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Supersymmetric phenomenology has been largely bound to the hypothesis that supersymmetry
breaking originates from a single source. In this paper, we relax this underlying assumption and
consider a multiplicity of sectors which independently break supersymmetry, thus yielding a cor-
responding multiplicity of goldstini. While one linear combination of goldstini is eaten via the
super-Higgs mechanism, the orthogonal combinations remain in the spectrum as physical degrees of
freedom. Interestingly, supergravity effects induce a universal tree-level mass for the goldstini which
is exactly twice the gravitino mass. Since visible sector fields can couple dominantly to the gold-
stini rather than the gravitino, this framework allows for substantial departures from conventional
supersymmetric phenomenology. In fact, this even occurs when a conventional mediation scheme
is augmented by additional supersymmetry breaking sectors which are fully sequestered. We dis-
cuss a number of striking collider signatures, including various novel decay modes for the lightest
observable-sector supersymmetric particle, gravitinoless gauge-mediated spectra, and events with
multiple displaced vertices. We also describe goldstini cosmology and the possibility of goldstini
dark matter.

I. INTRODUCTION

Supersymmetry (SUSY) is a theoretically motivated
and well-studied framework which solves the hierarchy
problem and offers a rich phenomenology [1]. Of course,
if SUSY is to be realized in nature, then it must be spon-
taneously broken. To this end, it is conventionally as-
sumed that SUSY breaking originates from the dynamics
of a single hidden sector.
While the notion of single sector SUSY breaking is

convenient as a simplifying premise, it is not very generic
in light of top-down considerations. In particular, string
theoretic constructions routinely predict a multiplicity
of geographically sequestered sectors [2], any number of
which could independently break SUSY. In this paper we
will explore the generic implications of multiple sector
SUSY breaking.
Consider the low energy effective field theory de-

scribing N such sequestered sectors. In the limit
in which these sectors are completely decoupled—even
gravitationally—they enjoy an N -fold enhanced Poincaré
symmetry because energy and momentum are separately
conserved within each sector. Likewise, if SUSY is a sym-
metry of nature then it is similarly enhanced, such that

SUSY
decoupled−→ SUSYN ≡ ⊗

N
∏

i=1

SUSYi. (1)

Because this enhancement is an accidental consequence
of the decoupling limit, gravitational interactions explic-
itly break SUSYN down to a diagonal combination corre-
sponding to the genuine supergravity (SUGRA) symme-
try. Consequently, the “orthogonal” SUSYN−1 are only
approximate global symmetries.
In the event that F -term breaking occurs indepen-

dently in each sector, each SUSYi will be spontaneously
broken at a scale Fi, yielding a corresponding goldstino

ηi.
1 In unitary gauge, one linear combination of golds-

tini, ηlong, is eaten by the gravitino via the super-Higgs
mechanism, leaving N − 1 goldstini in the spectrum. We
denote these fields by ζa, where a = 1, . . . , N − 1.
Since the remaining N − 1 goldstini correspond to the

approximate SUSYN−1 which are explicitly broken by
SUGRA, one should not expect these goldstini to remain
exactly massless. In fact, we will show that they acquire
a tree-level mass

ma = 2m3/2, (2)

induced by gravitational effects. As we will see, the cu-
rious factor of 2 is ultimately fixed by the symmetries of
SUGRA, and we will robustly derive it in a number of
different ways.
Up to now, SUSY phenomenology has been almost ex-

clusively devoted to a scenario in which the gravitino
and the goldstino are effectively one and the same.2 In
the context of multiple sector SUSY breaking, however,
this corresponds to a rather privileged arrangement in
which the dominant contributions to SUSY breaking in
the supersymmetric standard model (SSM) sector arise
from the SUSY breaking sector with the highest SUSY
breaking scale. In any other situation, the SSM fields will
actually couple more strongly to the goldstini than to the
gravitino, and this will have a significant impact on col-
lider physics and cosmology. A simple context in which

1 Throughout the paper we take a field basis where Fi are all
real and positive, and assume that Fi ≥ Fi+1 without loss of
generality. We will also focus on the case where SUSY breaking
still occurs in the MPl → ∞ limit, and only briefly comment on
“almost no-scale” SUSY-breaking sectors in the Appendix. The
possibility of D-term breaking will be left to future work.

2 To our knowledge, the only mention of multiple goldstini in the
literature appears in Ref. [3].
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this occurs is when a conventional SUSY breaking sce-
nario is augmented by additional SUSY breaking sectors
which are fully sequestered (see Fig. 1 in Sec. VA).
This paper is organized as follows. In Sec. II, we review

an analogous construction for Goldstone bosons arising
from multiple symmetry breaking. The goldstini case of
multiple SUSY breaking is then presented in Sec. III.
We derive the relation ma = 2m3/2 in Sec. IV, using
both a Stückelberg method and a conformal compensator
method. A direct SUGRA calculation of the factor of two
appears in the Appendix. Corrections to this mass rela-
tion are given in Sec. V, and the couplings to the SSM
are given in Sec. VI. Possible LHC signatures of this
scenario—including wrong mass “gravitinos”, gravitino-
less gauge mediation, smoking gun evidence for the fac-
tor of two, three-body neutralino decays, and displaced
monojets—are presented in Sec. VII. Goldstini cosmol-
ogy is described in Sec. VIII, including scenarios that
yield goldstini dark matter. We conclude in Sec. IX.

II. GOLDSTONE ANALOGY

Because the notion of multiple sector SUSY break-
ing is not a familiar one, it is instructive to analyze an
analogous construction involving multiple U(1) symme-
try breaking. Consider a scenario in which φ1 and φ2 are
complex scalar fields which enjoy separate global sym-
metries U(1)1 and U(1)2. Furthermore, assume that the
diagonal U(1)V is gauged and that φ1 and φ2 have no
direct couplings except for gauge interactions.

A. Fields and Couplings

If φ1 and φ2 separately acquire vacuum expectation
values (vevs), then we can non-linearly parameterize the
Goldstone modes as

φi = fie
iπi/

√
2fi , (3)

for i = 1, 2. One linear combination of π1 and π2 is
eaten via the Higgs mechanism. The orthogonal combi-
nation, ϕ, corresponds to a physical pseudo-Goldstone
boson that arises from the spontaneous breaking of a
global U(1)A axial symmetry. Concretely, go to a ba-
sis

(

π1
π2

)

=

(

cos θ − sin θ
sin θ cos θ

)(

πlong
ϕ

)

unitary
gauge−→

(

− sin θ ϕ
cos θ ϕ

)

, (4)

where tan θ = f2/f1 and feff =
√

f2
1 + f2

2 . In unitary
gauge, πlong becomes the longitudinal mode of the U(1)V
gauge boson.
The interactions of ϕ with other fields can be obtained

from plugging the parameterization of Eqs. (3) and (4)
into couplings involving φi and those fields. Note a

crucial difference between the couplings of πlong and ϕ.
While one can always do field redefinitions such that πlong
couples only derivatively, Lint = (1/feff)(∂µπlong)J

µ

where Jµ is the U(1)V current, there is no guarantee
that the same can be done for ϕ.

