ

Lt-i j t-i

and values with a "*" superscript are evaluated at or (0 ,?r ). Equation

20



(2.23) is the extension of (2.18) to local alternatives and implies that the

A A

local limiting distribution of £ is the same when 8 and n are replaced by

their plims 6^. and n^, provided that JT(8
T

- 6 ) = (1) and VT^ - t^) =

A A A A

0(1) under (H^) . This implies that if (8
Tl

>*
Tl ) and ( ^T2

'

7T

T2 ^ are b ° th

,/T-consistent estimators of (6 ,x ) under {H . } then

*T1 " ^T2 " °p (1) (2 - 24)

A A

under (H ) , where | . is evaluated at (6 ,n ) and £ is evaluated at

A A A A

(0 „,7r „). Suppose, in addition, that 6 „ and w are chosen to satisfy

(iii), i.e.

T

T*
1/2

t
I^t(^2

)'C
t
(J
T2

,;
T2 )^(?T2 ) = o

p(
l). (2.25)

A

Then, by the analog of Lemma 2.2 for local alternatives, £ 9
- £ „ «= o (1)

A A A

where £ is evaluated at (6
9

,7r ). Along with (2.24) this implies that

*T1 ^T2
=

°p (1) (2 ' 26)

under H
n

and local alternatives. Conclusion (2.26) is simple yet very
A

powerful. It means that for any Vi-consistent estimator 6 _..
,

£_.. is

A A

asymptotically equivalent to £ „ because £„,„ has been evaluated at an

estimator that satisfies the asymptotic first order condition (2.22).

Whenever such an estimator is available the interpretation of £T is

straightforward: £ is asymptotically equivalent to the vector that

originally motivated the test statistic, £_, when |„ is evaluated at the

estimator that solves the first order condition. It does not matter which

estimator is used in computing £ ,
provided that it is JI-co-sLs ter.t. Thus,

the interpretation of | does not depend on the estimator used in computing
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it. In many situations there is available an estimator that satisfies

(2.22), and typically it solves a well-known problem. Interpreting £ even

whether or not (iii) holds typically reduces to interpreting an LM-type

statistic in a particular weighted nonlinear regression model or in a model

estimated by MLE under normality. An example of a case where an estimator

satisfying (2.22) does not have a simple interpretation involves testing for

skewness as discussed above. In a linear model with homoskedasticity , the

estimator that solves the first order condition (2.22) sets the correlation

between the regressors and the third moment of the errors equal to zero.

This method of moments estimator is not particularly easy to interpret.

The reasoning of the previous paragraph is applied to the tobit model in

the next section. There it is seen that a test for the conditional mean

using, e.g., Heckman's [12] two-step estimator, is asymptotically equivalent

to a standard Davidson-MacKinnon [5] test for comparing two readily

interpretable weighted nonlinear regression models.

The results of Theorem 2.1 and Lemma 2.2 are asymptotic. Very little is

known about the finite sample performance of the statistics of Theorem 2.1,

especially for nonlinear dynamic models. It should be emphasized, however,

that even though the regression in step (3) uses unity as the dependent

variable, these statistics do not necessarily have the same finite sample

biases sometimes exhibited by outer product-type regressions. Unlike

standard outer product regressions, the robust form does exploit the

generalized residual form cf the test statistic. In fact, the simulations of

Davidson and MacKinnon [6] for a static regression model and of Bollerslev

and wooidridge [1] for an AR-GARCH model suggest that the orthogonalization
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A
1/2

A A
1/2

A

of C A with respect to C 4> in step (2) improves the finite sample

performance relative to the NTW outer product regression, even under

classical assumptions. That this might be the case was previously suggested

to me by Peter Phillips.

