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Position Auctions with Budgets: Existence
and Uniqueness

Itai Ashlagi, Mark Braverman, Avinatan Hassidim, Ron Lavi, and Moshe
Tennenholtz

Abstract

We design a Generalized Position Auction for players with private values and private bud-
get constraints. Our mechanism is a careful modification of the Generalized English Auction of
Edelman, Ostrovsky and Schwarz (2007). By enabling multiple price trajectories that ascent con-
currently we are able to retrieve all the desired properties of the Generalized English Auction, that
was not originally designed for players with budgets. In particular, the ex-post equilibrium out-
come of our auction is Pareto-efficient and envy-free. Moreover, we show that any other position
auction that satisfies these properties and does not make positive transfers must obtain in ex-post
equilibrium the same outcome of our mechanism, for every tuple of distinct types. This unique-
ness result holds even if the players’ values are fixed and known to the seller, and only the budgets
are private.

KEYWORDS: position auctions, envy-free allocations, Pareto-efficiency, budget constraints, ex-
post implementation



1 Introduction
Online advertisements via auction mechanisms are by now a major source of in-
come for many Internet companies. Whenever an Internet user performs a search
on Google, an automatic “position auction” is being conducted among several dif-
ferent potential advertisers, and Google places the winning ads next to the search
results it outputs. Google and Yahoo! generate a revenue of several cents per each
such auction, and these numbers add up to billions of dollars every year. The im-
portance of correctly designing these auctions, and of analyzing their different eco-
nomic properties, is clear.

Indeed, in this electronic setting, the interplay between theoretical mod-
els and practical implementations is rich. Many actual auction implementations
were based on early theoretical insights, and the actual auction formats that have
evolved over time motivated deep theoretical studies. Two examples are the papers
of Varian (2007) and of Edelman, Ostrovsky, and Schwarz (2007), that analyze
Google’s “generalized second price” (GSP) auction, and show that it has many at-
tractive properties. In particular, the GSP auction obtains in equilibrium an efficient
(welfare-maximizing) allocation, with envy-free prices. Moreover, Edelman et al.
(2007) extend these results to the incomplete-information setting via an elegant
generalization of the English auction. Several other variants of position-auctions
models have been studied, see e.g. Athey and Ellison (2008) and Kuminov and
Tennenholtz (2009) and the references therein.

Many of the works on position auctions completely ignore the issue of bud-
gets, and focus on the bidder’s value from winning one of the slots. In sharp con-
trast, all actual position auctions allow bidders to specify both a value and a budget,
and the latter parameter serves an important role in the strategic considerations of
the bidders.1 In fact, budgets are a weak point of the more general auction theory
as well, with relatively few works that study the subject.2 The several works that do
study the effect of budgets indicate that, because the existence of budgets changes
the quasi-linear nature of utilities, properly inserting budgets into the model usually
results in significant modifications to the theory, both technically and conceptually.
Therefore the importance of studying position auctions with budgets is two-fold:
to align theoretical auction models with realistic auction systems, and to enrich the
theoretical understanding of the effects of budgets on auction design.

In this paper we design a position auction for players with budgets in an
incomplete information setting, where both the bidders’ values and budgets are pri-

1Actual technical rules for Google’s auction, for example, can be found at
http://www.google.com/intl/en/ads/

2An up-to-date picture of the literature on auctions with budgets is given in the recent paper
of Pai and Vohra (2008).
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vate information. As could be expected, we observe that previous analysis, and in
particular the analysis of the generalized English auction, fails when budget lim-
its exist. We obtain two results: First, we design a “generalized position auction”
that retrieves all the nice properties of the generalized English auction, while taking
budgets into account. In particular, the ex-post equilibrium outcome of our auc-
tion is envy-free and Pareto-efficient. Second, we show that any other mechanism
that always obtains envy-freeness and Pareto-efficiency in ex-post equilibrium must
choose the same slot assignment and the same payments as our mechanism, at least
whenever all true types are distinct. This uniqueness result holds even if players’
values are fixed and known, and the only private information of the players is their
budgets. This last property is especially interesting given the argument of Edelman
et al. (2007), that a complete-information assumption regarding the players’ values
is reasonable. Our uniqueness result shows that, in our context, such a relaxation
will not make the problem easier.

We are not the first to describe a position auction with budgets. Such auc-
tions were formulated several times already, as a special case of the more general
model of unit-demand players with budget constraints. Van der Laan and Yang
(2008) and Kempe, Mu’alem, and Salek (2009) show that an adaptation of the
Demange-Gale-Sotomayor ascending auction finds an envy-free allocation even if
players have budget constraints. Aggarwal, Muthukrishnan, Pal, and Pal (2009)
additionally show that this mechanism is incentive-compatible. Hatfield and Mil-
grom (2005) study a more abstract unit-demand model for players with non-quasi-
linear utilities that generalizes both the Gale-Shapley stable-matching algorithm as
well as the Demange-Gale-Sotomayor ascending auction, and provide an incentive-
compatible and (in the case of our setting) envy-free mechanism. On top of these
works, our new contributions are: (1) the uniqueness result, and (2) the new auction
format that extends the generalized English auction, rather than the matching/unit-
demand format. Indeed, our auction has a completely different structure, and it
converges to the equilibrium outcome along a different price path. Without our
uniqueness result, one could easily (incorrectly) imagine that the two proposed for-
mats (the matching-based and the GSP-based) end-up in different outcomes. Since
the generalized English auction follows Google’s “next price” auction, our exten-
sion for players with budgets seems of independent interest.3

To highlight the specific effect of budgets on the generalized English auc-
tion, recall the basic setting: there are k slots and n players, and player i obtains
a value of αlvi from receiving slot l, where the constants α1 ≥ α2 ≥ ·· · ≥ αk are
given as an input to the mechanism (they are common knowledge), and each player

3Varian (2007) also remarks on the similarity to matching models, and argues that the GSP
auction is of particular interest because of actual Internet auctions.

2

The B.E. Journal of Theoretical Economics, Vol. 10 [2010], Iss. 1 (Advances), Art. 20

http://www.bepress.com/bejte/vol10/iss1/art20



is interested in at most one slot. In the generalized English auction, a single price
gradually ascends, and players need to decide when to drop. Rename the players
such that player 1 is the last to remain, player 2 is the second to last to remain, and
so on. When the l’th player drops, she is allocated slot l for a payment that is equal
to the price-point at which the l +1 player dropped. Thus, when l players remain,
each one sees a fixed price for slot l and a gradually increasing price for the better
slots, and should decide whether to drop and take slot l, or to remain and receive a
better slot. The key observation in the analysis of Edelman et al. (2007) is that, if
each player plans to drop at the price that makes her indifferent between slot l and
slot l− 1, the winner of slot l will not regret in retrospect the fact that she did not
win a better slot. This is immediate regarding slot l−1, but more subtle regarding
the slots that are better than l− 1, and follows from the fact that the first to drop
among the remaining l players is the one with the lowest value.

With budgets, however, this key observation fails. A player that becomes
indifferent between slot l and slot l−1 because she has the lowest value may later
be able to offer a higher price than her competitors for the slots better than l−1, if
the competitors are limited by a low budget. For this reason, a single price trajec-
tory fails to reach an equilibrium. The other extreme, of performing k completely
separate auctions sequentially, will also not yield an ex-post equilibrium since, in-
tuitively, the competition on slot k depends on the identity of the winners of better
slots, and vice-versa. Our solution is a hybrid between these two extremes. We
maintain k price trajectories, one for each slot, that ascend in a carefully-designed
concurrent way. Enabling low-valued players with high budgets to “join the race”
at the later stages is the main high-level conclusion that stems from our technical
analysis.

In addition to the straight-forward importance of an existence and unique-
ness result, which illuminates some of the effects of budgets on auction design,
in a more general context our analysis contributes another layer to the currently
small literature on auctions with budgets. In particular, we wish to point out two
conceptual aspects of the positive result: First, it is “detail-free” and “robust” (Wil-
son, 1987, Bergemann and Morris, 2005), while most previous works on auctions
with budgets assume a Bayesian setting that is not robust, and sometimes not even
detail-free. Second, it should be contrasted with the recent interesting impossi-
bility of Dobzinski, Lavi, and Nisan (2008). They show that there does not exist
a dominant-strategy incentive-compatible and Pareto-efficient multi-item auction,
even in the very restrictive setting of two identical items and two players with ad-
ditive private valuations (and a private budget constraint). The existence result for
position auctions demonstrates the importance of their assumption that players wish
to receive multiple items. With unit-demand, a possibility (though unique) still ex-
ists, as demonstrated here.
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The remainder of this paper is organized as follows. In section 2 we setup
the formal model and explain our different technical assumptions. In section 3 we
describe why the generalized English auction fails when players have budgets, and
detail our modified format. Section 4 provides the analysis, with some technical
details postponed to Appendix C.

2 Preliminaries
Basic Model Of Position Auctions. In a position auction there is a set K =
{1, ...,k} of items (“slots”) and a set N = {1, ...,n} of bidders, where each bidder is
interested in receiving one of the slots. Each slot l ∈ K is characterized by a known
constant αl > 0, where α1 ≥ α2 ≥ ·· · ≥ αk, which is an input to the mechanism.
Each bidder i obtains a monetary value of αlvi from receiving slot l, where vi is
a parameter that is privately known only to player i. We assume without loss of
generality that k ≤ n, since otherwise we can just ignore the k−n lowest slots.

