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Abstract

Feedback is useful in memoryless channels for decreasing complexity and increasing relia-
bility; the capacity of the memoryless channels, however, can not be increased by feedback.
For fixed length block codes even the decay rate of error probability with block length does
not increase with feedback for most channel models. Consequently for making the physical
layer more reliable for higher layers one needs go beyond the framework of fixed length
block codes and consider relaxations like variable-length coding, error- erasure decoding.
We strengthen and quantify this observation by investigating three problems.

1. Error-Erasure Decoding for Fixed-Length Block Codes with Feedback: Error-erasure
codes with communication and control phases, introduced by Yamamoto and Itoh, are
building blocks for optimal variable-length block codes. We improve their performance
by changing the decoding scheme and tuning the durations of the phases, and establish
inner bounds to the tradeoff between error exponent, erasure exponent and rate.
We bound the loss of performance due to the encoding scheme of Yamamoto-Itoh
from above by deriving outer bounds to the tradeoff between error exponent, erasure
exponent and rate both with and without feedback. We also consider the zero error
codes with erasures and establish inner and outer bounds to the optimal erasure
exponent of zero error codes. In addition we present a proof of the long known fact
that, the error exponent tradeoff between two messages is not improved with feedback.

2. Unequal Error Protection for Variable-Length Block Codes with Feedback: We use
Kudrayashov’s idea of implicit confirmations and explicit rejections in the framework
of unequal error protection to establish inner bounds to the achievable pairs of rate
vectors and error exponent vectors. Then we derive an outer bound that matches
the inner bound using a new bounding technique. As a result we characterize the
region of achievable rate vector and error exponent vector pairs for bit-wise unequal
error protection problem for variable-length block codes with feedback. Furthermore
we consider the single message message-wise unequal error protection problem and
determine an analytical expression for the missed detection exponent in terms of rate
and error exponent, for variable-length block codes with feedback.

3. Feedback Encoding Schemes for Fixed-Length Block Codes: We modify the analysis
technique of Gallager to bound the error probability of feedback encoding schemes.
Using the encoding schemes suggested by Zigangirov, D’yachkov and Burnashev we
recover or improve all previously known lower bounds on the error exponents of fixed-
length block codes.

Thesis Supervisor: Lizhong Zheng
Title: Associate Professor
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Chapter 1

Introduction

The effects of feedback in point to point communication problem have been studied from the
early days of the information theory. Arguably the most important qualitative conclusion of
those studies has been that, for memoryless channels at high rates, in order to use feedback
to increase the decay rate of error probability with block length, one needs to go beyond
the framework of fixed-length block codes and change the way constraints are imposed on
cost, decoding time, decoding algorithm or encoding rules. In other words, one needs to
consider variable-length block codes, error-erasure decoding or non-block encoding schemes
in order to use feedback to decrease error probability substantially, at least at high rates.
Throughout the thesis we will strengthen and quantify this conclusion in a number of ways
on different problems. First in Chapter 2 we analyze the error performance of fixed-length
block codes with error-erasure decoding and establish inner and outer bounds to the optimal
error exponent erasure exponent tradeoff. In Chapter 3 we consider variable-length block
codes with feedback for the transmission of a message composed of multiple groups of bits
each with different priority and determine the achievable pairs of rate vector and error
exponent vector. Then in Chapter 4 we return to the framework of fixed-length block
codes and suggest an analysis technique and encoding scheme which increases the error
exponent at low rates. We explain below some of the results which suggest going beyond
the framework of fixed-length block codes and the origins of some of the ideas enhanced in
later chapters. More detailed literature surveys, specific to the problems investigated, are
given at the beginning of each chapter.

The channel capacity of a memoryless channel is not increased by the addition of a noise-
less and delay-free feedback link from the receiver to the transmitter. This was first shown
by Shannon [37] for discrete memoryless channels (DMCs). Furthermore Dobrushin [13]
for symmetric DMCs and Pinsker [32] for additive white Gaussian noise channel (AWGNC)
showed that even the exponential decay rate of error probability with block length, i.e.
error exponent, does not increase with feedback for rates over the critical rate. Both [32]
and [13] established the sphere packing exponent as an upper bound to the error exponent
at all rates1 smaller than channel capacity.

The result of Pinsker [32] seems to dispute widely known results of Schalkwijk and
Kailath [35] and Schalkwijk [34], according to which error probability can decay as a doubly
exponential function of the block length. Similarly, Dobrushin’s result [13], seems to disagree

1Later Haroutunian, [20], established an upper bound on the error exponent of block codes with feedback.
His upper bound is equal to the sphere packing exponent for symmetric channels but it is strictly larger than
the sphere packing exponent for non-symmetric channels. It is still not known, whether or not the same is
true for general DMCs.
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with Burnashev’s results in [4], which claims the existence of a scheme for DMCs which
allows for an exponent much larger than sphere packing exponent. These contradictions
however are illusive, because the models used in these papers are different. In [32] the power
constraint P on the total energy spent for transmission Sn holds with probability one, i.e.
P[Sn ≤ Pn] = 1; whereas in [35] and [34] the power constraint is on the expected value of
energy spent on a block E[Sn], i.e. the power constraint is of the form E[Sn] ≤ Pn. In
a similar fashion, both in [13] and [20], fixed-length block codes are considered, i.e. the
duration of the transmission n is fixed and does not change with channel output; whereas
in [4] variable-length block codes are considered, i.e. the duration of the transmission τ is
a random variable which depends on the channel output and the error exponent is defined
as the decay rate of error probability with E[τ ].

Though the contradictions are illusive, the difference in the behavior of error exponent
for different models, or more precisely different families of codes, is real. By changing the
architecture of the communication system and allowing for transmission time to be variable,
one can obtain substantial gains in terms of error performance.

1.1 Block Codes: Variable-Length vs Fixed-Length with Era-
sures

The main result of [4] was promising, but the encoding scheme suggested to achieve that
performance was fairly complicated and hard to implement. Later Yamamoto and Itoh [43]
suggested a much simpler scheme to achieve the optimal performance. They considered a
fixed-length block code with error-erasure decoding and two phases. In the communication
phase, the message is transmitted with a non-feedback code and a temporary decision is
made by the receiver at the end of the phase. In the control phase, the transmitter tries
to confirm the temporary decision if it is correct and deny it if it is not. The receiver
decodes to the temporary decision or declares an erasure depending on the control phase
channel output. Yamamoto and Itoh [43] showed that, by using this fixed-length block code
repeatedly until a non-erasure decoding happens, one can achieve the optimal performance
for variable-length block codes.

The result of Yamamoto and Itoh [43] is interesting in a number of ways. First it
demonstrates that the error exponent of fixed-length block codes can be as high as that
of variable-length block codes if their decoders are error-erasure decoders. Secondly it
demonstrates that a very limited use of feedback, merely to inform the transmitter about
the receiver’s temporary decision is good enough. Furthermore the Yamamoto-Itoh scheme
achieves the optimal performance by using a code, in which communication and the bulk
of error correction are decoupled for both encoding and decoding purposes:

(a) The message is transmitted in the communication phase and confirmed in the control
phase.

(b) Temporary decoding is made using just the output of the communication phase. The
decision between declaring an erasure and decoding to the temporary decision is made
using solely the control phase output.

In [26] and [27] we have generalized all these results to channels with cost constraints and
potentially infinite alphabets.
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Unfortunately these observations which simplify the architecture of the communication
scheme hold only when the erasure probability is desired to decay to zero slowly, i.e. subex-
ponentially. When the erasure probability is desired to decay exponentially with block
length, the Yamamoto-Itoh scheme is not necessarily optimal, because of the decoupling
in the encoder (a) and the decoupling the decoder (b), discussed above. In Chapter 2 we
address this issue by considering the situation when erasure probability is decreasing with
a positive exponent.

Finding an encoder that uses feedback properly, even for the case when there are no-
erasures, is a challenging problem. Thus we do not attempt to find the optimal encoder.
Instead we use the Yamamoto and Itoh encoding scheme with the inherent decoupling
mentioned in (a), but tune the relative durations of the phases in the encoding scheme and
get rid of the decoupling in the decoder mentioned in (b). We use a fixed-length block
code with communication and control phases, like Yamamoto and Itoh [43], together with
a decoder, that uses the outputs of both communication and control phases while deciding
between declaring an erasure and decoding to the temporary decision. The inner bound
obtained for such an encoding scheme is better than the best inner bound for the error
exponent, erasure exponent, rate tradeoff for non-feedback schemes found previously, [15],
[41], [42].

In order to bound the loss in performance because of the particular family of encoding
schemes we have used in the inner bounds, we derive outer bounds to the error exponent,
erasure exponent, rate tradeoff that are valid for all fixed-length block codes. For doing that
we first generalize the straight line bound of Shannon Gallager and Berlekamp [38] from
erasure-free decoders to error-erasure decoders, using the fact that the region of achievable
error probability, erasure probability pairs for a given block length, message set size and
list decoding size triple is convex. Then we recall the outer bounds to error exponents in
two related problems:

• The error exponents of erasure free block codes with feedback

• The error exponent tradeoff between two messages with feedback

We use the generalized straight line bound to combine the outer bounds on these two
related problems into a family of outer bounds on the error exponent, erasure exponent,
rate tradeoff for fixed length block codes with feedback encoders and error-erasure decoders.

The inner and outer bounds derived in Chapter 2 on error exponent, erasure exponent,
rate tradeoff will allow us to bound the loss in error exponent at a given rate and erasure
exponent because of the two phase scheme we have assumed.

In the last part of the Chapter 2 we investigate the problem of finding the optimal erasure
exponent for zero-error codes as a complement to the analysis of the tradeoff between error
exponent and erasure exponent, and derive inner and outer bounds to the optimal erasure
exponent for a given rate.

1.2 Non-Block Encoding Schemes and Bit-Wise UEP

The Yamamoto-Itoh scheme has the peculiar property that it almost always sends the same
letter in the control phase. Yet the Yamamoto-Itoh scheme spends a considerable part of its
time in the control phase. Such an explicit control phase exists in order to ensure that each
message is decoded before the transmission of the next message starts. The Yamamoto-
Itoh scheme is a block coding scheme as a result of this property. The schemes in which
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transmission of successive messages are overlapping are non-block encoding schemes. If
non-block encoding schemes are allowed one can drop the explicit control phase all together
and use the implicit-confirmation-explicit-rejection protocol suggested by Kudrayshov [22]
in order to increase the exponential decay rate of error probability with expected delay.

In a communication system the transmitter transmits successive messages M1,M2, . . .
and the receiver decodes them as M̂1, M̂2, . . . . In a block coding scheme disjoint time
intervals are allocated for different messages, i.e. transmission of Mk starts only after M̂k−1

is decoded. This is why block coding schemes with feedback use explicit control phases in
order to decrease the error probability. However if the transmission of successive messages
are allowed to overlap, one can use the following scheme to decrease error probability without
an explicit control phase. The transmitter sends M1 using a fixed-length block code of rate
R, and the receiver makes a temporary decision M̃1. If M1 = M̃1 then the transmitter
sends M2 and the receiver makes a temporary decision M̃2 and so on. After the first
incorrect temporary decision, the transmitter starts sending the special codeword Ξ, until
it is detected by the receiver. Once it is detected by the receiver, the transmitter starts
re-sending the last message and the previous ` messages from scratch. Thus if the jth

temporary decision is incorrect and the special codeword Ξ is sent without detection for k
times, |k − `|+ messages2 would be in error. The decoder decodes to a temporary decision
if the following ` temporary decisions are all ordinary codewords, i.e. M̂j = M̃j if M̃t 6= Ξ
for t ∈ {j, j + 1, . . . j + `}. Using an implicit confirmation and explicit rejection protocol
like the described one above, Kudryashov [22] showed that non-block encoding schemes can
have much faster decay of error probability with expected delay than the block encoding
schemes.

The implicit confirmation explicit rejection protocols are also useful for block coding
schemes. But in order to appreciate that, one needs to consider unequal error protection
problems. Consider for example the situation where each message, Mj , is composed of two
groups of bits:

Mj = (M
(a)
j ,M

(b)
j ) j ∈ {1, 2, 3, . . .}

where M(a)’s require a better protection than M(b)’s. One way of giving that protection is
using an implicit confirmation explicit rejection protocol in a three phase scheme as follows.

The transmitter first sends M(a) and a temporary decision M̃
(a)

is made at the receiver. If

M̃
(a)

= M(a) then in the second phase M(b) is sent, if not the special codeword Ξ is sent. At

the end of the second phase a temporary decision M̃
(b)

is made for M(b). The third phase is

an explicit control phase in order to confirm or reject (M̃
(a)
, M̃

(b)
). At the end of the third

phase either an erasure is declared or M = (M(a),M(b)) is decoded as M̂ = (M̃
(a)
, M̃

(b)
). In

Chapter 3 we present a detailed analysis of this scheme for the case with k layers instead
of just two layers and obtain a sufficient condition for the achievablity of a (~R, ~E ) pair, in
terms of the relative durations of the phases.

Implicit confirmation and explicit rejection protocols provide us a sufficient condition for
the achievablity of a (~R, ~E ) pair. In order to prove that the above architecture is optimal,
we prove that the sufficient condition for the achievablity of a (~R, ~E ) pair is also a necessary

2

|s|+ =

{
0 s < 0

s s ≥ 0
.
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condition. This is done using a new technique in Chapter 3. Previously in order to derive
such outer bounds the average error probability associated with a query posed at stopping
time is used [2], [3]; instead we use the missed detection probability of a hypothesis chosen
at a stopping time. This gives us a necessary condition for the achievablity of a (~R, ~E ) pair
in terms of the relative durations of the phases, which is identical to the sufficient condition.
Thus we conclude that in a bit-wise unequal error protection problem for variable-length
block codes, communication and error correction of each layer of bits can be decoupled both
for the purposes of encoding and for the purposes of decoding. Furthermore error correction
phase of each layer can be combined with the communication and error correction phases
of less important layers using implicit confirmation explicit rejection protocols.

In order to introduce some of the ideas in a simpler form we also investigate the message-
wise unequal error protection problem for the single message case In Chapter 3. In that
problem we are interested in the minimum conditional error probability that a message can
have when the overall rate is R and the overall error exponent is E . We determine the
exponent of the minimum error probability message, which is called the missed detection
exponent, for any rate R and any error exponent E for variable-length block codes with
feedback.

The results of Chapter 3 generalize the corresponding results in [3], which were derived
for the case when the overall rate is (very close to) capacity. In Chapter 3 there is no such
assumption and we calculate the tradeoffs for the whole rate region.

1.3 Error Probability and Posterior Matching for Fixed-Length
Block Codes

The interest in error-erasure decoding and variable-length block codes were partly because of
the negative results about the error performance of fixed-length block codes with feedback.
But those negative results about error exponents of fixed-length block codes with feedback
imply only that there can not be any improvement, at high rates i.e. rates above the critical
rate3 Rcrit. For the rates below the critical rate there are encoding schemes that improve
the error exponents in binary symmetric channels, [44], [7], k-ary symmetric channels [14]
and binary input channels [14].

The encoding schemes of [44] and [14] are matching schemes. The messages are equally
likely at the beginning of the transmission both in [44] and [14]. At each time step the
encoding scheme tries to match an input distribution on the input alphabet as closely as it
can with the given pseudo posterior probabilities of the messages. After the observation of
each channel output the pseudo posterior probabilities of the messages are updated accord-
ing to a channel which is “noisier” than the actual one. In binary symmetric channels such
a scheme is optimal in all rates below capacity except some interval of the form (0,RZcrit)
where RZcrit < Rcrit. In general binary input channels and k-ary symmetric channels per-
formance of this scheme is better than that of random coding. The principle insight of [44]
and [14] is that by using a “noisier” channel in updating the posterior probabilities, one can
improve the performance of the posterior matching schemes.

In Chapter 4 we suggest an alternative analysis technique, based on the error analysis
technique of Gallager [16] to achieve similar conclusions. We demonstrate that instead of
working with pseudo posteriors, the encoder can work with the actual posterior probabilities

3The critical rate, Rcrit, is the rate at which the random coding exponent and sphere packing exponent
diverge from one another.
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of the messages. However, in order to do so the encoder needs to apply a titling to the
posterior probabilities before the matching. Tilting the posterior probabilities before the
matching and using the pseudo posteriors calculated assuming a noisier channel have the
same effect; both operations damp down the effect of past observations in the matching.
Using an analysis technique based on the analysis technique of Gallager [16] we recover the
results of [44] and [14] for binary input channels and improve the results of [14] for k-ary
symmetric channels.

For binary symmetric channels Burnashev [7] has suggested a modification to the encod-
ing scheme of Zigangirov given in [44]. Burnashev’s modification improves the performance
in the range (0,RZcrit). In the second part of Chapter 4 we extend the results of [7] to a
broader class of DMCs. This is done by modifying the analysis technique we have suggested
in the first part of the chapter in order to accommodate the modified encoding scheme of
Burnashev [7].

14



Chapter 2

Error-Erasure Decoding for Block
Codes with Feedback1

In this chapter we investigate the performance of fixed length block codes on discrete mem-
oryless channels (DMCs) with feedback and error-erasure decoding. We derive inner and
outer bounds to the optimal tradeoff between the rate, the erasure exponent and the error
exponent. This analysis complements on one hand the results on error-erasure decoding
without feedback and on the other hand the results on variable-length block codes with
feedback.

We start with a brief overview of previous results on variable-length block codes and
error-erasure decoding without feedback in Section 2.1. This will motivate the problem at
hand and relate it to the previous studies. Then in Section 2.2, we introduce the channel
model and block codes with error-erasure decoding formally. After that, in Section 2.3,
we derive an inner bound bound using a two-phase coding algorithm (similar to the one
described by Yamamoto and Itoh in [43]) combined with a decoding rule and analysis
techniques inspired by Telatar in [41] for the non-feedback case. The analysis and the
decoding rule in [41] is tailored for a single phase scheme without feedback, and the two-
phase scheme of [43] is tuned specifically to the zero-erasure exponent; coming up with a
framework in which both of the ideas can be used efficiently is the main technical challenge
here. In Section 2.4, we first generalize the straight line bound introduced by Shannon,
Gallager and Berlekamp in [38] to block code which have decoding rules with erasures. This
is then combined with the error exponent tradeoff between two codewords with feedback to
establish an outer bound. In Section 2.5, we introduce error free block codes with erasures,
discuss their relation to block codes with errors and erasures and present inner and outer
bounds to their erasure exponents.

2.1 Error-Erasure Decoding and Variable-Length Block Codes

Burnashev [4], [5], [6] considered variable-length block codes with feedback and determined
the decay rate of their error probability with expected transmission time exactly for all
rates. Later Yamamoto and Itoh [43] showed that the optimal performance for variable-
length block codes with feedback can be achieved by using an appropriate fixed-length
block code with error-erasure decoding repetitively until a non-erasure decoding occurs.2

1Results presented in this chapter have been reported previously in [28].
2Note that introducing erasures can not decrease the optimal error exponent and any variable-length

block code with erasure can be used as a variable-length block code without erasures with feedback, simply
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In fact any fixed-length block code with erasures can be used repetitively, as done in [43],
to get a variable-length block code with essentially the same error exponent as the original
fixed-length block code. Thus [4] can be reinterpreted to give an upper bound to the error
exponent achievable by fixed-length block codes with erasures. Furthermore this upper
bound is achieved by fixed-length block codes with erasures described in [43], when erasure
probability decays to zero sub-exponentially with block length. However, the techniques
used in this stream of work are insufficient for deriving proper inner or outer bounds for the
situation when erasure probability is decaying exponentially with block length. As explained
in the paragraph below, the case with strictly positive erasure exponents is important
both for engineering applications and for a more comprehensive understanding of error-
erasure decoding with feedback. Our investigation provides proper tools for such an analysis,
results in inner and outer bounds to the tradeoff between error and erasure exponents, while
recovering all previously known results for the zero erasure exponent case.

When considered together with higher layers, the codes in the physical layer are part
of a variable-length/delay communication scheme with feedback. However, in the physical
layer itself fixed-length block codes are used instead of variable-length ones because of their
amenability to modular design and robustness against the noise in the feedback link. In
such an architecture, retransmissions affect the performance of higher layers. In this respect
the probability of erasure is a criterion for the quality of service of the physical layer. The
average transmission time is only a first order measure of the burden of the retransmissions
to the higher layers: as long as the erasure probability is vanishing with increasing block
length, average transmission time will essentially be equal to the block length of the fixed-
length block code. Thus with an analysis like the one in [43], the cost of retransmissions
are ignored as long as the erasure probability goes to zero with increasing block length. In
a communication system with multiple layers, however, retransmissions usually have costs
beyond their effect on average transmission time, which are described by constraints on
the probability distribution of the decoding time. Knowledge of the error-erasure exponent
tradeoff is useful in coming up with designs to meet those constraints. An example of this
phenomena is variable-length block coding schemes with hard deadlines for decoding time,
which have already been investigated by Gopala et. al. [18] for block codes without
feedback. They have used a block coding scheme with erasures and they have resent the
message whenever an erasure occurs. But because of the hard deadline, they employed this
scheme only for some fixed number of trials. If all the trials prior to the last one fail, i.e.
lead to an erasure, they use a non-erasure block code. Using the error exponent erasure
exponent tradeoff they were able to obtain the best over all error performance for the given
architecture.