3 . Examples of Robust . Regress ion- Based Tests

p
Example 3.1 : Let y be a scalar and let (m (x ,q) : a G A) , A c R , be a

parametric family for the conditional expectation of y given x . The null

hypothesis is

H
Q

: E(y
t
|x

t
) - m

t
(x

t
,q

q
) ,

some a
Q

e A, t-1 ,

2

(3.1)

Let {h (x 7) : 7 e T) be a sequence of weighting functions such that h (x ,7)

> 0, and suppose that 7 is an estimator such that T (7 - 7 ) = (1),

where {7 } C T. It is not assumed that (h (x ,7): 7 £ T) contains a version
i t t

of V(y |x ) or that h (x ,7 ) is proportional to V(v |x ) for some 7 e T .J t' t t to F F J t' t o

The researcher chooses a set of weights (h (x ,7 )] and performs weighted NLS

(WNLS) , or uses some other 7T-consistent estimator for a . However, no
o

matter which estimator for a is used, the tests are motivated bv the WNLS
o

first order condition

T

I V m
fc
(Q)' [y - iMq)]/M7t ) - 0. (3.2)

t_1
a . t t u T

A general class of diagnostics is obtained by replacing 7 m_(a) with a 1x0

vector of cisspecificatior. indicators evaluated at the estimators

:

T
± A A A A

l A
t
(a
T

,7rT
)' [yt

- m
t
(a
T
)]/h

t (7T ) (3.3)
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where n can contain 7 and other nuisance parameters . In the notation of

Theorem 2.1, 6 = a, <t>A e )
m v

t
' m

t
( Q ). A ({,1) = A (a.jr), and C

t
(0,7r) =

1/h (7)- It i s easy to see that computation of $ (x , 6 ) requires no

auxiliary assumptions under H_ , and in fact $ (x .0 ) -V ni (x .0. ).J u tto QttO
2

The usual LM-type statistic, which is TR from the regression

A A A A A A

u A/h. on V m /7h A//h, t-l,...,T,
t t a t t t t

A

requires that a be asymptotically equivalent to the WNLS estimator and that

A

h (7 ) be a consistent estimator of V(y |x ) up to scale. The following
A

procedure is valid under Hn for any ,/T- cons is tent estimator a without any

assumptions about V(y |x ):

A

(i) Let q be a ,/T-consistent estimator of a . Compute the residuals
A A A A A^*/-\A

u , the gradient V m (cO , and the indicator A (a_,7r_). Define u = h u
,

t b a t T t T T t t t

/2„ : _ ~
x m ;-i/2:
t t

V^m^ = h^ ' Vjn^, and A^ e h„ ' X
;

(ii) Regress A on V m and save the lxQ residuals, say A
;

- •• 2
(iii) Regress 1 on u A and use TR = T - RSS from this regression as

2
asymptotically xn under H_.

A

This procedure with h = 1 was first proposed by Davidson and MacKinnon

[6] in the context of a nonlinear regression model with independent errors

and unconditional heteroskedasticity . It was independently suggested by

Vooldridge [29] for nonlinear, possiblv dynamic regression models with

conditional or unconditional heteroskedasticiry under a martingale difference

assumption on the regression errors. Theorem 2.1 further demonstrates that
A A

a need not be the NLS estimator. The indicator A^ can be chosen to yield LM
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tests, Hausman tests based on two WNLS regressions, and tests of nonnested

hypotheses , such as the Davidson-MacKinnon [5] test, which do not require

correct specification of the conditional variance of y given x .

Conditional mean tests in the more general context of multivariate linear

exponential families are considered in more detail in Wooldridge [30].

The estimator that satisfies condition (iii) of Lemma 2.2 is the WNLS
A

estimator based on weights 1/h (7„) . From the remarks following Lemma 2.2,

the robust test statistic employing any ,/T-consistent estimator is

asymptotically equivalent to the LM statistic based on (3.3) when (3.3) is

A

evaluated at the WNLS estimator, h (7 ) is proportional to V(y |x ), and 7

is a ,/T-consistent-estimator of 7 . For efficiency reasons it is prudent to
o

put some thought into the choice of h .

Example 3.2 : Suppose now, in the context of Example 3.1, the goal is to test

whether for some 7 G T, h (x ,7 ) is proportional to V(y |x ). Let v (x 7)

2 2
= a h (x ,7) where a is absorbed into 7. The null hypothesis is

H : E(y
t
|x

t
) = m^x^), V(y

t
|x

t )
-= VVV' % e k

' (3 " 4)

7 e T, t-1,2,....
o

A A

Let a be the WNLS or some other ,/T-consistent estimator of a , and let 7T be

any Jl- consistent estimator of 7 . Let A (x ,6 ,t) be a lxQ vector of

indicators where 6 = (a' ,7')' . Most tests for variances can be derived from

a statistic or tne rom

T A
.1 "2

I Kl< - vj/v_ (3.5)
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Choosing A(x ,8, it) to be the nonconstant, nonredundant elements of

vechfV m (a)'V m (a) ] leads to the White [24] information matrix test in the
q t q t

context of quasi-maximum likelihood estimation in a linear exponential

2
familiy (see Wooldridge [30]). When v (7) = a choosing A (x ,8,-k) = w

,

where w is a lxQ subvector of x , leads to the Lagrange Multiplier test for

a general form of heteroskedasticity (see Breusch and Pagan [2]). Setting

2
A (x ,B,n) (u (q),...,u (q)) gives Engle's [8] test for ARCH(Q) under a

null of conditional homoskedasticity.