This model has been studied in recent years (see e.g. Varian (2007) and Edel-
man et al. (2007)) in order to analyze the ad auctions that are conducted by search
engines like e.g. Yahoo! and Google. In a nut-shell, search engines place paid
online advertisements in proximity to search results that they output. Advertisers
bid for the online placement of their advertisements, and the k winning bidders are
positioned on the web-page according to their bids. The value vi represents bidder
i’s expected profit given that the Internet user will click on her ad, and the constant
αl (the “click-through rate”) represents the probability that the Internet user will
indeed click on the ad, given that the ad is positioned at slot l. Slot 1 is the “best”
position, i.e. has the highest click-through rate, slot 2 is the second-best, and so on
and so forth.4

Budget Constraints And Valid Outcomes. Previous works on Google’s next-
price auction have assumed quasi-linear utilities, i.e. bidder i’s utility from receiving
slot l and paying Pi is equal to αlvi−Pi. In this paper we analyze the effect of
adding a hard budget limit that caps the maximal payment ability of a player. More
precisely, each player i has a privately-known budget bi, and cannot pay any price
P≥ bi. Thus the resulting utility of a player with type (vi,bi) that receives slot l and

4We follow the exact model of Varian (2007) and of Edelman et al. (2007), in which the click-
through rate depends only on the position of the slot, and not on other factors like the quality of the
different ads. Few recent works have begun to study more complex click-through-rate models, see
for example the work of Kuminov and Tennenholtz (2009) and the references therein.
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pays P is

u((vi,bi), l,P) =

{
αl · vi−P P < bi

0 P≥ bi

where the zero-utility for the case that P ≥ bi captures the fact that if a player has
to pay such P, she will default and will not complete the transaction. (our results
continue to hold if this zero utility is replaced with any other negative utility). Note
that the feasibility regime is any P < bi. This is more convenient for us than a weak
inequality due to some technical reasons that will be explained below.5

To summarize, we define a valid outcome of a position auction as a tuple
(si, pi)i∈N , where every bidder i receives the slot si ∈ K∪{k+1} (k+1 is a dummy
slot with αk+1 = 0) and pays pi. A valid outcome must additionally satisfy:

1. (feasibility) si,s j ∈ K, i 6= j, implies si 6= s j.6

2. (budget limit) pi < bi.
3. (ex-post Individual Rationality (IR)) pi ≤ αsivi.

It should be noted that valid outcomes are deterministic. Interpreting budget con-
straints in a randomized context is a more subtle task that we defer to future work.

Desired Solution Properties. Since there are many possible valid outcomes, one
may wish to focus attention on those outcomes that are “efficient” and “fair”, as
captured by the following two classic properties:

1. (Pareto-efficiency) A valid outcome o=(si, pi)i∈N is Pareto efficient if there is
no other valid outcome o′ = (s′i, p′i)i∈N such that αs′i

vi− p′i ≥ αsivi− pi (play-
ers weakly prefer o′ to o) and ∑i∈N p′i ≥ ∑i∈N pi (the seller weakly prefers o′

to o), with at least one strict inequality.
2. (Envy-freeness) A valid outcome (si, pi)i∈N is envy-free if for every two dis-

tinct players i, j ∈ N such that p j < bi, αsivi− pi ≥ αs jvi− p j.7

5When budgets are real numbers then either the set of all infeasible payments includes its infi-
mum or the set of all feasible payments includes its supremum, and this choice does not seem to
have any conceptual meaning.

6Note that many players can be assigned to the dummy slot k + 1, meaning that they do not
receive any slot.

7One may also consider to weaken the definition of envy-freeness to a stability condition, such
that for each pair of players, at least one of them would not like to exchange slots and prices with
the other. This turns out to be weaker than Pareto-efficiency: one can show that any Pareto-efficient
outcome satisfies this stability condition, but there may be stable outcomes that are not Pareto-
efficient. We additionally note that envy-freeness in position auctions is related to stable matchings
in a two-sided graph, as discussed by Edelman et al. (2007).
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The generalized English auction of Edelman et al. (2007) is envy-free, and
we will show that this strong fairness property can still be achieved even when
budgets are considered. Pareto-efficiency is strictly weaker than envy-freeness:

Proposition 1. Every envy-free outcome in which all slots are allocated is Pareto-
efficient.

Proof. Assume by contradiction that o = (si, pi)i∈N is envy-free but not Pareto-
efficient, and let o′ = (s′i, p′i)i∈N be a valid outcome that Pareto improves o. Without
loss of generality ∑i∈N p′i > ∑i∈N pi, since if it is an equality then there exists a
player i with a strict inequality s′ivi− p′i > sivi− pi and we can slightly increase p′i
to get a Pareto improving outcome in which the seller’s payoff is strictly larger than
her payoff in o.

For any slot l, let ql,q′l be the payment of the player who receives slot l
is o,o′ respectively. Let j be some slot such that q′j > q j, and suppose player i j

received slot j in o′. Since player i j’s utility in o′ is not smaller than her utility in
o it follows that i j received a different slot in o, say si j = l 6= j. We get αlvi j −
ql ≤ α jvi j − q′j < α jvi j − q j. Thus player i j envies the player who got slot j in o,
contradicting the fact that o is envy-free.

The opposite statement is not true; there exist valid outcomes that are Pareto-
efficient but not envy-free. For example, the outcome that maximizes the social
welfare (sum of players’ values for the slots they receive) and charges no payments
is Pareto-efficient, but is not envy-free.

Since the type (vi,bi) of player i is private information, known only to the
player herself, we study the design of mechanisms that output (in equilibrium)
a valid outcome which is Pareto-efficient and envy-free. We focus on so called
“detail-free” solutions concepts, and use the equilibrium notions of ex-post Nash,
and dominant strategies.8 We refer to a direct mechanism that is incentive compat-
ible in dominant strategies as “truthful”.

Assuming Distinct Budgets. It turns out that, in some subtle sense, it is impossible
to construct truthful and Pareto-efficient auctions, even for a single item. It is long
known (Che and Gale (1998); see also Krishna (2002)) that the following single-
item mechanism is truthful when true budgets are distinct: the winner is the player
i with the maximal “bid” min(bi,vi), and she pays the second largest bid. One can
verify that the dominant-strategy of a player is to declare their true value and budget,
and that the outcome is Pareto-efficient and envy-free. Moreover, Dobzinski et al.

8Our direct mechanism exhibits an ex-post equilibrium, and not dominant strategies, as explained
below.
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(2008) show (in a more general context) that this mechanism is the unique truthful
and Pareto-efficient mechanism, at least when all budgets are distinct.

To demonstrate9 that the assumption of distinct budgets is crucial, suppose
two players with budgets b1 = b2 = 1 and values v1 = v2 = 3. The min(v,b) mech-
anism chooses w.l.o.g. player 1 as the winner, and she pays a price of 1, for a
resulting utility v1−P1 = 2. If player 2 is able to pay exactly her budget that she
can gain from declaring a false budget b′ > b2: she becomes the winner, and pays a
price of 1, for a resulting utility v2−P2 = 2 > 0. If a player is not able to pay her
exact budget parameter bi, but only any strictly lower payment, then the outcome is
infeasible and player 1 will prefer to lose and pay 0 over paying the infeasible price
of 1. Either way, this mechanism is not truthful when budgets are identical.

We explicitly spell out the assumption of distinct budgets, which was im-
plicit in some of the previous works (most probably since the event of having non-
distinct budgets has zero probability). This assumption leads to the technical re-
quirement that players can only pay any price which is strictly less than their bud-
gets. In the zero-probability event that there exist two players with equal budgets,
the auction may be canceled in order to avoid infeasible outcomes.

Alternatively, one can assume a discrete type space (in other words, assum-
ing that all parameters are integers). With discrete types, the mechanism can avoid
the infeasibility of the outcome when budgets are identical by artificially increas-
ing the budget of each player i by an arbitrarily small εi < 1 with εi 6= ε j for any
two players i, j. This pre-processing step will make the mechanism truthful and
Pareto-efficient even if budgets are identical (envy-freeness will still be violated
with identical budgets, though). One can verify that all our results continue to hold
under these modifications; we do not repeat all proofs for the discrete setting to
keep the exposition concise.

3 The Generalized Position Auction

3.1 The Effect of Budgets On The Generalized English Auction

It is constructive to start with a short discussion on the generalized English auction
of Edelman et al. (2007). This auction gradually increases a price parameter Q,
and players decide whether to drop or stay. Rename the players according to the
reverse order at which they dropped (player 1 never dropped, player 2 dropped last,
etc.). When player l ≤ k drops she wins slot l and pays the price at which player

9Similar examples were described by Van der Laan and Yang (2008) and by Aggarwal et al.
(2009).

7

Ashlagi et al.: Position Auctions with Budgets: Existence and Uniqueness

Published by The Berkeley Electronic Press, 2010



l+1 dropped. This continuous-time description is made discrete and formal by the
following definition:

Definition 1 (The Generalized English Auction (Edelman et al., 2007)). Initialize
Q = 0 (current price), l = min(k + 1,n) (current slot), and Nl = N (active set of
bidders). Then perform:

1. Each player i ∈ Nl declares a bid pl
i (this is the price at which player i plans

to drop).
2. The l’th highest bidder wins slot l and pays Q (recall that slot k + 1 is a

dummy slot with αk+1 = 0).
3. If l = 1 then terminate. Otherwise raise Q to be the l’th bid, define Nl−1 to be

the l−1 highest bidders, decrease l by one, and repeat from step 1.

Informally, when the price increases and l ≤ k active bidders remain, each
bidder i faces two alternatives: to drop and win slot l for a price that is already
fixed and known (this is the price at which the (l + 1)’th bidder dropped), or to
stay in the auction. This decision represents a trade-off between winning slot l
or winning one of the better slots 1, ...l − 1 (for a higher price). In the formal
definition the price does not increase continuously but the same tradeoff has to be
made when the player chooses her new bid at step 1. The equilibrium strategies
are derived by looking closely at this tradeoff. Assuming infinite budgets, the price
P at which player i becomes indifferent between winning slot l for a price Q and
winning slot l−1 for a price P should satisfy αlvi−Q = αl−1vi−P, or alternatively
P = (αl−1−αl)vi +Q. If the player bids this P in step 1 and ends up winning slot
l, she is guaranteed not to regret the fact that she did not win slot l− 1. The twist
in the analysis of Edelman et al. (2007) is to show that this bidding strategy ensures
that the player will not regret winning any better slot, not just slot l− 1. In other
words, this bidding strategy forms an ex-post Nash equilibrium. A simple way to
observe that these strategies are indeed an ex-post equilibrium is to note that they
lead to the VCG outcome, which is well-known to be incentive compatible.