B. Masses

As is well known, π1 and π2 are exactly massless in
the limit in which U(1)1 × U(1)2 is an exact symmetry
of the Lagrangian. One way of understanding this fact is
to consider the unitary gauge Lagrangian for the massive
U(1)V gauge boson,

Lunit = − 1

4g2
FµνF

µν − f2AµA
µ. (5)

For the moment, let us assume that U(1)1 is broken but
U(1)2 is preserved. As a consequence, there is a single
eaten Goldstone mode, π1. Using the Stückelberg re-
placement, we can reinstate π1 as a propagating degree
of freedom by applying a gauge transformation

Aµ → Aµ +
1√
2f
∂µπ1, (6)

and promoting π1 to a dynamical field. Doing so yields

L = −1

2
∂µπ1∂

µπ1 + terms involving Aµ. (7)

Obviously, the exact same argument can apply in the case
in which U(1)2 is broken and U(1)1 is preserved. Thus,
if U(1)1 and U(1)2 are independently broken, then the
Lagrangian must take the form

L = −1

2

∑

i

∂µπi∂
µπi + terms involving Aµ, (8)

and so a mass term is forbidden for either πi. Said an-
other way, either πi could have been eaten by Aµ, so
both are required to be massless. This implies that the
uneaten Goldstone mode, ϕ, is massless.
If it is not the case that U(1)1×U(1)2 is an exact sym-

metry, then the above argument is only approximate. In
particular, any explicit U(1)A violating, U(1)V preserv-
ing operators will provide a mass term for the uneaten
mode, ϕ, at tree level. Moreover, even if such opera-
tors are missing, they can be generated radiatively. For
example, this occurs in a non-Abelian Goldstone theory
in which φ1 and φ2 are in fundamental representations
of SU(k)1 and SU(k)2 global symmetries, respectively,
of which the diagonal SU(k)V combination is gauged.
Since the gauge interactions explicitly violate the SU(k)A
global symmetry, radiative corrections will generate op-
erators of the form

|φ†1φ2|2, (9)

which induce a mass for ϕ, albeit at loop level. As we
will see shortly, the non-Abelian theory provides the clos-
est analogy to multiple sector SUSY breaking—SUGRA,
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which is precisely the gauged diagonal SUSY, explic-
itly violates the orthogonal SUSYN−1 and thus induces
nonzero masses for the uneaten goldstini. The important
difference in the case of SUSY is that these masses will
arise at tree level rather than at loop level.

III. GOLDSTINI FIELDS AND COUPLINGS

The discussion of multiple sector SUSY breaking ex-
actly parallels that of the previous section. We will focus
here on the case of F -term breaking, and imagine that
there exist two chiral superfields, X1 and X2, that re-
side in two sequestered sectors. In the absence of direct
couplings, gravitational or otherwise, these fields enjoy
an enhanced SUSY1 ⊗SUSY2 symmetry. Assuming that
the highest component of Xi acquires a vev equal to Fi,
then SUSYi is broken and we can use the non-linear pa-
rameterization

Xi = eQηi/
√
2Fi(xi + θ2Fi)

= xi + η2i /2Fi +
√
2θηi + θ2Fi, (10)

for i = 1, 2, where Q = ∂/∂θ is the generator of SUSY
transformations and we have neglected all derivatively
coupled terms.3 Here ηi is the goldstino corresponding
to the F -term breaking of SUSYi. Note that this form
is identical to the usual linear parameterization of a chi-
ral superfield except for the presence of η2i in the lowest
component of Xi.
In the presence of SUGRA, the diagonal combination

of SUSY1 and SUSY2 is gauged, and thus one of the
goldstini is eaten. As before, it is convenient to work in
a basis

(

η1
η2

)

=

(

cos θ − sin θ
sin θ cos θ

)(

ηlong
ζ

)

unitary
gauge−→

(

− sin θ ζ
cos θ ζ

)

, (11)

where tan θ = F2/F1 and Feff =
√

F 2
1 + F 2

2 . Thus, ηlong
is eaten by the gravitino, and ζ remains a propagating
degree of freedom.
The interactions of ζ with other fields can be obtained

using the parameterization of Eqs. (10) and (11). Since
Xi is a true chiral superfield, the couplings of ζ can be
obtained directly in superspace. While one can always
work in a field basis where ηlong couples only derivatively,

Lint = (1/Feff)(∂µηlong)J̃
µ where J̃µ is the supercurrent,

the same cannot be done in general for ζ.
If the number of sequestered SUSY breaking sectors

is greater than two, then there will be multiple uneaten
goldstini ζa, which are related to ηi by

ηi = Viaζa, (12)

3 A similar non-linear parametrization was considered in Ref. [4]
for a single goldstino.

where Via is the N × (N − 1) part of the unitary matrix
which goes from the ηi basis to the {ηlong, ζa} basis. The
ζa fields are orthogonal to the eaten mode. Since

ηlong =
1

Feff

∑

i

Fiηi, (13)

this implies
∑

i FiVia = 0. The form of Via is determined
by the mass matrix of ζa, which we will now discuss.

IV. GOLDSTINI MASSES

In Sec. II B, we saw that uneaten Goldstone bosons
typically acquire masses from loops of non-Abelian gauge
bosons. SUGRA effects similarly induce masses for the
goldstini—only this happens at tree level! More precisely,
in the limit in which each sector couples only through
SUGRA, all goldstini acquire a tree level mass which is
universal and given by ma = 2m3/2.

4 While the factor
of 2 may be verified explicitly by considering the explicit
SUGRA Lagrangian (see the Appendix), we find it more
illuminating to derive it in two separate but more direct
ways. Collider and cosmological implications of this uni-
versal mass will be discussed in Secs. VII and VIII.

A. Two via Stückelberg

The simplest way of understanding ma = 2m3/2 is in
analogy with the logic of Sec. II B. We start from a uni-
tary gauge SUGRA Lagrangian, where the quadratic ac-
tion for the gravitino is [5]

Lunit = ǫµνρσψ̄µσ̄ν∂ρψσ −m3/2

(

ψµσ
µνψν + ψ̄µσ̄

µν ψ̄ν
)

,
(14)

where σµν ≡ (σµσ̄ν−σν σ̄µ)/4 and m3/2 ≃ Feff/
√
3MPl.

5

Now consider the scenario in which SUSY has been bro-
ken only in sector 1, and the corresponding goldstino η1
has been eaten. We can reinstate the η1 degree of free-
dom by applying the Stückelberg construction—that is,
applying a SUGRA transformation on the unitary gauge
Lagrangian, and then promoting the SUGRA parameter
to a dynamical field. In particular, we apply the SUGRA
transformation [5]

ψµ → ψµ +

√

2

3
m−1

3/2∂µη1 +
i√
6
σµη̄1, (15)

4 It may appear contradictory that the goldstini acquire a tree-level
mass, since they are derivatively coupled in the limit of global
SUSY. Nevertheless, for finite MPl, the goldstini couple not just
as ∂µηi but also as σµη̄i, so a mass term is not forbidden.

5 In this paper we assume that SUSY is broken in the global limit
and that the SUSY breaking vacuum is unaffected by finite MPl

effects. Some of the equations below, e.g. Eq. (15), do not hold
if we relax this assumption (see Ref. [6] for a clear discussion
of the general SUSY transformation laws for the gravitino). A
more general case is discussed briefly in the Appendix.



4

to the Lagrangian, yielding

L = −iη̄1σ̄µ∂µη1 −
1

2
(2m3/2)(η

2
1 + η̄21) + . . . , (16)

where the ellipses denote all terms involving the ψµ, in-
cluding the mixing terms between the gravitino and the
goldstino. Note how the kinetic term for η1 is gener-
ated by the cross term obtained from Eq. (15). Given
the normalization of a Majorana fermion, this implies a
goldstino mass of m1 = 2m3/2.
Now of course if there is only one goldstino, then this

mass is not physical, since η1 is eaten via the super-Higgs
mechanism. However, if there is multiple sector SUSY
breaking, then there will be several goldstini ηi. Since
any one of the Xi could have broken SUSY on its own
and been eaten by the gravitino, all of them must take
the form of Eq. (16). Thus, with multiple goldstini, the
Stückelberg Lagrangian becomes

L =
∑

i

{

−iη̄iσ̄µ∂µηi −
1

2
(2m3/2)(η

2
i + η̄2i )

}

+ . . . ,

(17)
where the ellipses include the mixing between the grav-
itino and the eaten goldstino, which is now some linear
combination of the ηi.