The correspondences for Theorem 2.1 are L «= 1, 8 = (a' ,7')'
, <f> (8) -

u*(a) - v (7), C {$,*) - l/v?( 7 ). Note that V <j> ($) - -2V m (a)u (a) -

V v (7). Under H E[u (a )|x ] = so that $ (x 6 ) - E[V * (0 )|x ] =
7 *- ULOL uuo ptou

-V v (7 ) ; no additional assumptions are needed under H„ to compute
7 t o

t t o

2
The choice C (8 ,n) e 1/v (7) in (3.5) is motivated by the structure of

the score of the normal log- likelihood with mean function m (a) and variance

"2
function v (7) . In particular, the scaling 1/v appears in the the variance

tests of Godfrey [10] and Breusch and Pagan [3]. The standard LM statistic

2
in this context is TR from the regression

u °

A A/\ f\ o A A A

(u
t - VAV Vt/V VV t=1 ----- T - C3.6)

In addition to (3.4) this test imposes

£[(*0 |x,_] - k [v
4_(x_,7 )] , some k > (3.7)

t- «- C w ^ o o

under the null, so that it is ncnrobust. Moreover, as pointed out by Breusch

and Pagan [3], (3.6) is generally valid only if 7 is the QMLE of 7 underJ T ' o

normality. Breusch and Pagan [3] offer a computationally simple C(a) test
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that allows 7 to be any 7T- cons is tent estimator of 7 , but it still requires

that (3.7) hold under the null. The NTW procedure applied to this case is

valid essentially in the same cases as the usual LM statistic.

The robust procedure obtained from Theorem 2.1 is easy to compute,

A

imposes only (3.4) under the null, and allows 7 to be any Jl- consistent

estimator of 7 .

o

A A

(i) Let q_ be a ,/T- cons is tent estimator of a , and let 7_ be a
1 01

A

,/T-consistent estimator of 7 . Compute the residuals u , the gradient
A « AA AA A«AAA«

V v
t
(7T

), and the indicator A (fl tt ). Define 4> = (u - v
t
)/v

t
- u

t
/v

t
1

'

A A A A

V v V v /v , and A A /v
;

7 t 7 V t' t v t

(ii) Regress A on V v and save the 1x0 residuals, say A
;6 t 7 t

x J t'

- • 2
(iii) Regress 1 on 6 A and use TR - T - RSS from this regression as6 Y

t t u 6

2
asymptotically xn under H_

.

2
Interestingly, when v (x ,7) a , so that the null is conditional

homoskedasticity , the regression in (ii) simply demeans the indicators.

Given u , a_, and a choice for A , the y^ statistic is obtained as TR from
t T t

A
Q u

the regression

A A A - A

1 on (uf- 0(V - A_) t-I,...,T (3.8)
L. 1 U I

where AT = T £ A . This procedure is asymptotically equivalent to the

traditional regression form (2.8) under the additional assumption that

E[u^_(a ) |x ] is constant. Note that (3.6) and the regression (2.8) usually

yield different test statistics that are not asymptotically equivalent under
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H The demeaning of the indicators may not seem like much of a

modification, but it yields an asymptotically chi-square distributed

statistic without the additional assumption of constant fourth moment for u .

In the case of the White test in a linear time series model, the demeaning of

the indicators yields a statistic which is asymptotically equivalent to

Hsieh's [14] suggestion for a robust form of the White test, but the above

statistic is significantly easier to compute.

2
In the case of the ARCH test, TR from the regression in (3.8) is

2
asymptotically equivalent to TR from the regression

1 on (VV (Vl"V (V a
T
)(ut-Q"V t=Q+1 ---- T - < 3 - 9 )

The regression based form in (3.9) is robust to departures from the

conditional normality assumption, and from any other auxiliary assumptions,

such as constant conditional fourth moment for u . Nevertheless, it is
t

asymptotically equivalent to the usual ARCH test under normality.