With budgets, however, the picture changes and this auction no longer ad-
mits an ex-post equilibrium. The main difficulty arises from the fact that a player
that prefers slot l over slot l−1 may still prefer slots that are better than l−1. To
demonstrate this, consider the following example, with three players and two slots,
and parameters α1 = 1.1,α2 = 1,v1 = 20,b1 = 7.5,v2 = 10,b2 = 7.6,v3 = 7,b3 =
100. With the generalized English auction, when the price reaches 7, player 3 faces
a dilemma: if she will not drop, she might end up winning slot 2 for a price higher
than her value for that slot (if players 1 and 2 will have infinite budgets, a piece of
information she does have at the time of the decision). If she drops, she will realize
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in retrospect that she could have won slot 1 for a profitable price of 7.6 (while her
value for slot 1 is 7.7), since players 1 and 2 turn out to be limited by their bud-
gets, and hence cannot continue to compete with player 3 on slot 1 after the price
reaches 7.6. Thus, the introduction of budgets enables the possibility that players
who drop when the current slot is l might want to join again for some slot l′ < l.
Of-course, simply allowing players to re-join will cause more problems, since this
implies changing the entire price hierarchy that was formed.

3.2 The Generalized Position Auction

In order to solve these difficulties, the Generalized Position Auction uses k price
trajectories, one for each slot, that ascend concurrently as follows. Players first
compete for the k’th slot, and each player decides when to suspend her participation
in this slot’s auction. The price ascent temporarily stops when exactly k players
remain active. Let this price point be Q1

k . The price ascent for slot k−1 starts from
Q1

k , all players (even those that suspended participation at the previous slot) may
participate in the auction for slot k− 1. Players again decide when to temporarily
suspend participation, and when exactly k−1 players remain active the price ascent
temporarily stops, and we move to slot k− 2. This continues in a similar manner
until we reach slot 1. In slot 1, the price ascent stops when exactly one player
remains active. This player wins slot 1 and pays the last price that was reached
(as in the English auction). At this point the auction of slot k resumes. There are
now k− 1 slots left, and so the auction continues until there remain k− 1 active
players, at this point the price ascent stops again, and the auction for slot k− 1
resumes. This continues until the winner of slot 2 is determined. The auction of
slot k is once again resumed, and this process continues in a similar manner until
all slots are sold. As before, one is able to describe this process more formally via
the following discrete-time mechanism.

Definition 2 (The Generalized Position Auction (indirect version)). Initialize t = 1
(first round), l = k (current slot is k), and Nt = N (set of active players). Then
perform:

1. Each player i ∈ Nt declares a bid pt
i,l . (this is the price at which player i will

suspend participation at the auction for slot l at the current iteration t).
2. Let Qt

l be the (l + 1)− (t− 1) highest bid. (this is the stopping point of the
price ascent of slot l at round t, as the number of active players equals the
number of remaining slots).

3. If l > t then decrease l by 1 and repeat from step 1. Otherwise l = t and,
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• The player i with the highest bid pt
i,t wins slot t and pays Pt = Qt

t . (sec-
tion 3.3 below describes the allowable tie-breaking rules).
• If t = k then terminate. Otherwise increase t by one, update Nt by re-

moving the new winner, set l = k, and repeat from step 1.

Suppose that player i had a bid pt
i,l+1 > Qt

l+1 for slot l + 1 (t < l + 1 ≤ k),
and is now required to choose her bid pt

i,l for slot l. If she were to assume that the
alternative for her is to win slot l+1 for a price Qt

l+1 then her maximal willingness
to pay for slot l, as explained in subsection 3.1, is P = (αl−αl+1)vi +Qt

l+1. Since
she cannot exceed her budget bi, this myopic reasoning will therefore direct her to
bid min(bi,(αl−αl+1)vi +Qt

l+1). If player i had a bid pt
i,l+1 ≤ Qt

l+1 for slot l +1
she could simply increase her willingness to pay for slot l by the added value of slot
l (compared to slot l +1), i.e. by (αl−αl+1)vi. This leads us to define:

Definition 3 (Myopic bidding in the Generalized Position Auction). The “myopic
bidding strategy” is defined by:

pt
i,l =

{
min(bi,(αl−αl+1)vi +min(Qt

l+1, pt
i,l+1)) l < k

min(bi,αkvi) l = k

for any round t and any slot l ≥ t.

Consider again the example given in section 3.1, with three players and two
slots, and parameters α1 = 1.1,α2 = 1,v1 = 20,b1 = 7.5,v2 = 10,b2 = 7.6,v3 =
7,b3 = 100. In the Generalized Position Auction, when players are bidding my-
opically, the bids are as follows. In the first round, the slot-2-bids are p1

1,2 =

7.5, p1
2,2 = 7.6, p1

3,2 = 7. Therefore we get a cutoff price Q1
2 = 7, and the slot-1-

bids are p1
1,1 = 7.5, p1

2,1 = 7.6, p1
3,1 = 7.7. Hence player 3 wins slot 1 and pays 7.6.

Players 1 and 2 continue to the second round, and the slot-2-bids remain as before
p2

1,2 = 7.5, p2
2,2 = 7.6. Thus player 2 wins slot 2 and pays 7.5. One can easily ver-

ify that this is a valid outcome that is Pareto-efficient and envy-free. (recall that a
player can pay only strictly less than her budget).

However, myopic bidding is not an ex-post equilibrium. For example, con-
sider again the example from the previous paragraph. If players 1 and 2 bid my-
opically then player 3 can decrease her price for slot 1 by bidding p1

3,2 = 0 and
p1

3,1 = 7.7. The cutoff price for slot 2 will then be zero, and because of that the bids
of players 1 and 2 for slot 1 will decrease to be 2 and 1, respectively. This problem
is solved by forcing consistency. We first describe a direct version of the above auc-
tion for the purpose of the analysis, and then explain how consistency verification
solves the problem of the indirect auction.

10

The B.E. Journal of Theoretical Economics, Vol. 10 [2010], Iss. 1 (Advances), Art. 20

http://www.bepress.com/bejte/vol10/iss1/art20



Definition 4 (The Generalized Position Auction (direct version)).

1. Each player i reports a type (vi,bi). If two players report the same budget
then the auction is canceled (slots are not allocated and no price is charged).

2. We simulate the indirect version of the Generalized Position Auction where
each player i follows myopic bidding according to her declared type (vi,bi).

The main results of this paper are summarized by the following theorem:

Theorem 1. Assuming that all true budgets are distinct,

1. (ex-post equilibrium) For every player i, if all other players are truthful then
it is a best response for player i to be truthful as well.

2. (desired properties hold) If all players are truthful then the Generalized Posi-
tion Auction results in a valid outcome which is Pareto-efficient and envy-free.

3. (uniqueness) Fix any other mechanism that always results (in ex-post equi-
librium) in a valid outcome which is Pareto-efficient and envy-free, and that
never makes positive transfers. Then this mechanism must output the same
outcome (slot assignments and payments) as our Generalized Position Auc-
tion for any tuple of types with distinct values and distinct budgets.

We note that the third result also implies that truthfulness is the unique ex-post equi-
librium of the Generalized Position Auction. It is also interesting to note that when
all budgets are sufficiently large the outcome of our auction is the same as the out-
come of the generalized English auction, which in turn is equivalent to the outcome
of VCG. Our theorem does not obey the usual rule of thumb that direct mechanisms
exhibit dominant strategies, and the solution concept of ex-post equilibrium is used
for indirect mechanisms. This is not the case here, although the above mechanism is
direct, because of our modeling of the budget constraint. Declaring the true budget
is not a dominant strategy for player i since if another player j misreports and de-
clares bi instead of b j, the auction will be canceled if player i reports truthfully. As
remarked in section 2, this artifact of our definitions can be avoided if we assume a
discrete type space. In that case the auction will never be canceled, and truthfulness
will become a dominant-strategy of the direct mechanism.

Returning to the indirect mechanism, one can make myopic bidding an ex-
post equilibrium by forcing consistency10, i.e. by verifying that the bidding behav-
ior of each bidder is consistent with myopic bidding according to some possible

10It is not clear whether the indirect mechanism of Aggarwal et al. (2009) requires a similar
consistency check, as it is described only in its direct version. The mechanism of Hatfield and
Milgrom (2005) is also direct.
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type. Since myopic bidding is straight-forward, this could be easily done “on the
fly”, as the auction progress. An inconsistent bidder is disqualified. Such a consis-
tency check maintains the advantages of indirect auctions, mainly that the winner
of the highest slot does not reveal her type, and other bidders implicitly reveal their
types only when competition forces them to do so. A standard result shows:

Corollary 3.2.1. Myopic bidding according to one’s true type is an ex-post equilib-
rium of the generalized position auction (indirect version with consistency check).

Proof. Fix a player i and suppose all other players are bidding myopically accord-
ing to their true types t−i. Let ui be i’s resulting utility from bidding myopically
according to her true type. Assume by contradiction that there exists a different
strategy that results in utility ũi > ui. That strategy must be consistent with some
type t̃i since otherwise the player is disqualified, with utility zero, and since the
mechanism is individually rational we have ui ≥ 0. But when i is consistent the
result of the indirect auction is identical to the result of the direct auction with
declaration (t̃i, t−i), and since the direct auction is truthful we have ũi ≤ ui, a con-
tradiction.

It is interesting to note that, while indeed most of the auctions being con-
ducted in real settings are indirect, the electronic position auctions of Google and
Yahoo! are actually direct mechanisms, where the advertisers are required to simply
bid a value and a budget.

3.3 Tie-Breaking

The issue of tie-breaking requires some attention. In general, when there are several
highest bids in step 3 of the generalized position auction, either all highest bidders
have the same value, or at most one of them has a higher value, but her bid is
cut at her budget. For example, suppose one item and two players that declare
(v1,b1) = (7,10) and (v2,b2) = (8,7). Then at price 7 there will be a tie. Since
player 2 cannot pay her budget, we must choose player 1 as the winner.

More formally, we prove the following intuitive property: if player i has
larger value than player j, but her bid at some slot is smaller than j’s bid, then it
must be the case that i’s bid was cut at her budget. This property will be extensively
used throughout the analysis.