This brings us to the second stream of research we complement with our investigation:
error-erasure decoding for block codes without feedback. Forney [15] was the first one
to consider error-erasure decoding without feedback. He obtained an achievable tradeoff
between the exponents of error and erasure probabilities. Then Csiszár and Körner, [12]
achieved the same performance using universal coding and decoding algorithms. Later
Telatar and Gallager [42] introduced a strict improvement on certain channels over the
results presented in [15] and [12]. Recently there has been revived interest in errors and
erasures decoding for universally achievable performance [25], [24], for alternative methods
of analysis [23], for extensions to channels with side information [33] and implementation

by retransmitting the message at hand whenever there is an erasure. Using these two observations one can
check in a few lines that the best error exponent for the variable-length block codes with feedback is the
same with and without erasures.

16



with linear block codes [21]. The encoding schemes in these codes do not have access to any
feedback. However if the transmitter learns whether the decoded message was an erasure or
not, it can resend the message whenever it is erased. Because of this block retransmission
variant these problems are sometimes called decision feedback problems.

2.2 Channel Model and Reliable Sequences For Error-Erasure
Decoding

The input and output alphabets of the forward channel are X and Y, respectively. The
channel input and output symbols at time t are denoted by Xt and Yt respectively. Fur-
thermore, the sequences of input and output symbols from time t1 to time t2 are denoted
by Xt2t1 and Yt2t1 . When t1 = 1 we omit t1 and simply write Xt2 and Yt2 instead of Xt21 and

Yt21 . The forward channel is a discrete memoryless channel characterized by an |X |-by-|Y|
transition probability matrix W .

P
[
Yt|Xt,Yt−1

]
= P[Yt|Xt] = W (Yt|Xt) ∀t. (2.1)

The feedback channel is noiseless and delay free, i.e. the transmitter observes Yt−1 before
transmitting Xt.

The message M is drawn from the message setM with a uniform probability distribution
and is given to the transmitter at time zero. At each time t ∈ [1, n] the input symbol
Φt(M,Y

t−1) is sent. The sequence of functions Φt(·) : M× Yt−1 which assigns an input
symbol for each m ∈M and y t−1 ∈ Yt−1 is called the encoding function.

After receiving Yn the receiver decodes M̂(Yn) ∈ {x}∪M where x is the erasure symbol.
The conditional erasure and error probabilities Px|M and Pe|M and unconditional erasure
and error probabilities, Px and Pe are defined as,

Px|M , P
[
M̂ = x

∣∣∣M] Pe|M , P
[
M̂ 6= M

∣∣∣M]− Px|M

Px , P
[
M̂ = x

]
Pe , P

[
M̂ 6= M

]
− Px

Since all the messages are equally likely,

Px = 1
|M|

∑
m∈M

Px|m Pe = 1
|M|

∑
m∈M

Pe|m

We use a somewhat abstract but rigorous approach in defining the rate and achievable
exponent pairs. A reliable sequence Q, is a sequence of codes indexed by their block lengths
such that

lim
n→∞

(
Pe

(n) + Px
(n) + 1

|M(n)|

)
= 0.

In other words reliable sequences are sequences of codes whose overall error probability,
detected and undetected, vanishes and whose message set’s size diverges with block length
n.

Definition 1 The rate, erasure exponent, and error exponent of a reliable sequence Q are
given by

RQ , lim inf
n→∞

ln |M(n)|
n ExQ , lim inf

n→∞
− ln Px

(n)

n EeQ , lim inf
n→∞

− ln Pe
(n)

n .
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Haroutunian, [20, Theorem 2], established a strong converse for erasure free block codes
with feedback which implies that limn→∞(Pe

(n) + Px
(n)) = 1 for all codes whose rates are

strictly above the capacity, i.e. R > C. Thus we consider only rates that are less than
or equal to the capacity, R ≤ C. For all rates R below capacity and for all non-negative
erasure exponents Ex, the (true) error exponent Ee(R, Ex) of fixed-length block codes with
feedback is defined to be the best error exponent of the reliable sequences3 whose rate is at
least R and whose erasure exponent is at least Ex.

Definition 2 ∀R ≤ C and ∀Ex ≥ 0 the error exponent, Ee(R, Ex) is,

Ee(R, Ex) , sup
Q:RQ≥R,ExQ≥Ex

EeQ. (2.2)

Note that
Ee(R, Ex) = E(R) ∀Ex > E(R) (2.3)

where E(R) is the (true) error exponent of erasure-free block codes on DMCs with feedback.4

Thus the benefit of error-erasure decoding is the possible increase in the error exponent as
the erasure exponent goes below E(R).

Determining E(R) for all R and for all channels is still an open problem; only upper
and lower bounds to E(R) are known. In this chapter we are only interested in quantifying
the gains of error-erasure decoding with feedback instead of finding E(R). We will analyze
the performance of generalizations of the simple two-phase schemes that are known to be
optimal when the erasure exponent is zero. In order to quantify how much is lost by using
such a restricted architecture we will derive general outer bounds to Ee(R, Ex) and compare
them with the inner bounds.

For future reference recall the expressions for the random coding exponent and the
sphere packing exponent,

Er(R, P ) = min
V

D (V ‖W |P ) + |I (P, V )− R|+ Er(R) = max
P

Er(R, P ) (2.4)

Esp(R, P ) = min
V :I(P,V )≤R

D (V ‖W |P ) Esp(R) = max
P

Esp(R, P ) (2.5)

where D (V ‖W |P ) stands for conditional Kullback Leibler divergence of V and W under
P , and I (P, V ) stands for mutual information for input distribution P and channel V :

D (V ‖W |P ) =
∑

x∈X ,y∈Y
P (x )V (y |x ) ln V (y|x)

W (y|x)

I (P, V ) =
∑

x∈X ,y∈Y
P (x )V (y |x ) ln V (y|x)∑

x̃∈X P (x̃)V (y|x̃)

We denote the y marginal of a distribution like P (x )V (y |x ) by (PV )Y . The support of a
probability distribution P is denoted by suppP .

3We only consider the reliable sequences in order to ensure finite error exponent at zero erasure exponent.
Note that a decoder which always declares erasures has zero erasure exponent and infinite error exponent.

4In order to see this consider a reliable sequence with erasures Q and replace its decoding algorithm by
any erasure free one such that M̂′(yn) = M̂(yn) if M̂(yn) 6= x to obtain an erasure free reliable sequence, Q′.
Then Pe

(n)
Q′ ≤ Px

(n)
Q + Pe

(n)
Q ; thus EeQ′ = min{ExQ, EeQ} and RQ′ = RQ. This together with the definition

of E(R) leads to equation (2.3).
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2.3 An Achievable Error Exponent Erasure Exponent Tradeoff

In this section we establish a lower bound to the achievable error exponent as a function
of erasure exponent and rate. We use a two phase encoding scheme similar to the one
described by Yamamoto and Itoh in [43] together with a decoding rule similar to the one
described by Telatar in [41]. First, in the communication phase, the transmitter uses a fixed-
composition code of length αn and rate R

α . At the end of the communication phase, the

receiver makes a maximum mutual information decoding to obtain a tentative decision M̃.
The transmitter knows M̃ because of the feedback link. Then in the (n − n1) long control
phase the transmitter confirms the tentative decision by sending the accept codeword if
M̃ = M, and rejects it by sending the reject codeword otherwise. At the end of the control
phase if the tentative decision dominates all other messages, the receiver decodes to the
tentative decision, if not the receiver declares an erasure. The word “dominate” will be
made precise later in Section 2.3.2.

At the encoder our scheme is similar to that of Yamamoto and Itoh [43], in that the
communication and the bulk of the error correction are done in two disjoint phases. At the
decoder, however, unlike [43] we consider the channel outputs in both of the phases while
deciding between declaring an erasure and decoding to the tentative decision.

In the rest of this section, we analyze the performance of this coding architecture and
derive the achievable error exponent expression in terms of a given rate R, erasure exponent
Ex, time sharing constant α, communication phase type P , control phase type (joint em-
pirical type of the accept codeword and reject codeword) Π and domination rule �. Then
we optimize over �, Π, P and α, to obtain an achievable error exponent expression as a
function of rate R and erasure exponent Ex.

2.3.1 Fixed-Composition Codes and the Packing Lemma

Let us start with a very brief overview of certain properties of types, a thorough handling
of types can be found in [12]. The empirical distribution of x n ∈ X n is called the type
of x n and the empirical distribution of transitions from x n ∈ X n to yn ∈ X n is called the
conditional type:5

Pxn(x̃ ),1
n

∑n

t=1
1{x t=x̃} x̃ ∈ X . (2.6)

Vyn|xn(ỹ |x̃ ), 1
nPxn (x̃)

∑n

t=1
1{x t=x̃}1{yt=ỹ} ∀ỹ ∈ Y, ∀x̃ s.t. Pxn(x̃ ) > 0. (2.7)

For any probability transition matrix V̂ : suppPxn → Y we have6∏n

t=1
V̂ (y t|x t) = e−n(D(Vyn|xn‖V̂ |Pxn)+H(Vyn|xn |Pxn)) (2.8)

V -shell of x n, TV (x n), is the set of all yn’s whose conditional type with respect to x n is V :

TV (x n),{yn : Vyn|xn = V }. (2.9)

The total probability of TV (x n) has to be less than one for any transition probability matrix
from X to Y and resulting channel. Thus using equation (2.8) for V̂ = V we get,

|TV (x n) | ≤ enH(Vyn|xn |Pxn) (2.10)

5Note that Pxn is a distribution on X , whereas Vyn|xn is a channel from the support of Pxn to Y.
6Note that for any V̂ : X → Y there is unique consistent V̂ ′ : suppPxn → Y.
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Codes whose codewords all have the same empirical distribution, Pxn(m) = P ∀m ∈
M are called fixed-composition codes. In Section 2.3.4 the error and erasure events are
described in terms of the intersections of V−shells of different codewords. For doing that

let us define F (n)
(
V, V̂ ,m

)
as the intersection of the V -shell of x n(m) with the V̂ -shells of

other codewords:

F (n)
(
V, V̂ ,m

)
, TV (x n(m))

⋂(
∪m̃ 6=mTV̂ (x n(m̃))

)
. (2.11)

The following packing lemma, proved by Csiszár and Körner [12, Lemma 2.5.1], claims the

existence of a code with a guaranteed upper bound on the size of F (n)
(
V, V̂ ,m

)
.

Lemma 1 For every block length n ≥ 1, rate R > 0 and type P satisfying H(P ) > R,
there exist at least ben(R−δn)c distinct type P sequences in X n such that for every pair of
stochastic matrices V : suppP → Y, V̂ : suppP → Y and ∀m ∈M∣∣∣F (n)

(
V, V̂ ,m

)∣∣∣ ≤ |TV (x n(m))|e−n|I(P,V̂ )−R|+

where δn = ln 4+(4|X |+6|X ||Y|) ln(n+1)
n .

The above lemma is stated in a slightly different way in [12, Lemma 2.5.1], for a fixed δ and
large enough n. However, this form follows immediately from their proof.

Using Lemma 1 together with equations (2.8) and (2.10) one can bound the conditional

probability of observing a yn ∈ F (n)
(
V, V̂ ,m

)
when M = m as follows.

Corollary 1 In a code satisfying Lemma 1, when message m ∈ M is sent, the probability
of getting a yn ∈ TV (x n(m)) which is also in TV̂ (x n(m̃)), for some m̃ ∈ M such that
m̃ 6= m, is bounded as follows,

P
[
F (n)

(
V, V̂ ,M

)∣∣∣M] ≤ e−nη(R,P,V,V̂ ) (2.12)

where
η
(

R, P, V, V̂
)
,D (V ‖W |P ) + |I

(
P, V̂

)
− R|+. (2.13)

2.3.2 Coding Algorithm

For the length n1 = dαne communication phase, we use a type P fixed-composition code

with ben1( R
α
−δn1 )c codewords which satisfies the property described in Lemma 1. At the

end of the communication phase the receiver makes a tentative decision by choosing the
codeword that has the maximum empirical mutual information with the output sequence
Yn1 . If more than one codewords have the maximum value of empirical mutual information,
the codeword with the lowest index is chosen.7

M̃ =

{
m :

I
(
P,VYn1 |xn(m)

)
> I
(
P,VYn1 |xn(m̃)

)
∀m̃ < m

I
(
P,VYn1 |xn(m)

)
≥ I
(
P,VYn1 |xn(m̃)

)
∀m̃ > m

}
(2.14)

7The choice of lowest index message for ties is arbitrary; the receiver could decode to any one of the
messages with the highest mutual information. Results will continue to hold in that case. Indeed the
tradeoff between the exponents will not be effected even if receiver declares erasures whenever such a tie
happens.
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In the remaining (n−n1) time units, the transmitter sends the accept codeword x n
n1+1(a)

if M̃ = M and sends the reject codeword x n
n1+1(r) otherwise.

The encoding scheme uses the feedback link actively for the encoding neither within the
first phase nor within the second phase. It does not even change the codewords it uses for
accepting or rejecting the tentative decision depending on the observation in the first phase.
Feedback is only used to reveal the tentative decision to the transmitter.

Accept and reject codewords have joint type Π(x̃ , ˜̃x ), i.e. the ratio of the number of
time instances in which accept codeword has an x̃ ∈ X and reject codeword has a ˜̃x ∈ X to
the length of the codewords, (n− n1), is Π(x̃ , ˜̃x ). The joint conditional type of the output
sequence in the second phase, Uyn

n1+1
, is the empirical conditional distribution of yn

n1+1. We

call the set of all output sequences yn
n1+1 whose joint conditional type is U , the U -shell and

denote it by TU .

As was done in Corollary 1, one can upper bound the probability of U -shells. Note that
if Yn

n1+1 ∈ TU then,

P
[
Yn
n1+1

∣∣Xn
n1+1 = x n

n1+1(a)
]

= e−(n−n1)(D(U‖Wa|Π)+H(U |Π))

P
[
Yn
n1+1

∣∣Xn
n1+1 = x n

n1+1(r)
]

= e−(n−n1)(D(U‖W r|Π)+H(U |Π))

where x n
n1+1(a) is the accept codeword, x n

n1+1(r) is the reject codeword, W a(y |x̃ , ˜̃x ) =

W (y |x̃ ) and W r(y |x̃ , ˜̃x ) = W (y |˜̃x ). Note that |TU | ≤ e(n−n1)H(U |Π), thus

P
[
TU |Xn

n1+1 = x n
n1+1(a)

]
≤ e−(n−n1)D(U‖Wa|Π) (2.15a)

P
[
TU |Xn

n1+1 = x n
n1+1(r)

]
≤ e−(n−n1)D(U‖W r|Π). (2.15b)

2.3.3 Decoding Rule

For an encoder like the one in Section 2.3.2, a decoder that depends only on the conditional
type of Yn1 for different codewords in the communication phase, i.e. VYn1 |xn1 (m) for m ∈M,
the conditional type of the channel output in the control phase, i.e. UYn

n1+1
, and the indices

of the codewords can achieve the minimum error probability for a given erasure probability.
However finding that decoder becomes an analytically intractable problem. Instead we will
only consider the decoders that can be written in terms of pairwise comparisons between
messages given Yn. Furthermore we assume that these pairwise comparisons depend only
on the conditional type of Yn1 for the messages compared, the conditional output type in
the control phase and the indices of the messages.8

If the triplet corresponding to the tentative decision (VYn1 |xn1 (M̃),UYn
n1+1

, M̃) dominates

all other triplets of the form (VYn1 |xn1 (m),UYn
n1+1

,m) for m 6= M̃, the tentative decision

becomes final; else an erasure is declared.

M̂ =

{
M̃ if ∀m 6= M̃ (VYn1 |xn(M̃),UYn

n1+1
, M̃) � (VYn1 |xn(m),UYn

n1+1
,m)

x if ∃m 6= M̃ s.t. (VYn1 |xn(M̃),UYn
n1+1

, M̃) � (VYn1 |xn(m),UYn
n1+1

,m)

}
(2.16)

The domination rule used will depend on whether Ex is less than αEr(
R
α , P ) or not. If

8Note that conditional probability, P[Yn|M = m], is only a function of corresponding VYn1 |xn(m) and

UYn
n1+1

. Thus all decoding rules, that accept or reject the tentative decision, M̃, based on a threshold test

on likelihood ratios, P[Yn|M=m̃]
P[Yn|M=m]

, for m 6= m̃ are in this family of decoding rules.
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Ex ≥ αEr(
R
α , P ) the trivial domination rule leading to the trivial decoder M̂ = M̃ is used.

If Ex ≤ αEr(R
α , P ) then the domination rule given in equation (2.17) is used.

(V,U,m) � (V̂ , U, m̃)⇔

I (P, V ) > I
(
P, V̂

)
and αη

(
R
α , P, V, V̂

)
+ (1− α)D (U‖Wa|Π) ≤ Ex if m ≥ m̃

I (P, V ) ≥ I
(
P, V̂

)
and αη

(
R
α , P, V, V̂

)
+ (1− α)D (U‖Wa|Π) ≤ Ex if m < m̃

(2.17)

where η
(

R, P, V, V̂
)

is given by equation (2.13).

Among the family of decoders we are considering, i.e. among the decoders that only
depend on the pairwise comparisons between conditional types and indices of the messages
compared, the decoder given in (2.16) and (2.17) is optimal in terms of error exponent
erasure exponent tradeoff. Furthermore, in order to employ this decoding rule, the receiver
needs to determine only the two messages with the highest empirical mutual information
in the first phase. Then the receiver needs to check whether the triplet corresponding to
the tentative decision dominates the triplet corresponding to the message with the second
highest empirical mutual information. If it does, then for the rule given in (2.17), it is
guaranteed to dominate the rest of the triplets too.

We allowed the decoding rule to depend on the index of the message in order to avoid
declaring erasure whenever there is a tie in terms of the maximum empirical mutual in-
formation in the first phase. Alternatively, we could have employed a decoding rule which
declares erasures whenever there are two or more messages with the largest empirical mutual
information. The resulting tradeoff would be identical to the one we obtain below.

2.3.4 Error Analysis

Using an encoder like the one described in Section 2.3.2 and a decoder like the one in (2.16)
we achieve the performance given below. If Ex ≤ αEr(

R
α , P ) then the domination rule

given in equation (2.17) is used in the decoder; else a trivial domination rule that leads to
a non-erasure decoder, M̂ = M̃, is used in the decoder.

Theorem 1 For any block length n ≥ 1, rate R, erasure exponent Ex, time sharing constant
α, communication phase type P and control phase type Π, there exists a length n block code
with feedback such that

ln |M| ≥ en(R−δn) Px ≤ e−n(Ex−δn
′
) Pe ≤ e−n(Ee(R,Ex,α,P,Π)−δn

′
)

where Ee(R, Ex, α, P,Π) is given by,

Ee =

 αEr(
R
α , P ) if Ex > αEr(

R
α , P )

min
(V,V̂ ,U)∈Ve

αη
(

R
α , P, V̂ , V

)
+ (1− α)D (U‖W r|Π) if Ex ≤ αEr(R

α , P )


(2.18a)

V = {(V1, V2, U) : I (P, V1) ≥ I (P, V2) and (PV1)Y = (PV2)Y } (2.18b)

Ve =

{
V if Ex > αEr(

R
α , P ){

(V, V̂ , U) ∈ V : αη
(

R
α , P, V, V̂

)
+ (1− α)D (U‖W a|Π) ≤ Ex

}
if Ex ≤ αEr(R

α , P )

}
(2.18c)

δ
′
n= (|X |+1)2|Y| log(n+1)

n (2.18d)
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Equation (2.18) gives the whole achievable region for this family of codes. But for
quantifying the gains of error-erasure decoding over the decoding schemes without erasures
one need to consider only the region where Ex ≤ αEr(R

α , P ) holds, because for all α ∈ (0, 1],
αEr(

R
α , P ) ≤ Er(R, P ).

The optimization problem given in (2.18) is a convex optimization problem: it is
the minimization of a convex function over a convex set. Thus the value of the ex-
ponent, Ee(R, Ex, α, P,Π) can be calculated numerically relatively easily. Furthermore
Ee(R, Ex, α, P,Π) can be written in terms of solutions of lower dimensional optimization
problems (see equation (2.36)). However the problem of finding the optimal (α, P,Π) triple
for a given (R, Ex) pair is not that easy in general, as we will discuss in more detail in
Section 2.3.5.

Proof:
A decoder of the form given in (2.16) decodes correctly when9 (Yn, M̃) � (Yn,m), ∀m 6= M̃
and M̃ = M. Thus an error or an erasure occur only when the correct message does not
dominate all other messages, i.e. when ∃m 6=M such that (Yn,M)�(Yn,m). Consequently,
we can write the sum of the conditional error probability and the conditional erasure
probabilities for a message m ∈M as,

Pe|m + Px|m = P[{yn : ∃m̃ 6= m s.t.(yn,m) � (yn, m̃)}|M = m] (2.19)

This can happen in two ways, either there is an error in the first phase, i.e. M̃ 6= m or the
first phase tentative decision is correct, i.e. M̃ = m, but the second phase observation
yn
n1+1 leads to an erasure i.e. M̂ = x. For a decoder using a domination rule described in

Section 2.3.3,

Pe|m + Px|m ≤
∑
V

∑
V̂ :I(P,V̂ )≥I(P,V )

∑
yn1∈F (n1)(V,V̂ ,m)

P[yn1 |m]

+
∑
V

∑
V̂ :I(P,V̂ )≤I(P,V )

∑
yn1∈F (n1)(V,V̂ ,m)

P[yn1 |m]
∑

U :(V,U,m)�(V̂ ,U,m+1)

∑
yn
n1+1∈TU

P
[
yn
n1+1

∣∣Xn
n1+1 =x n

n1+1(a)
]

where10 F (n1)
(
V, V̂ ,m

)
is the intersection of V -shell of message m ∈M with the V̂ -shells

of other messages, defined in equation (2.11). As result of Corollary 1,∑
yn1∈F (n1)(V,V̂ ,m)

P[yn1 |m] = P
[
F (n1)

(
V, V̂ ,m

)∣∣∣M = m
]

≤ e−n1η(R
α
,P,V,V̂ ).