Example 3.3 : Theorem 2.1 can also be applied to models that jointly

parameterize the conditional mean and conditional variance. Again, let y be

a scalar, and consider LM tests that are robust to nonnormality. The

unconstrained conditional mean and variance functions are

(M
t
(x

t
,5), »

t
(x

t
,«): 6 6 A) (3.10)

M
where A C R . It is assumed that

E(yJx ) - M^(x_,<5 ), V(v |x ) - a- (x ,6 ), some S € A. (3.11)tt tto t t tto o

Take the null hypothesis to be

H • 5 « r(0 ) for some 6 e 6 c R
P

(3.12)
o o o
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where P < M and r is continuously differentiable on int(9) . Let m (6)

H (r(0)) and v (0) - w (r(0)) be the constrained mean and variance functions.
A

QMLE is carried out under the null hypothesis. Let 8 be the estimator of 8

under H. , and let £„, = r(0_) be the constrained estimator of 7 . V„m and
T T 'o 8 t

A AAA
V„v are the lxP gradients of m and v under H_ . Note that u> = v and u «=

8 t & ttO t t *t
A

m by definition. The LM test of (3.12) is based on the unrestricted score

of the quasi-log likelihood evaluated at S . The transpose of the score is

s
t
(5)' - V^

t
(S)'u

t(£)A>t
(0 + V

s
u>
t
(6)'[u

2

t
(S) - w

t
(fi)]/2u£(«) (3.13)

Vt (5)

lVt (*),

i/«
t
(ff)

[ l/[2w
t
(fi)^]J

u
t
(5)

\(S}_- w
t
(«) J

(3.14)

Evaluating s at r(S) gives

s
t
(r(0))' - A

t
(^)'C

t
(5)^

t
(^) (3.15)

where A (8)' = [V
r /i (r(0))'

|
V.w (r(0))'], C (0) is the diagonal matrix in

t t t t

the middle of (3.14) evaluated at v(8) ,
and 4> {&)' = [u (r(0)),

2
u^(r(£)) - v (#)]. The standardized score evaluated at r(0 ) is

T"
1/2

I s (r(L))
t-1

,-1/2

t«l
C

(3.16)

Under H„ and the assumption of conditional normalitv, TP." from the regression
•

- u e.ity, TR
2

on t=l , T (3.17)

is asvmotioticaliv v > vnere Q M - ? is tne number cr restrictions under fa_.

Unfortunately, this procedure is invalid under nonnormality, nor does it have

systematic power for detecting nonnormality. Theorem (2.1) suggests a robust

form of the test. In this case,
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2x1

t

2x2

u
t

U - V
t t '

A =
t

2xM

Vt
Vt

l/v.

. l/[2v£] J

t

2xP 6 tJ

where u v - m (#„,). The transformed quantities are
t J t t

v
T' H

u //v
t
/v

t

>
[u£ - v

t
]/(72v

t
) , k vt

/(y2v

*
f
Vrt/7v

t

I Vt/<V2vt
) J

The robust test statistic is obtained by first running the regression

A on $ t=l,...,T (3.18)
t t

and saving the matrix residuals [A : t=l,...,T). Then run the regression

1 on t'
t
A
t

t-l,...,T (3.19)

2 2
and use TR = T - RSS as asymptotically x under Hn . Note that the0"

regression in (3.19) contains perfect multicollinearity since A V r(8 „) = 0,
t b i

where V r(6) is the MxP gradient of r. Many regression packages nevertheless

compute a RSS; for those that do not, ? regressors can be omitted from

(3.19).

a

Note that the first order condition for 8— is simply

1a a a

I *
1
.(*.P)'C.(Oi (0.) - 0,

t-l
c A c x u i

so that the robust indicator is asymptotically equivalent to the usual LM

indicator. The matrix regression in (3.18) is the cost to the researcher in



guarding against nonnormality

.