Claim 3.3.1. Fix any round t, slot l, and i, j ∈ Nt . If vi ≥ v j and pt
i,l ≤ pt

j,l , with at
least one strict inequality, then pt

i,l = bi.
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Proof. We prove the claim by induction. For slot k the proof is immediate from
the definition. Therefore we assume correctness for slot l + 1 and prove for slot l.
Assume by contradiction that pt

i,l 6= bi. If pt
i,l+1 ≥ Qt

l+1 then pt
i,l = (αl−αl+1)vi +

Qt
l+1) ≥ (αl −αl+1)v j +Qt

l+1) ≥ pt
j,l , which is a contradiction since by assump-

tion either vi > v j or pt
i,l < pt

j,l . Otherwise pt
i,l+1 < Qt

l+1. If pt
i,l+1 = bi we get

a contradiction since bi ≥ pt
i,l ≥ pt

i,l+1 = bi. Therefore by the induction assump-
tion we must have pt

j,l+1 ≤ pt
i,l+1, and this inequality is strict if vi = v j. Thus

pt
i,l = pt

i,l+1 +(αl−αl+1)vi > pt
j,l+1 +(αl−αl+1)v j ≥ pt

j,l , a contradiction.

Corollary 3.3.1. Fix any round t, slot l, and i, j ∈ Nt . If pt
i,l = pt

j,l then either
pt

i,l = bi, or pt
j,l = b j, or vi = v j.

Thus, if there exist two or more highest bidders in step 3 of the generalized position
auction, we choose the winner to be some highest bidder i such that bi 6= Qt

t . Note
that there exists at most one highest bidder with bi = Qt

t since budgets are distinct.
The tie-breaking among all players with equal value may be arbitrary, but consistent
throughout the auction. We denote the tie-breaking order over the players by �,
i.e. for two players i, j, i � j implies that in case of a tie i will be chosen. This
tie-breaking rule ensures that a player will always pay strictly less than her budget,
and thus the outcome is ex-post individually rational.

4 Analysis
We use few additional terms and notations throughout the analysis: Bt

j denotes the
set of j− t +1 highest bidders at slot j and iteration t. Ties for inclusion in Bt

j are
settled the same way as described above, and in particular for any i ∈ Bt

j we have
Qt

j < bi. A player i ∈ Bt
l is “strong” at slot l and iteration t, otherwise the player is

“weak”. We call Pt the “price of slot t”. We say that slot l is better than slot l̃ if
l < l̃ (and slot l̃ is worse than slot l). We sometimes use

qt
i,l = min(pt

i,l,Q
t
l).

This gives pt
i,l = min(bi,qt

i,l+1 +(αl −αl+1)vi) for every player, slot, and round,
which will simplify notation. Note that pt

i,l ≥ pt
j,l implies qt

i,l ≥ qt
j,l .

One important observation that follows in a straight-forward way from the
definition of the mechanism is that the outcome of round t depends only on the set
of remaining players Nt , because the bids pt

i,k are fixed and identical in all rounds t.
Thus a new round is simply a recursive call to the same auction, with a new set of
players and a new set of slots.
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Several monotonicity properties of the bids, for any round t, any player
i ∈ Nt , and any slot l, will turn out useful:

1. Qt
l ≥Qt

l+1: we have pt
i,l ≥ qt

i,l+1, and for every i∈Bt
l+1 we have qt

i,l+1 =Qt
l+1.

Thus for at least |Bt
l+1| players i we have pt

i,l ≥Qt
l+1. Since Qt

l is the |Bt
l+1|−1

highest bid for slot l in round t the claim follows.
2. qt

i,l ≥ qt
i,l+1: we have pt

i,l ≥ qt
i,l+1, thus if pt

i,l = qt
i,l we are done, and otherwise

qt
i,l = Qt

l ≥ Qt
l+1 ≥ qt

i,l+1.
3. pt+1

i,l ≥ pt
i,l and therefore also qt+1

i,l ≥ qt
i,l . This follows by induction on slot

l = k, ...,1. For slot k the claim is by definition, this now implies the claim
for slot k−1, and so on. This fact also implies that Qt+1

l ≥ Qt
l .

4. If i /∈ B1
l and pt

i,l = qt
i,l = bi, then player i will not win any slot s ≤ l. (this

follows from the previous two properties).

4.1 Envy-Freeness

The first property we prove is envy-freeness. For notational simplicity, throughout
the subsection we rename the players such that player i wins slot i, for i = 1, ...,k,
and every player i > k does not win any slot.

We prove envy-freeness in steps, building intuition by using the case of two
slots to demonstrate key ideas.

Two Slots: Player 1 Does Not Envy Player 2. We start by showing that, with
two slots, player 1 (who wins the highest slot, slot 1) does not envy player 2 (who
wins the lower slot). We have min(b1,(α1−α2)v1 +q1

1,2) = p1
1,1 ≥ P1, and P1 < b1

by the tie-breaking rule. This implies (α1−α2)v1 + q1
1,2) ≥ P1. Rearranging, we

get α1v1−P1 ≥ α2v1−q1
1,2 ≥ α2v1−P2, where the second inequality follows since

q1
1,2 ≤ Q1

2 ≤ Q2
2 = P2.

The General Case: Player s Does Not Envy Player l > s. With more than two
slots, we need a very similar argument to show that player some player s does not
envy a player l > s (that received a slot worse than s). The only complication is the
fact that the two slots s, l might not be adjacent as before, and a simple inductive
argument is being used to overcome the difficulty.

Claim 4.1.1. Fix any player i and any two slots l,s with s < l ≤ k + 1. Then
min(bi,qt

i,l +(αs−αl)vi) ≥ pt
i,s ≥ qt

i,s (where we define qt
i,k+1 = αk+1 = 0). Fur-

thermore, if i /∈ Bt
j for any s≤ j < l then the two inequalities become equalities.
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Proof. We prove by induction on s = k, ...,1. For s = k the claim is by definition.
Now fix s < k and assume correctness for s+1 and any l′ > s+1. We need to show
correctness for s and any l > s. We have by definition qt

i,s ≤ pt
i,s = min(bi,(αs−

αs+1)vi + qt
i,s+1). If l = s+ 1 we are done. Otherwise l > s+ 1 and we have by

induction qt
i,s+1)≤min(bi,qt

i,l +(αs+1−αl)vi). Combining the two equations, the
first part of the claim follows. If i /∈ Bt

j for any s ≤ j < l then the first inequality
is equality by definition, and the second inequality is equality by the induction
assumption. Thus the second part of the claim follows as well.

Now, exactly as in the two-slots case, from the above claim we get min(bs,(αs−
αl)vs + qs

s,l) ≥ qs
s,s ≥ Ps, and Ps < bs by the tie-breaking rule. This implies (αs−

αl)vs + qs
s,l) ≥ Ps. Rearranging, we get αsvs−Ps ≥ αlvs− qs

s,l ≥ αlvs−Pl , where
the second inequality follows since qs

s,l ≤ Qs
l ≤ Ql

l = Pl .
Therefore we have shown that a player does not envy any other player that

receives a worse slot. We now continue to show the other direction, that a player
does not envy any other player that receives a better slot, which is a bit more com-
plicated. As above, we start with the case of two slots.

Two Slots: Player 2 Does Not Envy Player 1. If we had q1
2,2 = q2

2,2 then we
could use an argument similar to above to show that player 2 does not envy player
1: P1 = Q1

1 ≥ p1
2,1 = min(b2,(α1−α2)v2 + q1

2,2). Thus, if P1 < b2 (and assuming
q1

2,2 = q2
2,2 = Q2

2 = P2) then P1 ≥ (α1−α2)v2 +q1
2,2 = (α1−α2)v2 +P2, which, by

rearranging, gives us α2v2−P2 ≥ α1v2−P1 as we need.
However it may well be that q1

2,2 < q2
2,2, as is the case in the running example

of section 3, where player 2 wins slot 2, and q2
2,2 = Q2

2 = 7.5 > 7 = Q1
2 ≥ q1

2,1. Also
notice that in this example P1 = b2 and therefore player 2 does not envy the winner
of the first slot (who is player 3 in the example). It turns out that this is in fact what
happens in general: either q1

2,2 = q2
2,2, or P1 ≥ b2. More specifically, If q1

1,2 ≥ q1
2,2

(where player 1 is assumed to be the winner of slot 1) then the former case is true, as
claim 4.1.2 below shows, and if q1

1,2 < q1
2,2 then the latter case is true, as claim 4.1.3

shows. We phrase and prove the claims in general terms, as they will turn out useful
in the sequel as well.

Claim 4.1.2. Let player i be the winner of slot t, and fix some slot l > t and some
player j ∈Nt+1 such that pt

j,l ≤ pt
i,l (and therefore also qt

j,l ≤ qt
i,l). Then pt

j,l = pt+1
j,l

and qt
j,l = qt+1

j,l .

Proof. We first prove pt
j,l = pt+1

j,l by induction on the slots. For l = k the proof is
immediate since pt

j,k = pt+1
j,k for any player j. We assume correctness for slot l +1
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and prove for l. If i∈Bt
l+1 then by induction pt

j,l+1 = pt+1
j,l+1 for any player j /∈Bt

l+1,
which implies Bt+1

l+1 = Bt
l+1 \ {i}, hence also Qt+1

l+1 = Qt
l+1. This implies pt

j,l =

pt+1
j,l for all players in Nt+1. Otherwise assume that i /∈ Bt

l+1. This implies pt
j,l =

min(b j,(αl−αl+1)v j + pt
j,l+1). If pt

j,l+1 ≤ pt
i,l+1 then by induction pt

j,l+1 = pt+1
j,l+1,

hence pt
j,l = min(bi,(αl − αl+1)v j + pt

j,l+1) = min(bi,(αl − αl+1)v j + pt+1
j,l+1) ≥

pt+1
j,l ≥ pt

j,l , and the claim follows. Otherwise suppose pt
j,l+1 > pt

i,l+1. This implies
vi < v j: if vi ≥ v j, claim 3.3.1 implies that pt

i,l+1 = bi, which implies that player i
cannot win slot t, a contradiction. Thus vi < v j, and claim 3.3.1 implies pt

j,l = b j (by
reversing the roles of i, j in claim 3.3.1, since we now have vi < v j and pt

j,l ≤ pt
i,l).