Furthermore, as result of equation (2.15a),∑
yn
n1+1∈TU

P
[
yn
n1+1

∣∣Xn
n1+1 = x n

n1+1(a)
]

= P
[
TU |Xn

n1+1 = x n
n1+1(a)

]
≤ e−(n−n1)D(U‖Wa|Π).

9 We use the short hand (Yn, M̃) � (Yn,m) for (VYn1 |M̃,UYn
n1+1

,M) � (VYn1 |m ,UYn
n1+1

,m) in this proof.
10Note that when m = |M|, we need to replace (V,U,m) � (V̂ , U,m + 1) with (V,U,m − 1) � (V̂ , U,m).
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In addition the number of different non-empty V -shells in the communication phase is less
than (n1 + 1)|X ||Y| and the number of non-empty U -shells in the control phase is less than
(n− n1 + 1)|X |

2|Y|. We denote the set of (V, V̂ , U) triples that corresponds to erasures with
a correct tentative decision by Vx:

Vx ,
{

(V, V̂ , U) : I (P, V ) ≥ I
(
P, V̂

)
and (PV )Y = (PV̂ )Y and (V,U,m) � (V̂ , U,m + 1)

}
.

(2.20)
In the above definition m is a dummy variable and Vx is the same set for all m ∈M.
Thus using (2.20) we get

Pe|m + Px|m ≤ (n1 + 1)2|X ||Y| max
V,V̂ :I(P,V )≤I(P,V̂ )

e−n1η(R/α,P,V,V̂ )

+ (n1 + 1)2|X ||Y|(n− n1 + 1)|X |
2|Y| max

(V,V̂ ,U)∈Vx
e−n1η(R/α,P,V,V̂ )+(n−n1)D(U‖Wa|Π)).

Using the definition of Er(
R
α , P ) given in (2.4) we get

Pe|m + Px|m ≤ enδ
′
n max

{
e−nαEr(R/α,P ), e

−nmin(V,V̂ ,U)∈Vx αη(R/α,P,V,V̂ )+(1−α)D(U‖Wa|Π)
}
.

(2.21)
On the other hand an error occurs only when an incorrect message dominates all other
messages, i.e. when ∃m̃ 6= m such that (Yn, m̃) � (Yn, ˜̃m) for all ˜̃m 6= m̃:

Pe|m = P
[{

yn : ∃m̃ 6= m s.t. (yn, m̃) � (yn, ˜̃m) ∀ ˜̃m 6= m̃
}∣∣M = m

]
.

Note that when a m̃ ∈M dominates all other ˜̃m 6= m̃, it also dominates m, i.e.{
yn : ∃m̃ 6= m s.t.(yn, m̃) � (yn, ˜̃m) ∀ ˜̃m 6= m̃

}
⊂ {yn : ∃m̃ 6= m s.t.(yn, m̃) � (yn,m)} .

Thus,

Pe|m ≤ P[{yn : ∃m̃ 6= m s.t.(yn, m̃) � (yn,m)}|M = m]

=
∑
V

∑
V̂ :I(P,V̂ )≥I(P,V )

∑
yn1∈F (n1)(V,V̂ ,m)

P[yn1 |M = m]
∑

U :(V̂ ,U,m−1)�(V,U,m)

∑
yn
n1+1∈TU

P
[
yn
n1+1

∣∣ x n
n1+1(r)

]
.

(2.22)

The tentative decision is not equal to m only if there is a message with a strictly higher
empirical mutual information or if there is a messages which has equal mutual information
but smaller index. This is the reason why we sum over (V̂ , U,m−1) � (V,U,m). Using the
inequality (2.15b) in the inner most two sums and then applying inequality (2.12) one gets,

Pe|m ≤ (n + 1)(|X |2+2|X |)|Y| max

(V,V̂ ,U):
I(P,V̂ )≥I(P,V )

(V̂ ,U,m−1)�(V,U,m)

e−n(αη(R/α,P,V,V̂ )+(1−α)D(U‖Wr|Π))

≤ enδ
′
ne
−nmin(V̂ ,V,U)∈Ve (αη(R/α,P,V,V̂ )+(1−α)D(U‖W r|Π))

= enδ
′
ne
−nmin(V,V̂ ,U)∈Ve (αη(R/α,P,V̂ ,V )+(1−α)D(U‖W r|Π))

(2.23)
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where Ve is the complement of Vx in V given by

Ve ,
{

(V, V̂ , U) : I (P, V ) ≥ I
(
P, V̂

)
and (PV )Y = (PV̂ )Y and (V,U,m) � (V̂ , U,m + 1)

}
.

(2.24)
Note that m in the definition of Ve is also a dummy variable. The domination rule �
divides the set V into two subsets: the erasure subset Vx and the error subset Ve.
Choosing domination rule is equivalent to choosing the Ve. Depending on the value of
αEr(

R
α , P ) and Ex, Ve is chosen according to the rule given in (2.18c) then,

(i) Ex>αEr(
R
α , P ): Ve = V. Then Vx = ∅ and Theorem 1 follows from equation (2.21).

(ii) Ex≤αEr(R
α , P ): Ve =

(V, V̂ , U) :
I (P, V ) ≥ I

(
P, V̂

)
and (PV )Y = (PV̂ )Y and

αη
(

R
α , P, V, V̂

)
+ (1− α)D (U‖W a|Π) ≤ Ex

.

Then all the (V, V̂ , U) triples satisfying αη
(

R
α , P, V, V̂

)
+(1−α)D (U‖W a|Π) ≤ Ex

are in the error subset. Thus as a result of (2.21) erasure probability is bounded as

Px ≤ e−n(Ex−δn
′
) and Theorem 1 follows from equation (2.23).

QED

2.3.5 Lower Bound to Ee(R, Ex)

In this section we use Theorem 1 to derive a lower bound to the optimal error exponent
Ee(R, Ex). We do that by optimizing the achievable performance Ee(R, Ex, α, P,Π) over α,
P and Π.

High Erasure Exponent Region (i.e. Ex > Er(R))

As a result of (2.18), ∀R ≥ 0 and ∀Ex > Er(R)

Ee(R, Ex, α, P,Π) = αEr(
R
α , P ) ≤ Er(R) ∀α, ∀P, ∀Π (2.25a)

Ee(R, Ex, α̃, P̃ ,Π) = Er(R) α̃ = 1, P̃ = arg max
P

Er(R, P ), ∀Π. (2.25b)

Thus for all (R, Ex) pairs such that Ex > Er(R) the optimal time sharing constant is 1, the
optimal input distribution is the optimal input distribution for random coding exponent at
rate R, and maximum mutual information decoding is used without ever declaring erasure.

Ee(R, Ex) = Ee(R, Ex, 1, Pr(R),Π) = Er(R) ∀R ≥ 0 ∀Ex > Er(R) (2.26)

where Pr(R) satisfies Er(R, Pr(R)) = Er(R) and Π can be any control phase type. Evidently
the benefits of error-erasure decoding is not observed in this region.

Low Erasure Exponent Region (i.e. Ex ≤ Er(R))

The benefits of error-erasure decoding are observed for (R, Ex) pairs such that Ex ≤ Er(R).
Since Er(R) is a non-negative non-increasing and convex function of R, we have

α ∈ [α∗(R, Ex), 1]⇔ Ex ≤ αEr(R
α ) ∀R ≥ 0 ∀0 < Ex ≤ Er(R)

where α∗(R, Ex) is the unique solution of the equation αEr(
R
α ) = Ex.

25



For the case Ex = 0, however, αEr(
R
α ) = 0 has multiple solutions and Theorem 1 holds

but the resulting error exponent, Ee(R, 0, α, P,Π), does not correspond to the error expo-
nent of a reliable sequence. The convention introduced below in equation (2.27) addresses
both issues at once, by choosing the minimum of those solutions as α∗(R, 0). In addition
by this convention α∗(R, Ex) is also continuous at Ex = 0: limEx→0 α

∗(R, Ex) = α∗(R, 0).

α∗(R, Ex) ,

{
R

g−1(Ex
R

)
Ex ∈ (0, Er(R)]

R
C Ex = 0

(2.27)

where g−1(·) is the inverse of the function g(r) = r
Er(r)

.

As a result equations (2.18) and (2.27), ∀R ≥ 0 and ∀0 < Ex ≤ Er(R) we have

Ee(R,Ex,α,P,Π) = αEr(
R
α ,P ) ∀α∈ [0,α∗(R, Ex)), ∀P, ∀Π (2.28a)

Ee(R,Ex,α̃,P̃ ,Π) = Er(R) α̃ = 1, P̃ = arg max
P

Er(R, P ), ∀Π. (2.28b)

Thus for all (R, Ex) pairs such that Ex ≤ Er(R) the optimal time sharing constant is in
the interval [α∗(R, Ex), 1].

For an (R, Ex, α) triple such that R ≥ 0, Ex ≤ Er(R) and α ∈ [α∗(R, Ex), 1] let
P (R, Ex, α) be

P (R, Ex, α) , {P : αEr(
R
α , P ) ≥ Ex , I (P,W ) ≥ R

α }. (2.29)

The constraint on mutual information is there to ensure that Ee(R, 0, α, P,Π) corresponds
to an error exponent for reliable sequences. The set P (R, Ex, α) is convex because Er(R, P )
and I (P,W ) are concave in P .

Note that ∀R ≥ 0 and ∀Ex ∈ (0, Er(R)],

Ee(R,Ex,α,P,Π) =αEr(
R
α , P ) ∀α∈ [α∗(R, Ex), 1], ∀P /∈ P (R, Ex, α) , ∀Π (2.30a)

Ee(R,Ex,α,P̃ ,Π) ≥αEr(R
α ) ∀α∈ [α∗(R, Ex), 1], P̃ = arg max

P
Er(

R
α , P ), ∀Π. (2.30b)

Thus as a result of (2.30) one can restrict the optimization over P to P (R, Ex, α) when
∀R ≥ 0 and ∀Ex ∈ (0, Er(R)]. For Ex = 0 case if we require the expression Ee(R, 0, α, P,Π)
to correspond to the error exponent of a reliable sequence, get the restriction given in
equation (2.30). Thus using the definition of Ee(R,Ex) given in (2.41) we get:

Ee(R, Ex) = max
α∈[α∗(R,Ex),1]

max
P∈P(R,Ex,α)

max
Π

Ee(R, Ex, α, P,Π) ∀R ≥ 0 ∀Ex ≤ Er(R)

(2.31)
where α∗(R, Ex), P (R, Ex, α) and Ee(R, Ex, α, P,Π) are given in equations (2.27), (2.29)
and (2.18).

Unlike Ee(R, Ex, α, P,Π) itself, Ee(R, Ex) as defined in (2.31) corresponds to error
exponent of reliable code sequences even at Ex = 0.

If maximizing P for the inner maximization in equation (2.31) is the same for all
α ∈ [α∗(R, Ex), 1], then the optimal value of α is α∗(R, Ex). In order to see that, we first ob-
serve that any fixed (R, Ex, P,Π) such that Er(R, P ) ≥ Ex, the function Ee(R, Ex, α, P,Π)
is convex in α for all α ∈ [α∗(R, Ex, P ), 1] where α∗(R, Ex, P ) is the unique solution
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of the equation11 αEr(
R
α , P ) = Ex, as is shown Lemma 17 in Appendix B.1. Since

the maximization preserves the convexity, maxΠEe(R,Ex, α, P,Π) is also convex in α
for all α ∈ [α∗(R, Ex, P ), 1]. Thus for any (R, Ex, P ) triple, maxΠEe(R, Ex, α, P,Π),
takes its maximum value either at the minimum possible value of α, i.e. α∗(R, Ex, P ) =
α∗(R, Ex), or at the maximum possible value of α, i.e. 1. It is shown in Appendix B.2
maxΠEe(R, Ex, α, P,Π) takes its is maximum value at α = α∗(R, Ex).

Furthermore if the maximizing P is not only the same for all α ∈ [α∗(R, Ex), 1] for a
given (R, Ex) pair but also for all (R, Ex) pairs such that Ex ≤ Er(R) then we can find the
optimal Ee(R, Ex) by simply maximizing over Π’s. In symmetric channels, for example,
the uniform distribution is the optimal distribution for all (R, Ex) pairs. Thus

Ee(R, Ex) =

{
Ee(R, Ex, 1, P

∗,Π) if Ex > Er(R, P
∗)

maxΠEe(R, Ex, α
∗(R, Ex), P ∗,Π) if Ex ≤ Er(R, P ∗)

}
(2.32)

where P ∗ is the uniform distribution.

2.3.6 Alternative Expression for The Lower Bound

The minimization given in (2.18) for Ee(R, Ex, α, P,Π) is over transition probability ma-
trices and control phase output types. In order to get a better grasp of the resulting
expression, we simplify the analytical expression in this section. We do that by expressing
the minimization in (2.18) in terms of solutions of lower dimensional optimization problems.

Let ζ(R, P,Q) be the minimum Kullback-Leibler divergence under P with respect to W
among the transition probability matrices whose mutual information under P is less than
R and whose output distribution under P is Q. It is shown in Appendix B.1 that for a
given P , ζ(R, P,Q) is convex in (R, Q) pair. Evidently for a given (P,Q) pair ζ(R, P,Q)
is a non-increasing in R. Thus for a given (P,Q) pair ζ(R, P,Q) is strictly decreasing on a
closed interval and is an extended real valued function of the form:

ζ(R, P,Q) =


∞ R < R∗l (P,Q)

min
V :

I(P,V )≤R
(PV )Y =Q

D (V ‖W |P ) R ∈ [R∗l (P,Q), R∗h(P,Q)]

minV :(PV )Y =QD (V ‖W |P ) R > R∗h(P,Q)

 (2.33a)

R∗l (P,Q) = min
V :
PV�PW
(PV )Y =Q

I (P, V ) (2.33b)

R∗h(P,Q) = minR

{
R : min

V :
I(P,V )≤R
(PV )Y =Q

D (V ‖W |P ) = minV :(PV )Y =QD (V ‖W |P )

}
(2.33c)

where PV � PW iff for all (x , y) pairs such that P (x )W (y |x ) is zero, P (x )V (y |x ) is also
zero.

Let Γ (T,Π) be the minimum Kullback-Leibler divergence with respect to Wr under Π,
among the U ’s whose Kullback-Leibler divergence with respect to Wa under Π is less than
or equal to T .

Γ (T,Π) , min
U :D(U‖Wa|Π)≤T

D (U‖W r|Π) (2.34)

11Evidently we need to make a minor modification for Ex = 0 case as before to ensure that we consider
only the Ẽe(R, Ex, α, P,Π)’s that correspond to the reliable sequences: α∗(R, 0, P ) = R

I(P,W )
.
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For a given Π, Γ (T,Π) is non-increasing and convex in T , thus Γ (T,Π) is strictly decreasing
in T on a closed interval. An equivalent expressions for Γ (T,Π) and boundaries of this closed
interval is derived in Appendix A,

Γ (T,Π) =


∞ if T < D (U0‖W a|Π)

D (Us‖W r|Π) if T = D (Us‖W a|Π) for some s ∈ [0, 1]
D (U1‖W r|Π) if T > D (U1‖W a|Π)

 (2.35)

where

Us(y|x1, x2) =


1{W (y|x2)>0}∑

ỹ:W (ỹ|x2)>0W (ỹ|x1)W (y |x 1) if s = 0

W (y|x1)1−sW (y|x2)s∑
ỹ W (ỹ|x1)1−sW (y|x2)s

if s ∈ (0, 1)
1{W (y|x1)>0}∑

ỹ:W (ỹ|x1)>0W (ỹ|x2)W (y |x 2) if s = 1


For a (R, Ex, α, P,Π) such that Ex ≤ αEr(R

α , P ), using the definition of Ee(R, Ex, α, P,Π)
in (2.18) together with the equations (2.13), (2.33) and (2.35) we get

Ee(R, Ex, α, P,Π) = min
Q,T,R1,R2:

R1≥R2≥0, T≥0

αζ(
R1
α
,P,Q)+|R2−R|++T≤Ex

αζ(R2
α , P,Q) + |R1 − R|+ + (1− α)Γ

(
T

1−α ,Π
)

For any (R, Ex, α, P,Π) above minimum is also achieved at a (Q,R1,R2, T ) such that R1 ≥
R2 ≥ R. In order to see this take any minimizing (Q∗,R∗1,R

∗
2, T

∗), then there are three
possibilities:

(a) R∗1 ≥ R∗2 ≥ R claim holds trivially.

(b) R∗1 ≥ R > R∗2, since ζ(R2
α , P,Q) is non-increasing function (Q∗,R∗1,R, T

∗), is also
minimizing, thus claim holds.

(c) R > R∗1 > R∗2, since ζ(R
α , P,Q) is non-increasing function (Q∗,R,R, T ∗), is also mini-

mizing, thus claim holds.

Thus we obtain the following expression for Ee(R, Ex, α, P,Π),

Ee(R, Ex, α, P,Π)=


αEr(

R
α , P ) if Ex>αEr(

R
α , P )

min
Q,T,R1,R2:
R1≥R2≥R, T≥0

αζ(
R1
α
,P,Q)+R2−R+T≤Ex

αζ(R2
α , P,Q) +R1 −R +(1−α)Γ

(
T

1−α ,Π
)

if Ex≤αEr(R
α , P )


(2.36)

Equation (2.36) is simplified further for symmetric channels. For symmetric channels,

Esp(R) = ζ(R, P ∗, Q∗) = min
Q

ζ(R,P ∗, Q) (2.37)

where P ∗ is the uniform input distribution and Q∗ is the corresponding output distribution
under W .

Using alternative expression for Ee(R, Ex, α, P,Π) given in (2.36) together with equa-
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tions (2.32) and (2.37) for symmetric channels we get,

Ee(R, Ex) =


Er(R) if Ex>Er(R)

max
Π

min
R′′,R′,T :

R′′≥R′≥R T≥0

α∗Esp(
R′′

α∗ )+R′−R+T≤Ex

α∗Esp

(
R′

α∗

)
+R′′ −R + (1−α∗)Γ

(
T

1−α∗ ,Π
)

if Ex≤Er(R)


(2.38)

where α∗(R, Ex) is given in equation (2.27).

Although (2.37) does not hold in general using definition of ζ(R, P,Q) and Esp(R, P )
one can assert that

ζ(R, P,Q) ≥ min
Q̃

ζ(R, P, Q̃) = Esp(R, P ). (2.39)

Note that (2.39) can be used to bound the minimized expression in (2.36) from below. In
addition recall that if the set that a minimization is done over is enlarged resulting minimum
can not increase. One can use (2.36) also to enlarge the set that minimization is done over
in (2.39). Thus we get an exponent Ẽe(R, Ex, α, P,Π) which is smaller than or equal to
Ee(R, Ex, α, P,Π) in all channels and for all Ẽe(R, Ex, α, P,Π)’s:

Ẽe(R, Ex, α, P,Π)=


αEr(

R
α , P ) if Ex>αEr(

R
α , P )

min
R′′,R′,T :

R′′≥R′≥R T≥0

αEsp(
R′′

α ,P )+R′−R+T≤Ex

αEsp

(
R′

α , P
)

+R′′ −R + (1−α)Γ
(
T

1−α ,Π
)

if Ex≤αEr(R
α , P )


(2.40)

After an investigation very similar to the one that has been done for Ee(R, Ex, α, P,Π) in
Section 2.3.5, one obtains the below expression for the optimal error exponent for reliable
sequences emerging from (2.40):

Ẽe(R, Ex) =

{
Er(R) ∀R ≥ 0 ∀Ex > Er(R)

max
α∈[α∗(R,Ex),1]

max
P∈P(R,Ex,α)

max
Π

Ẽe(R, Ex, α, P,Π) ∀R ≥ 0 ∀Ex ≤ Er(R)

}
(2.41)

where α∗(R, Ex), P (R, Ex, α) and Ẽe(R, Ex, α, P,Π) are given in equations (2.27), (2.29)
and (2.40), respectively.

2.3.7 Special Cases

Zero Erasure Exponent Case, Ee(R, 0)

Using a simple repetition-at-erasures scheme, fixed-length block codes with errors and era-
sures decoding, can be converted into variable-length block codes, with the same error
exponent. Thus the error exponents of variable-length block codes given by Burnashev in
[4] is an upper bound to the error exponent of fixed-length block codes with erasures:

Ee(R, Ex) ≤
(
1− R

C
)
D ∀R ≥ 0, Ex ≥ 0

where D = maxx ,x̃
∑

y W (y |x ) log W (y|x)
W (y|x̃) .

