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ABSTRACT 

If physics was “the” science of the first half of last century, 

biology was certainly the science of the second half. 

Neuroscience is often mentioned as the focus of the present 

century. The field of neuroscience has indeed grown very 

rapidly over the last several years, spanning a broad range of 

approaches from molecular neurobiology to neuro-informatics 

and computational neuroscience.  Computer science provided to 

biology powerful new data analysis tools which created 

bioinformatics and genomics: they made possible the 

sequencing of the human genome. In a similar way, computer 

science techniques are at the heart of brain imaging and other 

branches of neuroscience. Computers are critical for the 

Neurosciences, however, at a much deeper level: they represent 

the best metaphor for the central mystery of how the brain 

produces intelligent behavior and intelligence itself. They also 

provide experimental tools for performing experiments in 

information processing, effectively testing theories of the brain, 

in particular theories of aspects of intelligence such as sensory 

perception. The contribution of computer science to 

neuroscience happens at a variety of levels and is well 

recognized. Perhaps less obvious is that neuroscience is 

beginning to contribute powerful new ideas and approaches to 

artificial intelligence and computer science. Modern 

computational neuroscience models are no longer toy models: 

they are quantitatively detailed and at the same time, they are 

starting to compete with state-of-the-art computer vision 

systems.  In fact we will argue in this review that in the next 

decades computational neuroscience may be a major source of 

new ideas and approaches in artificial intelligence. 
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1. INTRODUCTION 
Understanding the processing of information in our cortex is a 

significant part of understanding how the brain works and, in a 

sense, understanding intelligence itself. One of our most 

developed senses is vision. Primates can easily categorize 

images or parts of them, for instance as an office scene or as a 

face within that scene, and identify a specific object. Our visual 

capabilities are exceptional and despite decades of efforts in 

engineering, no computer algorithm has been able to match the 

level of performance of the primate visual system.  

It has been argued that vision is a form of intelligence: it is 

suggestive that the sentence „I see‟ is often used to mean „I 

understand‟! Our visual cortex may serve as a proxy for the rest 

of the cortex and thus for intelligence itself. There is little doubt 

that even a partial solution to the question of which 

computations are performed by the visual cortex would be a 

major breakthrough in computational neuroscience and broadly 

in neuroscience. It would begin to explain one of the most 

amazing abilities of the brain and open doors to other aspects of 

intelligence such as language and planning. It would also bridge 

the gap between neurobiology and information sciences making 

it possible to develop computer algorithms following the 

information processing principles used by biological organisms 

and honed by natural evolution. 

The past fifty years of experimental work in visual neuroscience 

has generated a large and rapidly increasing amount of data. 

Today‟s quantitative models bridge several levels of 

understanding from biophysics to physiology and behavior. 

Some of these models already compete with state-of-the-art 

computer vision systems and are close to human level 

performance for specific visual tasks.  

In this review, we will describe recent work in our group 

towards a theory of cortical visual processing. In contrast to 

other models that address the computations in any one given 

brain area (such as primary visual cortex) or attempt to explain a 

particular phenomenon (such as contrast adaptation or a specific 

visual illusion), we will describe a large-scale model that 

attempts to mimic the main information processing steps across 

multiple brain areas and millions of neuron-like units. We 

believe that a first step towards understanding cortical functions 

may take the form of a detailed, neurobiologically plausible 

model taking into account the connectivity, the biophysics and 

the physiology of cortex.  

Models can provide a much-needed framework for summarizing 

and integrating existing data and for planning, coordinating and 

interpreting new experiments. Models can be powerful tools in 

basic research, integrating knowledge across several levels of 

analysis – from molecular to synaptic, cellular, systems and to 

complex visual behavior. Models, however, as we will discuss at 

the end of the paper, are limited in their explanatory power; 

ideally they should eventually lead to a deeper and more general 

theory. 



We first argue about the role of the visual cortex and 

review some of the key computational principles 

underlying the processing of information during 

visual recognition. We then describe a computational 

neuroscience model – representative of a whole class 

of older models – that implements those principles. 

We also discuss some of the evidence in its favor. 

When tested with natural images the model is able to 

perform robust object recognition on par with then 

current computer vision systems and at the level of 

human performance for a specific class of rapid visual 

recognition tasks.  

The initial success of this research represents a case in 

point for arguing that over the next decade progress in 

computer vision and artificial intelligence may benefit 

directly from progress in neuroscience. 

 

2. GOAL OF THE VISUAL 

SYSTEM 
One key computational issue in object recognition1 is 

the specificity-invariance trade-off. On the one hand, 

recognition must be able to finely discriminate 

between different objects or object classes (such as the 

faces illustrated in insets A and B of Figure 1). At the 

same time, recognition must be tolerant to object 

transformations such as scaling, translation, 

illumination, changes in viewpoint, clutter, as well as 

non-rigid transformations such as variations in shape 

within a class (for instance change of facial expression 

for the recognition of faces). Though the tolerance shown by our 

visual system is not complete, it is still significant.  