Thus pt
j,l = b j ≥ pt+1

j,l ≥ pt
j,l , implying the first part of the claim.

We now prove that qt
j,l = qt+1

j,l . If pt
i,l ≥Qt

l then the above paragraph implies
Qt+1

l = Qt
l and hence qt

j,l = qt+1
j,l . If pt

i,l < Qt
l then pt

j,l = qt
j,l and pt

i,l = qt
i,l . The

above paragraph implies qt
j,l = pt

j,l = pt+1
j,l ≥ qt+1

j,l ≥ qt
j,l , and the claim follows.

In words, the claim states that, if player i wins slot t in round t, then every
player j that bids lower than i in some slot l > t in round t (i.e. pt

j,l ≤ pt
i,l) will

have the same bid pt
j,l = pt+1

j,l for slot l in the next iteration t +1. As an immediate
implication we get that, if the winner i of slot t is strong in slot l > t and round t then
pt

j,l = pt+1
j,l for any player j ∈Nt+1, and therefore also Qt

l =Qt+1
l . Alternatively put,

if pt
i,l ≥ Qt

l then Qt
l = Qt+1

l .
In particular, for the two-slots case, If q1

1,2≥ q1
2,2 then q1

2,2 = q2
2,2 and player 2

does not envy player 1. To complete the argument we need to show that if q1
1,2 < q1

2,2
then P1 ≥ b2. Towards this, we first show:

Claim 4.1.3. Fix any player s > 1 such that q1
s,1 < bs. Then for any slot l, q1

1,l ≥ q1
s,l ,

and if s ∈ B1
l then 1 ∈ B1

l .

Proof. We first show that if p1
1,l < p1

s,l then 1 ∈ B1
l . Otherwise it must follow that

p1
1,l = q1

1,l 6= b1, and claim 3.3.1 implies v1 < vs. Since p1
1,1 ≥ p1

s,1 it follows that
p1

s,1 = bs, a contradiction. This implies q1
1,l ≥ q1

s,l . This also implies that if s∈B1
l but

1 /∈ B1
l then p1

1,l = p1
s,l = Q1

l . Since p1
1,l 6= b1 (as player 1 wins slot 1) and p1

s,l 6= bs

(as q1
s,l = q1

s,1 < bs) then v1 = vs, and by corollary 3.3.1 also p1
1,1 = p1

s,1. But this
contradicts the consistency of the tie-breaking rule, since in slot l the tie-breaking
preferred player 1 over player s and in slot 1 the tie-breaking preferred player s over
player 1.
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This completes the case of two slots: if q1
1,2 < q1

2,2 then q1
2,1 = b2 (since by

claim 4.1.3, q1
2,1 < b2 implies q1

1,2 ≥ q1
2,2). Since q1

1,1 ≥ q1
2,1 then P1 = Q1

1 ≥ q1
2,1 =

b2, and the two-slots case follows.

The General Case: Player s Does Not Envy Player l < s. The proof for the
two-slots case relied on the claim that if q1

s,1 < b2 then qs
s,s = q1

s,s, taking s = 2. The
general argument relies on the same claim:

Claim 4.1.4. Fix any player s > 1 such that q1
s,1 < bs. Then B1

s = {1, ...,s}, and
s /∈ B1

l for any l < s. This gives two corollaries:

1. If s > k then player s is always weak.
2. Ps = qs

s,s = Q1
s = q1

s,s.

We give the proof in appendix A. By using this last claim we can prove
envy-freeness in the same way that was used for the two-slots case.

Lemma 1. The outcome of the Generalized Position Auction (direct version) with
truthful bidding is envy-free. Furthermore, if s < l and ps

s,s > Ps then one direction
of envy-freeness holds with a strict inequality: αsvs−Ps > αlvs−Pl .

The full formal proof is given in appendix A. For the sequel we wish to
extract two additional interesting properties of the resulting prices. Proofs are given
in appendix A.

Claim 4.1.5. For any slot l = 1, ...,k, Pl = maxs>l min(bs,(αl−αs)vs +Ps), where
we define αs = 0 and Ps = 0 for any player s > k.

Claim 4.1.6. Fix any slot s, and suppose that there exists a player j > s such that
Ps = (αs−α j)v j +Pj < b j, and v j 6= vs. Then for any slot l > s we have αsvs−Ps >
αlvs−Pl .

4.2 Incentive Compatibility

We prove incentive-compatibility by first identifying some basic properties that the
auction exhibits when one player changes her bid while all other players’ bids are
fixed.

Claim 4.2.1. Fix a player, i, and arbitrary declarations of the other players. Con-
sider two declarations of player i, (v,b) and (ṽ, b̃) and suppose player i wins slot l
and pays Pl when declaring (v,b), and wins slot l̃ and pays P̃l̃ when declaring (ṽ, b̃).
(l and/or l̃ can take the value k+1 to denote that player i loses). Then,
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1. If ṽ≥ v and either b = b̃ or b > min(Pl̃, P̃l̃) then:
(a) l̃ ≤ l.
(b) For any slot s≥ l, P̃s = Ps.
(c) P̃l̃ ≥ Pl̃ .

2. If v = ṽ and b̃ > b > P̃l̃ then l̃ = l.
3. If v = ṽ and b̃ > b then l̃ ≤ l.

While these properties are rather intuitive, the proof is technical, and is de-
ferred to appendix B. Despite the fact that all properties are intuitive, they may
be misleading, and the qualifiers and requirements detailed in the properties are re-
ally necessary (this also explains why the proof gets technical). For example, prop-
erty 1b might appear true even without the requirement that b= b̃ or b>min(Pl̃, P̃l̃).
Therefore it is interesting to see a counter example to this property when these re-
quirements does not hold: Consider a setting of two slots with α1 = 1000 and
α2 = 1, and three players with types θ1 = (1,1000), θ2 = (10,10) and θ3 = (11,11)
(recall that the first number is the value and the second number is the budget). Sup-
pose player 3 changes her type to θ̃3 = (11,1001). Quite surprisingly, the price of
slot 2 then strictly decreases.

We next bootstrap these properties to show full incentive compatibility.
Throughout, we fix the true type of player i to be (vi,bi), and denote by ui(v,b)
player i’s utility when declaring some type (v,b) (the declaration of all other play-
ers is fixed throughout). We need to show that ui(vi,bi) ≥ ui(v,b), for any other
type (v,b). Since we already established that player i does not envy a losing player,
we have ui(vi,bi) ≥ 0. Thus we consider only types (v,b) such that ui(v,b) > 0
(otherwise ui(vi,bi) ≥ 0 ≥ ui(v,b)). We show separately for each coordinate that
reporting the true value in that coordinate weakly increases the player’s utility, and
then aggregate.

Claim 4.2.2. For any b > bi and any v, ui(v,b)≤ ui(v,bi).

Proof. Suppose player i wins slot s and pays Ps when declaring (v,b). Since ui(v,b)>
0 we have bi > Ps and by property 2, when declaring (v,bi) player i still wins slot s
and still pays Ps. Therefore ui(v,b)≤ ui(v,bi) and the claim follows.

Claim 4.2.3. For any b≤ bi and any v, ui(v,b)≤ ui(vi,b).

Proof. Suppose player i wins slot s and pays Ps when declaring (vi,b) and wins slot
s̃ and pays P̃s̃ when declaring (v,b) (s and/or s̃ can take the value k+ 1 to denote
that i loses). Since b≤ bi, i’s payment is at most her budget, and so she has a non-
negative utility from both declarations. By envy-freeness, αsvi−Ps ≥ αs̃vi−Ps̃,
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where Ps̃ denotes the price of slot s̃ when player i declares (vi,b). If v> vi then s̃≤ s
by property 1a of claim 4.2.1 and then P̃s̃ ≥ Ps̃ by property 1c. If v < vi then s̃ ≥ s
by property 1a and then P̃s̃ = Ps̃ by property 1b. In any case, we have αs̃vi−Ps̃ ≥
αs̃vi− P̃s̃. We get ui(vi,b) = αsvi−Ps ≥ αs̃vi− P̃s̃ = ui(v,b), as claimed.

Claim 4.2.4. For any b≤ bi, ui(vi,b)≤ ui(vi,bi).

Proof. Let f (v,b) denote the slot assigned to player i when declaring (v,b), and
P(v,b) be i’s payment when declaring (v,b). Define g(v,b) = α f (v,b) · v−P(v,b),
i.e. this is i’s utility if she declares (v,b) and if her true value is indeed v. We will
argue that g(v,b) =

∫ v
0 α f (x,b)dx. For v′ > v we have by property 1a that f (v′,b) ≤

f (v,b). In addition, if f (v′,b) = f (v,b) then P(v′,b) = P(v,b) by property 1b. Let
v∗1, ...,v

∗
L be the discontinuity points of f (·,b) (i.e. when b is fixed and v increases

from 0 to ∞). In other words, for any index 1 ≤ l ≤ L−1 and any v∗l < x1 < x2 <

v∗l+1 we have f (x1,b) = f (x2,b) and P(x1,b) = P(x2,b). Therefore ∂g(v,b)
∂v |v=x1 =

∂g(v,b)
∂v |v=x2 = α f (x1,b). Since there is a finite number L ≤ k of such discontinuity

points we get g(v,b) =
∫ v

0 α f (x,b)dx. By property 3 we have f (x,b) ≥ f (x,b′) for
any b ≤ b′, implying using the above that g(v,b) ≤ g(v,b′). Since b ≤ bi we get
ui(vi,b) = g(vi,b)≤ g(vi,bi) = ui(vi,bi), and the claim follows.

Lemma 2. Truthfulness is an ex-post equilibrium of the Generalized Position Auc-
tion.

Proof. We need to show that any false declaration (v,b) yields weakly smaller util-
ity than the true declaration (vi,bi). If b > bi we have ui(v,b)≤ ui(v,bi)≤ ui(vi,bi),
where the first inequality follows from claim 4.2.2 and the second inequality fol-
lows from claim 4.2.3. If b ≤ bi we have ui(v,b) ≤ ui(vi,b) ≤ ui(vi,bi), where the
first inequality follows from claim 4.2.3 and the second inequality follows from
claim 4.2.4.