We show below that, Ẽe(R, 0) ≥ (1 − R
C )D. This implies for Ex = 0 for all rates

Ẽe(R, 0) = Ee(R, 0) = (1− R
C )D. In other words the two phase encoding scheme discussed
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above is optimal for Ex = 0.
Recall that for all R less than the capacity, α∗(R, 0) = R

C . Furthermore for any α ≥ R
C

P (R, 0, α) = {P : I (P,W ) ≥ R
α }

Thus for any (R, 0, α, P ) such that P ∈ P (R, 0, α), R′′ ≥ R′ ≥ R, T ≥ 0 and αEsp(
R′′

α , P )+
R′ − R + T ≤ 0, imply that R′ = R, R′′ = αI (P,W ), T = 0. Consequently

Ẽe(R, 0, α, P,Π) = α
[
Esp

(
R
α , P

)
+ I (P,W )− R

α

]
+ (1− α)D (W r‖W a|Π) (2.42)

When we maximize over Π and P ∈ P (R, 0, α) we get:

Ẽe(R, 0, α) = max
P∈P(R,0,α)

αEsp
(

R
α , P

)
+ αI (P,W )− R + (1− α)D ∀α ∈ [R

C , 1]. (2.43)

The value of Ẽe(R, 0, α) at any particular value of α is a lower bound on Ẽe(R, 0). Thus,

Ẽe(R, 0) ≥ Ẽe(R, 0, R
C )

= max
P∈P(R,0,RC )

R
CEsp (C, P ) + R

C I (P,W )− R + (1− R
C )D

= (1− R
C )D.

Indeed one need not rely on the converse for variable-length block codes in order to establish
the fact that Ẽe(R, 0) = (1 − R

C )D. The lower bound to probability of error presented in
the next section, not only recovers this particular optimality result but also upper bounds
the optimal error exponent, Ee(R, Ex), as a function of rate R and erasure exponents Ex.

Channels with non-zero Zero Error Capacity

For channels with a non-zero zero-error capacity, one can use equation (2.18) to prove
that, for any Ex < Er(R), Ee(R, Ex) = ∞. This implies that we can get error-free block
codes with this two phase coding scheme for any rate R < C and any erasure exponent
Ex ≤ Er(R). As we discuss in Section 2.5 in more detail, this is the best erasure exponent
for rates over the critical rate.

2.4 AnOuterBoundforErrorExponentErasureExponentTradeoff

In this section we derive an upper bound on Ee(R,Ex) using previously known results on
erasure free block codes with feedback and a generalization of the straight line bound of
Shannon, Gallager and Berlekamp [38]. We first present a lower bound on the minimum
error probability of block codes with feedback and erasures, in terms of that of shorter
codes in Section 2.4.1. Then in Section 2.4.2 we give a brief overview of the outer bounds
on the error exponents of erasure free block codes with feedback. Finally in Section 2.4.3,
we use the relation derived in Section 2.4.1 to tie the previously known result summarized
in Section 2.4.2 to bound Ee(R,Ex).

2.4.1 APropertyofMinimumErrorProbabilityforBlockCodeswithErasures

Shannon, Gallager and Berlekamp [38] considered fixed-length block codes, with list decod-
ing and established a family of lower bounds on the minimum error probability in terms of
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the product of minimum error probabilities of certain shorter codes. They have shown, [38,
Theorem 1], that for fixed-length block codes with list decoding and without feedback

P̃e(M, n, L) ≥ P̃e(M, n1, L1)P̃e(L1 + 1, n− n1, L) (2.44)

where P̃e(M, n, L) denotes the minimum error probability of erasure free block codes of
length n with M equally probable messages and with decoding list size L. As they pointed
out in [38], this theorem continues to hold in the case when a feedback link is available from
receiver to the transmitter; although P̃e is different when feedback is available, the relation
given in equation (2.44) still holds. They were interested in erasure free codes. We, on the
other hand, are interested in block codes which might have non-zero erasure probability.
Accordingly we will incorporate erasure probability as one of the parameters of the optimal
error probability.

The decoded set M̂ of a size L list decoder with erasures is either a subset12 of M
whose size is at most L, like the erasure-free case, or a set which only includes the erasure
symbol,13 i.e. either M̂ ⊂M such that |M̂| ≤ L or M̂ = {x}. The minimum error probability
of length n block codes, with M equally probable messages, decoding list size L and erasure
probability Px is denoted by Pe(M, n, L,Px).

Theorem 2 below bounds the error probability of block codes with erasures and list
decoding using the error probabilities of shorter codes with erasures and list decoding, like
[38, Theorem 1] does in the erasure free case. Like its counter part in the erasure free case
Theorem 2 is later used to establish outer bounds to error exponents.

Theorem 2 For any n, M , L, Px, n1 ≤ n, L1, and 0 ≤ s ≤ 1 the minimum error probability
of fixed-length block codes with feedback satisfy

Pe(M, n, L,Px) ≥ Pe(M, n1, L1, s)Pe
(
L1 + 1, n− n1, L,

(1−s)Px

Pe(M,n1,L1,s)

)
(2.45)

Note that given a (M, n, L) triple if the error probability erasure probability pairs (Pea,Pxa)
and (Peb,Pxb) are achievable then for any γ ∈ [0, 1] we can use the code achieving (Pea,Pxa)
with probability γ the code achieving (Peb,Pxb) with probability (1− γ) and achieve error
probability erasure probability pair (γPea + (1− γ)Peb, γPxa + (1− γ)Pxb). As a result for
any (M, n, L) triple the set set of achievable error probability erasure probability pairs is
convex. We will use this fact twice in order to prove Theorem 2.

Let us first consider the following lemma which bounds the achievable error probability
erasure probability, pairs for block codes with nonuniform a priori probability distribution,
in terms of block codes with a uniform a priori probability distribution but fewer messages.

Lemma 2 For any length n block code with message setM, a priori probability distribution
ϕ(·) on M, erasure probability Px, decoding list size L, and integer K

Pe ≥ Ω (ϕ,K)Pe
(
K + 1, n, L, Px

Ω(ϕ,K)

)
where Ω (ϕ,K) = min

S⊂M:|S|=|M|−K
ϕ(S). (2.46)

where Pe (K + 1, n, L,Px) is the minimum error probability of length n codes with (K + 1)
equally probable messages and decoding list size L, with feedback if the original code has
feedback and without feedback if the original code has not.

12Note that if M̂ ⊂M then x /∈ M̂ because x /∈M.
13Note that ∅ ⊂ M thus in our convention decoding to an empty list is an error rather than an erasure.
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Note that Ω (ϕ,K) is the error probability of a decoder which decodes to K messages with
the largest probability i.e. ϕ. In other words Ω (ϕ,K) is the minimum error probability for
a size K list decoder when the posterior probability distribution is ϕ.

Proof:
If Ω (ϕ,K) = 0, the theorem holds trivially. Thus we assume Ω (ϕ,K) > 0 henceforth. For
any size (K + 1) subset M′ of M, one can use the encoding scheme and the decoding rule
of the original code for M, to construct the following block code for M′:

• Encoder:∀m ∈M′ use the encoding scheme for message m in the original code, i.e.

Φ′t(m, y t−1) = Φt(m, y t−1) ∀m ∈M′, t ∈ [1, n], y t−1 ∈ Yt−1

• Decoder: ∀yn ∈ Yn if the original decoding rule declares erasure, declare erasure,
else the decode to the intersection of the original decoded list and M′.

M̂′ =

{
x if M̂ = x

M̂ ∩M′ else

This is a length n code with (K + 1) messages and decoding list size L. Furthermore for
all m in M′ the conditional error probability P ′e|m and the conditional erasure probability

P ′x|m are equal to the conditional error probability Pe|m and the conditional erasure
probability Px|m in the original code, respectively. Thus

1
K+1

∑
m∈M′

(
Pe|m ,Px|m

)
∈ Ψ(K+1, n, L) ∀M′ ⊂M such that |M′| = K+1 (2.47)

where Ψ(K + 1, n, L) is the set of achievable error probability, erasure probability pairs for
length n block codes with (K + 1) equally probable messages and with decoding list size L.

Let the smallest non-zero element of {ϕ(1), ϕ(2), . . . ϕ(|M|)} be ϕ(ξ1). For any size
(K + 1) subset of M which includes ξ1 and all whose elements have non-zero probabilities,
say M1, we have,

(Pe,Px) =
∑

m∈M
ϕ(m)(Pe|m ,Px|m)

=
∑

m∈M
[ϕ(m)− ϕ(ξ1)1{m∈M1}](Pe|m ,Px|m) + ϕ(ξ1)

∑
m∈M1

(Pe|m ,Px|m)

Equation (2.47) and the definition of Ψ(K + 1, n, L), implies that ∃ψ1 ∈ Ψ(K + 1, n, L)
such that

(Pe,Px) =
∑

m∈M
ϕ(1)(m)(Pe|m ,Px|m) + ϕ(ψ1)ψ1 (2.48)

1 = ϕ(ψ1) +
∑

m∈M
ϕ(1)(m) (2.49)

where ϕ(ψ1) = (K + 1)ϕ(ξ1) and ϕ(1)(m) = ϕ(m)− ϕ(ξ1)1{m∈M1}. Furthermore the

number of non-zero ϕ(1)(m)’s is at least one less than that of non-zero ϕ(m)’s. The
remaining probabilities, ϕ(1)(m), have a minimum, ϕ(1)(ξ2) among its non-zero elements.
One can repeat the same argument once more using that element and reduce the number
of non-zero elements at least one more. After at most |M| −K such iterations one reaches
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to a ϕ(`) which is non-zero for K or fewer messages:

(Pe,Px) =
∑`

j=1
ϕ(ψj)ψj +

∑
m∈M

ϕ(`)(m)(Pe|m ,Px|m) (2.50)

where ϕ(`)(m) ≤ ϕ(m) for all m in M and
∑

m∈M 1{ϕ(`)(m)>0} ≤ K.

In equation (2.50), the first sum is equal to a convex combination of ψj ’s multiplied by∑`
j=1 ϕ(ψj); the second sum is equal to a pair with non-negative entries. As a result of

definition of Ω (ϕ,K) given in equation (2.46),

Ω (ϕ,K) ≤
∑`

j=1
ϕ(j−1)(ψj). (2.51)

Then as a result of convexity of Ψ(K + 1, n, L) for some a ≥ 1, b1 ≥ 0 and b2 ≥ 0 we have,

∃ψ̃ ∈ Ψ(K + 1, n, L) such that (Pe,Px) = aΩ (ϕ,K) ψ̃ + (b1, b2) (2.52)

Thus from equation (2.52) and the definition of Ψ(K + 1, n, L) we have

∃ψ ∈ Ψ(K + 1, n, L) such that ( Pe
Ω(ϕ,K) ,

Px
Ω(ϕ,K)) = ψ (2.53)

Then the lemma follows from equation (2.53) and the fact that Pe(M, n, L, sx) is uniquely
determined by Ψ(M, n, L) for sx ∈ [0, 1] as follows

Pe (M, n, L, ψx) = min
ψx:(ψe,ψx)∈Ψ(M,n,L)

ψe ∀(M, n, L, ψx). (2.54)

QED
For proving Theorem 2, we express the error and erasure probabilities, as a convex

combination of error and erasure probabilities of (n − n1) long block codes with a priori
probability distribution ϕyn1 (m) = P[m| yn1 ] over the messages and apply Lemma 2 together
with convexity arguments similar to the ones above.

Proof [Theorem 2]:
For all m in M, let G(m) be the decoding region of m, G(x) be the decoding region of the
erasure symbol x and G̃(m) the error region of m:

G(m),{yn : m ∈ M̂} G(x),{yn : x ∈ M̂} G̃(m),G(m)c ∩ G(x)c. (2.55)

Then for all m ∈M,

(Pe|m ,Px|m) =
(
P
[
G̃(m)

∣∣∣m] ,P[G(x)|m]
)
. (2.56)

Note that

Px|m =
∑

yn:yn∈G(x)
P[yn|m]

=
∑

yn1
P[yn1 |m]

∑
yn
n1+1:(yn1 ,yn

n1+1)∈G(x)
P
[
yn
n1+1

∣∣m, yn1
]
.
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Then the erasure probability is

Px =
∑

m∈M
1
|M|

∑
yn1

P[yn1 |m]
∑

yn
n1+1:(yn1 ,yn

n1+1)∈G(x)
P
[
yn
n1+1

∣∣m, yn1
]

=
∑

yn1
P[yn1 ]

(∑
m∈M

P[m| yn1 ]
∑

yn
n1+1:(yn1 ,yn

n1+1)∈G(x)
P
[
yn
n1+1

∣∣m, yn1
])

=
∑

yn1
P[yn1 ] Px(yn1).

Note that for every yn1 , Px(yn1) is the erasure probability of a code of length (n− n1)
with a priori probability distribution is ϕyn1 (m) = P[m| yn1 ]. Furthermore one can write
the error probability, Pe as

Pe =
∑

yn1
P[yn1 ]

( ∑
m∈M

P[m| yn1 ]
∑

yn
n1+1:(yn1 ,yn

n1+1)∈G̃(m)
P
[
yn
n1+1

∣∣m, yn1
])

=
∑

yn1
P[yn1 ] Pe(yn1)

where Pe(yn1) is the error probability of the very same length (n− n1) code. As a result of
Lemma 2, the pair (Pe(yn1),Px(yn1)) satisfies

Pe(yn1) ≥ Ω (ϕyn1 , L1)Pe
(
L1 + 1, (n− n1), L, Px(yn1 )

Ω(ϕyn1 ,L1)

)
. (2.57)

Then for any s ∈ [0, 1].

Pe≥
∑

yn1
P[yn1 ] (1− s)Ω (ϕyn1 , L1)Pe

(
L1 + 1, (n− n1), L, Px(yn1 )

Ω(ϕyn1 ,L1)

)
≥
(∑

yn1
P[yn1 ] (1− s)Ω (ϕyn1 , L1)

)
Pe
(
L1 + 1, (n− n1), L,

∑
yn1 P[yn1 ](1−s)Px(yn1 )∑

yn1 P[yn1 ](1−s)Ω(ϕyn1 ,L1)

)
=
(∑

yn1
P[yn1 ](1−s)Ω (ϕyn1 , L1)

)
Pe
(
L1+1, (n−n1), L,

(1−s)Px∑
yn1P[yn1 ](1−s)Ω(ϕyn1 ,L1)

)
(2.58)

where the second inequality follows from the convexity of Pe(M, n, L,Px) in Px.
Now consider a code which uses the first n1 time units of the original encoding scheme as
its encoding scheme. Decoder of this new code draws a real number from [0, 1] uniformly
at random, independently of Yn1 (and the message evidently). If this number is less than s
it declares erasure else it makes a maximum likelihood decoding with list of size L1. Then
the sum on the left hand side of the below expression (2.59) is its error probability. But
that probability is lower bounded by Pe (M, n1, L1, s) which is minimum error probability
over all length n1 block codes with M messages and list size L1, i.e.∑

yn1
P[yn1 ] (1− s)Ω (ϕyn1 , L1) ≥ Pe (M, n1, L1, s) . (2.59)

Then the theorem follows from the fact that Pe(M, n, L1,Px) is decreasing function of Px

and the equations (2.58) and (2.59).
QED

Like the result of Shannon, Gallager and Berlekamp in [38, Theorem 1], Theorem 2
is correct both with and without feedback. Although Pe’s are different in each case, the
relationship between them given in equation (2.45) holds in both cases.
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2.4.2 Outer Bounds for Erasure-free Block Codes with Feedback

In this section we give a very brief overview of the previously known results on the error
probability of erasure free block codes with feedback. These result are used in Section 2.4.3
together with Theorem 2 to bound Ee(R,Ex) from above. Note that Theorem 2 only relates
the error probability of longer codes to that of the shorter ones. It does not in and of itself
bound the error probability. It is in a sense a tool to combine various bounds on the error
probability.

First bound we consider is on the error exponent of erasure free block codes with feed-
back. Haroutunian proved in [20] that, for any (Mn, n, Ln) sequence of triples, such that
limn→∞

lnMn−lnLn
n = R,

lim
n→∞

− lnPe(Mn,n,Ln,0)
n ≤ EH(R) (2.60)

where

EH(R) = min
V :C(V )≤R

max
P

D (V ‖W |P ) and C(V ) = max
P

I (P, V ) . (2.61)

Second bound we consider is on the tradeoff between the error exponents of two messages
in a two message erasure free block code with feedback. Berlekamp mentions this result
while passing in [1] and attributes it to Gallager and Shannon.

Lemma 3 For any feedback encoding scheme with two messages and erasure free decision
rule and T ≥ T0:

either Pe1 ≥ 1
4e
−nT+

√
n4 lnPmin or Pe2 >

1
4e
−nΓ(T )+

√
n4 lnPmin . (2.62)

where Pmin = minx ,y:W (y|x)W (y |x )

T0 , maxx ,x̃ − ln
∑

y:W (y|x̃)>0
W (y |x ) (2.63)

Γ (T ) , maxΠ Γ (T,Π) . (2.64)

Result is old and somewhat intuitive to those who are familiar with the calculations in the
non-feedback case; thus probably it has been proven a number of times. But we are not
aware of a published proof, hence we have included one in Appendix A.

Although Lemma 3 establishes only the converse part, (T,Γ (T )) is indeed the optimal
tradeoff for the error exponent of two messages in an erasure free block code, both with
and without feedback. Achievability of this tradeoff has already been established in [38,
Theorem 5] for the case without feedback; evidently this implies the achievability with
feedback. Furthermore T0 does have an operational meaning, it is the maximum error
exponent first message can have, while the second message has zero error probability. This
fact is also proved in Appendix A.

For some channels Lemma 3 gives us a bound on the error exponent of erasure free-codes
at zero rate, which is tighter than Haroutunian’s bound at zero rate. In order to see this
let us first define T ∗ to be

T ∗,max
T

min{T,Γ (T )}.

Note that T ∗ is finite iff
∑

y W (y |x )W (y |x̃ ) > 0 for all x , x̃ pairs. Recall that this is also
the necessary and sufficient condition of zero-error capacity, C0, to be zero. EH(R) on the
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other hand is infinite for all R ≤ R∞ like Esp(R) where R∞ is given by,

R∞ = −minP (·) maxy ln
∑

x :W (y|x)>0
P (x )

Even in the cases where EH(0) is finite, EH(0) ≥ T ∗. Following lemma uses this fact,
Lemma 3, and Theorem 2 to strengthen Haroutunian bound at low rates.

Lemma 4 For all channels with zero zero-error capacity, C0 = 0 and any sequence of Mn,
such that limn→∞

lnMn
n = R,

lim
n→∞

− lnPe(Mn,n,1,0)
n ≤ ẼH(R) (2.65)

where

ẼH(R) =

{
EH(R) if R ≥ Rht

T ∗ + EH(Rht)−T ∗
Rht

R if R ∈ [0,Rht)

}
and Rht is the unique solution of the equation T ∗ = EH(R)−RE′H(R) if it exists C otherwise.

Before going into the proof let us note that ẼH(R) is obtained simply by drawing the
tangent line to the curve (R, EH(R)) from the point (0, T ∗). The curve (R, ẼH(R)) is same
as the tangent line, for the rates between 0 and Rht, and it is same as the curve (R, EH(R))
from then on where Rht is the rate of the point at which the tangent from (0, T ∗) meets the
curve (R,EH(R)).

Proof:
For R ≥ Rht this Lemma immediately follows from Haroutunian’s result in [20] for L1 = 1.
If R < Rht then we apply Theorem 2.

Pe(M, n, L1,Px) ≥ Pe(M, ñ, L1, s)Pe
(
L1 + 1, n− ñ, L̃, (1−s)Px

Pe(M,n,L1,s)

)
(2.66)

with14 s = 0, Px = 0, L1 = 1 and ñ = b R
Rht

nc. On the other hand as a result of Lemma 3
and definition of T ∗,

Pe(2, n− ñ, L, 0) ≥ e−(n−ñ)T∗+
√
n−ñ lnPmin

8 . (2.67)

Using equations (2.66) and (2.67) one gets,

− lnPe(M,n,1,0)
n ≤ − lnPe(M,ñ,1,0)

ñ
R

Rht
+
[
1− R

Rht
+ 1

ñ

]
T ∗ +

(√
1
ñ

)(√
Rht−R

Rht

)
ln Pmin

8

where lnMn
ñ = Rht. Lemma follows by simply applying Haroutunian’s result to the first

terms on the right hand side.

QED

2.4.3 Generalized Straight Line Bound and Upper Bounds to Ee(R, Ex)

Theorem 2 bounds the minimum error probability length n block codes from below in terms
of the minimum error probability of length n1 and length (n − n1) block codes. The rate
and erasure probability of the longer code constraint the rates and erasure probabilities

14Or [38, Theorem 1] with L1 = 1 and n1 = b R
Rht

nc.
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of the shorter ones, but do not specify them completely. We use this fact together with
the improved Haroutunian’s bound on the error exponents of erasure free block codes with
feedback, i.e. Lemma 4, and the error exponent tradeoff of the erasure free feedback block
codes with two messages, i.e. Lemma 3, to obtain a family of upper bounds on the error
exponents of feedback block codes with erasure.

Theorem 3 For any DMC with C0 = 0 rate R ∈ [0, C] and Ex ∈ [0, ẼH(R)] and for any
r ∈ [rh(R, Ex), C]

Ee (R, Ex) ≤ R
r ẼH(r) + (1− R

r )Γ

(
Ex−Rr ẼH(r)

1−R
r

)
where rh(R,Ex), is the unique solution of RẼH(r)− rEx = 0.