6 We can now rotate the fermions
by an orthogonal matrix, to isolate the eaten goldstino
mode, and then go to unitary gauge. Since the ηi mass
matrix is proportional to the identity, the leftover golds-
tini, ζa, will all have mass ma = 2m3/2.

B. Two via the Conformal Compensator

An alternative way of understanding the relationma =
2m3/2 is to use the conformal compensator formalism [7].
Morally, the factor of 2 arises because the conformal com-
pensator couples to mass dimension, and Fi has mass di-
mension 2. To see this in a simple example, consider the
case of several sectors which independently break SUSY
via a Polonyi superpotential

L =

∫

d4θ C†C
∑

i

(X†
iXi + . . .)

+

∫

d2θ C3
∑

i

µ2
iXi + h.c., (18)

where C = 1 + θ2m3/2 is the conformal compensator,
the dots indicate higher order terms necessary to stabi-
lize the scalar components of Xi, and we have chosen a
sequestered form for the Kähler potential. By rescaling

6 One might think that each ηi should have a mass given by
2Fi/

√
3MPl (twice the gravitino mass for sector i alone) in-

stead of 2Feff/
√
3MPl (twice the gravitino mass for all sectors

together). This, however, would not lead to the correct mass for
the eaten mode, which must take the form of Eq. (16).

SSM

SUSY

SUSY SUSY

︸ ︷︷ ︸

sequestered

FIG. 1: A schematic depiction of a scenario in which the SSM
sector couples to only one of the SUSY breaking sectors. Note
that this setup still leads to interactions between SSM fields
and goldstini in the sequestered sectors, since the goldstino of
the sector coupling to the SSM is in general a linear combi-
nation of the gravitino and uneaten goldstini.

Xi → Xi/C, we see that C only couples to dimension-
ful parameters—namely, µi. Plugging in for the lowest
component of the non-linear parameterization of Xi in
Eq. (10), we obtain

L ⊃
∫

d2θ C2
∑

i

µ2
iXi

= − 1

2
(2m3/2)

∑

i

η2i + const., (19)

where we have solved for the auxiliary fields Fi = −µ2
i

and plugged in for the conformal compensator. The fact
that µ2

i has mass dimension 2 implies that conformal
compensator couples as C2, yielding the important factor
of 2 in the goldstini mass.

V. DEVIATIONS FROM THE SEQUESTERED

LIMIT

So far, we have limited our discussion to the case
where the only interactions between SUSY breaking sec-
tors arise from SUGRA. This is certainly the case if ev-
ery sector, including the SSM sector, is sequestered from
one another and SUSY breaking is communicated to the
SSM via SUGRA effects, i.e. anomaly mediation. In this
section, we consider the case where one or more SUSY
breaking sectors have direct couplings to the SSM to me-
diate SUSY breaking. We discuss effects of such cou-
plings on the goldstini properties.

A. Single Sector Mediation

The simplest deviation from the fully sequestered limit
is for direct couplings to exist only between the SSM and



5

Λ1 Λ2

SSM

F2F1

SUSY2SUSY1

FIG. 2: A schematic depiction of a scenario in which sectors 1
and 2 have direct interactions to the SSM sector via operators
suppressed by Λ1 and Λ2, respectively (double lines). These
interactions induce direct couplings between sectors 1 and 2
through radiative corrections (dashed line).

one of the SUSY breaking sectors, as illustrated in Fig. 1.
This corresponds to the situation where a conventional
SUSY breaking scenario, such as gauge mediation, is aug-
mented by one or more fully-sequestered SUSY breaking
sectors. This may easily arise in realistic top-down se-
tups.
Despite the coupling to the SSM, the different SUSY

breaking sectors themselves still interact only through
SUGRA, so the analysis of the goldstini masses in the
previous sections remains intact. Note that because of
the mixing matrix from Eq. (12), there are still nontrivial
couplings between SSM fields and the goldstini from the
sequestered SUSY breaking sectors.

B. Induced Couplings between SUSY Breaking

Sectors

If two or more SUSY breaking sectors have direct cou-
plings to the SSM, a true deviation from the sequestered
limit arises. To see how this happens, consider sectors
1 and 2, each of which couples to the SSM sector via
an operator suppressed by Λ1 and Λ2, respectively (see
Fig. 2). Clearly, loops of SSM sector fields induce direct
interactions between sectors 1 and 2, which may in turn
modify the goldstini properties.
Direct interactions between SUSY breaking sectors can

potentially modify the vacuum structure drastically so
that SUSY breaking no longer occurs in some of these
sectors. We assume that this is not the case, i.e. parame-
ters take values such that the shift of the vacuum is small
enough to preserve the essential structure of the sectors.
(The parameter regions considered in later sections sat-
isfy this condition.) It is then easiest to analyze the effect
of direct couplings using the non-linear parameterization
of Eq. (10), where xi and Fi represent the values after the
vacuum shift and ηi is the goldstino arising from sector i.
Since η1 and η2 have the quantum numbers conju-

gate to the generators of SUSY1 and SUSY2, respec-
tively, they have a unit charge under the corresponding

ΦW
α

ΦW
α

X1

X2

X
†
2

O�R1�R2
:

O�R1
:

X1
X

†
2

Φ

Φ

X1
X

†
2

W
α

W
α

Φ

Φ

X1

X2

X
†
2

FIG. 3: Feynman diagrams which induce direct couplings be-
tween sectors 1 and 2. There is always at least one factor of
1/16π2 coming from a loop of SSM fields. Depending on the
details of the underlying theory, there may be additional loop
factors, for instance if the

∫
d2θ X1W

αWα/Λ1 coupling itself
is generated at one loop.

R symmetries, U(1)R1
and U(1)R2

, rotating these gen-
erators. Consequently, any deviations of the goldstini
Majorana masses from 2m3/2 require an additional R-
symmetry breaking transmission between sectors 1 and
2 beyond that provided by SUGRA through m3/2. Since
the setup considered here has tree-level direct couplings
only between the SSM and SUSY breaking sectors, such
a transmission must occur through the SSM sector.
The leading R-breaking transmitting couplings be-

tween a SUSY breaking sector and the SSM sector
are given by the gaugino-mass and A-term operators,
∫

d2θXiWαWα/Λi and
∫

d2θXiΦ
†Φ/Λi, which may or

may not exist depending on the properties of the SUSY
breaking sector. Here, Wα and Φ represent the gauge
field strengths and chiral superfields of the SSM. Inter-

actions of the form
∫

d4θX†
iXiΦ

†Φ/Λ2
i do not provide

necessary R-breaking transmission, unless Xi has a low-
est component vev giving effectively A-term operators.
For the remainder of this section, we will absorb any vev
for Xi into the coefficients of the corresponding opera-
tors. Note that R-preserving operators can still play an
important role in generating relevant effects when com-
bined with operators that do transmit R-breaking.
We can characterize the induced couplings between

sectors 1 and 2 according to whether they violate U(1)R1
,

U(1)R2
, or both. These couplings are generated by the

diagrams in Fig. 3, and have the form (after absorbing
any vev for Xi into the operator coefficients)

O/R1/R2
≈
(

1

16π2

)n12
∫

d4θX1X
†
2 + h.c.,

O/R1
≈
(

1

16π2

)n1 1

max{Λ1,Λ2}

∫

d4θX1X
†
2X2 + h.c.,

O/R2
≈
(

1

16π2

)n2 1

max{Λ1,Λ2}

∫

d4θX2X
†
1X1 + h.c.,

(20)

where we have included the coefficients in the Lagrangian
terms in the definitions of O’s. We now consider each of
these operators in turn.
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C. Effects on Goldstini

If both U(1)R1
- and U(1)R2

-breaking effects exist and
are transmitted, then the kinetic mixing operator O/R1/R2

will arise. Note that n12 ≥ 1, since there is always at least
one loop of SSM fields involved in the diagram (if the
gaugino mass operators themselves are generated at one
loop, for instance as in gauge mediation, then n12 = 3).7

However, since this operator is separately holomorphic in
sector 1 and sector 2 fields, it separately preserves SUSY1

and SUSY2 in the limit in which derivatively coupled
terms are neglected—hence, this operator does not con-
tribute to ma.