A key challenge posed by the visual cortex is how well it deals 

with the poverty of stimulus problem: Primates can learn to 

recognize an object in quite different images from far fewer 

labeled examples than our present learning theory and learning 

algorithms predict. For instance, discriminative algorithms such 

as Support Vector Machines (SVMs) can learn a complex object 

recognition task from a few hundred labeled images. This is a 

small number compared with the apparent dimensionality of the 

problem (millions of pixels), but a child, or even a monkey, can 

apparently learn the same task from just a handful of examples. 

As an example of the prototypical problem in visual recognition, 

imagine that a (naïve) machine is shown one image of a given 

person and one image of another person. The system‟s task is to 

discriminate future images of these two people. The system did 

not see other images of these two people though it has seen 

many images of other people and other objects and their 

transformations and may have learned from them in an 

unsupervised way. Can the system learn to perform the 

classification task correctly with just two (or very few) labeled 

examples? 

                                                                 
1 Within recognition, one can distinguish between identification and 

categorization. From the computational point of view, both of these 
tasks are classification tasks and represent two points in a spectrum of 

generalization levels.  

 

 

For simplicity, imagine trying to build such classifier from the 

output of two cortical cells (as illustrated in Fig. 1). Here the 

response of these two cells defines a 2D feature space to 

represent visual stimuli. In a more realistic setting, objects 

would be represented by the response patterns of thousands of 

such neurons. Here we denote visual examples from the two 

people with “+” and “–” signs.  Panels (A) and (B) illustrate 

what the recognition problem would look like when these two 

neurons are sensitive vs. invariant to the precise position of the 

object within their receptive fields2. In both cases it is possible 

to find a separation (the red lines indicate one such possible 

separation) between the two classes. In fact it has been shown 

that certain learning algorithms such as SVMs with Gaussian 

kernels can solve any discrimination task with arbitrary 

difficulty (in the limit of an infinite number of training 

examples). In other words, with certain classes of learning 

algorithms we are guaranteed to be able to find a separation for 

the problem at hand irrespective of the difficulty of the 

recognition task. However learning to solve the problem may 

require a prohibitively large number of training examples. 

In that respect, the two representations in panels (A) and (B) are 

not equal: The representation in panel (B) is far superior to the 

one in panel (A). With no prior assumption on the class of 

functions to be learned, the “simplest” classifier that can 

separate the data in panel (B) is much simpler than the 

“simplest” classifier that can separate the data in panel (A). The 

number of wiggles of the separation line gives a hand-wavy 

                                                                 

2 The receptive field of a neuron is the part of the visual field, which if 

properly stimulated with the right stimulus, may elicit a response from 

the neuron. 

 

 

Figure 1: The problem of sample complexity. A hypothetical 2-dimensional (face) 

classification problem (red) line: One category is represented with “+” and the other with 
“–”. Insets show 2D transformations (translation and scales) applied to examples from the 

two classes. Illustrated in panel (A) and (B) are two different representations for the same 

set of images. The representation in (B), which is tolerant with respect to the exact position 
and scale of the object within the image, leads to a simpler decision function (e.g., a linear 

classifier) and will require less training examples to achieve a similar level of performance 

thus lowering the sample complexity of the classification problem. In the limit, learning in 
panel (B) could be done with only two training examples (illustrated in blue). 



estimate of the complexity of a classifier, which is related to the 

number of parameters to be learned. The sample complexity of 

the problem derived from the invariant representation in panel 

(B) is much lower than that of the problem in panel (A). 

Learning to categorize the data-points in panel (B) will require 

far fewer training examples than in panel (A), and it may be 

done with as few as two examples. Thus the key problem in 

vision is what can be learned with a small number of examples 

and how.3 

Our main argument is not that a low-level representation as 

provided from the retina would not be able to support robust 

object recognition. Indeed relatively good computer vision 

systems developed in the 90‟s were based on simple retina-like 

representations and on rather complex decision functions (such 

as Radial Basis Function (RBF) networks, etc). The main 

problem of these systems is that they required a prohibitively 

large number of training examples compared to humans.  

More recent work in computer vision suggests that a hierarchical 

architecture may provide a better solution to this problem (see 

also [2] for a related argument). For instance Heisele et al. (see 

[3] for a recent review) designed a hierarchical system for the 

detection and recognition of faces. The approach is based on a 

hierarchy of  “component experts” performing a local search for 

one facial component (e.g., an eye, a nose) over a range of 

positions and scales. Experimental evidence from [3] suggests 

that such hierarchical system based exclusively on linear (SVM) 

classifiers outperformed significantly a shallow architecture that 

tries to classify a face as a whole albeit relying on more complex 

kernels.  