Theorem 3 simply states that any line connecting any two points of the curves (R,Ex, Ee) =
(R, ẼH(R), ẼH(R)) and (R,Ex, Ee) = (0, Ex,Γ (Ex)) lays above the surface (R,Ex, Ee) =
(R,Ex, Ee(R,Ex)). The condition C0 = 0 is not merely a technical condition due to the
proof technique. As it is shown in Section 2.5 for channels with C0 > 0, there are zero-error
codes with erasure exponent as high as Esp(R) for any rate R ≤ C.

Proof:
We will consider the cases r ∈ (rh(R, Ex), C] and r = rh(R, Ex) separately.

• r ∈ (rh(R,Ex), C]: Apply Theorem 2, for s = 0, L = 1, L1 = 1, take the logarithm of
both sides of equation (2.45) and divide by n,

− lnPe(M,n,1,Px)
n ≤

(
n1
n

) − lnPe(M,n1,1,0)
n1

+
(
1− n1

n

) − lnPe

(
2,n−n1,1,

Px
Pe(M,n1,1,0)

)
n−n1

. (2.68)

For any (M, n,Px) sequence such that lim infn→∞
lnM
n = R, lim infn→∞

− ln Px
n = Ex,

if we choose n1 = bR
r nc since r > rh(R, Ex) we have,

lim inf
n→∞

−1
n−n1

ln Px
Pe(M,n1,1,0) = 1

1−R/r (Ex + R
r lim inf

n1→∞
lnPe(M,n1,1,0)

n1
)

≥ 1
1−R/r (Ex − ẼH(r)

> 0.

where the last step follows from our assumption that r > rh(R,Ex) and the fact that
ẼH(r) is strictly decreasing.

Assume for the moment that for any T ∈ (0, T ∗] and for any sequence of Px
(n) such

that lim infn→∞
− ln Px

(n)

n = T we have

lim inf
n→∞

− lnPe(2,n,1,Px
(n))

n ≤ Γ (T ) . (2.69)

Using equation (2.68), taking the limit as n goes to infinity and using Theorem 3 we
get

Ee (R, Ex) ≤ R
r ẼH(r) + (1− R

r )Γ
(
rEx−RẼH(r)

r−R

)
.

as long as rEx−RẼH(r)
r−R < T ∗. But this constraint holds for all r ∈ (rh(R, Ex), C]

because of the convexity of ẼH · and the fact that ẼH(0) = T ∗.
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In order to establish equation (2.69); note that if T0>0 and T ≤T0 then Γ (T )=∞.
Thus equation (2.69) holds trivially when t ≤ T0. For the case T > T0 we prove
equation (2.69) by contradiction. Assume that (2.69) is wrong. Then there exists a
block code with erasures that satisfies

P
[
G̃( ˜̃m)

∣∣∣ m̃] ≤ e−n(Γ(T )+o(1)) P[G(x)| m̃] ≤ e−n(T+o(1))

P
[
G̃(m̃)

∣∣∣ ˜̃m
]
≤ e−n(Γ(T )+o(1)) P

[
G(x)| ˜̃m

]
≤ e−n(T+o(1))

Enlarge the decoding region of m̃ by taking its union with the erasure region:

G′(m̃) = G(m̃) ∪ G(x) G′( ˜̃m) = G( ˜̃m) G′(x) = ∅.

The resulting code is an erasure free code with

P
[
G′( ˜̃m)

∣∣ m̃] ≤ e−n(Γ(T )+o(1)) and P
[
G′(m̃)

∣∣ ˜̃m
]
≤ e−n(min{Γ(T ),T}+o(1))

Since T0 < T ≤ T ∗, Γ (T ) ≥ T , this contradicts with Lemma 3 thus equation (2.69)
holds.

• r = rh(R, Ex): Apply Theorem 2, for n1 = max{` : Pe(M, `, 1, 0) > Px ln 1
Px
} s = 0,

L = 1, L1 = 1,

Pe(M, n, 1,Px) ≥ Pe(M, n1, 1, 0)Pe(2, n− n1, 1,
Px

Pe(M,n1,1,0))

≥ Px ln 1
Px
Pe(2, n− n1, 1,

1
− ln Px

) (2.70)

Note that for n1 = max{` : Pe(M, `, 1, 0) > Px ln 1
Px
},

lim inf
n→∞

n1
n E(Rn

n1
) = Ex

Then as a result of Lemma 4 we have,

lim inf
n→∞

n1
n ẼH(Rn

n1
) ≥ Ex

Then
lim inf
n→∞

n1
n ≥

R
rh(R,Ex) (2.71)

Assume for the moment that for any εn such that lim infn→∞ εn = 0

lim inf
n→∞

− lnPe(2,n,1,εn)
n ≤ Γ (0) (2.72)

Then taking the logarithm of both sides of the equation (2.70), dividing both sides
by n, taking the limit as n tends to infinity and substituting equations (2.71) and
(2.72) we get,

Ee (R, Ex) ≤ Ex + (1− Ex

ẼH(rh(R,Ex))
)Γ (0) (2.73)

For r = rh(R, Ex) Theorem 3 is equivalent to (2.73). Identity given in (2.72) follows
from an analysis similar to the one used for establishing (2.69), in which instead of
Lemma 3, we use a simple typicality argument like [12, Corollary 1.2].

QED
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Figure 2-1: Error Exponent vs Erasure Exponent: Upper and lower bounds on error exponents as

a function of erasure exponent for a binary symmetric channel with cross over probability ε = 0.25

at rate R = 8.62× 10−2 nats per channel use. Solid lines are lower bounds to the error exponent for

block codes with feedback established in Section 2.3, and without feedback established previously

[15], [12], [41]. Dashed lines are the upper bounds obtained using Theorem 3.

We have set L1 = 1 in the proof but we could have set it to any subexponential function
of block length which diverges as n diverges. By doing so we would have replaced Γ (T ) with
Ee(0, Ex), while keeping the term including ẼH(R) the same. Since the best known upper
bound for Ee(0, Ex) is Γ (Ex) for Ex ≤ T ∗ final result is same for case with feedback.15 On
the other hand for the case without feedback, which is not the main focus of this paper,
this does make a difference. By choosing L1 to be a subexponential function of block length
one can use Telatar’s converse result [41, Theorem 4.4] on the error exponent at zero rate
and zero erasure exponent without feedback.

In Figure 2-1, the upper and lower bounds we have derived for error exponent are plotted
as a function of erasure exponent for a binary symmetric channel with cross over probability
ε = 0.25 at rate R = 8.62 × 10−2 nats per channel use. Note that all four curves meet at
a point on bottom right, this is the point that corresponds to the error exponent of block
codes at rate R = 8.62 × 10−2 nats per channel use and its values are the same with and
without feedback since the channel is symmetric and the rate is over the critical rate. Any
point to the lower right of this point is achievable both with and without feedback.

15In binary symmetric channels these result can be strengthened using the value of E(0), [45]. However
those changes will improve the upper bound on error exponent only at low rates and high erasure exponents.
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2.5 Erasure Exponent of Error-Free Codes: Ex(R)

For all DMC’s which has one or more zero probability transitions, for all rates below ca-
pacity, R ≤ C and for small enough Ex’s, Ee(R, Ex) = ∞. For such (R, Ex) pairs, coding
scheme described in Section 2.3 gives an error free code. The connection between the era-
sure exponent of error free block codes, and error exponent of block codes with erasures is
not confined to this particular encoding scheme. In order to explain those connections in
more detail let us first define the error-free codes formally.

Definition 3 A sequences Q0 of block codes with feedback is an error-free reliable sequence
iff

Pe
(n) = 0 ∀n, and lim supn→∞(Px

(n) + 1
|M(n)|) = 0.

The highest rate achievable for error-free reliable codes is the zero-error capacity with
feedback and erasures, Cx,0.

If all the transition probabilities are positive i.e. minx ,y W (y |x ) = δ > 0, then P[yn|m] ≥
δn for all m ∈ M and yn ∈ Yn. Consequently Cx,0 is zero. On the other hand as an
immediate consequence of the encoding scheme suggested by Yamamoto and Itoh in [43], if
there is one or more zero probability transitions, Cx,0 is equal to channel capacity C.

Definition 4 For all DMC’s with at least one (x , y) pair such that W (y |x ) = 0, ∀R ≤ C
erasure exponent of error free block codes with feedback is defined as

Ex(R) , sup
Q0:R(Q0)≥R

Ex(Q0). (2.74)

For any erasure exponent, Ex less than Ex(R), there is an error-free reliable sequence, i.e.
there is a reliable sequence with infinite error exponent:

Ex ≤ Ex(R)⇒ Ee(R, Ex) =∞.

More interestingly if Ex > Ex(R) then Ee(R, Ex) < ∞. In order to see this let δ be the
minimum non-zero transition probability. Note that if P[yn|m] 6= 0 then P[yn|m] ≥ δn.

Thus if P
[
M̂ 6= M

]
6= 0, then P

[
M̂ 6= M

]
≥ δne−nR, i.e. − ln Pe

(n)

n ≤ R − ln δ. However if

Ex > Ex(R) then there is no error free reliable sequence at rate R with erasure exponent
Ex. Thus Pe

(n) > 0 for infinitely many n in any reliable sequence and error exponent of all
of those codes are bounded above by a finite number. Consequently,

Ex > Ex(R)⇒ Ee(R, Ex) <∞.

In a sense like the error exponent of erasure free block codes, E(R), erasure exponent of the
error free bock codes, Ex(R), gives a partial description of E(R, Ex). E(R) gives the value
of error exponents below which erasure exponent can be pushed to infinity and Ex(R) gives
the value of erasure exponent below which error exponent can be pushed to infinity.

Below the erasure exponent of zero-error codes, Ex(R), is investigated separately for two
families of channels: Channels which have a positive zero error capacity, i.e. C0 > 0 and
Channels which have zero zero-error capacity, i.e. C0 = 0.
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2.5.1 Case 1: C0 > 0

Theorem 4 For a DMC if C0 > 0 then,

EH(R) ≥ Ex(R) ≥ Esp(R).

Proof:
If zero-error capacity is strictly greater then zero, i.e. C0 > 0, then one can achieve the
sphere packing exponent, with zero error probability using a two phase scheme. In the
first phase transmitter uses a length n1 = den1Re block code without feedback with a size
L =

⌈
∂
∂REsp(R, P

∗
R)
⌉

list decoder, where P ∗R is an optimal input distribution.16 At rate R
with this list size is sphere packing exponent is achievable.17 Thus correct message is in
the list with at least probability (1− e−n1Esp(R)), see [12, Page 196]. In the second phase

transmitter uses a zero error code, of length18 n2 = d ln(L+1)
C0 e with L+ 1 messages, to tell

the receiver whether the correct message is in that list or not, and to specify the correct
message itself if it is in the list. Clearly such a feedback code with two phases is error free,
and it has erasures only when there exists an error in the first phase. Thus the erasure
probability of the over all code is upper bounded by e−n1Esp(R). Note that n2 is fixed for a
given R. Consequently as the length of the first phase, n1, diverges, the rate and erasure
exponent of (n1 + n2) long block code converges to the rate and error exponent of n1 long
code of the first phase, i.e. to R and Esp(R). Thus

Ex(R) ≥ Esp(R).

Any error free block code with erasures can be forced to decode, at erasures. The resulting
fixed-length code has an error probability no larger than the erasure probability of the
original code. However error probability of the erasure free block codes with feedback
decreases with an exponent no larger than EH(R), [20]. Thus,

Ex(R) ≤ EH(R).

This upper bound on the erasure exponent also follows from the outer bound we present
in the next section, Theorem 6.

QED
For symmetric channels EH(R) = Esp(R) and Theorem 4 determines the erasure exponent
of error-free codes on symmetric channels with non-zero zero-error-capacity completely.

2.5.2 Case 2: C0 = 0

This case is more involved than the previous one. We first establish an upper bound on
Ex(R) in terms of the improved version of Haroutunian’s bound, i.e. Lemma 4, and the
erasure exponent of error-free codes at zero rate, Ex(0). Then we show that Ex(0) is equal
to the erasure exponent error-free block codes with two messages, Ex,2, and bound Ex,2 from
below.

16P ∗R is an input distribution satisfying Esp(R) = Esp(R, P
∗
R)

17Indeed this upper bound on error probability is tight exponentially for block codes without feedback.
18For some DMCs with C0 > 0 and for some L one may need more than d ln(L+1)

C0
e time units to convey

one of the (L + 1) messages without any errors, because C0 itself is defined as a limit. But even in those
cases we are guaranteed to have a fixed amount of time for that transmissions, which does not change with
n1. Thus above argument holds as is even in those cases.
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For any M , n and L, Pe(M, n, L,Px) = 0 for large enough Px. We denote the minimum
of such Px’s by P0,x(M, n, L). Thus Ex,2 can be written as

Ex,2 = lim inf
n→∞

P0,x (2, n, 1) .

Theorem 5 For any n, M , L, n1 ≤ n and L1, minimum erasure probability of fixed-length
error-free block codes with feedback, P0,x(M, n, L), satisfies

P0,x(M, n, L) ≥ Pe(M, n1, L1, 0)P0,x (L1 + 1, n− n1, L) . (2.75)

Like Theorem 2, Theorem 5 is correct both with and without feedback. Although P0,x’s
and Pe are different in each case, the relationship between them given in equation (2.75)
holds in both cases.

Proof:
If Pe(M, n1, L1, 0) = 0 theorem holds trivially. Thus we assume henceforth that
Pe(M, n1, L1, 0) > 0. Using Theorem 2 with Px = P0,x(M, n, L) we get

Pe (M, n, L,P0,x(M, n, L)) ≥ Pe(M, n1, L1, 0)Pe
(
L1 + 1, (n− n1), L,

P0,x(M,n,L)
Pe(M,n1,L1,0)

)
.

Since Pe (M, n, L,P0,x(M, n, L)) = 0 and Pe(M, n1, L1, 0) > 0 we have,

Pe
(
L1 + 1, (n− n1), L,

P0,x(M,n,L)
Pe(M,n1,L1,0)

)
= 0.

Thus
P0,x(M,n,L)
Pe(M,n1,L1,0) ≥ P0,x (L1 + 1, (n− n1), L) .

QED
As it was done in the errors and erasures case, one can convert this into a bound on

exponents. Using the improved version of Haroutunian’s bound, i.e. Lemma 4, as an upper
bound on the error exponent of erasure free block codes one gets the following.

Theorem 6 For any rate R ≥ 0 for any α ∈
[

R
C , 1
]

Ex (R) ≤ αẼH
(

R
α

)
+ (1− α̃)Ex (0)

Now let us focus on the value of erasure exponent at zero rate:

Lemma 5 For the channels which has zero zero-error capacity, i.e. C0 = 0, erasure expo-
nent of error free block codes at zero rate Ex(0) is equal to the erasure exponent of error free
block codes with two messages Ex,2.

Note that unlike the two message case, in the zero rate case the number of messages are
increasing with block length to infinity, thus their equality is not an immediate consequence
of the definitions of Ex,2 and Ex(0).

Proof:
Using Theorem 5 for L = 1, n1 = 0 and L1 = 1

P0,x(M, n, 1) ≥ Pe(M, 0, 1)P0,x(2, n, 1)

= M−1
M P0,x(2, n, 1) ∀M, n.
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Thus as an immediate result of the definitions of Ex(0) and Ex,2, we have Ex(0) ≤ Ex,2.

In order to prove the equality one needs to prove Ex(0) ≥ Ex,2. For doing that let us
assume that it is possible to send one bit with erasure probability ε with block code of
length `(ε):

ε ≥ P0,x(2, `(ε), 1). (2.76)

One can use this code to send r bits, by repeating each bit whenever there exists an
erasure. If the block length is n = k`(ε) then a message erasure occurs only when the
number of bit erasures in k trials is more then k − r. Let #x denote the number of
erasures out of k trials then

P[#x = l] = k!
(k−l)!l!(1− ε)

k−lεl and Px =
∑k

l=k−r+1
P[#e = l] .

Thus

Px =
∑k

l=k−r+1

k!
l!(k−l)!(1− ε)

k−lεl

=
∑k

l=k−r+1

k!
l!(k−l)!

(
l
k

)l (
1− l

k

)k−l
e−[l ln

l/k
ε

+(k−l) ln
1−l/k
1−ε ]

=
∑k

l=k−r+1

k!
l!(k−l)!

(
l
k

)l (
1− l

k

)k−l
e−kD( l

k‖ε).

Then for any ε ≤ 1− r
k ,

Px ≤ e−kD(1− r
k‖ε).

Evidently Px ≥ P0,x(2r, n, 1) for n = k`(ε). Thus,

− lnP0,x(2r,n,1)
n ≥ D(1− r

k‖ε)
`(ε) .

Then for any sequence of (r, k)’s such that limk→∞
r
k = 0, we have Ex(0) ≥ − ln ε

`(ε) . Thus any

exponent achievable for two message case is achievable for zero rate case: Ex(0) ≥ Ex,2.

QED
As a result of Lemma 6 which is presented in the next section we know that

P0,x(2, n, 1) ≥ 1
2( sup
s∈(0,.5)

β(s))n where β(s) = minx ,x̃

∑
y
W (y |x )(1−s)W (y |x̃ )s.

Thus as a result of Lemma 5 we have

Ex(0) = Ex,2 ≤ − ln sup
s∈(0,.5)

β(s).

2.5.3 Lower Bounds on P0,x(2, n, 1)

Suppose at time t the correct message, M, is assigned to the input letter x and the other
message is assigned to the input letter x̃ , then the receiver can not to rule out the incorrect
message at time t with probability

∑
y:W (y|x̃)>0W (y |x ). Using this fact one can prove that,

P0,x(2, n, 1) ≥
(

minx ,x̃

∑
y:W (y|x̃)

W (y |x )

)n

. (2.77)
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Now let us consider channels whose transition probability matrix W is of the form

W =

[
1− q q

0 1

]
Let us denote the output symbol reachable from both of the input letters by ỹ . If Yn is a
sequence of ỹ ’s then the receiver can not decode without errors, i.e. it has to declare and
erasure. Thus

P0,x(2, n, 1)≥ 1
2(P[Yn = ỹ ỹ . . . ỹ |M = 1] + P[Yn = ỹ ỹ . . . ỹ |M = 2])

(a)

≥
√

P[Yn = ỹ ỹ . . . ỹ |M = 1] P[Yn = ỹ ỹ . . . ỹ |M = 2]

(b)

≥ q
n
2

where (a) hods because arithmetic mean is larger than the geometric mean, and (b) holds
because

P
[
Yt = ỹ |M = 1,Yt−1

]
P
[
Yt = ỹ |M = 2,Yt−1

]
≥ q ∀t

Indeed this is bound is tight.19 If the encoder assigns first message to the input letter
that always leads to ỹ and the second message to the other input letter in first bn2c time
instances, and does the flipped assignment in the last dn2e time instances, then an erasure

happens with a probability less than qb
n
2 c.

Note that equation (2.77) bounds P0,x(2, n, 1) only by qn, rather than qb
n
2 c. Using the

insight from this example one can establish the following lower bound,

P0,x(2, n, 1) ≥ 1
2

(
minx ,x̃

∑
y

√
W (y |x )W (y |x̃ )

)n
. (2.78)

However the bound given in equation (2.78) is decaying exponentially in n, even when all
entries of the W are positive, i.e. even when P0,x(2, n, 1) = 1. In other words it is not
superior to the bound given in equation (2.77). Following bound implies bounds given in
equations (2.77) and (2.78). Furthermore for certain channels it is strictly better than both.

Lemma 6 Minimum erasure probability of error free codes with two messages is lower
bounded as

P0,x(2, n, 1) ≥ 1
2( sup
s∈(0,.5)

β(s))n where β(s) = minx ,x̃

∑
y
W (y |x )(1−s)W (y |x̃ )s (2.79)

Proof:
For any error free code and for any s ∈ (0, 0.5)

Px = 1
2

∑
yn:P[yn|M=1]P[yn|M=2]>0

P[yn|M = 1]
(

1 + P[yn|M=2]
P[yn|M=1]

)
≥ 1

2

∑
yn:P[yn|M=1]P[yn|M=2]>0

P[yn|M = 1]
(

1 + P[yn|M=2]
P[yn|M=1]

)s
≥ 1

2

∑
yn:P[yn|M=1]P[yn|M=2]>0

P[yn|M = 1]1−s P[yn|M = 2]s . (2.80)

19I would like to thank Emre Telatar for sharing these observations about z-channel.
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Furthermore∑
yn:P[yn|M=1]P[yn|M=2]>0

P[yn|M = 1]1−s P[yn|M = 2]s

=
∑

yn−1:P[yn−1|M=1]P[yn−1|M=2]>0

P
[
yn−1

∣∣M = 1
]1−s

P
[
yn−1

∣∣M = 2
] ∑

yn:P[yn|M=1]P[yn|M=2]>0

P
[
yn|M = 1, yn−1

]1−s
P
[
yn|M = 2, yn−1

]
≥

∑
yn−1:P[yn−1|M=1]P[yn−1|M=2]>0

P
[
yn−1

∣∣M = 1
]1−s

P
[
yn−1

∣∣M = 2
]
β(s)

≥ 1

2
(β(s))n (2.81)

Lemma 6 follows equations (2.80) and (2.81) by taking the supremum over s ∈ (0, 0.5).