4.3 Uniqueness

We finish the analysis by showing that the Generalized Position Auction is the
unique mechanism that satisfies all the desirable properties discussed at the be-
ginning. We need one additional natural requirement:

Definition 5 (No Positive Transfers (NPT)). A mechanism has the “No Positive
Transfers” (NPT) property if no player receives a positive payment from the mech-
anism.
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This property is necessary for the uniqueness result. Consider for example a setting
of one item and two players, with b1 = 1,b2 = 2, and v1 = 5,v2 = 3. The Gen-
eralized Position Auction sells the item to player 2 for a price of 1. A different
mechanism that violates NPT is: first pay each player a subsidy of 4 dollars (this
increases the bidders’ budgets). Then run our mechanism using the updated bud-
gets. It is not hard to verify that this is truthful, individually rational, and envy-free.
However the result will now be different: player 1 will receive the item and will pay
3 dollars. It is interesting to note that the usual quasi-linear setting does not exhibit
such a phenomena, and it is well-known that one can normalize the payment of a
losing player to be 0 without affecting the outcomes of the mechanism being con-
sidered. As this simple example shows, when budgets limits are a real constraint
this is not quite the case.

Together with ex-post IR, NPT implies that the payment of a losing player
is exactly zero. This is in fact the only use of the NPT property, and one can replace
the NPT requirement with a “zero payment for losers” requirement. This seems like
a natural and common property.

A second issue that requires some attention is ruling out ties. Clearly, if
the Generalized Position Auction encounters a tie during its execution, it can be
decided in several ways, affecting the outcome. Thus, the uniqueness result can
only hold when there are no ties, i.e. when all types are distinct w.r.t. both the value
and the budget.

Let M denote the Generalized Position Auction, and fix any other truthful
mechanism M′ that satisfies NPT, envy freeness, Pareto optimality, and ex-post
individual rationality.

Lemma 3. For any tuple of types (~v,~b) such that vi 6= v j and bi 6= b j, M and M′

output the same slot assignment and the same payments. Moreover, this holds even
if the values of the players are fixed and are publicly known, and only the budgets
are private information.11

Proof. Fix any tuple of types (~v,~b) in T ∗. Define w(s),w′(s) as the winners of slot
s in mechanisms M,M′, respectively, and let Pl,P′l be the payment of the winner of
slot l in mechanisms M,M′, respectively. We start with two claim and then prove
the lemma by induction.

Claim 4.3.1. P′s ≥ Ps for any slot 1≤ s≤ k.

Proof. Let A contain all slots 1 ≤ s ≤ k such that Ps > P′s , and suppose by contra-
diction that A is not empty. For any s ∈ A, let l be the slot that i = w(s) wins in

11Alternatively, it can be stated that the budgets are common knowledge and the values are private
information. For simplicity we restrict attention to just one version.
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M′ (i.e. w(s) = w′(l) = i). We claim that l ∈ A: if P′l ≥ Pl then we get αsvi−Ps ≥
αlvi−Pl ≥ αlvi−P′l ≥ αsvi−P′s > αsvi−Ps, where the first inequality follows from
envy-freeness of M since Pl ≤ P′l < bi, and the third inequality follows from envy-
freeness of M′ since P′s < Ps < bi, and we get a contradiction. Thus, a player wins a
slot in A in M if and only if she wins wins a slot in A in M′. We will show that there
exists at least one player that does not receive a slot in A in M but must win a slot
in A in M′, and will thus get a contradiction.

Let s∗ = max(s ∈ A). By claim 4.1.5 let i = w(l) for l > s∗ be a player
such that Ps∗ = min(bi,Pl +(αs−αl)vi) (we may choose l = k + 1 to denote the
fact that i loses in M). We have P′s∗ < Ps∗ ≤ bi, and αlvi−Pl < αs∗vi−P′s∗ . Note
that i wins a slot l /∈ A in M (since l > s∗). We will show that i must win a slot in
A in M′, which will be a contradiction. For any slot j /∈ A (including j = k+ 1 to
consider the possibility that i loses in M′), either P′j ≥ bi, or Pj ≤ P′j < bi, in which
case α jvi−P′j ≤ α jvi−Pj ≤ αlvi−Pl < αs∗vi−P′s∗ , where the second inequality
follows by the envy-freeness of M since Pj < bi. Since P′s∗ < bi and M′ is envy-free
it follows that i cannot win slot j in M′. Thus player i must win some slot in A, a
contradiction.

Claim 4.3.2. Define the set B to contain all slots 1≤ l ≤ k such that Pl = P′l . Then
the set of players that win a slot in B is identical in both M and M′, i.e. { w(s) | s ∈
B }= { w′(s) | s ∈ B }.

Proof. Assume by contradiction that there exists a player i that wins a slot s ∈ B in
M, and a slot l /∈ B in M′ (as before we can have s = k+1). Note that by claim 4.3.1
and since l /∈B we have P′l >Pl . We get αsvi−P′s =αsvi−Ps≥αlvi−Pl >αlvi−P′l ,
where the first inequality follows by envy-freeness of M, since Pl < P′l < bi. Since
P′s = Ps < bi this contradicts the envy-freeness of M′.

Claim 4.3.3. Let B be as defined in claim 4.3.2. Then for any s ∈ B we have w(s) =
w′(s).

Proof. Fix a slot s ∈ B. We assume that for any l ∈ B with l < s we have w(l) =
w′(l) and prove w(s) = w′(s), which implies the claim by induction. Let i = w(s).
Suppose by contradiction that w′(s) = j 6= i. Suppose player j wins slot s j in M. By
claim 4.3.2 we have s j ∈ B and by assumption we have s j > s. By claim 4.1.5 we
have Ps ≥min(b j,(αs−αs j)v j +Ps j). Since P′s = Ps and P′s j

= Ps j , envy-freeness of
M′ implies Ps = (αs−αs j)v j +Ps j < b j. Claim 4.1.6 then implies that for any slot
l > s we have αsvi−Ps > αlvi−Pl . Now suppose player i wins slot si in M. By
claim 4.3.2 we have si ∈ B and by assumption we have si > s. Since P′s = Ps and
P′si

= Psi we get αsvi−P′s > αsivi−Psi . Since P′s = Ps < bi we get a contradiction to
the envy-freeness of M′. Thus w(s) = w′(s) and the claim follows.
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We now prove by induction on l = k, ...,0 that, for all type declarations: (1)
the set of players that win slots 1, ..., l is the same in both mechanisms (they do not
necessarily win the same slots), and (2) for any slot k≥ s > l, the same player wins
slot s in both mechanisms, and P′s = Ps. The lemma will then follow by taking l = 0.

To prove the base case of l = k we need to argue that the same set of players
lose in both mechanisms: for any slot s ≤ k, if s ∈ B (as defined in claim 4.3.2
above) then a losing player i in M cannot win s in M′ by claim 4.3.3. If s /∈ B then
by claim 4.3.1 we have P′s > Ps ≥min(bi,αsvi) and since M′ is ex-post IR it follows
that w′(s) 6= i. Hence i must lose in M′ as well.

We now assume correctness for some index l ≤ k and prove the inductive
claim for l−1. All we need to show is that w(l) = w′(l), and Pl = P′l . Let i = w(l)
be the winner of slot l in mechanism M, and suppose that i = w′(l′). Note that l′ ≤ l
by the induction assumption. We first prove that Pl′ = P′l′ . By claim 4.3.1 we have
Pl′ ≤ P′l′ , and assume by contradiction that the inequality is strict. Since bi > P′l′
we have by envy-freeness that αlvi−Pl ≥ αl′vi−Pl′ . Since Pl′ < P′l′ we can pick a
small enough ε > 0 such that αlvi− (Pl + ε)> αl′vi−P′l′ . Now if player i declares
a different type (vi,Pl + ε) (i.e. the same value and a budget just above her price
in M) then by property 2 of claim 4.2.1 we have that player i wins slot l in M in
the new type declaration as well. By the induction assumption player i wins some
slot l′′ ≤ l in M′ in the new declaration, and her new payment P′′ is at most her
new budget Pl + ε . We get αl′′vi−P′′ ≥ αlvi− (Pl + ε)> αl′vi−P′l′ . Thus player i
strictly increased her utility be misreporting her type, contradicting the truthfulness
of M′. Thus Pl′ = P′l′ . Therefore l′ ∈ B, and by claim 4.3.3 we have w′(l′) = w(l′).
Since w(l) = w′(l′) by assumption we get l′ = l, and the claim follows.

5 Conclusions
We have designed a generalized position auction, for players with private values
and private budget constraints. Our auction is built on top of the generalized English
auction, and its ex-post equilibrium outcome is individually rational, Pareto-optimal
and envy-free. Moreover, any auction that satisfies these properties, and in addition
does not make positive transfers to the players, must yield in ex-post equilibrium
the same outcome as our auction, for every tuple of distinct types. This uniqueness
result holds even if values are public knowledge and only budgets are private.

While the generalized English auction uses only one price trajectory, our
auction must use k different price trajectories, that concurrently ascend. This im-
plies that our auction needs to exchange more messages than the generalized En-
glish auction, specifically, we need an order of n · k2 messages while the general-
ized English auction requires an order of n · k messages. This is an artifact of the
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introduction of budgets, and the only other mechanism for position auctions with
budgets, that is based on the Demange-Gale-Sotomayor ascending auction (and was
described in the Introduction), shows a similar increase in the amount of required
messages. In fact, Aggarwal et al. (2009) prove that the amount of messages ex-
changed in their auction is in the order of n · k3, and our auction performs slightly
better than that, requiring only an order of n · k2 messages. Thus, from a practical
point of view, our auction has a slight advantage. In future research it may be in-
teresting to determine what is the minimal possible number of messages needed in
order to reach the unique incentive compatible and envy-free outcome.