Here we suggest that the visual system may be using a similar 

strategy to recognize objects with the goal of reducing the 

sample complexity of the classification problem. In this view, 

the visual cortex is transforming the raw image into a position- 

and scale-tolerant representation through a hierarchy of 

processing stages, whereby each layer gradually increases the 

tolerance to position and scale of the image representation. After 

several layers of such processing stages, the resulting image 

representation can be used much more efficiently for task-

dependent learning and classification by higher brain areas.  

Such processing stages can be learned during development from 

temporal streams of natural images by exploiting the statistics of 

natural environments in two ways: Correlation over images 

provides information-rich features at various levels of 

complexity and sizes while correlations over time are used to 

learn equivalence classes of these features under transformations 

such as shifts in position and changes in scale. The combination 

of these two learning processes allows the efficient sharing of 

visual features between object categories and makes the learning 

of new objects and categories easier since they inherit the 

invariance properties of the representation learned from previous 

experience in the form of basic features common to other 

objects. Below we review evidence for this hierarchical 

architecture and the two mechanisms described above. 

                                                                 

3 This is related to the point made by DiCarlo & Cox [1] about the main 

goal of the processing of information from the retina to higher visual 

areas to be  “untangling object representations”.  

3. HIERARCHICAL ARCHITECTURE 

AND INVARIANT RECOGNITION 
Several lines of evidence (both from human psychophysics and 

monkey electrophysiology studies) suggest that the primate 

visual system exhibits at least some invariance to position and 

scale. While the precise amount of invariance is still under 

debate, there is general agreement about the fact that there is at 

least some generalization to position and scale.  

The neural mechanisms underlying such invariant visual 

recognition have been the subject of much computational and 

experimental work in the past decades. One general class of 

computational models postulates that the hierarchical 

organization of the visual cortex is key to this process (see [4] 

for an alternative view-point). The processing of shape 

information in the visual cortex follows a series of stages, 

starting from the retina, through the Lateral Geniculate Nucleus 

(LGN) of the thalamus to primary visual cortex (V1) and 

extrastriate visual areas, V2, V4 and the inferotemporal (IT) 

cortex. In turn IT provides a major source of input to prefrontal 

cortex (PFC) involved in linking perception to memory and 

action (see [5] for references). 

As one progresses along the ventral stream of the visual cortex, 

neurons become selective for stimuli that are increasingly 

complex: from simple oriented bars and edges in early visual 

area V1 to moderately complex features in intermediate areas 

(such as combination of orientations) and complex objects and 

faces in higher visual areas such as IT. In parallel to this 

increase in the complexity of the preferred stimulus, the 

invariance properties of neurons seem to also increase. Neurons 

become more and more tolerant with respect to the exact 

position and scale of the stimulus within their receptive fields. 

As a result of this increase in invariance properties, the receptive 

field size of neurons increases, from about one degree or less in 

V1 to several degrees in IT. 

There is increasing evidence that IT, which has been critically 

linked with the monkey‟s ability to recognize objects, provides a 

representation of the image which facilitates recognition tolerant 

to image transformations. For instance, Logothetis and 

colleagues showed that monkeys could be trained to recognize 

paperclip-like wireframe objects at one specific location and 

scale [6]. After training, recordings in the IT cortex of these 

animals revealed some significant selectivity for the trained 

objects. Because monkeys were unlikely to have been in contact 

with the specific paperclip prior to training, this experiment 

provides indirect evidence for learning. More importantly, it was 

found that selective neurons also exhibited some range of 

invariance with respect to the exact position (between 2 and 4 

degrees) and scale (around 2 octaves) of the stimulus – which 

was never presented before testing at these new positions and 

scales. More recently, work by Hung et al [7] showed that it was 

possible to train a (linear) classifier to robustly readout from a 

population of IT neurons, the category information of a briefly 

flashed stimulus. Furthermore it was shown that the classifier 

was able to generalize to a range of positions and scales (similar 

to Logothetis‟ data) that were never presented during the 

training of the classifier. This suggests that the observed 

tolerance to 2D transformation is a property of the population of 

neurons learned from visual experience but available for a novel 

object without need of object-specific learning (depending on 

the difficulty of the task).  



 

4. COMPUTATIONAL MODELS OF 

OBJECT RECOGNITION IN CORTEX 
We have developed [5, 8] – in close cooperation with 

experimental labs – an initial quantitative model of 

feedforward hierarchical processing in the ventral stream of 

the visual cortex (see Figure 2). The resulting model 

effectively integrates the large body of neuroscience data 

(summarized earlier) that characterizes the properties of 

neurons along the object recognition processing hierarchy. In 

addition, the model is sufficient to mimic human performance 

in difficult visual recognition tasks [9] (while performing at 

least as well as most current computer vision systems [10]).  