QED
The bound in equation (2.77) is implied by lims→0+ β(s) and bound in equation (2.78)

is implied by lims→0.5− β(s). However bound given by Lemma 6 does not follow from
the bounds given in equation (2.77) and (2.78). In order to see this note that; although∑

y W (y |x )sW (y |x̃ )1−s is convex in s on (0, 0.5) for all (x , x̃ ) pairs, β(s) is not convex in s
because of the minimization in its definition. Thus the supremum over s does not necessarily
occur on the boundaries and there exist channels for which bound given in Lemma 6 is
strictly better than the bounds given in (2.77) and (2.78). Following is the transition
probabilities of one such channel.

W =

0.1600 0.0200 0.2200 0.3000 0.3000
0.0900 0.4000 0.2700 0.0002 0.2398
0.1800 0.2000 0.3000 0.3200 0


lims→0+ β(s) = 0.7, lims→0.5− β(s) = 0.7027, β(0.18) = 0.7299.

2.6 Conclusions

In the erasure-free case, the error exponent is not known for a general DMC with feedback.
It is not even known if it is still upper bounded by sphere packing exponent for non-
symmetric DMCs. However for the case with erasures, at zero erasure exponent, the value
of error exponent has been known for a long time, [4], [43]. The main aim in this chapter
was establishing upper and lower bounds that will extend the bounds at the zero erasure
exponent case gracefully and non-trivially to the positive exponents. Results of this chapter
are best understood in this framework and should be interpreted accordingly.

We derived inner bounds using a two phase encoding schemes, which are known to be
optimal at zero-erasure exponent case. We have improved their performance at positive
erasure exponent values by choosing relative durations of the phases properly and by using
an appropriate decoder. However within each phase the assignment of messages to input
letters is fixed. In a general feedback encoder, on the other hand, assignment of the messages
to input symbols at each time can depend on the previous channel outputs and such encoding
schemes have proven to improve the error exponent at low rates, [44], [14], [7], [31] for some
DMCs. Using such an encoding in the communication phase will improve the performance
at low rates. In addition instead of committing to a fixed duration for the communication
phase one might consider using a stopping time to switch from communication phase to
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the control phase. However in order to apply those ideas effectively for a general DMC,
it seems one first needs to solve the problem for the erasure-free block codes for a general
DMC. The analysis presented in Chapter 4 is a step in that direction.

We derived the outer bounds without making any assumption about the feedback en-
coding scheme. Thus they are valid for any fixed-length block code with feedback and
erasures. The principal idea of the straight line bound is making use of the bounds derived
for different rate and erasure exponent points by taking their convex combinations. This
approach can be interpreted as a generalization of the outer bounds used for variable-length
block codes, [4], [2]. As it was the case for the inner bounds, it seems in order to improve
the outer bounds one needs establish outer bounds on some related problems: on the er-
ror exponents of erasure free block codes with feedback and on the error exponent erasure
exponent trade of at zero rate.
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Chapter 3

Bit-Wise Unequal Error Protection
for Variable-Length Block Codes1

In the classic framework for point to point communication, [36], there is a tacit assump-
tion that any error event is as undesirable as any other error event. Consequently one is
only concerned with the average error probability or maximum conditional error probability
among the messages. In many applications, however, not all error events are equally unde-
sirable. In those situations one can group the error events into different classes and analyze
probabilities of these classes of error events separately. In order to prioritize protection
against one or the other class of error events, corresponding error exponent is increased at
the expense of the other error exponents.

This information theoretic perspective on unequal error protection (UEP) was first pur-
sued by Csiszar in his work on joint source channel coding [11]. He showed that for any
integer k one can have a length n code such thatM = ∪kj=1Mj where |Mj | ≈ enRj and con-

ditional error probability of each message in each subset |Mj | is ≈ e−nEr(Rj). The problem
considered by Csiszar in [11] is a message-wise UEP problem, because the probability of
the class of error events in consideration can be expressed solely in terms of the conditional
error probabilities of the messages.

Bit-wise UEP problems are the other canonical form of UEP problems. In Bit-wise
UEP problems the error events in consideration can be expressed solely in terms of error
probabilities of different groups of bits. Consider for example the situation where the
message set is of the formM =M1×M2× . . .×Mk and |Mj | ≈ enRj . Then messages are
of the form M = (M1,M2, . . . ,Mk) and one can study the exponential decay rate of the error

probabilities associated with different groups, P
[
Mj 6= M̂j

]
for j = 1, 2, . . . , k, separately.

In order to demonstrate the stark difference between the bit-wise and the message-wise
UEP problems it is shown in [3] that ifM =M1×M2,M1 = {0, 1},M2 = {0, 1, . . . , enC}
and P

[
M2 6= M̂2

]
≈ 0 then2 − lnP[M1 6=M̂1]

n ≈ 0. Thus in the bit-wise UEP problem even

a bit can not have a positive error exponent. But as result of [11] we know that in the
message-wise UEP problem a two-element subset of the message set can have an error

exponent as high as Er(0) > 0, i.e.
− lnP[M̂6=m|M=m]

n ≈ Er(0) for m = 1, 2. As noted in
[3], there are many UEP problems of practical importance that are neither message-wise
UEP nor bit-wise UEP problems. Yet studying these special cases is a good starting point.

1The results presented in this chapter are part of a joint work with Siva K. Gorantla of UIUC, [19].
2The channel is assumed to have no zero probability transition.
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In this chapter two closely related UEP problems, the multi-layer bit-wise UEP prob-
lem and the single message message-wise UEP problem are considered. In the bit-wise
UEP problem there are multiple groups of bits each with different priorities and rates; the
aim is characterizing the tradeoff between the rates and error exponents of the layers, by
revealing the volume of achievable rate vector, exponent vector pairs. In the single message
message-wise UEP problem, failing to detect the special message when it is transmitted is
much more costly than failing to detect ordinary messages and we characterize the tradeoff
between best missed detection exponent of a message of the code and over all error exponent
of the code. Both of these problems were first considered in [3], for the case when overall
rate is (very close to) the channel capacity. For many of the UEP problems not only the
channel model but also the particular family of codes in consideration makes a big difference
and problems considered in this chapter are no exception. We will be investigating these
problems for variable-length block codes on DMCs, like the ones in [4].

First we formally define variable-length block codes and the two unequal error protec-
tion problems of interest. Then we present the main results of the chapter by giving the
achievable region of rate and error exponent vectors for the two problems in consideration.
For both of the problems the proofs of achievability and converse are presented in Sec-
tion 3.2 and Section 3.3 respectively. We will finish our discussion of UEP problems for
variable-length block codes by summarizing our qualitative conclusions in Section 3.4.

3.1 Model and Main Results

3.1.1 Variable-Length Block Codes

A variable-length block code on a DMC is given by a decoding time τ , an encoding scheme
Φ and a decoding rule Ψ . Decoding time τ is a stopping time with respect to the receivers
observation.3 For each y t ∈ Yt such that t < τ , encoding scheme Φ(·, y t) determines the
input letter at time (t+ 1) for each message in the message set M,

Φ(·, y t) :M→ X ∀y t : t < τ.

The decoding rule is a mapping from the set of output sequences at τ to the message set
M which determines the decoded message,

Ψ(·) : Yτ →M.

At time zero a message M chosen uniformly at random fromM is given to the transmitter;
transmitter uses the codeword associated with this message, i.e. Φ(M, ·), to convey the
message until the decoding time τ . Then the receiver decodes a message M̂ = Ψ(Yτ ). The
error probability and the rate of a variable-length block code are given by

Pe = P
[
M̂ 6= M

]
R = ln |M|

E[τ ] .

One can interpret the variable-length block codes on DMCs as trees; a detailed discussion
of this perspective is given in [2, Section II].

3In other words given Yt the value of 1{τ>t} is known, where 1{·} is the indicator function.
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3.1.2 Reliable Sequences for Variable-Length Block Codes

In order to suppress the secondary terms while discussing the main results we use the
concept of reliable sequences. In a sequence of codes we denote the error probability and
the message set of the nth code of the sequence by Pe

(n) and M(n), respectively. Similarly,
whenever necessary in order to avoid confusion, we denote the probability of an event under
the probability measure resulting from the nth code of the code sequence by P(n) [·] instead
of P[·].

A sequence of variable-length block codes Q is reliable iff its error probability vanishes
and the size of its message set diverges:

lim
n→∞

(
Pe

(n) + 1
|M(n)|

)
= 0.

The rate and the error exponent of a reliable sequence Q is defined as,

RQ, lim inf
n→∞

ln |M(n)|
E[τ (n)]

EQ, lim inf
n→∞

− ln Pe
(n)

E[τ (n)]
.

Furthermore the reliability function of the variable-length block codes is defined as,

E (R), sup
Q:RQ≥R

EQ.

Burnashev [4] determined the reliability function of variable-length block codes on DMCs
for all rates. According to [4]:

• If all entries of W (·|·) are positive then

E (R) =
(
1− R

C
)
D

where D is maximum Kullback Leibler divergence between the output distributions
of any two input letters:

D = max
x ,x̃∈X

D (W x‖W x̃ ) .

• If there are one or more zero entries4 in W (·|·), i.e. if there are two input letters x 1,
x 2 and an output letter y such that, W (y |x 1) = 0 and W (y |x 2) > 0, then for all
R < C, for large enough E[τ ] there are rate R variable-length block codes which are
error free, i.e. Pe = 0.

When Pe = 0, all of the messages and bits can have zero error probability simultaneously.
Consequently all the UEP problems are answered trivially when there is a zero probability
transition. Thus we assume hence forth that W (y |x ) > 0 for all x ∈ X and y ∈ Y and
denote the smallest transition probability by λ, i.e. minx ,y W (y |x ) = λ > 0. Furthermore
we denote the input letters that get this maximum value of Kullback Leibler divergence by
xa and x r:

D = D (W xa‖W xr) (3.1)

where W x (·) = W (·|x ).

4Note that in this situation D =∞.
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3.1.3 Exponents for UEP in Variable-Length Block Codes with Feedback

For each m ∈M, the conditional error probability is defined as,

Pe|m,P
[
M̂ 6= M

∣∣∣M = m
]
. (3.2)

In the conventional setting, either the average or the maximum of the conditional error
probabilities of the messages is studied. However, in many situations different kinds of
error events have different costs and the subtlety between different error events can not be
captured by the conditional error probabilities of the messages. In particular when different
groups of bits of the message have different importance; we need to study the error events
associated with each group separately. For doing that we consider message sets of the form
M =M1×M2× . . .×Mk and analyze the probabilities of the events M̂i 6= Mi, separately.
To that end let Pe,i for each i ∈ {1, 2, . . . , k} be

Pe,i,P
[
M̂i 6= Mi

]
(3.3)

We assume, without loss of generality, that indexing order is also the importance order for
different groups of bit, i.e.

Pe,1 ≤ Pe,2 ≤ Pe,3 ≤ . . . ≤ Pe,k. (3.4)

Definition 5 For any reliable sequence Q whose message sets M(n) are of the form

M(n) =M(n)
1 ×M(n)

2 × . . .×M(n)
k (3.5)

the rate and the error exponents of the layers are defined as,

RQ,i, lim inf
n→∞

ln |M(n)
i |

E[τ (n)]
∀i ∈ {1, 2, . . . , k}

EQ,i, lim inf
n→∞

− lnP(n)[M̂i 6=Mi]
E[τ (n)]

∀i ∈ {1, 2, . . . , k}.

Closure of the points of the form (~RQ, ~EQ) is the achievable volume of rate vector exponent
vector pairs.

In characterizing the tradeoff for the bit-wise UEP problem, the message wise UEP prob-
lem with a single special message plays a key role. In the single message message wise
UEP problem the tradeoff between exponential decay rates of Pe and minm∈M Pe|m is
studied. The operational definition of the problem in terms of reliable sequences is as
follows.

Definition 6 For any reliable sequence Q missed detection exponent is defined as:

E mdQ = lim inf
n→∞

− lnP(n)[M̂6=1|M=1]
E[τ (n)]

. (3.6)

For any rate R ∈ [0, C], error exponent E ∈ [0, (1 − R
C )D], missed detection exponent

E md(R,E ) is defined as,

E md(R,E ), sup
Q:RQ≥R, EQ≥E

E mdQ. (3.7)
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3.1.4 Main Results

The results of both the multi-layer bit-wise UEP problem and the single message message-
wise UEP problem are give in terms of the function J (R) defined below.

Definition 7

J (R), max
α,x1,x2,PX,1,PX,2:

αI(PX,1,W)+(1−α)I(PX,2,W)≥R

αD (PY ,1‖W x1) + (1− α)D (PY ,2‖W x2) (3.8a)

j(R), max
x ,PX:I(PX,W )≥R

D (PY‖W x ) (3.8b)

where PY ,i(y) =
∑

x W (y |x )PX,i(x ) for i = 1, 2 and PY(y) =
∑

x PX(x )W (y |x ).

Note that the function J (R) is the minimum concave function upper bounding the function
j(R) and J (0) = j(0) = D.

Theorem 7 A rate vector error exponent vector pair (~R, ~E ) is achievable if and only if
there exists a time sharing vector ~η such that,

E i ≤ (1−
∑k

j=1
ηj)D +

∑k

j=i+1
ηjJ

(
Rj
ηj

)
∀i ∈ {1, 2, . . . , k} (3.9a)

Ri
ηi
≤ C ∀i ∈ {1, 2, . . . , k} (3.9b)∑k

j=1
ηj ≤ 1. (3.9c)

Proof:
Use Lemma 12 for δ = −1

ln Pe
together with Lemma 9 and equation (3.27).

QED
The region of achievable (~R, ~E ) pairs is convex. In order to see this, note that if (~Ra, ~Ea)

and (~Rb, ~E b) are achievable then there exist (~Ra, ~Ea, ~ηa) and (~Rb, ~E b, ~ηb) triples satisfying
(3.9). Thus as a result of concavity of J (·), (α(~Ra, ~Ea, ~ηa)+(1−α)(~Rb, ~E b, ~ηb)) also satisfies
(3.9). Hence (α(~Ra, ~Ea) + (1− α)(~Rb, ~E b)) is also achievable because of Theorem 7 .

For the case with two priority levels the condition given in Theorem 7 leads to an
analytical expression for the optimal value of E 1 in terms of R1, R2 and E 2.

Corollary 2 For any rate pair (R1,R2) such that R1 +R2 ≤ C and error exponent E 2 such
that E 2 ≤ (1− R1+R2

C )D, the optimal value of E 1 is given by

E1(R1,R2,E 2) = E 2 +
(
1− R1

C −
E2
D
)
J
(

R2

1−R1
C −

E2
D

)
. (3.10)

Theorem 8 For any rate 0 ≤ R ≤ C and error exponent E ≤ (1 − R
C )D missed detection

exponent E md(R,E ) is given by

E md(R,E ) = E +
(
1− E

D
)
J
(

R
1− E
D

)
. (3.11)

Proof:
Use Lemma 11 for δ = −1

ln Pe
together with Lemma 8 and equation (3.19).

QED
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3.2 Achievablity

The design of the codes that achieve the optimal performance use multiple ideas at the same
time. In order to introduce those ideas one by one in a piecemeal fashion, we introduce
various families of codes and discuss their properties.

We first consider a family of fixed-length block codes without feedback or erasures and
establish an inner bound to the achievable rate, missed detection exponent pairs. The codes
achieving this tradeoff have a positive missed detection exponent but their overall error
exponent is zero, i.e. as we consider longer and longer codes the average error probability
decays to zero but subexponentially in the block length. Then we append a control phase,
like the one used by Yamamoto and Itoh in [43], to these codes to obtain a positive error
exponent. These fixed-length block codes with feedback and erasures are then used as
the building block for the variable-length block codes for the two UEP problems we are
interested in. This encoding scheme can be seen as a generalization of an encoding scheme
first suggested by Kudrayshov [22]. The key feature of the encoding scheme in [22] is the
tacit acceptance and explicit rejection strategy, which was also used in [3]. We combine this
strategy with a classic control phase with explicit acknowledgments to get a positive error
exponent for all messages/bits. The outer bounds we derive in Section 3.3 reveal that such
schemes are optimal, in terms of the decay rate of error probability with expected decoding
time, E[τ ].

3.2.1 An Achievable Scheme without Feedback

Let us first consider a parametric family of codes in terms of two input-letter-input-distribution
pairs (x 1,PX,1) and (x 2,PX,2) and a time sharing constant α. In these codes the codeword
of the special message is concatenation of αn x 1’s and (1− α)n x 2’s and the codewords for
the ordinary messages are generated via random coding with time sharing. A joint typical-
ity decoding is used for the ordinary messages, and pretty much all of the output sequences
that are not decoded to an ordinary message is decoded as the special message. The error
analysis of these codes and resulting performance are presented below.

Lemma 7 For any block length n, time sharing constant α ∈ [0, 1], input distribution input
letter pairs (x 1,PX,1) and (x 2,PX,2) there exists a fixed-length block code such that

|M| − 1 ≥ en(αI(PX,1,W)+(1−α)I(PX,2,W)−ε1(n))

Pe|m ≤ ε2(n) m = 1, 2, 3, . . . , |M| − 1

Pe|0 ≤ e−n(αD(PY ,1‖W x1)+(1−α)D(PY ,2‖W x2)−ε3(n))

where εi(n) ≥ 0 and limn→∞ εi(n) = 0 for i = 1, 2, 3.

Proof:
Recall that the output distributions resulting from PX,1 and PX,2 under W (·|·) are
denoted by PY ,1 and PY ,2:

PY ,i(y) =
∑

x
W (y |x )PX,i(x ) i = 1, 2.

Let n1 be n1 = bnαc. The codeword of the message M = 0 is the concatenation of n1 x 1’s
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and (n− n1) x 2’s. The decoding region of the first message is given by

G(0) =

{
yn : n1∆(Q

(y
n1
1 )

;PY ,1) + (n− n1)∆(Q(ynn1
);PY ,2) ≥ n3/4

}
where Q(y

n1
1 ) denotes the empirical distribution of yn1

1 and ∆(·;·) denotes the total variation

between the two distributions. Then

Pe|0 = P
[
M̂ 6= 0

∣∣∣M = 0
]

=
∑

yn /∈G(0)
P[yn|M = 0] .

For all yn /∈ G(0) we have,

n1D
(
Q(y

n1
1 )

∥∥∥W x1

)
+ (n− n1)D

(
Q(yn

n1
)

∥∥∥W x2

)
= n1D

(
Q(y

n1
1 )

∥∥∥PY ,1)+ (n− n1)D
(
Q(yn

n1
)

∥∥∥PY ,2)
+ n1

∑
y
Q(y

n1
1 )(y) ln

PY ,1(y)
W (y|x1) + (n− n1)

∑
y
Q(yn

n1
)(y) ln

PY ,2(y)
W (y|x2)

≥ n1D (PY ,1‖W x1) + (n− n1)D (PY ,2‖W x2) + 2n3/4 lnλ.

Furthermore, there are less than (n1 + 1)|Y| distinct empirical distributions in the first
phase and there are less than (n− n1 + 1)|Y| distinct empirical distributions in the second
phase. Thus

Pe|0≤(n1 + 1)|Y|(n− n1 + 1)|Y|e−n1D(PY ,1‖W x1)+(n−n1)D(PY ,2‖W x2)−2n3/4 lnλ

≤ e−n(αD(PY ,1‖W x1)+(1−α)D(PY ,2‖W x2)−ε3(n))

where ε3(n) = −2n3/4 lnλ+D+2|Y| ln(n+1)
n .

The codewords of the remaining messages are specified using a random coding argument
with the empirical typicality as follows. Consider an ensemble of codes in which first n1

entries of all the codewords are independent and identically distributed (i.i.d.) with input
distribution PX,1 and the rest of the entries are i.i.d. with the input distribution PX,2.

For each message m ∈M and codeword x n(m) ∈ X n let Γ(x n(m)) be the set of yn for
which (x n(m), yn) is typical with (α,PX1W,PX2W ):

Γ(x n(m)) = {yn : n1∆(Q(xn1 (m),yn1 );PX1W ) + (n− n1)∆(Q(xnn1+1(m),ynn1+1);PX2W ) ≤ n3/4}.

Note that Γ(x n(m)) ∩ G(0) = ∅ by definition for m = 1, 2, 3, . . . |M| − 1. Let the decoding
region of the ordinary messages be

G(m) = Γ(x n(m))
⋂(
∩m̃ 6=mΓ(x n(m̃))

)
∀m ∈ {1, 2, 3, . . . , (|M| − 1)}.

Then the average of the conditional error probability of mth message over the ensemble is
upper bounded as,

E
[
Pe|m

]
≤ P[yn /∈ Γ(x n(m))|M = m] +

∑
m̃ 6=m

P[yn ∈ {Γ(x n(m)) ∩ Γ(x n(m̃))}|M = m] .
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Let us start with bounding P[yn /∈ Γ(x n(m))|M = m]. Note if the weighted sum of the
total variations are greater than n3/4, then there exists at least one (x , y) pair such that

ζ1(x , y) + ζ2(x , y) ≥ n3/4

2|X ||Y|

where

ζ1(x , y) = n1|Q(xn1 (m),yn1 )(x , y)− PX1(x )W (y |x )|, (3.12a)

ζ2(x , y) = (n− n1)|Q(xn
n1+1(m),yn

n1+1)(x , y)− PX2(x )W (y |x )|. (3.12b)

As a result of Chebyshev’s inequality we have,

P[y /∈ Γ(x n(m))|M = m] ≤ P
[
ζ1(x , y) + ζ2(x , y) ≥ n3/4

2|X ||Y|

∣∣∣M = m
]

≤ E

[
(ζ1(x ,y)+ζ2(x ,y))2

n3/2

4|X|2|Y|2

∣∣∣∣∣M = m

]
. (3.13)

Using Schwarz inequality we get,

E
[
(ζ1(x , y) + ζ2(x , y))2

∣∣M = m
]
≤ 2E

[
ζ1(x , y)2 + ζ2(x , y)2

∣∣M = m
]
. (3.14)

Using equations(3.12), (3.13) and (3.14) we bound P[yn /∈ Γ(x n(m))|M = m] as follows,

P[yn /∈ Γ(xn(m))|M = m] ≤ 2
1
4
n

( n3/4

2|X||Y| )
2

= 2(|X ||Y|)2n−1/2.