Example 3.4 : Suppose that y is a random scalar censored below zero, and let

x be a lxM vector of predetermined variables from x . A popular model for

y is the tobit model. Among other things, the tobit model implies that

E(y ly >0,x ) — x -a + a p(x ,q /a )VJ
t IJ t ' t' tl o o

FV
tl o' o'

- m
t
(0

o
) (3.20)

and

V(y
t ly t

>0,x
t

) -a*(l - Cx
tl
a
o
/a

o
)p(x

tl
a
o
/a

o
) - [p^^/a^h

- v (6 ) (3.21)
t o

2
where p(-) is the Mill's ratio and 8 - (a ,a ) . Here a is the conditionalooo o

variance usuallv associated with the underlying "latent" variable, and w aJ JO
t

is conditional mean of the latent variable. From a statistical standpoint,

the tobit model is no more sensible than

log yjy t
>0,x

t
- N(x

tl£ Q
,r^) (3.22)

((3.22) also seems reasonable for many economic applications; see Cragg [4]),

2
If (3.22) is valid, B and rj can be estimated bv OLS ofoo

log y on x .

L. Li

using only the positive values of y^ . Recall that (3.22) implies
i.

2
E(y^_ jy^>0 ,x_) - exp(rj /2 + x _/5 ).

2

c c

and

V(v ly >G,X ) = [eXD(r?
2

) - I1
r

eXD(r;
2
/2 + X -0 ) ]J t"t t ' -o ' A

o tl o

- uAB.A (3-24)too



A A ,"2 2
Let a , a be any VT-consistent estimators of a and a under HA . These

T T o o

include the MLE's, Heckman's [12] two-step estimators, and various WNLS

estimators. Define the Davidson-MacKinnon [5] indicator to be the following

weighted difference of the predicted values from (3.23 and (3.20):

A AA A« A AA AA
A
t
- (v

t
/Wt ){exp[r^/2 + X^^] - [x^ + t^p (x^/a^J ] } (3.25)

A A A A A A «

where v = v (a ,a ) and u = w (j3 r/ ) . Then, if the tobit model is true,

A

A should be asymptotically uncorrelated with

A A A A A

u E y - x ,a_ - o^pix ,a^/a^,). (3.26)
t J

t tl T Tp tl T T

A test which can be shown to be consistent against the alternative (3.23) is

A A

based on the weighted correlation between u and A . Unfortunately, the

A

usual LM statistic is invalid even when the weighting 1/,/v is employed. The

A A

reason is that the estimators (a a ) need not have been obtained from the

weighted nonlinear least squares problem

1 - A

min I (yt
- x

tl
Q - ^P(x

tl
Q/£7 )) /v

t
- (3.27)

a
,
a t=l

Nevertheless, a statistic is available from Theorem 2.1. Let

q>

t
(a,o) = y - x

tl
Q - erp(x -a/cr) = u

t
(^)

A

and let V m^ denote the 1 x (M+l) gradient of x .a + ap(x .a/a) with respect
L. tl ti

A A

to a and a, evaluated at (a^,o„,) . Then the following procedure is

asymptotically valid:



(i) Define A as in (3.25), u as in (3.26), and V m as above.

A A A A A A

The weighted quantities are A = A /7v , u ^ u /7v , V„m V„m /7v .6 M
t t

/v t't t
/v

t' t t
/v

t

(ii) Run the OLS regression

A
t

on V^m
t

t=l T

and save the residuals A .

t

(iii) Run the regression

1 on u A t=l , . .
.

,

T

t t '

2 2
and use TR •= T - RSS as asymptotically y, under H_ .

u J r J
1

This test takes the null hypothesis to be correct specification of the

conditional density of y given x , i.e. the tobit model holds under H„.--TnJ J t b t

particular, it relies on linearity of the conditional expectation in x .

,

conditional homoskedasticity , and conditional normality in the underlying

latent variable model; it is not intended to be robust to departures from any

of these assumptions. Instead the test is devised to have power against

departures from the tobit model that invalidate the conditional expectation

(3.20). Equation (3.20) is of course only one of many consequences of the

tobit model that could be tested. The test is most useful if interest lies

in determining the effect of explanatory variables on positive values of the

dependent variable

.

The discussion following Lemma 2.2 implies that (i)-(iii) is

asymptotically equivalent to the Davids on-MacKinnon test fcr weighted NLS

estimation of (3.20) and (3.23), provided aT and c are Jl- cons istent

estimators. If g„ and a_ are the MLE's then these estimators are more
i I

efficient than the WNLS estimators that solve (3.27). But Heckman's [12] two
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step estimators yield a test that is asymptotically equivalent to the test

employing the MLE's or the WNLS estimators. One is essentially doing

specification testing of the nonlinear regression model (3.20) with variance

(3.21). This makes interpretation of procedure (i)-(iii) straightforward.