Feedforward hierarchical models have a long history starting 

with Marko & Giebel‟s homogeneous multi-layered 

architecture [11] in the 70‟s and later Fukushima‟s  

Neocognitron [12]. One of the key computational 

mechanisms in these, and other hierarchical models of visual 

processing, originates from the pioneering physiological 

studies and models of Hubel and Wiesel (see Box 1). The 

basic idea in these models is to build an increasingly complex 

and invariant object representation in a hierarchy of stages by 

progressively integrating (i.e., pooling) convergent inputs 

from lower levels. Building upon several existing 

neurobiological models [13-19], conceptual proposals [20-23] 

and computer vision systems [12, 24], we have been 

developing [5, 15] (see also [25, 26]) a similar computational 

theory (see Fig. 1) that attempts to quantitatively account for 

a host of recent anatomical and physiological data. 

The feedforward hierarchical model of Figure 2 assumes two 

classes of functional units: simple and complex units. Simple 

units act as local template matching operators: They increase 

the complexity of the image representation by pooling over 

local afferent units with selectivities for different image-

features (for instance edges at different orientations). 

Complex units on the other hand increase the tolerance of the 

representation with respect to 2D transformations by pooling 

over afferent units with similar selectivity but slightly 

different positions and scales.  

4.1 Learning and plasticity 
How much of the organization of the visual cortex is influenced 

by development vs. genetics remains a matter of debate. A 

recent fMRI study [27] showed that the patterns of neural 

activity elicited by certain ecologically important classes of 

objects such as faces and places in monozygotic twins were 

significantly more similar than in dizygotic twins. These results 

thus suggest that genes may play a significant role in the way 

the visual cortex is wired to process certain object classes. At 

the same time, several electrophysiological studies have 

demonstrated learning and plasticity in the adult monkey (see 

for instance [28]). Learning is likely to be both faster and easier 

to elicit in higher visually responsive areas such as PFC or IT 

[28] than in lower areas. 

This makes intuitive sense: For the visual system to remain 

stable, the time scale for learning should increase ascending the 

ventral stream4. In the model of Fig. 2, we assumed that 

unsupervised learning from V1 to IT happens during 

development in a sequence that starts with the lower areas. In 

reality, learning may continue throughout adulthood (certainly 

at the level of IT and perhaps in intermediate and lower areas).  

 

                                                                 

4 In the hierarchical model described in Figure 1, this process is done 

layer-by-layer starting from the bottom. This is similar to recent work 

by Hinton and colleagues [29] and quite different from the original 

neural networks that used back-propagation and learned 
simultaneously all layers at the same time. Our implementation 

(described in Box 1) includes the unsupervised learning of features 

from natural images but assumes the learning of position and scale 
tolerance which are thus hardwired in the model (but see [26] for an 

initial attempt). 

 

Figure 2: Hierarchical feedforward models of the visual cortex (see 

text for details). 



 

4.1.1  Unsupervised learning in 

the ventral stream of the visual 

cortex 
 With the exception of the task-specific 

units at the top of the hierarchy (denoted 

„visual routines‟), learning in the model 

described in Figure 2 remains 

unsupervised thus closely mimicking a 

developmental learning stage.  

As emphasized by several authors, 

statistical regularities in natural visual 

scenes may provide critical cues to the 

visual system for learning with very 

limited or no supervision. One of the 

key goals of the visual system may be to 

adapt to the statistics of its natural 

environment through visual experience 

and perhaps evolution. In the model of 

Figure 2, the selectivity of simple and 

complex units can be learned from 

natural video sequences (see Box 1 for 

details). 

4.1.2 Supervised learning in 

higher areas 
After this initial developmental learning 

stage, learning of a new object category 

only requires training of task-specific 

circuits at the top of the ventral stream 

hierarchy. The ventral stream hierarchy 

thus provides a position and scale-

invariant representation to task-specific 

circuits beyond IT to learn to generalize 

over transformations other than image-

plane transformations such as 3D 

rotation that have to be learned anew for 

every object (or category). For instance, 

pose-invariant face categorization 

circuits may be built, possibly in PFC, 

by combining several units tuned to 

different face examples, including 

different people, views and lighting 

conditions (possibly in IT). 

In a default state (when no specific 

visual task is set) there may be a default 

routine running (perhaps the routine: 

What is there?). As an example of a 

simple routine consider a classifier, 

which receives the activity of a few 

hundred IT-like units, tuned to examples 

of the target object and distractors. 

While learning in the model from the 

layers below is stimulus-driven, the 

PFC-like classification units are trained 

in a supervised way (using a perceptron-

like learning rule). 

 

Box 1: Functional classes of cells and learning.  