For bounding P[yn ∈ Γ(x n(m)) ∩ Γ(x n(m̃))|M = m] terms, we use the fact that n i.i.d.
trials with probability distribution P will have an empirical type Q with probability
e−nD(Q‖P ). Furthermore n trials on the alphabet Z has less than (n + 1)|Z| different
empirical types. Thus

P[Γm ∩ Γm̃ |M = m] ≤ (n1 + 1)|X ||Y|(n− n1 + 1)|X ||Y|e−n1I(PX,1,W)−(n−n1)I(PX,2,W)−2n3/4 lnλ

≤ e−n(αI(PX,1,W)+(1−α)I(PX,2,W))eC+2|X ||Y| ln n−2n3/4 lnλ.

Hence if |M| − 1 = n−1en(αI(PX,1,W)+(1−α)I(PX,2,W))e−C−2|X ||Y| ln n+2n3/4 lnλ then∑
m̃ 6=m

P[Γm ∩ Γm̃ |M = m] ≤ 1
n .

Thus the average Pe over the ensemble is bounded as

E[Pe] ≤ 2(|X ||Y|)2

n1/2 + 1
n .

But if the ensemble average of the error probability is upper bounded like this there is, at
least one code that has this low error probability. Furthermore half of its messages have
conditional error probabilities less then twice this average. Thus lemma holds for,

ε1(n) = C+(2|X ||Y|+1) ln n−n3/4 lnλ+ln 2
n ε2(n) = (2|X ||Y|)2

n1/2 + 2
n .

QED
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Given the channel, W (·|·), and the rate 0 ≤ R ≤ C one can optimize over time-sharing
constant α, and the input letter input distribution pairs (x 1,PX,1) and (x 2,PX,2) to obtain
the best missed detection exponent achievable for a given rate with the above architecture.
As a result of Carathéodory’s Theorem, we know that one need not to do time sharing
between more than two input-letter-input-distribution pairs.

3.2.2 Error-Erasure Decoding

The codes described in Lemma 7 have large missed detection exponent for their first message;
but their over all error exponent is zero. We append them with a control phase and allow
erasures to give them a positive error exponent, like it was done in [43].

Lemma 8 For any block length n, rate 0 ≤ R ≤ C and error exponent 0 ≤ E ≤ (1− R
C )D,

there exists a block code with erasures such that,

|M| ≥ 1 + en(R−ε1(n))

Pe|m ≤ (1− E
D )−1ε2(n) min{1, e−n(E−ε3(n))} m = 1, 2, 3, . . . , |M| − 1

Pe|0 ≤ e
−n(E+(1− E

D )J
(

R
1−E/D

)
+ε3(n))

Px|m ≤ 2(1− E
D )−1ε2(n)

where εi(n) ≥ 0 and limn→∞ εi(n) = 0 for i = 1, 2, 3.

We use a two phase block code to achieve this performance. In the first phase a length n1,
rate n

n1
R code with high missed detection exponent is used to convey the message, like the

one described in Lemma 7. At the end of this phase a tentative decision is made. In the
remaining (n− n1) time instances receiver either sends the accept letter xa, if the tentative
decision is correct, or sends the reject letter x r, if the tentative decision is wrong, where
accept and reject letters are the ones described in equation (3.1). At the end of the second
phase an erasure is declared if the output sequence in the second phase is not typical with
W xa , if it is typical with W xa tentative decision becomes the final.

Proof:
Note that we have assumed R

C ≤ 1− E
D . Consequently, if we let n1 = d(1− E

D )ne we can
conclude that n

n1
R ≤ C. Then as a result of Lemma 7 and the definition of J (·) given in

equation (3.8) there exists a length n1 code such that,

|M| − 1 ≥ en1[ n
n1

R−ε1(n1)]
(3.15a)

˜Pe|m ≤ ε3(n1) m = 1, 2, 3, . . . , (|M| − 1) (3.15b)

˜Pe|0 ≤ e
−n1[J

(
n
n1

R
)
−ε2(n1)]

(3.15c)

We use this code for the first phase; in the second phase transmitter either accepts or
rejects the tentative decision, M̃, by using the input letters xa or x r for the remaining
(n− n1) time units. Whenever the empirical distribution of the second phase is not typical
with W xa , an erasure is declared. Thus decoding region for erasures is given by

G(x) = {yn(n− n1)∆(Q(ynn1+1);W xa ) ≥ n3/4}.
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Then probability of erasure for correct tentative decision is upper bounded as,

P
[
M̂ = x

∣∣∣ M̃ = m,M = m
]
≤ 2|Y|2 n−n1

n3/2

≤ 2|Y|2n−1/2 ∀m ∈M. (3.16)

The probability of non-erasure decoding when tentative decision is incorrect is upper
bounded as,

P
[
M̂ 6= x

∣∣∣ M̃ 6= m,M = M
]
≤ min{(n− n1 + 1)|Y|e−(n−n1)D−n3/4 lnλ, 1}

≤ min{e−nE+|Y| ln(n+1)−n3/4 lnλ, 1} ∀m ∈M. (3.17)

Lemma follows from the equations (3.15), (3.16), (3.17) and the following identities

n1εi(n1) ≤ nεi(n) i = 1, 2, 3 (3.18a)

Pe|m ≤ ˜Pe|mP
[
M̂ 6= x

∣∣∣ M̃ 6= m,M = m
]

∀m ∈M (3.18b)

Px|m = ˜Pe|m + P
[
M̂ = x

∣∣∣ M̃ = m,M = m
]

∀m ∈M. (3.18c)

QED

3.2.3 Message-wise UEP with Single Special Message

We use a fixed-length block code with error-and-erasure decoding like the one described
in Lemma 8 repetitively until a non-erasure decoding occurs. Resulting code is a variable-
length block code and ∀m ∈ M the conditional values of the expected decoding time and
the error probability are given by

E[τ |M = m] = n
1−Px|m

˜Pe|m
′
=

Pe|m
1−Px|m

(3.19)

3.2.4 Bit-wise UEP

Lemma 9 For any block length n, integer k, rate vector ~R, time sharing vector ~η such that

Ri
ηi
≤ C ∀i ∈ {1, 2, . . . , k} and

∑k

i=1
ηi ≤ 1 (3.20)

there exists a block code such that:

|Mi| ≥ en(Ri−ε4(n)) ∀i ∈ {1, 2, . . . k}
Px|m ≤ ε5(n) m ∈M

P
[
M̂
i
/∈ {x,mi}

∣∣∣M = m
]
≤ ε5(n)e

−n
(
ε6(n)+ηk+1D+

∑k
j=i+1 ηjJ

(
Rj
ηj

))
∀m ∈M, i ∈ {1, 2, . . . k}

where Mi = (M1,M2, . . .Mi), ηk+1 = 1−
∑k

i=1 ηi and limn→∞ εj(n) = 0 for j = 4, 5, 6.

Proof:
We use a (k + 1) phase block code to achieve this performance. In all of the phases a code
with a special message, like the one described in Lemma 7, is used. Let us consider a
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message set M of the form M1 ×M2 × · · · ×Mk as described in Section 3.1.3. Then each
message of the message set M is of the form M = (M1,M2, . . . ,Mk) where Mi ∈Mi

∀i ∈ {1, 2, . . . , k}. In the first phase a length η1n, rate R1
η1

code is used to convey M1, i.e.

M̄1 = M1. At the end of this phase a tentative decision, ˜̄M1 is made about M̄1. If ˜̄M1 6= M̄1

or if ˜̄M1 = 0 the special message is sent in the second phase, i.e. M̄2 = 0. If ˜̄M1 = M̄1 and
˜̄M1 6= 0 then M2 is sent in the second phase, i.e. M̄2 = M2. The code in the second phase

is a rate R2
η2

code of length η2n. In 3rd, 4th,. . .,kth phases same signaling is repeated. In

(k + 1)th phase a length (1−
∑k

i=1 ηi)n repetition code is used. If ˜̄Mk = M̄k and ˜̄Mk 6= 0

then M̄k+1 = 1 and the accept letter xa is sent throughout the (k + 1)th phase. If
˜̄Mk 6= M̄k or ˜̄Mk = 0 then M̄k+1 = 0 and the reject letter x r is sent throughout (k + 1)th

phase. If the output distribution in the last phase is not typical with W xa an erasure is

declared. Otherwise, the tentative decisions become the final, i.e M̂ = ( ˜̄M1,
˜̄M2 . . . ,

˜̄Mk).
The decoding region for erasures, G(x), is given by

G(x) = {yn : (n− n1)∆(Q(ynn1+1);W xa ) ≥ n3/4}.

Then the probability of erasure, when all k tentative decisions are correct, is given by

P
[
M̂ = x

∣∣∣ M̄k+1 = 1
]
≤ 2|Y|2 n−

∑k
j=1 nj

n3/2

≤ 2|Y|2n−1/2. (3.21)

The probability of not declaring an erasure when there is one or more incorrect tentative
decisions in the first k phases is given by,

P
[
M̂ 6= x

∣∣∣ M̄k+1 = 0
]
≤ (n + 1−

∑k

j=1
nj)
|Y|e−(n−

∑k
j=1 nj)D−n3/4 lnλ

≤ e−n(ηk+1D−ε3(n)). (3.22)

Furthermore, as a result of Lemma 7, we know that if Ri
ηi
≤ C , for large enough ni there

exists a code such that

|M̄i| − 1 ≥ eni(
Ri
ηi
−ε1(ni)) (3.23a)

P
[

˜̄Mi 6= M̄i

∣∣∣ M̄i = mi

]
≤ ε2(ni) (3.23b)

P
[

˜̄Mi 6= 0
∣∣∣ M̄i = 0

]
≤ e−ni(J(Ri/ηi)−ε3(ni)). (3.23c)

In the first k phases, we use those ni = bηinc long codes with rate Ri
ηi

. Then Mi is decoded

incorrectly to a non-transmitted sub-message only when M̄i, M̄i+1, . . . , M̄k+1 are all
decoded incorrectly:

P
[
M̂
i
/∈ {x,mi}

∣∣∣M = m
]
≤ P

[
˜̄Mi 6= M̄

i
∣∣∣M = m

]∏k+1

j=i+1
P
[

˜̄Mj 6= 0
∣∣∣ M̄j = 0

]
(3.24)

An erasure, on the other hand, is declared only when one or more of the M̄1, M̄2, . . . , M̄k+1
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are decoded incorrectly:

Px|m ≤
∑k+1

j=1
P
[

˜̄Mj 6= M̄j

∣∣∣ M̄j 6= 0
]
. (3.25)

Using equations (3.21), (3.22), (3.23), (3.24) and (3.25) we get

|Mi|≥ e
ni(

Ri
ηi
−ε1(ni)) (3.26a)

Px|m≤ 2|Y|2n−1/2 +
∑k

j=1
ε2(nj) (3.26b)

P
[
M̂
i
/∈{x,mi}

∣∣∣M=m
]
≤ [
∑i

j=1
ε2(nj)]e

−n(ηk+1D−ε3(n))
∏k

j=i+1
e−nj(J(Rj/ηj)−ε3(nj)). (3.26c)

Then the lemma follows from njεi(nj) ≤ nεi(n) for i = 1, 2, 3 and j = 1, 2, . . . , k for

ε4(n) = ε1(n) + C
n ε5(n) = 2(

∑k

j=1

1
ηj

)ε2(n) + 2|Y|2n−1/2 ε6(n) = kε3(n).

QED
Note that like we did in the single special message case we can use the fixed-length block

code with error-and-erasure decoding repetitively until a non-erasure decoding occurs. Then
∀m ∈M the resulting variable-length block code will satisfy

E[τ |M = m] = n
1−Px|m

P
[
M̂
i 6= mi

∣∣∣M = m
]
≤

P
[

ˆ̄Mi /∈{x,mi}
∣∣∣M=m

]
1−Px|m

. (3.27)

For a given rate vector ~R and time sharing vector ~η, Lemma 9 gives us an achievable
error exponent vector ~E . In other words a (~R, ~E ) pair is achievable if there exists a time
sharing vector ~η such that,

Ri
ηi
≤ C E i ≤ (1−

∑k

j=1
ηj)D +

∑k

j=i+1
ηjJ

(
Rj
ηj

)
.

Thus the existence of the time sharing vector ~η is a sufficient condition for the achievablity
of a (~R, ~E ) pair. We show in the following section that the existence of such a time sharing
vector ~η is also a necessary condition for the achievablity of a (~R, ~E ) pair.

3.3 Converse

Berlin et. al. [2] used the error probability of a binary query posed at a stopping time
in bounding the error probability of variable-length block codes. Later similar techniques
have been applied in [3] for establishing outer bounds in UEP problems. Our approach
is similar to that of [2] and [3] in using error probabilities associated with appropriately
chosen queries for establishing outer bounds. The novelty of our approach is in the error
events we choose to consider in our analysis.

We will start with lower bounding the expected values of certain conditional error prob-
abilities associated with these queries, in terms of the rate of decrease of the conditional
entropy of the messages in different intervals. We then use this bound, Lemma 10, to de-
rive outer bounds for the single message message-wise UEP problem and the multi-layer
bit-wise UEP problem.
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3.3.1 Missed Detection Probability and Decay Rate of Entropy

Like similar lemmas in [2] and [3], Lemma 10 bounds the error probability of a query posed
at a stopping time. However, instead of working with expected value of the error probability
of the query and making a worst case assumption on the rate of decrease of entropy; Lemma
10 works with the expected value of a certain conditional error probability and bounds it
in terms of the rate of decrease of the conditional entropy in different intervals. Above
mentioned conditional error probability, is best described using the probability distribution
defined below.

Definition 8 For a stopping time, τ̄ , smaller than or equal to τ and a subset of M, Aτ̄ ,
determined by Yτ̄ with positive conditional probability5 we define the probability distribution
P{Aτ̄}[·] on M×Yτ as follows:

P{Aτ̄}[m, yτ ],P
[
y τ̄
] P[m|y τ̄ ]1{m∈Aτ̄ }

P[M∈Aτ̄ |y τ̄ ] P
[
yττ̄+1

∣∣ y τ̄ ,m] (3.28)

where P[M ∈ Aτ̄ | y τ̄ ] =
∑

m∈Aτ̄ P[m| y τ̄ ] .

Probability distributions P{Aτ̄}[·] and P[·] have the same marginal distribution on Y τ̄ and
the same conditional distribution on Yττ̄+1 given (M,Yτ̄ ). For a given y τ̄ on the other hand

P{Aτ̄}[m| y τ̄ ] is
1{m∈Aτ̄ }

P[M∈Aτ̄ |y τ̄ ] times P[m| y τ̄ ]. Thus P{Aτ̄}[M = ·| y τ̄ ] has probability mass only
on those messages in Aτ̄ .

Lemma 10 For any variable-length block code with decoding time τ , k stopping times such
that 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τk ≤ τ and k subsets of M, Aτ1 ,Aτ2 , . . . ,Aτk , each measurable
in the corresponding σ(Yτ i) and each with positive probability,6

(1−Pe−P[M∈Aτ i]) ln 1
P{Aτi}[M̂/∈Aτi ]

≤ ln 2+

k∑
j=i

E[τ j+1−τ j ]J
(
E[H(M|Yτj )−H(M|Yτj+1 )]

E[τ j+1−τ j ]

)
(3.29)

where the probability distribution P{Aτi}[·] is defined in (3.28).

The bound on P{Aτi}

[
M̂ /∈ Aτ i

]
depends only on P[M ∈ Aτ i ] and the rate of decrease of

conditional entropy in the intervals (τ j , τ j+1] for j ≥ i. The particular choice of Aτ j for

j 6= i has no effect on the bound on P{Aτi}

[
M̂ /∈ Aτ i

]
. This property of the bound is its

main merit over bounds resulting from the previously suggested techniques.

Proof:
As a result of data processing inequality for Kullback-Leibler divergence, we have

E

[
ln P[Yτ ]

P{Aτi}
[Yτ ]

]
≥ P

[
M̂ ∈ Aτ i

]
ln

P[M̂∈Aτi ]
P{Aτi}[M̂∈Aτi ]

+ P
[
M̂ /∈ Aτ i

]
ln

P[M̂/∈Aτi ]
P{Aτi}[M̂/∈Aτi ]

.

Since h(x) = x ln 1
x −(1−x)ln 1

1−x ≤ ln 2 ∀x ∈ [0, 1] and 0 ≤ P{Aτi}

[
M̂∈Aτ i

]
≤ 1, we have

E

[
ln P[Yτ ]

P{Aτi}
[Yτ ]

]
≥ − ln 2 + P

[
M̂ /∈ Aτ i

]
ln 1

P{Aτi}[M̂/∈Aτi ]
. (3.30)

5In other words τ̄ ≤ τ and P
[
M ∈ Aτ̄ |Yτ̄

]
> 0 with probability one.

6P[M ∈ Aτi |Yτi ] > 0 with probability one for i = 1, 2, . . . , k.
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In addition,

P
[
M̂ /∈ Aτ i

]
= 1−P

[
M̂ ∈ Aτ i

]
= 1−P

[
M̂ ∈ Aτ i

∣∣∣M /∈ Aτ i
]
P[M /∈ Aτ i ]−P

[
M̂ ∈ Aτ i

∣∣∣M ∈ Aτ i]P[M ∈ Aτ i ]

≥ 1− Pe −P[M ∈ Aτ i ] . (3.31)

Thus using equations (3.30) and (3.31) we get,

(1− Pe −P[M ∈ Aτ i ]) ln 1
P{Aτi}[M̂/∈Aτi ]

≤ ln 2 + E

[
ln P[Yτ ]

P{Aτi}
[Yτ ]

]
. (3.32)

Assume for the moment that,

E

[
ln P[Yτ ]

P{Aτi}
[Yτ ]

]
≤
∑k

j=i
E[τ j+1−τ j ]J

(
E[H(M|Yτj )−H(M|Yτj+1 )]

E[τ j+1−τ j ]

)
. (3.33)

Equation (3.29), i.e. Lemma 10, follows from equation (3.32) and (3.33).

Above, we have proved the lemma by assuming equation (3.33) is valid for all i in
{1, 2, . . . , k}. We now prove equation (3.33) for i = 1, which implies the validity of
equation (3.33) for all i ∈ {1, 2, . . . , k}. Let us consider the stochastic sequence

St =

[
− ln

P
[
Ytτ1+1

∣∣∣Yτ1

]
P{Aτ1}

[
Ytτ1+1

∣∣∣Yτ1

] +
∑t

j=τ1+1
J
(
I
(
M;Yj

∣∣Yj−1
))]

1{τ1<t} (3.34)

where I
(
M;Yt

∣∣Yt−1
)

= E

[
ln

P[Yt|M,Yt−1]
P[Yt|Yt−1]

∣∣∣∣Yt−1

]
. Then

St+1 − St =

(
J
(
I
(
M;Yt+1

∣∣Yt ))− ln
P[Yt+1|Yt]

P{Aτ1}
[Yt+1|Yt]

)
1{τ1≤t}. (3.35)

Given Yt random variables M− Xt+1 − Yt+1 form a Markov chain, thus as a result of data
processing inequality for mutual information we have I

(
Xt+1;Yt+1

∣∣Yt ) > I (M;Yt+1

∣∣Yt ).
Since J (·) is a decreasing function this implies that

J
(
I
(
M;Yt+1

∣∣Yt )) ≥ J (I (Xt+1;Yt+1

∣∣Yt )) . (3.36)

Furthermore because of the definition of J (·) given in (3.8), the definition of P{Aτ1}[·]
given in (3.28) and the convexity of Kullback Leibler divergence we have

J
(
I
(
Xt+1;Yt+1

∣∣Yt )) ≥ E

[
ln

P[Yt+1|Yt]
P{Aτ1}

[Yt+1|Yt]

∣∣∣∣Yt] . (3.37)

Thus as a result of equations (3.35), (3.36) and (3.37) we have

E
[
St+1|Yt

]
≥ St. (3.38)

Recall that minx ,y W (y |x ) = λ and |J (·) | ≤ D. Hence as a result of equation (3.35)

E
[
|St+1 − St||Yt

]
≤ ln 1

λ +D. (3.39)
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As a result of (3.38), (3.39) and the fact that S0 = 0, St is a submartingale. Because of
(3.39) we can apply a version of Doob’s optional stopping theorem [40, Theorem 2,p 487]
for stopping times τ1 and τ2 such that E[τ1] ≤ E[τ2] <∞ and get E[Sτ2 ] ≥ E[Sτ1 ] = 0:

E

[
ln

P
[
Y
τ2
τ1+1

∣∣∣Yτ1

]
P{Aτ1}

[
Y
τ2
τ1+1

∣∣∣Yτ1

]
]
≤ E

[∑τ2

t=τ1+1
J
(
I
(
M;Yt

∣∣Yt−1
))]

. (3.40)

Note that as a result of the concavity of J (·) and Jensen’s inequality we have

E
[∑τ2

t=τ1+1
J
(
I
(
M;Yt

∣∣Yt−1
))]

= E[τ2 − τ1] E

[∑
t≥1

1{τ2≥t>τ1}J(I(M;Yt|Yt−1 ))
E[τ2−τ1]

]
≤ E[τ2 − τ1]J

(
E
[∑τ2

t=τ1+1 I(M;Yt|Yt−1 )
]

E[τ2−τ1]

)
. (3.41)

In order to lower bound the sum within J (·) in (3.41) consider the stochastic sequence

Vt = H(M|Yt) +
∑t

j=1
I
(
M;Yj

∣∣Yj−1
)
. (3.42)

Clearly E
[
Vt+1|Yt

]
= Vt and E[|Vt|] <∞, thus Vt is a martingale. Furthermore,

E
[
|Vt+1 − Vt||Yt

]
<∞ and E[τ1] ≤ E[τ2] <∞, thus using Doob’s optimal stopping

theorem, [40, Theorem 2, p 487] we get E[Vτ2 ] = E[Vτ1 ]:

E
[∑τ2

t=τ1+1
I
(
M;Yt

∣∣Yt−1
)]

= E[H(M|Yτ1)−H(M|Yτ2)] . (3.43)

Using equations (3.40), (3.41) and (3.43)

E

[
ln

P
[
Yττ1+1

∣∣∣Yτ1

]
P{Aτ1}

[
Yττ1+1

∣∣∣Yτ1

]
]
≤E[τ2−τ1]J

(
E[H(M|Yτ1 )−H(M|Yτ2 )]

E[τ2−τ1]

)
+ E

[
ln

P
[
Yττ2+1

∣∣∣Yτ2

]
P{Aτ1}

[
Yττ2+1

∣∣∣Yτ2

]
]

(3.44)

Repeating the arguments (3.40) through (3.44) for (τ j , τ j+1] for j = 2, 3, . . . , k we get,

E

[
ln

P
[
Yττ1+1

∣∣∣Yτ1

]
P{Aτ1}

[
Yττ1+1

∣∣∣Yτ1

]
]
≤
∑k

j=1
E[τ j+1−τ j ]J

(
E[H(M|Yτj )−H(M|Yτj+1 )]

E[τ j+1−τ j ]

)
. (3.45)

QED

3.3.2 Single Special Message

We first derive a lower bound on the minimum conditional error probability of a message
in a variable-length block code, using Lemma 10. This derivation introduces some of the
ideas used for the outer bound for the multi-layer bit-wise UEP problem.