8 The only effect of O/R1/R2
is to modify the

kinetic term of ζ by an order (1/16π2)n12 fraction, induc-
ing δma/ma of the same size. If there are more than two
sectors which couple to the SSM in this way, then kinetic
mixings of this order will be generated among all the ζa.
If only U(1)R1

-breaking effects are transmitted, then
O/R1

is generated, where again n1 ≥ 1 because there is

at least one loop of SSM fields. This operator yields a
contribution to the goldstini masses

O/R1
⊃ (1/16π2)n1F2

2max{Λ1,Λ2}

(

F2

F1
η21 +

F1

F2
η22 − 2η1η2

)

→ 1

2

(

1

16π2

)n1 Feff

cos θmax{Λ1,Λ2}
ζ2, (21)

where in the last equation we have assumed that the only
sectors breaking SUSY are sectors 1 and 2, and have
plugged in for the mixing angles in Eq. (11). Obviously,
an identical analysis can be performed when only U(1)R2

is broken.
If neither of U(1)R1

or U(1)R2
breaking is transmit-

ted, the goldstini Majorana masses cannot deviate from
2m3/2. The goldstini, however, may still obtain Dirac
masses with fermions of R-charge −1. For instance, con-

sider
∫

d4θX†
1X1S

†
2S2, which is an R-symmetric coupling

between a SUSY breaking field in sector 1 and a specta-
tor field in sector 2 which does not have an F -component
vev. For 〈S2〉 6= 0, this operator induces a Dirac mass
between the goldstino, ζ, in X1 and the fermionic com-
ponent of S2. The effect from this class of operators,
however, is generically smaller than that expected from
O/R1

and O/R2
for natural values of 〈S2〉 ∼ O(

√
F2).

The operators O/R1
and O/R2

can potentially produce

large corrections to the goldstini masses. However, since
they are suppressed by max{Λ1,Λ2}, we find that in most
cases these corrections are

δma <∼
(

1

16π2

)n

m̃, (22)

7 The loop factor may not exist if the SSM sector contains a singlet
that directly mixes with SUSY breaking fields. We assume that
such a singlet does not exist.

8 Incidentally, the same argument also shows that any operators

of the form
∫
d4θ f1(X1)f2(X

†
2
) do not contribute to ma.

where n ≥ 1 and m̃ is the scale for the SSM superpart-
ner masses, which we have taken to be common for the
gauginos and scalars. Therefore, if the gravitino mass is
not substantially smaller than the superpartner masses,
as in the case where Λ1,2 are taken near the gravitational
scale, then the relation ma = 2m3/2 will receive only
small corrections. The situation is model dependent if
the gravitino is much lighter. The corrected goldstini
masses, however, are still significantly smaller than m̃,
so that the SSM superpartners can decay into them.
The matrix Via, defined by Eq. (12), is determined to

diagonalize the goldstini mass matrix

L = −1

2
mij η̂iη̂j + h.c. → −1

2
maζ

2
a + h.c., (23)

where η̂i = ηi − (Fi/Feff)ηlong is the goldstini field with
the eaten mode projected out, and

mij = 2m3/2 δij + δmij , (24)

with δmij representing the effects from the operators in
Eq. (20). At the zero-th order in δmij/m3/2 expansion,
Via is the N × (N − 1) part of an orthogonal matrix
preserving the first term of Eq. (24). Since the angles
of this matrix are determined by a perturbation, δmij ,
on the unit matrix 2m3/2δij , they are typically of order
unity.
Finally, we note that none of the operators discussed

above affects the mass of the eaten mode, ηlong. This is
consistent with the general argument in Sec. IVA.

D. Other Corrections

We have seen that the corrections to the goldstini
masses from induced interactions between SUSY break-
ing sectors are generically small. If there are tree-level
direct couplings between these sectors, their effects can
be studied similarly, following the analysis above. The
goldstini masses are also corrected if there is a deviation
from the assumption that SUSY is broken in the global
limit. This effect is discussed briefly in the Appendix.
At loop level, the goldstini masses receive corrections

from anomaly mediated effects, which exist even in the
sequestered limit. Using the non-linear parameterization,
we can calculate the corrections and find

δmij = −γim3/2 δij , (25)

where γi is the anomalous dimension of Xi defined by
d lnZXi/d lnµR = −2γi.

9 Naturally, these contributions

9 If the Xi vev is nonzero in the basis where the Xi linear term
vanishes in the Kähler potential, there is an additional contri-
bution δmij = γ̇ix∗

im
2
3/2

/2Fi, where γ̇i = dγi/d lnµR. This

contribution is generically much smaller than that in Eq. (25).
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are loop suppressed.10 Note that the eaten mode, ηlong,
does not receive such a correction.

VI. INTERACTIONS WITH THE SSM SECTOR

In this section, we show how the goldstini couple to
the SSM. As per usual, the gravitino couples to the SSM
fields through its eaten goldstino component, ηlong, whose
interactions to a chiral multiplet take the form

Lint ⊃
1

Feff

(

∑

i

m̃2
i

)

ηlongψφ
†, (26)

where ψ and φ are the fermionic and bosonic components
of a chiral superfield Φ of the SSM, and m̃i is the soft
mass contribution to this field from sector i. The inter-
actions to a vector multiplet are given by

Lint ⊃ − i√
2Feff

(

∑

i

m̃i

)

ηlongσ
µνλFµν , (27)

where λ is the gaugino, and m̃i is the contribution to its
mass from sector i.
The couplings of the uneaten goldstini to the SSM

fields are different from those of the gravitino. We first
consider those to chiral multiplets. The couplings of ηi
to the SSM states can be obtained by using Eq. (10) in

L =
∑

i

1

Λ2
i

∫

d4θX†
iXiΦ

†Φ, (28)

giving scalar mass contributions m̃2
i = −F 2

i /Λ
2
i . The

interactions of the uneaten goldstini are then

Lint ⊃
1

Feff

∑

i,a

m̃2
iVia
ri

ζaψφ
†, (29)

where Fi ≡ riFeff (
∑

i r
2
i = 1), and we have used

Eq. (12). In the case where there are only two SUSY
breaking sectors, these interactions become

Lint ⊃ − 1

Feff
(tan θ m̃2

1 − cot θ m̃2
2)ζψφ

†

≈ −
(

F2

F 2
1

m̃2
1 −

1

F2
m̃2

2

)

ζψφ† + . . . , (30)

where in the last equation we have assumed F1 ≫ F2 and
approximated Feff by F1.
In the two sector case, it is useful to define the quantity

R =

∣

∣

∣

∣

coefficient of ζψφ†

coefficient of ηlongψφ†

∣

∣

∣

∣

, (31)

10 Corrections of similar size may also be induced by direct cou-
plings between the SSM and SUSY breaking sectors. For exam-
ple, loops of SSM states may generate holomorphic operators like∫
d4θX1X2, giving corrections loop suppressed compared with

m3/2.
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FIG. 4: A contour plot of R in Eq. (31) as a function of m̃2
1/m̃