Simple and complex cells. Following their work on striate cortex [20], Hubel & Wiesel first 

described two classes of functional cells. Simple cells that respond best to bar-like (or edge-

like) stimuli at a particular orientation, position and phase (i.e., white bar on a black 

background or dark bar on a white background) within their relatively small receptive fields. 

Complex cells, on the other hand, while also selective for bars, tend to have larger receptive 

fields (about twice as big) and exhibit some tolerance with respect to the exact position (and 

phase of the bar) within their receptive fields. Hubel & Wiesel described a way by which 

specific pooling mechanisms could explain the response properties of these cells. Simple-cell-

like receptive fields could be obtained by pooling the activity of a small set of cells tuned to 

spots of lights (as observed in ganglion cells in the retina and the Lateral Geniculate Nucleus) 

aligned around a preferred axis of orientation (not shown on the figure). Similarly, position 

tolerance at the complex cell level (green color on the figure), could be obtained by pooling 

over afferent simple cells (at the level below) with the same preferred orientation but slightly 

different positions. Recent work has provided evidence for such selective pooling mechanisms 

in V1 [30]. Extending these ideas from primary visual cortex to higher areas of the visual 

cortex led to a class of models of object recognition, the feedforward hierarchical models (see 

[5] for a recent review). Illustrated at the top of the figure on the left is a V2-like simple cell 

obtained by combining several V1 complex cells tuned to bars at different orientations. 

Iterating these selective pooling mechanisms leads to a hierarchical architecture like the one 

described in Figure 2. Along the hierarchy, units become selective for increasingly complex 

stimuli and at the same time exhibit more and more invariance properties with respect to 

position (and scale). 

Learning of selectivity and invariance. In the model of Figure 1, simple units are selective for 

specific conjunctions of inputs (i.e., similar to an and-like operation). Their wiring thus 

corresponds to learning correlations between inputs at the same time-points (i.e., for simple 

cells in V1, the bar-like arrangements of LGN inputs, and beyond V1, more elaborate 

arrangements of bar-like subunits, etc). This corresponds to learning what combinations of 

features appear most frequently in images (i.e., which sets of inputs are consistently co-active) 

and to become selective to these patterns. Conversely the wiring of complex units may 

correspond to learning how to associate frequent transformations in time – such as translation 

and scale – of specific image features coded by afferent (simple) cells. The wiring of the 

complex units reflects learning of correlations across time (because of the object motion), e.g., 

for V1-like complex units, learning which afferent units with the same orientation and 

neighboring locations should be wired together because, often, such a pattern changes 

smoothly in time (under translation) [31].  



5. IMMEDIATE RECOGNITION 
An important aspect of the visual object 

recognition hierarchy (see Figure 2), i.e., the role 

of the anatomical back-projections abundantly 

present between almost all of the areas in visual 

cortex, remains a matter of debate.  A commonly 

accepted hypothesis is that the basic processing of 

information is feedforward [32]. This is supported 

most directly by the short times required for a 

selective response to appear in cells at all stages of 

the hierarchy. Neural recordings from IT in 

monkey [7] show that the activity of small 

neuronal populations, over very short time 

intervals (as small as 12.5 ms) and only about 100 

ms after stimulus onset, contains surprisingly 

accurate and robust information supporting a 

variety of recognition tasks. While this does not 

rule out local feedback loops within an area, it 

does suggest that a core hierarchical feedforward 

architecture like the one described here, may be a 

reasonable starting point for a theory of visual 

cortex, aiming to explain immediate recognition, 

the initial phase of recognition before eye 

movements and high-level processes take place. 

5.1 Agreement with experimental 

data 
Since it was originally developed [5, 15], the 

model of Fig. 2 has been able to explain a number 

of new experimental data. This includes data that 

were not used to derive or fit model parameters. 

The model seems to be qualitatively and 

quantitatively consistent with (and in some cases 

actually predicts, see [5]) several properties of 

subpopulations of cells in V1, V4, IT, and PFC as 

well as fMRI and psychophysical data (see Box 2 

for a complete list of findings).  

We recently compared the performance of this 

model and the performance of human observers in 

a rapid animal vs. non-animal recognition task [9] 

for which recognition is fast and cortical back-

projections are possibly less relevant. Results 

indicate that the model predicts human 

performance quite well during such task 

suggesting that the model may therefore provide a 

satisfactory description of the feedforward path. In 

particular, for this experiment, we broke down the 

performance of the model and human observers 

into four image categories with varying amount of 

clutter. Interestingly the performance of both the 

model and human observers was highest (~90% 

correct for both human participants and the model) on images 

for which the amount of information is maximal and the amount 

of clutter minimal and decreases monotically as the amount of 

clutter in the image increases. This decrease in performance with 

increasing amount of clutter is likely to reflect a key limitation 

of this type of feedforward architectures. This result is in 

agreement with the reduced selectivity of neurons in V4 and IT 

when presented with multiple stimuli within their receptive 

fields for which the model provides a good quantitative fit [5] 

with neurophysiology data [33].  