It must be emphasized that if the MLE's are available then a

Newey-Tauchen-White regression (2.13), which requires the estimated scores of

the conditional log-likelihood, is available. The procedure obtained from

Theorem 2.1 is more flexible albeit less efficient.

A similar test could be based on competing specifications for E(y |x );

that is, the zero as well as positive observations for y can be used. This

would require specifying P(y >0|x ) in the competing model (3.22) such as in

Cragg [4]

.

Before leaving this example, it is useful to note that simple tests for

exclusion restrictions can be developed along similar lines. The

unrestricted mean function for E(y !y >0,x ) isw t i; t t

X
tl

Q
ol

+ X
t2

Q
o2

+ ap([x
tl

Q
ol

+ X
t2
a
o2 ]'V- (3 " 28)

The null hypothesis is that a „ = 0, which reduces to (3.20). The indicator
A

A is now the gradient of (3.28) with respect to a evaluated at the

restricted estimates:

A A

A = x . + c„V p(x ,a„,,/a„,)x .
t t2 T z t^ Tl T t2

A

where V p(-) is the derivative of the Mill's ratio. When this X is used in
z t

(i)-(iii) a test asymptotically equivalent to the LM statistic in the context
A A

of WNLS is obtained. Again, a„, and c are any Jl consistent estimators of

a , and a .

ol o
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4 . Conclusions

This paper has developed a general class of regression-based

specification tests for (possibly) dynamic multivariate models which, in the

leading cases, imposes under H_ only the hypotheses being tested (correctness

of the conditional mean and/or correctness of the conditional variance) . The

framework can be applied to testing other aspects of a conditional

distribution under a modest number of additional assumptions. It is hoped

that the computational simplicity of the methods proposed here removes some

of the barriers to using robust test statistics in practice.

The possibility of generating simple test statistics when

1/2
A

T ' (6 - 6 ) has a complicated limiting distribution should be useful in

several situations. The tobit example in Section 3 is only one case where

the conditional mean parameters are estimated using a method other than the

efficient WNLS procedure or the even more efficient MLE. Another application

is to choosing between log-linear and linear-linear specifications. In this

case, both models can be estimated by OLS , and then transformed in the manner

of the tobit example to obtain estimates of E(y ]x ) for the separate models.
t t

Theorem 2.1 applies directly to linear simultaneous equations models

(SEM's). Computation of $ (x ,6 ) is straightforward provided that the
t t o

reduced form for the endogenous right hand side variables is available. The

parameter vector 8 contains the reduced form parameters of the relevant

endogenous variables as well as the structural parameters in the equation(s)

of interest. If all equations of a simultaneous system are being tested

jointly then 6 is simply all structural parameters. An immediate application
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is to testing for serial correlation in linear dynamic simultaneous equations

models in the presence of heteroskedasticity (conditional or unconditional)

of unknown form. Also, tests for multivariate ARCH in SEM's that are robust

to heterokurtosis are also easily constructed. The scope of applications to

nonlinear SEM's is limited by one's ability to compute $ (x , 6 )
=

E[V 4>{y ,x ,6 )|x ]. This is exactly the problem of computing the optimal
u t t O t

instrumental variables for nonlinear SEM's.

Theorem 2.1 can be extended to certain unit root time series models.

A m ./-.A

1/2 1/2
The initial purging of C 4 from C A can produce indicators A that are

effectively stationary. This happens for the LM test in linear time series

models when the regressors excluded under the null hypothesis are

individually cointegrated (in a generalized sense) with the regressors

included under the null. In this context the statistics derived from Theorem

2.1 have the advantage over the usual Wald or LM tests of being robust to

conditional heteroskedasticity under H Extending Theorem 2.1 to general

nonstationary time series models is left for future research.
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Mathematical Appendix

For convenience, I include a lemma that is used repeatedly in the proof

of Theorem 2.1.

Lemma A.