Our setup here is a one-shot setup, in which the auction runs only once. A
more advanced (and realistic) setup would assume a repeated stochastic scenario,
in which the same position auction is being conducted several times, where the
number of occurrences and their frequency is uncertain. This change of setup com-
plicates the analysis even without budgets, and with the existence of budgets it adds
an important dimension that is now missing from our analysis. In particular, in such
a setup new strategic issues are being added since a bidder that artificially increases
competition in current auction exhausts competitors’ budgets and thus affects their
future ability to compete. This issue was considered for other auction formats, for
example by Benoit and Krishna (2001), but in the context of position auctions this
issue is hardly understood. While our setup does not directly add to its understand-
ing, as there is just one single auction being conducted, our analysis is a necessary
first step that starts to shed some light on the complicated effects of budgets in
common position-auction formats.

Appendices

A Proofs Deferred From Section 4.1
Claim A.0.4. Fix any player s > 1 such that q1

s,1 < bs, and any slot l < s. If s ∈ B1
l

then l′ ∈ B1
l for any l′ ≤ l.

Proof. We prove by induction on the number of slots k. For k = 1 the claim is
empty. Assume correctness for any k′ < k slots and let us prove for k. We have
1∈ B1

l by claim 4.1.3. Therefore B2
l = B1

l \{1}. Claim 4.1.3 also implies q1
1,2 ≥ q1

s,2
which by using claim 4.1.2 implies q2

s,2 = q1
s,2≤ q1

s,1 < bs. Since s∈B2
l the induction

assumption implies l′ ∈ B2
l for any 1 < l′ ≤ l, and the claim follows.

Proof Of Claim 4.1.4: If s ∈ B1
l for some l < s then by claim A.0.4 we have

that {1, ..., l,s} ⊆ B1
l which contradicts the fact that |B1

l | = l. If s /∈ B1
s then by
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combining claims 4.1.3 and 4.1.2 we have p1
s,s = p2

s,s = · · · = ps
s,s, which implies

that s /∈ Bs
s, a contradiction. Thus using claim A.0.4 again we have B1

s = {1, ...,s}.
The first corollary is immediate from the claim, and the second corollary follows
by claim 4.1.2.

Proof Of Claim 4.1.5: It is enough to prove the claim only for l = 1, since the
price Pl for l > 1 is determined by a recursive auction for l slots and a set of players
Nl , and in that auction slot l is the first slot. We will show that, for any player
s > 1, q1

s,1 = min(bs,(α1−αs)vs +Ps). Since P1 = maxs>1 q1
s,1, the claim will then

immediately follow. If q1
s,1 = bs then by claim 4.1.1 we have bs = q1

s,1 ≤ p1
s,1 ≤

min(bs,q1
s,s + (α1−αs)vs) ≤ min(bs,(αl −αs)vs + Ps) ≤ bs, implying the claim.

Otherwise q1
s,1 < bs and by claim 4.1.4 we have that s /∈ B1

l for any l < s. By
claims 4.1.1 and 4.1.4 we get q1

s,1 =min(bs,q1
s,s+(α1−αs)vs) =min(bs,Ps+(α1−

αs)vs).

Proof Of Lemma 1: Consider any two players s, l. We will show that s does not
envy l. If s < l then the only non-trivial possibility is l ≤ k. In this case (αs−
αl)vs +Qs

l ≥ (αs−αl)vs +qs
s,l ≥ ps

s,s ≥ Ps, where the second inequality follows by
claim 4.1.1. This implies αsvs−Ps ≥ αlvs−Qs

l ≥ αlvs−Pl , and if ps
s,s > Ps then the

first inequality is strict. If s > l then, by claim 4.1.5, Pl ≥min(bs,(αl−αs)vs +Ps).
Thus, if Pl < bs then Pl ≥ (αl−αs)vs+Ps which again implies αsvs−Ps≥αlvs−Pl .

Proof Of Claim 4.1.6: We show that ps
s,s >Ps which implies the claim by Lemma 1.

By the proof of claim 4.1.5 we have ps
j,s = qs

j,s = min((αs−α j)v j +Pj,b j) = Ps.
Therefore if ps

s,s = Ps then ps
s,s = ps

j,s. Since ps
s,s 6= bs and ps

j,s 6= b j we get by
corollary 3.3.1 that vs = v j, a contradiction. Thus ps

s,s > Ps, and the claim follows.

B Proof Of Claim 4.2.1
We rename player i to be il , to avoid notational confusion later on. Recall that
we consider two declarations of player l, (v,b) and (ṽ, b̃), where ṽ ≥ v and b̃ ≥ b.
Suppose player il wins slot l and pays Pl when declaring (v,b), and wins slot l̃ and
pays P̃l̃ when declaring (ṽ, b̃). (l and/or l̃ can take the value k + 1 to denote that
player il loses). We use x̃ to describe the variable x in the execution for (ṽ, b̃), for
example B̃1

l , q̃
1
i,l , and so on. The following lemma will be repeatedly used as a tool

to prove the five properties. Its proof is given in appendix C.
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Lemma 4.

1. If either b = b̃ or b > min(Pl̃, P̃l̃) then there exists a slot 1≤ j∗ ≤ l such that
the set of winners of slots 1, ..., j∗ in both declarations is the same set.

2. If v = ṽ and b > min(Pl̃, P̃l̃) then there exists a slot 1 ≤ j∗ ≤ l̃ such that the
set of winners of slots 1, ..., j∗ in both declarations is the same set.

Proof Of Properties 1a And 1b. We prove the two properties by induction on the
number of slots k. In addition we inductively prove that the winner of every slot
s > l is the same player in both declarations, and the losing players are the same.
If k = 1 then the claim is immediate from the definition of the mechanism. We
assume correctness for k′ < k slots and prove for k slots. By lemma 4 there exists a
slot j∗ ≤ l such that the winners of slots 1, ..., j∗ are the same in both declarations.
If j∗ < l then at iteration j∗+ 1 in both declarations we are left with the same set
of players, and a mechanism for k− j∗ < k slots, and the induction assumption
implies the claim. If j∗ = l then clearly the first property holds since player il wins
a slot 1, ..., j∗ in both declarations. In addition the set of players at iteration j∗+1
is the same for both declarations, hence each slot j > j∗ has the same winner in
both declarations, which implies by claim 4.1.5 that P̃s = Ps for any slot s ≥ l, as
claimed.

Proof Of Property 1c. If l̃ = l then the claim is immediate from the above.
Otherwise some other player l1 wins slot l in the declaration (ṽ, b̃), and suppose l1
won slot s1 in declaration (v,b). Note that s1 < l since by the previous proof the
winners of slots l + 1, ...,k plus all losers are the same in both declarations. Let
l2 be the player that wins slot s1 in declaration (ṽ, b̃), and suppose l2 won slot s2
in declaration (v,b). We again have s2 < l. When this terminates we must reach
a player lr that won slot sr = l̃ in declaration (v,b). Denote s0 = l. We argue by
induction on i = 0, ...,r that P̃si ≥ Psi . The base case of i = 0 follows from the
previous proof. We now assume by induction that P̃si ≥ Psi and prove that P̃si+1 ≥
Psi+1 . Note that bli+1 > P̃si ≥ Psi . If P̃si+1 ≥ bli+1 > Psi+1 then we immediately get
the inductive claim. Otherwise assume P̃si+1 < bli+1 . Player li+1 wins slot si+1 in
(v,b), hence αsi+1vli+1 −Psi+1 ≥ αsivli+1 −Psi . On the other hand player li+1 wins
slot si in (ṽ, b̃), hence αsivli+1− P̃si ≥ αsi+1vli+1− P̃si+1 . Since P̃si ≥ Psi it follows that
P̃si+1 ≥ Psi+1 , as claimed.

Proof Of Property 2. We first note that by property 1a we have l̃ ≤ l. We prove
by induction on the number of slots k. If k = 1 then the claim is immediate from the
definition of the mechanism. We assume correctness for k′ < k slots and prove for
k slots. By lemma 4, using its second part for slot l̃, there exists a slot j∗ ≤ l̃ such
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that the winners of slots 1, ..., j∗ are the same in both declarations. If j∗ < l̃ then at
iteration j∗+1 in both declarations we are left with the same set of players, and a
mechanism for k− j∗ < k slots, and the induction assumption implies the claim. If
j∗ = l̃ ≤ l then since player il wins one of the slots 1, ..., j∗ in both declarations it
must follow that l̃ = l.

Proof Of Property 3. Suppose by contradiction that l̃ > l. Then we have b > Pl ≥
Pl̃ , where the second inequality follows from envy-freeness (claim 4.1.5). But then
according to property 1a we get l̃ ≤ l, a contradiction.

C Proof Of Lemma 4
Proof. We start with a basic property that states that, in the first iteration of the
auction, the weakest player i in slot s among all players j that win some slot s j < s
must be strong at slot si (si is the slot that i receives). This implies, for example,
that if all weak players in slot s remain weak in all better slots s′ < s (in the first
iteration) then the set of winners of slots 1...s is exactly B1

s .

Claim C.0.5. Fix some slot s. Let Ws = { j /∈ B1
s and j wins some slot s′ ≤ s },

suppose that Ws is not empty, and fix some i ∈ argmin j∈W p1
j,s. Let si ≤ s be the slot

that i wins. Then i ∈ B1
si

.

Proof. Assume by contradiction that i /∈ B1
si

. Then there must exist a player j that
wins some slot s j < si and p1

j,si
< p1

i,si
, otherwise by claim 4.1.2 we have p1

i,si
= psi

i,si

which by bid monotonicity implies i /∈ Bsi
si , contradicting the fact that i wins si.

Since j wins s j < si and j /∈ B1
si

we have p1
j,si
6= b j. By claim 3.3.1 we get vi > v j.

However since j wins s j < s, the minimality of i’s bid at s implies p1
j,s ≥ p1

i,s. Since
vi > v j we get p1

i,s = bi. Since i /∈ B1
s this contradicts the fact that i wins si ≤ s.

Corollary C.0.1. Fix some slot s. Suppose that for any player i /∈ B1
s we have that

either i /∈ B1
j for all slots j < s or that i does not win any slot j < s. Then the set of

players that win slots 1, ...,s is B1
s .