 

5.2 Application to Computer Vision  
How does the model [5]) perform in real-world recognition tasks 

and how does it compare to state-of-the-art AI systems? Given 

the many specific biological constraints that the theory had to 

satisfy (e.g., using only biophysically plausible operations, 

receptive field sizes, range of invariances, etc) it was not clear 

how well the model implementation described above would 

perform in comparison to systems that have been heuristically 

engineered for these complex tasks.  

Box 2: Summary of quantitative data that are compatible with the model 

described above. Black corresponds to data that were used to derive the 

parameters of the model, red to data that are consistent with the model (not used 

to fit model parameters) and blue to actual correct predictions by the model. 

Notations: PFC (= prefrontal cortex), V1 (= visual area I or primary visual 

cortex), V4 (= visual area IV), IT (= inferotemporal cortex). Data from these 

areas correspond to monkey electrophysiology studies. LOC (=Lateral Occipital 

Complex) involves fMRI with humans; the Psych. studies are psychophysics on 

human subjects. 

 
 

 
 

Area Type of data 

Ref. 

biol. 

data 

Ref. 

model 

data 

Rapid animal categorization (1) (1) 
Psych. 

Face inversion effect (2) (2) 

LOC Face processing (fMRI) (3) (3) 

PFC Differential role of IT and PFC in categorization (4) (5) 

Tuning and invariance properties (6) (5) 

Read out for object category (7) (8, 9) IT 

Average effect in IT (10) (10) 

MAX operation (11) (5) 

Tuning for two-bar stimuli (12) (8, 9) 

Two-spot interaction (13) (8) 

Tuning for boundary conformation (14) (8, 15) 

V4 

Tuning for Cartesian and non-Cartesian gratings (16) (8) 

Simple and complex cells tuning properties (17-19) (8) 
V1 

MAX operation in subset of complex cells (20) (5) 
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At the time – about 5 years ago – we were surprised to find that 

the model is capable of recognizing well complex images (see 

[10]). The model performed at a level comparable to some of the 

best existing systems on the CalTech-101 image database of 101 

object categories with a recognition rate of about 55 % (chance 

level < 1%, see [10] and also the extension by Mutch & Lowe 

[25]). A related system with fewer layers, less invariance and 

more units has an even better recognition rate on the CalTech 

data set [34].  

In parallel we also developed an automated system for the 

parsing of street scene images [10] based in part on the class of 

models described above. The system is able to recognize well 

seven different object categories (cars, bikes, skies, roads, 

buildings, trees) from natural images of street scenes despite 

very large variations in shape (e.g., trees in summer and winter, 

SUVs as well as compact cars under any view point).  

An emerging application of computer vision is content-based 

recognition and search in videos. Again, neuroscience may 

suggest an avenue for approaching this problem. We have 

developed an initial model for the recognition of biological 

motion and actions from video sequences. The system is based 

on the organization of the dorsal stream of the visual cortex [35], 

which has been critically linked to the processing of motion 

information, from V1 and MT to higher motion-selective areas 

MST/FST and STS. The system relies on computational 

principles that are very similar to those used in the model of the 

ventral stream described above but starts with spatio-temporal 

filters modeled after motion-sensitive cells in the primary visual 

cortex.  

Recently we evaluated the performance of the system for the 

recognition of actions (both humans and animals) in real-world 

video sequences [35]. We found that the model of the dorsal 

stream competed with a state-of-the-art system (which itself 

outperforms many other systems) on all three datasets (see [35] 

for details). In addition we found that the learning in this model 

produces a large dictionary of optic-flow patterns, which seems 

to be consistent with the response properties of cells in the 

Medial Temporal (MT) area in response to both isolated gratings 

and plaids (i.e., 2 gratings superimposed).  

 

6.  CONCLUSION AND FUTURE 

DIRECTIONS  
The demonstration that a model designed to mimic known 

anatomy and physiology of the visual system led to good 

performance with respect to computer vision benchmarks may 

suggest that neuroscience is on the verge of providing novel and 

useful paradigms to computer vision and perhaps to other areas 

of computer science. The model we described can obviously be 

modified and improved by taking into account new experimental 

data (for instance more detailed properties of specific visual 

areas such as V1 [36]), implementing several of its implicit 

assumptions such as the learning of invariances from sequences 

of natural images, taking into account additional sources of 

visual information such as binocular disparity and color and 

extending it to describe the dynamics of neural responses. The 

recognition performance of models of this general type can be 

improved by exploring the space of parameters (e.g., receptive 

field sizes, connectivity, etc.), for instance by using computer 

intensive iterations of a mutation-and-test cycle (Cox et al., 

abstract #164 presented at Cosyne, 2008). 