1

: Assume that the sequence of random functions (Q (w 0): e 8,

T—1,2, ...}, where QT (w •) is continuous on 8 and 8 is a compact subset of

p
R , and the sequence of nonrandom functions {Q (0): G 8, T=l , 2 , . . . )

,

satisfy the following conditions:

(i) sup |Q (w 0) - Q (0)]| B 0;

0e8

(ii) {Q (0): e 8, T=l , 2 , . . .
} is continuous on 8 uniformly in T.

Let be a sequence of random vectors such that _ -0*0 where (0„!

C 8. Then

QT
(w

T
,0
T

) - QT
(0°) 2 0.

Proof: see Wooldridge [28, Lemma A.l, p. 229].

A definition simplifies the statement of the conditions.

Definition A.l : A sequence of random functions (q (y ,x ,0): 6 8,

t—1,2,...}, where q^(y ,x ,-) is continuous on 8 and 8 is a compact subset of
t t t

P
R , is said to satisfy the Uniform Weak Law of Large Numbers (UWLLN) and

Uniform Continuity (UC) conditions provided that

T

(i) sup IT"
1

Y q^(y x 0) - E[q (y .x .0)]| 2

0£8 C-l " ^ ^

and

1
T

(ii) {T "
Y E iq^(>V.^ .*)]: 8 e 6, T-1,2,...} is 0(1) and
t-1

Z Z Z

continuous on 8 uniformly in T.

U0



In the statement of the conditions, the dependence of functions on the

variables y and x is frequently suppressed for notational convenience. If

a(9) is a lxL function of the Pxl vector 6 then, by convention, V a(0) is the
8

LxP matrix V {a(8)']. If k(6) is a QxL matrix then the matrix V A(0) is the
P 8

LQxP matrix defined as

v
g
h(ey - [Vfaier I

••• IVq ( °' ]

where A. (8) is the j th row of A(0) and V.A.(B) is the LxP gradient of A. (9)
J 0J J

as defined as above. Also, for any Lxl vector function <p, define the second

derivative of <p to be the LPxP matrix

^<P<*) - V
fl

[V^(*)'].

Finally, define the parameter vector S b (#' ,»r')' .

Conditions A.

1

:

P N
(i) 6 c R and II c R are compact and have nonempty interiors;

(ii) 6 e int(6), U°: T-l , 2 , . . . } c int(II) uniformly in T;

(iii) (a) [<f> (y ,x ,8): 9 e 6) is a sequence of Lxl functions such

that 4>^{- ,6) is Borel measurable for each 6 6 and f (y ,x ,•) is
t t t t

continuously differentiable on the interior of 6 for all y ,x , t=l , 2 , . .
.

;

(b) Define 9Ax.,B ) = E, [V,i (y x . ) |xJ for all 6 ettO ppttwOU o
o

int(8) . Assume that <*> (x ,.•) is continuously differentiable on the
t t

interior of 6 for all x^ , t-1,2,...;

(c) (C
j
_(x

j
_,c): S £ A} is a sequence cf LxL matrices satisfying

the measurabiiity requirements, C (x ,6) is symmetric and positive

semi-definite for all x_ and 5. and C (x , • ) is differentiable on int(A)

for ail x , t=l , 2 , . . . ;

t
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(d) (A (x ,8): 8 e A) is a sequence of LxQ matrices satisfying

the measurability requirements, and A (x • ) is differentiable on int(A)

for all x , t-1,2, . .
.

;

(iv) (a) T
1/2

(0„ - 6) = (1);To p

(b) T
1/2

(tt
t

- tt°) = 0(1);

(v) (a) ($ (0)'C (6)* (0)) and {$ (0)'C (5)A (5) satistfy the UWLLN

and UC conditions;

-1
T

(b) (T '"

Y,
E[$ ' C $ ]} is uniformly positive definite;

t-1 *~
Z t

(vi) (a) l$
t
(0)'C

t
(5)V^

t
(0)}, {[I

p
® ^

t
(0)'C

t
(«)]V

fl

*
t
(fl)}

I
and

{* (9)' [I. ® ^ (0)' ]V C (5)} satisfy the UWLLN and UC conditions;

(b) T"
1/2

I 9>°'C%° - (1);
^ i

t t
r
t p

v "

(vii) (a) {A
t
(5)'C

t
(6)V^

t
(0)}, { [I ® ^.(0)' C

t
(S) JV^*)' }

,

(A
t
(0' [I

L
® *

t
(«)' ]V

5
C
t
(6)}, and (*

t
(0)' [^ ® 4>J6)' ]^C

t
(fi) ) satisfy the

UWLLN and UC requirements

;

i
T

(viii) (a) {E° - T"
1

I E[(a!-*°b!)'cV^'c!(aJ-*°b2)]} is uniformly

P-d.;

(b) H^ 1/2!" 1/ 2

I (A° -*°
t
B?)'C°< ^ N(0,I

Q
);

<,
=

J.