Let s∗ ∈ {l, l̃} be the slot that satisfies the conditions of claim 4.

Claim C.0.6. p1
i,s∗ = p̃1

i,s∗ for any player i 6= il such that i /∈ B1
s∗ and p1

i,s∗ ≤ p1
il ,s∗ . In

addition, if s∗ = l̃ then p1
il ,s∗ = p̃1

il ,s∗ .

Proof. Assume first that s∗ = l̃. Since b̃ > b > Pl̃ ≥Q1
l̃

and v = ṽ we have p̃1
i,s = p1

i,s

for any player i and any slot s≥ l̃.
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Now assume that s∗ = l. We prove by induction on the slot s = k...l. By
definition p1

i,k = p̃1
i,k for any player i 6= il . Assume correctness for slot s+1 and let

us prove for s. If il ∈ B1
s+1 then p1

i,s = min(bi,(αs−αs+1)vi +min(Q1
s+1, p1

i,s+1)) =

p̃1
i,s for every player i 6= il , since by the induction assumption Q1

s+1 = Q̃1
s+1 and

p1
i,s+1 = p̃1

i,s+1. Otherwise assume il /∈ B1
s+1. For every player i with p1

i,s+1 ≤ p1
il ,s+1

we again get by definition p1
i,s = p̃1

i,s.
Otherwise p1

i,s+1 > p1
il ,s+1. Since il /∈ B1

s+1 and il wins slot l < s+ 1 we
have p1

il ,s+1 6= bil , which implies by claim 3.3.1 that vi > vil . Therefore for any i
with p1

i,s ≤ p1
il ,s we have p1

i,s = bi ≥ p̃1
i,s ≥ p1

i,s. Hence p̃1
i,s = p1

i,s = bi, implying
p̃1

i,s = p1
i,s = bi. If il ∈ B1

s then all players i /∈ B1
s have p1

i,s ≤ p1
il ,s, and the claim

follows.

Note that, by this lemma, if il ∈ B1
s∗ then we get p1

i,s∗ = p̃1
i,s∗ for any player i /∈ B1

s∗ ,
and hence B̃1

s∗ = B1
s∗ .

We also note that q̃1
i,s≥ q1

i,s and p̃1
i,s≥ p1

i,s for any player i and any slot s (this
follows by a simple induction on the slot s = k, ...,1). We say that a player i /∈ B1

s∗

“jumped” if i 6= il , p1
il ,s∗ ≥ p1

i,s∗ and there exists a slot j ≤ s∗−1 such that i ∈ B1
j .

Claim C.0.7. If a player i 6= il with i /∈ B1
s∗ and p1

il ,s∗ ≥ p1
i,s∗ did not jump then

p1
i, j = p̃1

i, j and i /∈ B̃1
j for any slot j ≤ s∗.

Proof. Since i /∈ B1
s∗ and p1

il ,s∗ ≥ p1
i,s∗ but i did not jump we have i /∈ B1

j for any slot
j≤ s∗. We show the claim by induction on j = s∗,s∗−1, ...,1. The base case j = s∗

follows since slot s∗ is an anchor. Assume that p̃1
i, j+1 = p1

i, j+1 and i /∈ B̃1
j+1 for

some j < s∗. Then p̃i, j = min(bi,(α j−α j+1)vi+ p̃i, j+1) = min(bi,(α j−α j+1)vi+
pi, j+1) = pi, j, completing the first part of the inductive step. Since p̃i′, j ≥ pi′, j for
any player i′, i /∈ B1

j implies i /∈ B̃1
j .

Claim C.0.8. If il ∈ B1
s∗ and there does not exist a player that jumped then the set

of players that win slots 1, ...,s∗ is identical in both declarations (v,b) and (ṽ, b̃).

Proof. Every player i /∈ B1
s∗ satisfies p1

il ,s∗ ≥ p1
i,s∗ , and, since no such player jumped,

corollary C.0.1 implies that the players in B1
s∗ win slots 1, ...,s∗ in declaration (v,b).

We will show that the players in B̃1
s∗ win slots 1, ...,s∗ in declaration (ṽ, b̃), which

will imply the claim since B1
s∗ = B̃1

s∗ . Assume by contradiction that some player
i /∈ B̃1

s∗ wins slot si ≤ s∗ (w.l.o.g. i has a minimal bid in slot s∗ among all such
players). By claim C.0.5 it follows that i ∈ B̃1

si
. On the other hand since B1

s∗ = B̃1
s∗

we have i /∈ B1
s∗ , and i 6= il . Thus claim C.0.7 implies i /∈ B̃1

si
, a contradiction.
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Using this, if il ∈ B1
s∗ and there does not exist a player that jumped then we can

conclude the proof of lemma 4 by choosing j∗ = s∗. The next claim shows that in
any other case there must be a player that jumped.

Claim C.0.9. If il /∈ B1
s∗ then there exists a player i that jumped such that p1

i,s∗ <

p1
l,s∗ .

Proof. If s∗ = l then by claim 4.1.2 there is a player i′ that wins slot si′ < s∗ and
p1

i′,s∗ < p1
l,s∗ , and by claim C.0.5 there exists a player i with p1

i,s∗ ≤ p1
i′,s∗ that wins

slot si < s∗ and i∈B1
si

(i may be i′). Therefore i jumped. If s∗= l̃ then by assumption
p1

il ,s∗ = p̃1
il ,s∗ and therefore il /∈ B̃1

s∗ . As above this implies that there exists a player
i 6= il that wins slot si < s∗ such that p̃1

i,s∗ < p̃1
il ,s∗ and i ∈ B̃1

si
. Player i also satisfies

i /∈ B1
s∗ and p1

il ,s∗ > p1
i,s∗ . We argue that i jumped: otherwise claim C.0.7 implies

i /∈ B̃1
j for any slot j ≤ s∗, a contradiction.

Therefore we assume that there exists a player that jumps. For two players i, j and
a slot s, we denote p1

i,s � p1
j,s if p1

i,s > p1
j,s, or p1

i,s = p1
j,s and i� j. Let i∗ be a player

with minimal bid p1
i,s∗ w.r.t. � among all players that jumped. Let j∗ ≤ s∗− 1 be

some slot such that i∗ ∈ B1
j∗ .

Claim C.0.10. For any player i 6= il such that i /∈ B1
j∗ , and for any slot j ≤ j∗, we

have: (1) i /∈ B1
j , (2) i /∈ B̃1

j , and (3) pi, j = p̃i, j. In addition, if il /∈ B1
j∗ then l̃ > j∗

and l > j∗.

Proof. Consider a player i /∈ B1
j∗ . Assume first that p1

i∗,s∗ � p1
i,s∗ (note that this

implies that i 6= il since p1
i∗,s∗ < p1

il ,s∗). By the minimality assumption on i∗ we have
that i /∈ B1

j for any slot j < s∗. By claim C.0.7 we also have pi, j = p̃i, j and i /∈ B̃1
j for

any slot j < s∗. If pi,s∗ = pi∗,s∗ and i� i∗ (note that this still implies i 6= il) then since
i /∈ B1

j∗ and i∗ ∈ B1
j∗ we must have p1

i, j∗ = bi, which implies the three properties.
Otherwise pi,s∗ > pi∗,s∗ . We must have vi > vi∗ , otherwise we get by claim 3.3.1

that pi∗,s∗ = bi∗ which is a contradiction since i∗ /∈ B1
s∗ and i∗ ∈ B1

j∗ . Since pi, j∗ ≤
pi∗, j∗ we get p1

i, j∗ = bi, and since i /∈ B1
j∗ then i /∈ B1

j for any j < j∗. In addition,
if i 6= il or i = il and b = b̃ then bi = p̃1

i, j∗ , implying i /∈ B̃1
j and pi, j = p̃i, j for any

j ≤ j∗.
This establishes the three properties for i 6= il , and that, if b = b̃ and il /∈ B1

j∗

then player il does not win any slot j≤ j∗. If il /∈ B1
j∗ and b< b̃ then we get p1

l, j∗ = b
from the above paragraph. Thus player il cannot win any slot j ≤ j∗ in declaration
(v,b), hence l > j∗. It remains to show l̃ > j∗. Since b < b̃ we have by assumption
b > min(Pl̃, P̃l̃). If b > Pl̃ then since Pj ≥ p1

il , j = b for any j ≤ j∗ we get l̃ > j∗.
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Similarly, if b > P̃l̃ then since P̃j ≥ p̃1
il , j ≥ p1

il , j = b for any j ≤ j∗ we again get
l̃ > j∗.

By claim C.0.10, the conditions of corollary C.0.1 hold for slot j∗ and dec-
laration (v,b) (note that by claim C.0.10, if il /∈ B1

j∗ then player il wins slot l > j∗ in
declaration (v,b)). Therefore the players in B1

j∗ win slots 1, ..., j∗ in this declaration.
To finish the proof of lemma 4 we argue that these players are the winners of slots
1, ..., j∗ in declaration (ṽ, b̃) as well.

Assume by contradiction that there exists a player x /∈ B1
j∗ that wins a slot

sx ≤ j∗ in declaration (ṽ, b̃). By claim C.0.10 we have x 6= il since l̃ > j∗. Assume
without loss of generality that x has a minimal bid p̃1

x, j∗ among all players x /∈ B1
j∗

that win some slot s≤ j∗ in declaration (ṽ, b̃). By claim C.0.10, p1
x, j∗ = p̃1

x, j∗ . Since
p1

i, j∗ ≤ p̃1
i, j∗ for any player i it follows that x /∈ B̃1

j∗ as well. By claim C.0.10 we have
x /∈ B̃1

sx
, and therefore by claim C.0.5 there must exist y /∈ B̃1

j∗ such that p̃1
y, j∗ < p̃1

x, j∗

and y wins some slot sy ≤ j∗. By the minimality assumption on the choice of x we
must have y ∈ B1

j∗ . Therefore p1
y, j∗ ≥ p1

x, j∗ . But we also have p1
y, j∗ ≤ p̃1

y, j∗ < p̃1
x, j∗ =

p1
x, j∗ , a contradiction.
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