2
2

and F1/F2. When |m̃2
1| <∼ |m̃2

2|, R is greater than unity for
a wide range of F1/F2, so that the SSM sector fields couple
more strongly to the uneaten goldstino than to the gravitino.

which characterizes the relative interaction strength of
the SSM sector fields to the uneaten goldstino versus the
gravitino. In Fig. 4, we plot R as a function of m̃2

1/m̃
2
2

and F1/F2 = cot θ. We find that R > 1 more or less
whenever |m̃2

1| <∼ |m̃2
2|—the SSM fields generically couple

more strongly to the uneaten goldstino in this case.
The couplings of the goldstini to vector multiplets can

be worked out similarly, and are given by

Lint ⊃ − i√
2Feff

∑

i,a

m̃iVia
ri

ζaσ
µνλFµν . (32)

If there are only two SUSY breaking sectors,

Lint ⊃ i√
2Feff

(tan θ m̃1 − cot θ m̃2)ζσ
µνλFµν

≈ i√
2

(

F2

F 2
1

m̃1 −
1

F2
m̃2

)

ζσµνλFµν + . . . ,(33)

where we have set Feff ≈ F1 in the last line. As in the
case of chiral multiplets, the couplings to the uneaten
goldstino are generically stronger than those to the grav-
itino for |m̃1| <∼ |m̃2|.

VII. COLLIDER PHENOMENOLOGY

Goldstini may be probed directly or indirectly at the
LHC. In what follows, we consider a minimal setup in
which SUSY is broken in two separate sectors, yielding a
gravitino G̃ and a single uneaten goldstino ζ. This sce-
nario preserves most of the salient features of our general
framework.
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We focus our analysis on the regime in which |m̃1| <∼
|m̃2|, so that the SSM fields couple more strongly to ζ

than to G̃. This includes the case from Fig. 1 where a
conventional SUSY breaking scenario is augmented by an
additional, completely sequestered SUSY breaking sec-
tor with a higher SUSY breaking scale. Below we ex-
plore five classes of novel LHC signatures which can occur
within our framework. We assume R-parity conservation
throughout.

A. “Gravitino” with a Wrong Mass-Interaction

Relation

Suppose that sector 2 which has F2 (≪ F1) gives
masses to all the SSM superpartners. In this case, ζ
couples more or less universally to all the SSM states,
so that ζ looks like the “gravitino” when interpreted in
the conventional framework. This apparent “gravitino”,
however, has a wrong mass-interaction relation. Indeed,
its interactions are controlled by F2 (cf. Eqs. (30) and
(33) when |m̃1| <∼ |m̃2|), but its mass is controlled by F1

(since mζ ≃ 2F1/
√
3MPl). This is different from the true

gravitino, whose interactions and mass are controlled by
a single parameter Feff . Said another way, the goldstino
has a mass which is a factor of ≃ 2F1/F2 larger than that
of a conventional gravitino with a comparable interaction
strength.

Suppose that ζ (and G̃) is lighter than all of the SSM
superpartners, which we assume throughout this sub-
section. In this case, all the SUSY cascade will termi-
nate with the lightest observable-sector supersymmetric
particle (LOSP) decaying dominantly into ζ.11 As in
conventional gauge mediation, if

√
F2 <∼ 107 GeV this

decay may occur inside the detector; in particular, for
small

√
F2 ∼ O(10 – 100 TeV) it is prompt. Such a de-

cay can provide a distinct signature at the LHC [8]. A
unique aspect in our framework is that the mass of the
escaping state can be significant, e.g. >∼ O(10 GeV) for√
F1 ≈ O(109 – 1010 GeV), which cannot be the case in

conventional gauge mediation. Therefore, if we can some-
how measure a nonzero mass of this state, perhaps using
methods similar to those discussed in Ref. [9], we can dis-
criminate the present scenario from the usual one. These
signals will be especially distinct if the LOSP is the bino
(yielding two photons in the final state) or if a charged
slepton LOSP decay leaves a displaced kink in the track-
ing detector. For massive escaping particles, such signals
are hardly obtained in the conventional framework.12

11 The goldstino ζ will decay further into the gravitino through
intermediate SSM states. As we will see in Sec. VIII A, this
decay is very slow, so that ζ can be regarded as a stable particle.

12 The signals cannot be mimicked by a LOSP decay into the QCD
axino either, since given an axion decay constant avoiding labo-
ratory and astrophysical bounds, the decay occurs always outside
the detector.

If the LOSP is charged, then there can be a striking
signature arising from a long-lived charged state. For√
F2 >∼ 106 GeV, the LOSP may still live long enough

that its mass and lifetime can be precisely determined
by, e.g., velocity measurements and by observing decays
of stopped LOSPs either inside a main detector [10] or in
a proposed stopper detector [11]. Measurement of LOSP
decays also allows us to determine the mass of the invisi-
ble state to which the LOSP decays, as long as it is larger
than O(10 GeV). In fact, the charged LOSP arises nat-
urally in many theoretical constructions. For example,
the right-handed stau can easily be the LOSP if SUSY
breaking is transmitted from sector 2 to the SSM sector
via gauge or gaugino mediation. The LOSP may also
be a selectron or smuon if there is a controlled source
of flavor violation, which leads to a spectacular signal of
monochromatic electrons or muons [12].
In the conventional scenario, the charged LOSP decays

into the gravitino. Since the lifetime of the LOSP and
the gravitino mass are related by Feff , one can indirectly
measure the Planck scale [13]

Γl̃→lG̃ ≃ m5

l̃

16πF 2

eff

, m3/2 ≃ Feff√
3MPl

=⇒ M2
Pl ≃

m5

l̃

48πΓl̃→lG̃m
2

3/2

, (34)

where we have adopted notation appropriate for a slepton
LOSP. However, this is not the case if the LOSP instead
decays into the uneaten goldstino ζ, since the goldstino
mass and decay constant are controlled by separate pa-
rameters and thus a priori unrelated. Specifically, for
F1 ≫ F2, we will mismeasure MPl by a factor of F2/2F1

if we misinterpret ζ as a conventional gravitino

Γl̃→lζ ≃
m5

l̃

16πF 2

2

, mζ ≃ 2F1√
3MPl

=⇒ M2
Pl ≃

(

2F1

F2

)2 m5

l̃

48πΓl̃→lζm
2

ζ

, (35)

which would reveal that the particle to which the LOSP
is decaying is not the gravitino.13

B. Gravitinoless Gauge Mediation

Thus far we have considered a case where ζ and G̃ are
lighter than the LOSP. However, since the masses of ζ
and G̃ are both controlled by the largest SUSY breaking
scale F1, these states can be heavier than all the SSM
superpartners even if F2 (and the corresponding media-
tion scale Λ2) is small. As a consequence, the LOSP may

13 The LOSP decay product, however, may be the QCD axino ã.
Discriminating between ζ and ã using the lifetime measurement
will be difficult because values of Γl̃→lζ and Γl̃→lã mostly over-

lap in relevant parameter regions, especially if we allow the ax-
ion decay constant to be in the so-called anthropic range. The
discrimination, however, may be possible by studying detailed
structures of radiative three-body decays [14].
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ℓ̃

ℓ

G̃ or ζ

FIG. 5: If F1 ≈ F2 and m̃1 ≈ m̃2, then the SSM states couple
to ζ and G̃ with similar strengths. In particular, if ζ and G̃
are lighter than all the SSM superpartners, then the LOSP
decays into ζ or G̃ with non-negligible branching ratios. This
allows for the possibility of measuring the masses of both ζ
and G̃, providing smoking gun evidence for multiple sector
SUSY breaking.

be stable even if SSM superpartners obtain their masses
primarily from a sector having low SUSY breaking and
mediation scales.
This allows for a canonical gauge mediation spectrum

without a light gravitino, and hence with neutralino dark
matter. A scenario with similar phenomenology was con-
sidered before in Ref. [15]. In our context, it arises as a
special case of the general framework of multiple SUSY
breaking.