(c) (A
t
(5)'C

t
(5)^

t
(0)^

t
(0)'C

t
(5)A

t
(5)},

[A_(S)' C^(8)<f>^(8)4>(6)' C^(8)§(6)) , and {<J-^(f)' C_(5)^_(^)^_(£; )'C_(5)* (0)}
t- I- L. t U t L. t t t t t

satisfy the UWLLN and UC conditions.
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Proof of Theorem 2.1 : First, note that assumptions (i)-(vi) ensure existence

of B„ and imply that B_ - B_ •= o (1) by Lemma A.l. Therefore,
T lip

T

rT -T-^z [a - v°]'v t
(-D

t=1
* T A A A

- (L - b°)-t"
1/2

y J'c J .

A

Consider the term post-multiplying (B - B )'
. A standard mean

value expansion about 6 , assumption (vi.a), and Lemma A.l yield

T'
1/2

I J'C i - r l/2
l $°'CV (a. 2)

^, t t*t A
n t t

r
t

v 7

t=l t-1

T

+ T-2
i

{^'[l
L
»*°']VjC°}T1/2

(«T
-«

o
) + o

p
(l).

The first term on the right hand side of (a. 2) is (1) by (vi.b). By (vi.a)

and (iv.a,b), the terms in lines two and three of (a. 2) are also (1).
P

Therefore

,

1/9 A A A

T ' 1 *'C 6 - (1). (a. 3)

t-1 P
A

Along with B_ - B_ - o (1), this establishes that under Hn ,

r r p u

T

L - T"
1/2

X [A - * B°]'C^ + 0(1). (a. 4)

t-1 P

A mean value expansion, assumption (vii) , and Lemma A.l yield

- „-l/2r- r o _c_o,,_c.o , CN
CT

- 1 ' I [A
t

- *
t
B
T ]

'C
t4 t

(a. 5)

+ T
_1
X ([a!-^b!]'C°V,c^ - B°' ri_ ® *!'C°]V,$°} T

i/2
(fl T - B )

. ttTtet IP t t 6 t i o
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t=l ^

•T
1/2

(5
T

- 6°)

+ o
p
(l)

Consider the second line of (a. 5). It must be shown that the average

appearing there is o (1) under H. . First, note that by definition of $ and

the law of iterated expectations,

E([A°-*°b£]'C°V^°) - E{E([A°-f°B°]'C°V^°|x
t]))

(a. 6)

L

t t T J

t t

Therefore

,

I-^E([A°.t°B°,-C°7^°, - T-^EUA^XrcV, - (a. 7)

by definition of B . The regularity conditions imposed imply that each of

the averages appearing in (a. 7) satisfy the WLLN. Therefore

T
_1

I [A -$°B°]'C°V^ = o (1). (a. 8)~ L
t t t j

t e
Y
t p

Because Ef^^Jx ]
= under K , it is even easier to show that the remaining

t t u

sample averages in (a. 5) are o (1). Combined with T (5_ - 5_) = (1) this
p T T p

establishes the first conclusion of the theorem:

lT
- T"

1/2

J [A° - *l*°]'Cyt + o
p
(l). (a. 9)

Given (viii.a), the asymptotic covariance matrix of £ is uniformly positive

definite. Moreover, E_
x

tT
-* N(0,I ) under H- by (viii.b). Condition

(viii.c) ensures that



T

I
t-1

-•J- A AA AAAAA AA
T" I [(A

t - *tV' CtVtC
t
(A

t " W ]
(a - 10)

is a consistent estimator of S_. It is easy to see that

CTrT\ - Tr2, (a. 11)

2
where R is the uncentered r-squared from the regression

1 on J't
A
t

t-1 T, (a. 12)

and
(f>

and A are as defined in the text. Because the dependent variable in

2
regression (a. 12) is unity, TR - T - RSS, where RSS is the residual sum of

squares from the regression (a. 12).
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