It is important however to realize the intrinsic limitations of the 

specific computational framework we have described here and 

why it is at best a first step towards understanding the visual 

cortex. First, from the anatomical and physiological point of 

view the class of feedforward models described here is 

incomplete, as it does not take into account the massive back-

projections found in the cortex. To date, the role of cortical 

feedback remains poorly understood. It is likely that feedback 

underlies top-down signals related to attention, task-dependent 

biases and memory. Back-projections have to be taken into 

account in order to describe visual perception beyond the first 

100-200 msec.  

Given enough time, humans make eye movements to scan an 

image and performance in many object recognition tasks can 

increase significantly over that obtained during fast 

presentations. Extensions of the model to incorporate feedback 

are possible and under way [37]. We think that feedforward 

models may well turn out to be approximate descriptions of the 

first 100-200 msec of the processing required by more complex 

theories of vision, which are based on back-projections [38-44]. 

The computations involved in the initial phase are however non 

trivial and are essential for any scheme involving feedback to 

work. A second, related point is that normal visual perception is 

much more than classification as it involves interpreting and 

parsing visual scenes. In this sense again, the class of models we 

described is limited, since it deals with classification tasks only. 

Thus, more complex architectures are needed (see [8] for a 

discussion). 

Finally, we described a class of models, not a theory. 

Computational models are not sufficient on their own. Our 

model, despite describing quantitatively several aspects of 

monkey physiology and of human recognition, does not yield a 

good understanding of the computational principles of cortex 

and of their power. What is needed is a mathematical theory – to 

explain the hierarchical organization of the cortex. 

 

7. ACKNOWLEDGMENTS 
We would like to thank Jake Bouvrie as well as the referees for 

valuable comments on this manuscript. 

 

 

8. REFERENCES 
[1] DiCarlo, J. J. and Cox, D. D. Untangling invariant object 

recognition. Trends Cogn Sci, 11, 8 (Aug 2007), 333-341. 

[2] Bengio, J. and Le Cun, Y. Scaling learning algorithms 

towards AI, 2007. 

[3] Heisele, B., Serre, T. and Poggio, T. A component-based 

framework for face detection and identification. Int J Comput 

Vis, 74, 2 (Jan 1 2007), 167-181. 

[4] Hegdé, H. and Felleman, D. J. Reappraising the functional 

implications of the primate visual anatomical hierarchy. The 

Neuroscientist, 13, 5 (2007), 416-421. 

[5] Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G. 

and Poggio, T. A theory of object recognition: computations and 

circuits in the feedforward path of the ventral stream in primate 

visual cortex. MIT AI Memo 2005-036 (2005). 



[6] Logothetis, N. K., Pauls, J. and Poggio, T. Shape 

representation in the inferior temporal cortex of monkeys. Curr 

Biol, 5 (May 1 1995), 552-563. 

[7] Hung, C. P., Kreiman, G., Poggio, T. and DiCarlo, J. J. Fast 

read-out of object identity from macaque inferior temporal 

cortex. Science, 310, (2005), 863-866. 

[8] Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U. 

and Poggio, T. A quantitative theory of immediate visual 

recognition. Prog Brain Res, 165, (2007), 33-56. 

[9] Serre, T., Oliva, A. and Poggio, T. A feedforward 

architecture accounts for rapid categorization. Proc Natl Acad 

Sci, 104, 15 (Apr 10 2007), 6424-6429. 

[10] Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M. and 

Poggio, T. Object recognition with cortex-like mechanisms. 

IEEE TPAMI, 29, 3 (2007), 411-426. 

[11] Marko, H. and Giebel, H. Recognition of handwritten 

characters with a system of homogeneous Layers. 

Nachrichtentechnische Zeitschrift, 23 (1970), 455-459. 

[12] Fukushima, K. Neocognitron: A self-organizing neural 

network model for a mechanism of pattern recognition 

unaffected by shift in position. Biol. Cyb, 36 (1980), 193-202. 

[13] Wallis, G. and Rolls, E. T. A model of invariant recognition 

in the visual system. Prog Neurobiol, 51 (1997), 167-194. 

[14] Mel, B. W. SEEMORE: Combining color, shape and 

texture histogramming in a neurally-inspired approach to visual 

object recognition. Neural Comp, 9, 4 (1997), 777--804. 

[15] Riesenhuber, M. and Poggio, T. Hierarchical models of 

object recognition in cortex. Nature Neurosci, 2, 11 (1999), 

1019-1025. 

[16] Ullman, S., Vidal-Naquet, M. and Sali, E. Visual features 

of intermediate complexity and their use in classification. Nat 

Neurosci, 5, 7 (Jul 2002), 682-687. 

[17] Thorpe, S. Ultra-Rapid Scene Categorization with a Wave 

of Spikes. In Proc of BMCV (2002).  