C. Measuring the “Two”

We have seen that the uneaten goldstino ζ may appear
as a “gravitino” with a wrong mass-interaction relation,
or may be heavier than the LOSP, making it irrelevant
for collider experiments. Is there a situation in which we
might directly observe both ζ and G̃ and measure their
detailed properties, in particular their mass ratio? The
answer to this question is yes.
Suppose that two SUSY breaking sectors have com-

parable SUSY breaking strengths, F1 ≈ F2, and con-
tribute comparably to the masses of SSM superpartners,
m̃1 ≈ m̃2.

14 In this case, ζ and G̃ couple to SSM states
with similar strengths. Therefore, if both ζ and G̃ are
lighter than all the SSM states, then the branching ra-
tios of the LOSP to ζ and G̃ are both non-negligible, as
illustrated in Fig. 5 for the case of the slepton LOSP.
If mζ ,m3/2 >∼ O(10 GeV), these masses can be de-

termined by measuring the decays of long-lived charged
LOSPs, using the same techniques as in Sec. VIIA.
This mass range corresponds to

√
F1 ≈

√
F2 ≈

O(109 – 1010 GeV), so that the LOSP is long lived. In
the case that direct interactions between SUSY breaking
sectors are small, this measurement will find two invisible

14 Such a situation may naturally be realized if environmental selec-
tion acts on superpartner masses through the requirement on the
weak scale, and the two SUSY breaking sectors have comparable
mediation scales, e.g., around the string scale.

χ̃0

ψ

φ

ψ̄

ζ

FIG. 6: If F1 ≫ F2 and the SSM gaugino masses arise from
sector 1 alone, then a bino-like LOSP can decay into ζ and
two standard model fermions ψψ̄ through an off-shell scalar φ,
which is the superpartner of ψ. Form2

χ̃0 ≪ m2
φ and m̃2

1 ≪ m̃2
2,

the branching fraction into each ψψ̄ is entirely determined by
the hypercharge of this field.

states X1,2 whose masses satisfy

mX1
/mX2

≈ 2. (36)

This would be an unmistakable signature of the uneaten
goldstino ζ (or goldstini ζa with a degenerate mass), and
hence smoking gun evidence for multiple sector SUSY
breaking.

D. Difermions with Fixed Ratios

Distinct signatures may also arise if sectors 1 and 2
couple to the SSM in a more elaborate fashion. In partic-
ular, if one of these sectors preserves an (approximate) R
symmetry, then the SSM gaugino masses are entirely gen-
erated by the other sector. This will affect the couplings
of the SSM states to ζ, and can substantially change phe-
nomenology.
Consider a situation that the two sectors have F1 ≫ F2

and contribute comparably to the scalar masses, but that
the gaugino masses arise solely from sector 1. This is true
if sector 2 preserves an R symmetry. In this setup, the
SSM scalars couple strongly to ζ, while the gauginos do
so only very weakly. Therefore, if the LOSP is a bino-like
neutralino, it decays either via χ̃0 → Zζ, hζ through its
Higgsino fraction, or via χ̃0 → ζψψ̄ through the off-shell
SSM scalar φ which is the superpartner of a standard
model fermion ψ (see Fig. 6). If χ̃0 has a significant
Higgsino fraction, >∼ O(0.1), and its decay into Z or h
is not kinematically suppressed, then the former modes
dominate. In this case the signature would look like the
Higgsino LOSP decaying into ζ, even if the LOSP is bino-
like.
If the above conditions are not met, the three-body de-

cay χ̃0 → ζψψ̄ dominates. In the limit that m2
χ̃0 ≪ m2

φ,

the amplitude of this decay is proportional to Y m̃2
2/(m̃

2
1+

m̃2
2), where Y is the hypercharge of ψ/φ and m̃2

1,2 are the
contributions to the φmass-squared from each sector. In-
terestingly, for m̃2

1 ≪ m̃2
2, the dependence on the φ mass
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g̃

monojet

ζ

g

FIG. 7: If the squarks are sufficiently heavy, then the dom-
inant gluino decay channel may be g̃ → gζ, which appears
as a displaced gluino decaying into a monojet recoiling off of
missing energy. If ζ is not at the bottom of the SUSY spec-
trum, then the decay of the ζ will produce a second displaced
vertex.

drops out completely due to a cancellation between the
propagator and the vertex factor. Therefore, in this pa-
rameter region, the ratios to various final states ψψ̄ are
entirely fixed by Y , giving

qq̄ : bb̄ : tt̄ : eē : µµ̄ : τ τ̄ ≃ 44 : 5 : 17 : 15 : 15 : 15, (37)

where q = u, d, s, c. (There is also a completely invisible
mode to neutrinos, and the tt̄mode may have a kinematic
suppression. If mχ̃0 > mζ + 2mh, then χ̃0 → ζhh is
also possible, whose rate depends on the masses of the
Higgs/Higgsino.) This provides a unique signature of the
setup considered here. Note that the decay of χ̃0 may also
occur with a displaced vertex, since the χ̃0 lifetime can
be long in some regions of parameter space.

E. Displaced Monojets

Another spectacular signal may arise if the SSM scalars
are much heavier than the gauginos, as in split SUSY [16].
In particular, suppose that sector 2 provides weak scale
masses to all of the SSM superpartners, while sector 1
does so only for the scalars—this can easily occur if sec-
tor 1 preserves an R symmetry. We also assume that the
scalar masses from sector 1 are much greater than the
weak scale.
If mζ < mg̃ and the squark masses are sufficiently

large, m2
q̃
>∼ F2/4π, then the gluino prefers to decay di-

rectly into ζ and a gluon instead of cascade decaying
through an off-shell squark. While g̃ → gζ will generi-
cally be slow, for

√
F2 <∼ 107 GeV it may occur within

the detector. This gives a distinct signal of a displaced
gluino decaying into a monojet recoiling off of missing
energy (see Fig. 7).
Furthermore, if ζ is not at the very bottom of the su-

perpartner spectrum, it will further decay into lighter
SSM states. If the initial gluino decay occurs within the
detector, then the ζ decay will also likely occur within
the detector. This provides a spectacular signature of a
secondary displaced vertex corresponding to the decay of

the uneaten goldstino ζ.15

VIII. COSMOLOGY

As one might expect, goldstini cosmology is not very
dissimilar from gravitino cosmology. However, there are
important differences arising from the fact that, unlike
the gravitino, the goldstini have masses and couplings
which are parametrically unrelated. This affects cos-
mology especially when these fields are lighter than the
LOSP, which we will focus in this section.
As with the collider signatures in the previous section,

we focus on the case of two SUSY breaking sectors with
|m̃1| <∼ |m̃2|. We also assume that deviations from the
sequestered limit are small: the uneaten goldstino ζ has
a mass mζ ≃ 2F1/

√
3MPl and couplings to SSM fields

proportional to 1/F2.
We assume “standard” cosmological history through-

out this section. Many of the constraints discussed below
can be avoided if we deviate from this assumption, e.g.,
if there is late time entropy production at temperature
significantly below the weak scale.