[18] Amit, Y. and Mascaro, M. An integrated network for 

invariant visual detection and recognition. Vision Research, 43, 

19 (2003), 2073-2088. 

[19] Wersing, H. and Koerner, E. Learning optimized features 

for hierarchical models of invariant recognition. Neural Comp, 

15, 7 (2003), 1559-1588. 

[20] Hubel, D. H. and Wiesel, T. N. Receptive fields, binocular 

interaction and functional architecture in the cat's visual cortex. 

J Physiol, 160, (Jan 1962), 106-154. 

[21] Perrett, D. and Oram, M. Neurophysiology of shape 

processing. Image Vision Comput, 11 (1993), 317-333. 

[22] Hochstein, S. and Ahissar, M. View from the top: 

hierarchies and reverse hierarchies in the visual system. Neuron, 

36, 5 (Dec 5 2002), 791-804. 

[23] Biederman, I. Recognition-by-Components: A Theory of 

Human Image Understanding. Psych. Rev., 94 (1987), 115--147. 

[24] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-

Based Learning Applied to Document Recognition. Proc. of the 

IEEE, 86, 11 (1998), 2278--2324. 

[25] Mutch, J. and Lowe, D. Multiclass Object Recognition 

Using Sparse, Localized Features. In Proc of IEEE CVPR 

(2006).  

[26] Masquelier, T., Serre, T., Thorpe, S. and Poggio, T. 

Learning complex cell invariance from natural videos: a 

plausibility proof. MIT-CSAIL-TR #2007-060 (2007). 

[27] Polk, T. A., Park, J. E., Smith, M. R. and Park, D. C. Nature 

versus nurture in ventral visual cortex: A functional magnetic 

resonance imaging study of twins. J Neurosci, 27, 51 (2007), 

13921-13925. 

[28] Li, N. and DiCarlo, J. J. Unsupervised natural experience 

rapidly alters invariant object representation in visual cortex. 

Science, 321, 5895 (Sep 12 2008), 1502-1507. 

[29] Hinton, G. E. Learning multiple layers of representation. 

Trends Cogn Sci, 11, 10 (Oct 2007), 428-434. 

[30] Rust, N., Schwartz, O., Simoncelli, E. P. and Movshon, J. 

A. Spatiotemporal elements of macaque V1 receptive fields. 

Neuron, 46, 6 (Jun 16 2005), 945-956. 

[31] Foldiak, P. Learning invariance from transformation 

sequences. Neural Comp, 3, (1991), 194-200. 

[32] Thorpe, S., Fize, D. and Marlot, C. Speed of processing in 

the human visual system. Nature, 381, 6582 (1996), 520-522. 

[33] Reynolds, J. H., Chelazzi, L. and Desimone, R. 

Competitive mechanisms subserve attention in macaque areas 

V2 and V4. J Neurosci, 19, 5 (Mar 1 1999), 1736-1753. 

[34] Pinto, N., Cox, D. D. and DiCarlo, J. J. Why is real-world 

visual object recognition hard? PLoS Comp Biol, 4, 1 (2008). 

[35] Jhuang, H., Serre, T., Wolf, L. and Poggio, T. A 

Biologically Inspired System for Action Recognition. In Proc of 

IEEE ICCV (2007).  

[36] Rolls, E. T. and Deco, G. Computational Neuroscience of 

Vision. Oxford University Press, Oxford, 2002. 

[37] Chikkerur, S., Tan, C., Serre, T. and Poggio, T. An 

integrated model of visual attention using shape-based features. 

MIT-CSAIL-TR-2009-029 (2009). 

[38] Rao, R. P. and Ballard, D. H. Predictive coding in the visual 

cortex: a functional interpretation of some extra-classical 

receptive-field effects. Nature Neurosc., 2, 1 (1999), 79-87. 

[39] Lee, T. S. and Mumford, D. Hierarchical Bayesian 

inference in the visual cortex. J Opt Soc Am A, 20, 7 (Jul 2003), 

1434-1448. 

[40] Dean, T. A Computational Model of the Cerebral Cortex. In 

Proc of AAAI (2005).  

[41] George, D. and Hawkins, J. A hierarchical Bayesian model 

of invariant pattern recognition in the visual cortex. In 

Proceedings of IJCNN (2005).  

[42] Yuille, A. and Kersten, D. Vision as Bayesian inference: 

analysis by synthesis? Trends Cogn Sci, 10, 7 (Jul 2006), 301-

308. 

[43] Epshtein, B., Lifshitz, I. and Ullman, S. Image 

interpretation by a single bottom-up top-down cycle. Proc Natl 

Acad Sci (2008). 

[44] Grossberg, S. Towards a unified theory of neocortex: 

Laminar cortical circuits for vision and cognition. Prog Brain 

Res, 165 (2007), 79-104.  