A. Goldstini are Cosmologically Stable

If the goldstino ζ is lighter than the LOSP, it decays
into the gravitino via ζ → G̃ψψ̄, where ψ is a standard
model fermion (arguments similar to the ones below will
also hold for decays into photons). As we will see, this is
longer than the age of the universe, so we can treat both
goldstino and gravitino as stable particles.
In the conventional SUSY picture, low energy theorems

dictate that the contact interaction G̃G̃ψψ̄ is controlled
by E4/F 2

eff , where E is a typical energy scale of the reac-
tion [17]. While a complete description of goldstini low
energy “theorems” is beyond the scope of this work, we
note that ζG̃ψψ̄ also scales like E4/F 2

eff , albeit with a
prefactor that depends on m̃i and Fi. Consequently, the
width of the goldstino is given parametrically by

Γζ→G̃ψψ̄ ≈ 1

128π3

m9
ζ

F 4
eff

(

F1

F2

m̃2
2

m̃2
1 + m̃2

2

)2

. (38)

The shortest reasonable lifetime is then

τζ→G̃ψψ̄ ≈ 1022 sec

(
√
F2

100 TeV

)4(
100 GeV

mζ

)7

, (39)

so the goldstino is cosmologically stable. In theories of
multiple sector SUSY breaking, decay transitions among
the goldstini will take even longer, since they are nearly
degenerate in mass.

15 While the signal of displaced monojets may be mimicked by con-
ventional gauge mediation models with the gluino LOSP, the
signal of a secondary displaced vertex cannot.
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B. Late Decaying LOSP

Late decays of the LOSP to the goldstino will produce
electromagnetic and/or hadronic fluxes which can alter
the abundances of light elements and ruin the success-
ful predictions of big bang nucleosynthesis (BBN) [18].
To safely evade such bounds, one either needs a small
relic density of LOSPs, or the LOSP must have a life-
time shorter than ∼ 100 sec.

For a conventional gravitino, BBN typically imposes a
severe constraint m3/2 <∼ (10−2 – 1) GeV [19], where the
precise values depend on the identity, mass, and abun-
dance of the LOSP. In our case, however, the mass and
coupling strengths of the uneaten goldstino are paramet-
rically unrelated. Thus, the LOSP decay rate to the gold-
stino is a factor of (F1/F2)

2 greater than what one would
expect for a comparable mass gravitino. Said another
way, the goldstino behaves like a “gravitino” to which
the LOSP decays faster than it should. Note that the
usual LOSP to gravitino decay is now irrelevant, since
the LOSP will primarily decay into the goldstino. As
a consequence, a goldstino (and gravitino) mass in the
range of (1 – 100) GeV is easily compatible with BBN
constraints in wide regions of parameter space.

C. Overproduction in the Early Universe

Another issue of a stable goldstino is that it may be
overproduced in the early universe. For a comparable
mass, the goldstino couples more strongly to the SSM
states than the gravitino. This property has helped to
avoid the BBN problem, as discussed above, but may
hurt the overproduction problem. (We will see a way to
sidestep this conclusion in the next subsection.)

Suppose that sector 2 provides sizable contributions to
all of the SSM superpartners. The goldstino will then
couple to the SSM much like a conventional gravitino.
As in usual gravitino cosmology [20], the bound from
overproduction is avoided for mζ <∼ 0.2 keV, since then
the relic goldstino abundance from early thermal plasma
is sufficiently small.16 For larger goldstino masses, there
are upper bounds on the reheating temperature TR in
order for the relic goldstino not to overclose the universe.

It is relatively straightforward to translate the usual
bounds for a gravitino, T̂max

R , into corresponding bounds
for an uneaten goldstino, Tmax

R . Since ζ has interaction
strengths controlled by F2, its number density nζ is (ap-
proximately) the same as that one would have computed

for a gravitino with m3/2 = F2/
√
3MPl. The energy den-

sitymζnζ, however, is larger than that of a gravitino with

16 Structure formation, however, provides a stronger bound ofmζ <∼
O(10 eV) in this case [21].

the same mass by mζ/(F2/
√
3MPl) = 2F1/F2, implying

Tmax
R (mζ , F2) =

F2

2F1
T̂max
R

(

m3/2 =
F2√
3MPl

)

. (40)

Note that this expression is not valid if TR is suffi-
ciently, typically O(10), smaller than the superpartner
mass scale, since then processes of goldstino generation
are not active. Using the result for the standard gravitino
scenario [22], we then find17

Tmax
R ≈ 100 GeV

(

1 GeV

mζ

)( √
F2

108 GeV

)4

, (41)

for Tmax
R

>∼ O(100 GeV); for TR <∼ O(100 GeV), the
bound disappears. The bound of Eq. (41) can also be

written as Tmax
R (mζ , F2) = (F2/2F1)

2T̂max
R (m3/2 = mζ),

so for F2 ≪ F1 the reheating bound for the uneaten gold-
stino is significantly stronger than that for a comparable
mass gravitino.

D. Goldstini Dark Matter

As we have seen, the constraint from BBN is avoided
if the LOSP lifetime is sufficiently short, corresponding
to

√

F2 <∼ (108 – 109) GeV. (42)

Then if TR saturates the bound of Eq. (41), TR ≃ Tmax
R ,

the uneaten goldstino will comprise all of dark matter.
(Here we have assumed that the ζ abundance generated
by possible late LOSP decays is small.) The required
reheating temperature, however, is generically small in
this case.

The strong bound of Eq. (41) on the reheating tem-
perature was obtained by assuming that ζ couples to all
the SSM states with the strengths ≈ 1/F2. However, this
need not be the case. Consider, for example, that sectors
1 and 2 contribute comparably to the SSM scalar masses,
but the gauginos obtain masses only from sector 1. This
is the setup considered in Sec. VII D, and occurs natu-
rally if sector 2 preserves an R symmetry. In this case, ζ
couples to the scalars with the strengths ≈ 1/F2, but to
the gauginos with ≈ F2/F

2
1 , which are much weaker for

F2 ≪ F1.

The absence of strong ζ-gaugino interactions drasti-
cally changes the constraint from overproduction, since
the standard reheating bound, Eq. (41), is dominated by
ζ production from scattering involving the gluino. In the
absence of these interactions, the constraint comes from

17 This bound assumes a gluino mass of 1 TeV. In general, Tmax
R

scales as m−2
g̃ .
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ζ production from early scalar scatterings and decays,
which will be satisfied for

√

F2 >∼ 108 GeV
( mζ

1 GeV

)1/4

. (43)

Therefore, if Eqs. (42) and (43) are simultaneously sat-
isfied, and if the LOSP is a scalar, then the constraints
from both BBN and ζ overproduction can be avoided
even for very large TR.

18 Whether this is indeed pos-
sible, however, will require a more detailed analysis be-
cause of O(1 – 10) uncertainties in our estimates of the
constraints.
If

√
F2 saturates Eq. (43), the generated ζ can com-

prise all of dark matter without any additional contribu-
tions. Assuming that Eq. (42) is satisfied, the bound on
TR comes only from the usual gravitino overproduction,
which is rather weak if mζ ≃ 2m3/2 is not much smaller

than the weak scale, e.g. if
√
F1 ≈ (109 – 1010) GeV. If√

F2 satisfies but does not saturate Eq. (43), then the ζ
abundance must be dominated by late LOSP decays in
order for ζ to be dark matter [23]:

Ωζ ≃
mζ

mLOSP
ΩLOSP, (44)

where ΩLOSP is the fractional contribution of the LOSP
to the critical density if it did not decay into ζ. Since
ΩLOSP is controlled by the standard WIMP parametrics,
so is Ωζ if mζ is not significantly below mLOSP.

IX. DISCUSSION

The hypothesis of single sector SUSY breaking has by
and large dictated the standard picture of SUSY phe-
nomenology at colliders and in cosmology. In the conven-
tional scenario, the (only) goldstino is eaten by the grav-
itino, whose mass and coupling strength to SSM fields
are inextricably and sometimes problematically related.
Motivated by top-down considerations, we have re-

laxed this underlying assumption and considered the pos-
sibility that a multiplicity of sectors break SUSY, yield-
ing a corresponding multiplicity of goldstini. Intrigu-
ingly, even when these additional sectors are completely

sequestered from the SSM, this can have a drastic effect

on LHC collider phenomenology. Ultimately this occurs
because the gravitino eats a linear combination of the
goldstini, and in a curious twist on the conventional nar-
rative, what would have been our gravitino is replaced
by a linear combination of the uneaten goldstini.
A key result of this paper is that all of the uneaten

goldstini receive an irreducible and universal mass ma =
2m3/2 from SUGRA effects, as long as SUSY is broken

18 If the LOSP is a gaugino, the dominant decay is the three-body
decay mode from Sec. VIID, which faces more stringent BBN
constraints because of phase space suppression.

in the global limit. As a consequence, the SSM fields
can have sizable couplings to the goldstini, whose masses
and decay constants are a priori unrelated. This greatly
expands the realm of phenomenological possibilities. In
particular, we considered a number of novel collider sig-
natures, including anomalous neutralino and slepton de-
cays, gravitinoless gauge mediated spectra, and monojet
signals from (multiple) displaced vertices.
A true smoking gun signature of multiple sector SUSY

breaking will exist if a charged LOSP has sizable branch-
ing ratios to both the gravitino and at least one gold-
stino. In this case, the mass ratio between the gravitino
and goldstino may be accurately measured in a stopper
detector, and a ratio of 2 would give dramatic evidence
towards the scenario considered in this paper.
There are many possible directions for future work.

While we have concentrated on the scenario where each
SUSY breaking sector is F -term dominated, there is of
course the possibility that one or more sectors experience
D-term or “almost no-scale” SUSY breaking. In the lat-
ter case, there is significant mixing between gravitational
modes and SUSY breaking fields, and as previewed in the
Appendix, the goldstini masses can deviate significantly
from 2m3/2. Moreover, while most of the phenomenolog-
ical analyses in this work have focused on the two sector
case for simplicity, it would be interesting to complete a
more thorough analysis of the case of multiple goldstini.
Finally, we hope to explore more fully the cosmological
implications of this large class of theories.
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Appendix A: Explicit SUGRA Calculation

The goldstini mass spectrum derived in Sec. IV can
also be derived by explicit computation, using the
SUGRA formalism of Ref. [5]. The simplest case to con-
sider is N sequestered sectors labeled by i that each con-
tain only a single light chiral multiplet Xi. That is, we
assume that any other multiplets in sector i have a su-
persymmetric mass term and can be integrated out of the
effective SUGRA Lagrangian. In particular, this means
that all moduli must be stabilized in the supersymmetric
limit.
We start from a Kähler potential and superpotential
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of the sequestered form [24]

K = −3M2
Pl ln

(

−1

3M2
Pl

∑

i

Ω(i)(Xi, X
†
i )

)

, (A1)

W =W0 +
∑

i

W (i)(Xi), (A2)

where each Ω(i) and W (i) is only function of a single Xi.
Here, W0 is a constant that must be tuned to make the
cosmological constant zero, and we can take W0 to be
real without loss of generality. It is convenient to define
the modified Kähler potential

G =
K

M2
Pl

+ ln
W

M3
Pl

+ ln
W ∗

M3
Pl

, (A3)

and its derivatives Gi = ∂iG, Gj∗ = ∂j∗G, gij∗ = ∂i∂j∗G,
where

∂i ≡MPl
∂

∂Xi
, ∂j∗ ≡MPl

∂

∂X†
j

. (A4)

The Kähler metric gij∗ and its inverse gij
∗

= (g−1)ji
can be used to raise and lower indices, such that Gi =
gij

∗

Gj∗ . With this notation, the scalar potential is

V =M4
Pl e

G(GiG
i − 3). (A5)

The condition for vanishing cosmological constant (and
hence flat space) is

GiG
i = 3, (A6)

and the minimum of the potential satisfies

∂iV = 0, ∂j∗V = 0. (A7)

After SUSY is broken, one linear combination of the
fermionic components of Xi is the true goldstino and is
eaten to form the longitudinal component of the gravitino

ηlong =
1√
3
Giψ

i. (A8)

The gravitino mass is

m3/2 =MPl e
G/2. (A9)

In unitary gauge, the remaining fermions have a
quadratic Lagrangian of the form

− ig̃ij∗ ψ̄
j σ̄µ∂µψ

i − 1

2
mijψ

iψj − 1

2
m∗
i∗j∗ ψ̄

iψ̄j , (A10)

where g̃ is the Kähler metric with the true goldstino di-
rection removed. The mass matrix is

mij = m3/2

(

∇iGj +
1

3
GiGj

)

, (A11)

where ∇iGj = ∂iGj − ΓkijGj depends on the Christoffel

symbol Γkij derived from the Kähler metric. Note that
the direction corresponding to the eaten goldstino has
a zero mass eigenvalue (assuming vanishing cosmological
constant). The remaining N−1 uneaten goldstini masses
can be determined by the physical mass-squared matrix

M2 = AA∗, Ai
j∗ = mikg

kj∗ , (A12)

where A∗ is the complex conjugate of the matrix (not the
Hermitian conjugate). In A, it is possible to use g instead
of g̃ since the true goldstino direction is zeroed out by m.
Note that for the mass-squaredmatrixM2 (unlike form),
we need not assume the Xi have canonically normalized
kinetic terms.
The key assumption of this paper is that SUSY is bro-

ken in the global limit MPl → ∞. Moreover, we assume
that any mixing between the chiral multiplets Xi and the
gravity multiplet is a subdominant effect, meaning that
at the minimum of the potential

ǫi ≡
√

1

3M2
Pl

∂iΩ ∂i∗Ω

∂i∂i∗Ω
≪ 1. (A13)

This corresponds to the assumption that there are no
large linear terms in the Kähler potential, and in par-
ticular implies that Polonyi-like fields must have vevs
〈Xi〉 ≪MPl.
It is now a straightforward exercise to calculate the

eigenvalues of M2 as a series expansion in ǫi. Using
Eqs. (A1) and (A2), one finds

Ai
j∗ = δi

j∗
(

2m3/2 +
∂iV

∂iW

)

e2iθi

− 2

3
m3/2GiG

j∗ +O(ǫi), (A14)

where

θi = arg (∂iW ) . (A15)

By the condition in Eq. (A7), the ∂iV term in Eq. (A14)
vanishes, and because the uneaten goldstini are all or-
thogonal to ηlong, the GiG

j∗ term is irrelevant. The θi
phases in A are also irrelevant, since M2 = AA∗. So as
advertised, one finds that the N − 1 uneaten goldstini all
have masses of 2m3/2 with corrections of order ǫi.

One can also use the mass-squared matrix M2 to cal-
culate the eigenvalues for more general scenarios where ǫi
is not small. One amusing example is to consider N − 1
sectors with ǫi ≪ 1, and an additional “almost no-scale”
sector with arbitrary ǫN but W (N) = 0. In that case,
one can show that of the N − 1 goldstini, one is massless
to all orders in ǫi (it only gets a mass proportional to
∂NW ). The other N − 2 goldstini get a mass

2m3/2

(

1

1 + ǫ2N

)

+O(ǫi). (A16)

Note that when ǫN = 0, this reduces to the previous re-
sult, since in that limit XN is simply an extra massless
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mode that does not contribute to SUSY breaking. We
will explore these and other cases in future work. As a
preview, the result in Eq. (A16) is equal to 2FC +O(ǫi),

where FC is the highest component of the conformal com-
pensator.
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