Lemma 11 For any variable-length block code with feedback with |M| = eE[τ ]R messages
and average error probability Pe = e−E[τ ]E , and for any δ ∈ (0, 0.5)

− lnP[M̂6=m|M=m]
E[τ ] ≤ E + (1− E−ε̃

D )J
(

R−ε̃
1−E−ε̃

D

)
∀m ∈M (3.46)

where ε̃ = ε̃1D+ε̃2
1−ε̃1 , ε̃1 = Pe + δ + Pe

δ + |M|−1 and ε̃2 = ln 2−lnλδ
E[τ ]
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Lemma 11 is a generalization of [3, Theorem 8], which is tight not only for small but all
positive values of E . Furthermore unlike the proof for [3, Theorem 8] which needs previous
results like [2, Lemma 1], our proof is self sufficient.

Proof:
Let τ1,0, Aτ1,{m} and τ2 be the first time instance before τ such that one message has
a posteriori probability 1− δ or higher:

τ2,min{t : max
m̃

P
[
M = m̃|Yt

]
≥ 1− δ or t = τ}.

Let Aτ2 be the set of all messages except the most likely one, if the most likely one has a
probability (1− δ) or higher; M otherwise:

Aτ2,{m̃ ∈M : P[M = m̃|Yτ2 ] < (1− δ)}.

Since minx∈X ,y∈YW (y |x ) = λ the posterior probability of a message can not decrease by a
(multiplicative) factor less than λ in one time instance. Hence P[M ∈ Aτ2 |Yτ2 ] ≥ λδ for
all values of Yτ2 and as a result of the definition of P{Aτ̄}[m, yτ ] given in equation (3.28)
we have,

P{Aτ2}[m, yτ ] ≤ P[m, yτ ]
1{m∈Aτ2}

λδ . (3.47)

Evidently if M ∈ Aτ2 and M̂ /∈ Aτ2 then M̂ 6= M:

1{M∈Aτ2}1{M̂/∈Aτ2} ≤ 1{M̂6=M}. (3.48)

Using equations (3.47) and (3.48) we get

P{Aτ2}[m, yτ ]1{M̂/∈Aτ2} ≤ P[m, yτ ]
1{M̂6=m}

λδ .

If we sum over M×Yτ we get

P{Aτ2}

[
M̂ /∈ Aτ2

]
≤ Pe

λδ . (3.49)

Using Lemma 10, equation (3.49) and the fact that J (R) ≤ D we get

1−Pe−|M|−1

E[τ ] ln 1
P[M̂6=m|M=m]

≤ ln 2 + ηJ
(

ln |M|−H(M|Yτ2 )
ηE[τ ]

)
+ (1− η)D (3.50a)

1−Pe−P[M∈Aτ2 ]
E[τ ] ln λδ

Pe
≤ ln 2 + (1− η)D (3.50b)

where η = E[τ2]
E[τ ] .

Now we bound P[M ∈ Aτ2 ] and H(M|Yτ2) from above. As a result of Bayes’ rule

P
[
M̂ 6= M

]
= P

[
M̂ 6= M

∣∣∣Aτ2 =M
]

P[Aτ2 =M] + P
[
M̂ 6= M

∣∣∣Aτ2 6=M
]

P[Aτ2 6=M] .

Since P
[
M̂ 6= M

]
= Pe and P

[
M̂ 6= M

∣∣∣Aτ2 =M
]
≥ δ we have

Pe ≥ δP[Aτ2 =M] . (3.51)
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Using the fact that P[M ∈ Aτ2 | Aτ2 6=M] ≤ δ together with equation (3.51) and Bayes’
rule we get

P[M ∈ Aτ2 ] = P[M ∈ Aτ2 | Aτ2 6=M] P[Aτ2 6=M] + P[M ∈ Aτ2 | Aτ2 =M] P[Aτ2 =M]

≤ δ + Pe
δ . (3.52)

Note that Aτ2 has at most |M| elements and its complement, Aτ2 , has at most one
element thus,

H(M|Yτ2 ,Aτ2) ≤ ln |M| H(M|Yτ2 ,Aτ2) = 0 (3.53)

Furthermore h(x) = −x lnx− (1− x) ln(1− x) ≤ ln 2 for all x ∈ [0, 1]. Hence from
equation (3.53) we get

H(M|Yτ2) = h(P[M∈Aτ2|Yτ2 ]) + P[M∈Aτ2|Yτ2 ]H(M|Yτ2 ,Aτ2) + P[M /∈Aτ2|Yτ2 ]H(M|Yτ2 ,Aτ2)

≤ ln 2 + P[M∈Aτ2|Yτ2 ] ln |M|. (3.54)

Using equations (3.52) and (3.54) we get

E[H(M|Yτ2)] ≤ ln 2 + (δ + Pe
δ ) ln |M|. (3.55)

Using equations (3.50), (3.52) and (3.55) we get

1−ε̃1
E[τ ] ln 1

P[M̂6=m|M=m]
≤ ηJ

(
(1−ε̃1)R−ε̃2

η

)
+ (1− η)D + ε̃2 (3.56a)

1−ε̃1
E[τ ] ln 1

Pe
≤ (1− η)D + ε̃2 (3.56b)

where η = E[τ2]
E[τ ] .

Since J (R) is a concave function, it lies below its tangents, i.e. ∀R ∈ [0, C] and η ≤ R
C

d

dη

(
ηJ
(

R
η

)
+ (1− η)D

)
= J

(
R
η

)
− R

η J
′
(

R
η

)
−D

≥ 0. (3.57)

Thus the bound in equation (3.56a) has its maximum value for the maximum value of η.
Furthermore equation (3.56b) gives an upper bound on η. These two observations leads to
Lemma 11.

QED

3.3.3 Special Bits

In this section we prove an outer bound for achievable rate and error exponent vectors in
a k-level bit-wise UEP code with finite E[τ ], i.e. we derive a necessary condition that is
satisfied by all achievable (~R, ~E ,E[τ ]) triples. This leads to an outer bound to the achievable
points on rate error exponent vectors, which matches the inner bound described in Section
3.2.4 as E[τ ] increases for all reliable sequences.

63



Lemma 12 For any E[τ ], k, δ ∈ (0, 0.5), all achievable rate vector error exponent vector
pairs, (~R, ~E ) satisfy

(1− ε̃3)E i − ε̃4 ≤ (1−
∑k

j=1
ηj)D +

∑k

j=i+1
ηjJ

(
(1−ε̃3)Rj

ηj

)
i = 1, 2, . . . , k (3.58a)

(1−ε̃3)Rj−ε̃41{j=1}
ηj

≤ C i = 1, 2, . . . , k (3.58b)∑k

j=1
ηj ≤ 1 (3.58c)

for some ~η where ε̃3 = δ + Pe
δ and ε̃4 = ln 2k−lnλδ

E[τ ] .

Proof:
Let Mi be M1 ×M2 × . . .×Mi. If a member of Mi gains a posterior probability larger
than or equal to 1− δ at or before τ , τ i is the first times instance it happens and Aτ i is
the set of messages of the form (mi,mi+1, . . . ,mk) where mi 6= argmax

m̃i

P
[
m̃i
∣∣Yτ i]; else

τ i = τ and Aτ i =M:

τ i,min{t : maxmi P
[
Mi = mi

∣∣Yt] ≥ 1− δ or t = τ} (3.59)

Aτ i,{(mi,mi+1, . . . ,mk) ∈M : mi ∈Mi and P
[
Mi = mi

∣∣Yτ i] < 1− δ}. (3.60)

Recall that minx∈X ,y∈YW (y |x ) = λ, thus the posterior probability of a mi ∈Mi can not
decrease by a (multiplicative) factor less than λ in one time instance. Hence as a result of
equations (3.59) and (3.60), P[M ∈ Aτ i |Yτ i ] ≥ λδ for all values of Yτ i . Then as a result of
the definition of P{Aτi}[m, yτ ] given in equation (3.28) we have,

P{Aτi}[m, yτ ] ≤ P[m, yτ ]
1{m∈Aτi}

λδ . (3.61)

As a result of the definition of Aτ i given in equation (3.60) we have,

1{M∈Aτi}1{M̂/∈Aτi} ≤ 1{M̂i 6=Mi} (3.62)

From equations (3.61) and (3.62) we get

P{Aτi}

[
M̂ /∈ Aτ i

]
≤ P[M̂i 6=Mi]

λδ . (3.63)

Recall that we have assumed Pe,1 ≤ Pe,2 ≤ . . . ≤ Pe,k. Thus

P
[
M̂i 6= Mi

]
≤
∑

j≤i
P
[
M̂j 6= Mj

]
≤ iPe,i. (3.64)

As a result of equations (3.63), (3.64) and the fact that i ≤ k we have

P{Aτi}

[
M̂ /∈ Aτ i

]
≤ k

λδPe,i. (3.65)

Using Bayes’ rule we get

P
[
M̂i 6= Mi

]
= P

[
M̂i 6= Mi

∣∣∣Aτ i =M
]
P[Aτ i =M] + P

[
M̂i 6= Mi

∣∣∣Aτ i 6=M]P[Aτ i 6=M] .
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Plugging in the inequalities Pe ≥ P
[
M̂i 6= Mi

]
and P

[
M̂i 6= Mi

∣∣∣Aτ i =M
]
≥ δ we get

Pe ≥ δP[Aτ i =M] . (3.66)

In addition using Bayes’ rule together with equation (3.66) and P[M ∈ Aτ i | Aτ i 6=M] ≤ δ
we get

P[M ∈ Aτ i ] = P[M ∈ Aτ i | Aτ i =M] P[Aτ i =M] + P[M ∈ Aτ i | Aτ i 6=M] P[Aτ i 6=M]

≤ Pe
δ + δ. (3.67)

Using Lemma 10 together with equations (3.65) and (3.67) we get

(1− ε̃3)E i ≤ ε̃4 +
∑k+1

j=i+1
βjJ

(
f j
βj

)
i =1, 2, . . . , k (3.68)

where βj and f j are defined for j ∈ {1, 2, . . . , k + 1} as follows7

βj,
E[τ j ]−E[τ j−1]

E[τ ] f j,
E[H(M|Yτj−1 )−H(M|Yτj )]

E[τ ] . (3.69)

Note that Aτ i has at most |M| elements and its complement, Aτ i has at most |M||Mi|
elements. Thus,

H(M|Yτ i ,Aτ i) ≤ ln |M| H(M|Yτ i ,Aτ i) = ln |M||Mi| (3.70)

Using the fact that h(x) = −x lnx− (1− x) ln(1− x) ≤ ln 2 for all x ∈ [0, 1] together with
equations (3.70) we get

H(M|Yτ i) = h(P[M∈Aτ i|Yτ i ]) + P[M∈Aτ i|Yτ i ]H(M|Yτ i ,Aτ i) + P[M /∈Aτ i|Yτ i ]H(M|Yτ i ,Aτ i)

≤ ln 2 + P[M∈Aτ i|Yτ i ] ln |M|+ P[M /∈Aτ i|Yτ i ] ln |M||Mi|

= ln 2 + ln |M||Mi| + P[M ∈Aτ i|Yτ i ] ln |Mi|. (3.71)

By calculating the expected value of both sides of the inequality (3.71) we get,

E[H(M|Yτ i)] = ln 2 + ln |M||Mi| + P[M ∈Aτ i] ln |Mi|. (3.72)

Using equations (3.67) and (3.72) together with E[H(M|Yτ i)] = R −
∑i

j=1 f j we get,

R −
∑i

j=1
f j ≤ ε̃4 + R + (ε̃3 − 1)

∑i

j=1
Rj

Hence ∑i

j=1
f j ≥ (1− ε̃3)

∑i

j=1
Rj − ε̃4 i =1, 2, . . . , (k + 1) (3.73)

As a result of equation (3.43) and the fact that I
(
Yt+1;M

∣∣Yt ) ≤ C we have

f i ≤ Cβi i ∈ {1, 2, . . . , (k + 1)}. (3.74)

7We use the convention τ0 = 0 and τk+1 = τ .

65



Thus equations (3.68), (3.73), (3.74) imply that the following set of necessary conditions,
that are satisfied by all achievable (~R, ~E ) pairs for some (β, f ) = (β1,. . .,βk+1,f 1,. . .,f k+1):

(1− ε̃3)E i − ε̃4 ≤
∑k+1

j=i+1
βjJ

(
f j
βj

)
i =1, 2, . . . , k (3.75a)∑i

j=1
f j ≥ (1− ε̃3)

∑i

j=1
Rj − ε̃4 i =1, 2, . . . , (k + 1) (3.75b)

f i ≤ Cβi i =1, 2, . . . , (k + 1). (3.75c)

We show below that the necessary conditions given in equation (3.75) implies the ones in
equation (3.58). First we show that the inequality constraint in equation (3.75b) can be
replaced by an equality constraint for all i ∈ {1, 2, . . . , k} without changing the set of rate
vector, error exponent vector pairs satisfying the constraints. Since we are imposing a
more stringent condition clearly we are not expanding the set of (~R, ~E ) pairs satisfying the
constraints. In order to see why we are not curtailing the set of (~R, ~E ) pairs satisfying the
constraints, let ` be the first integer for which equation (3.75b) is a strict inequality. Let ζ
be

ζ,f ` − (1− ε̃3)R` + ε̃41{`=1}. (3.76)

Let us define (f̃ , β̃) in terms of (f , β) and ζ as

f̃ i = f i + ζ(1{i=`+1} − 1{i=`}) β̃i = βi + β`
f `
ζ(1{i=`+1} − 1{i=`}). (3.77a)

Then we have

f̃ i
β̃i

= f i
βi

+
β`

ζ
f `

β`+1+β`
ζ
f `

( f `
β `
− f `+1

β`+1
)1{i=`+1}. (3.78)

Since (f , β) satisfies (3.75c) equation (3.78) implies that (f̃ , β̃) satisfies (3.75c).

Definition of ζ given in equation (3.76), definition of (f̃ , β̃) given in (3.77) and the fact
that (f , β) satisfies (3.75b), implies that (f̃ , β̃) satisfies (3.75b). Furthermore (3.75b) is
satisfied with equality for all i ≤ ` for (f̃ , β̃) because (3.75b) is satisfied with equality for
all i < ` for (f , β).

Finally note that as result of concavity of the J (·) function we have,

β`+1J
(

f `+1

β`+1

)
+ β`

ζ
f `
J
(

f `
β`

)
≤ β̃`+1J

(
f̃ `+1

β̃`+1

)
. (3.79)

Consequently∑k+1

j=i+1
βjJ

(
f j
βj

)
≤
∑k+1

j=i+1
β̃jJ

(
f̃ j
β̃j

)
i =1, 2, . . . , k. (3.80)

Since (f , β) satisfies (3.75a), equation (3.80) ensures that (f̃ , β̃) satisfies (3.75a).

We can repeat this procedure successively and replace the inequality constraints in (3.75b)
with equality constraint in all i ∈ {1, 2, . . . , k}. Then the lemma follows from the modified
(3.75) and fact that J (·) ≤ D.

QED
Note that the necessary condition for the achievability of (~R, ~E ) pair is same as the sufficient
condition apart from the error terms that vanish as E[τ ] diverges.
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3.4 Conclusions

We have considered the single message message-wise and the multi-layer bit-wise UEP prob-
lems and characterized the achievable rate, error exponent region completely for both of
the problems.

We have shown that, like the conventional variable-length block coding schemes without
UEP, it is possible to decouple communication and bulk of the error correction both at the
transmitter and at the receiver in bit-wise UEP schemes. Unlike the conventional case,
however, in bit-wise UEP schemes there is hierarchy of bits and thus:

(a) The communication phase of each layer of bits needs to be merged with the error
correction phases of the more important layers.

(b) The error correction phase of each layer of bits needs to be merged with the error
correction phases of the more important layers.

This is done using the implicit confirmation explicit rejection protocols. They were first
suggested by Kudryashov [22] for non-block encoding schemes, it turns out that they also
play a key role in UEP schemes for block codes.

We have also suggested a new technique for establishing outer bounds to the performance
of the variable-length block codes. Lemma 10 relating the missed detection probability of
a hypothesis chosen at a stopping time to the decay rate of the entropy of the messages, is
at the core of this new technique.
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Chapter 4

Feedback Encoding Schemes for
Fixed-Length Block Codes1

In this chapter we derive upper bounds to the error probability of fixed-length block codes
with ideal feedback by modifying the analysis technique of Gallager [16]. Using encoding
schemes suggested by Zigangirov [44], D’yachkov [14] and Burnashev [7] we recover pre-
viously known best results on binary symmetric channels and improve on the previously
known best results on k-ary symmetric channels and binary input channels. Let us start
with a brief overview of the previous studies on the problem.

Berlekamp [1] analyzed the decay rate of error probability with block length in fixed-
length block codes and gave a closed form expression for the error exponent at zero rate on
binary symmetric channels (BSCs). Later Zigangirov [45] presented a rigorous proof of the
converse part of Berlekamp’s claim. In another paper Zigangirov [44] proposed an encoding
scheme, for BSCs which is optimal for all rates larger than a critical rate RZcrit

2 and at
zero rate, i.e. his encoding scheme reaches sphere packing exponent for all rates larger than
RZcrit and reaches the optimal error exponent derived by Berlekamp [1] at zero rate. After
that Burnashev [7] improved Zigangirov’s inner bound for error exponent at all positive
rates below RZcrit by modifying his encoding scheme.

D’yachkov [14] on the other hand proposed a generalization of the encoding scheme
of Zigangirov and obtained a coding theorem for general DMCs. However the optimiza-
tion problem resulting from his coding theorem, is quite involved and does not allow for
simplifications that will lead to conclusions about the error exponents of general DMCs.
In [14] after pointing out this fact, D’yachkov focuses on binary input channels and k-ary
symmetric channels and derives the error exponent expressions for these channels.

Recently Burnashev and Yamamoto investigated the problem for a noisy feedback link.
They considered the binary symmetric channel both in the forward and in the feedback
channels and derived a lower bound to the error exponent first at zero rate [8] and then at
positive rates [9].

We first bound the error probability of a maximum likelihood decoder for a feedback
encoder by modifying Gallager’s technique [16]. After that we show how to use the encoding
scheme of Zigangirov [44] and D’yackov [14] within this framework. Then in Section 4.2
we discuss the weaknesses of the analysis presented in Section 4.1 and propose a way to

1Results presented in this chapter have been reported previously in various conferences [29], [30], [31].
2The rate above which random coding exponent is equal to the sphere packing exponent is called the

critical rate Rcrit and [44] that RZcrit < Rcrit.
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improve it by using a weighted maximum likelihood decoder. Then using the encoding
scheme suggested by Burnashev [7] we obtain an upper bound to the error exponent and
compare it with the results of the previous studies. In the binary symmetric channels we
simply recover results of Burnashev in [7], in all other channel this techniques results in an
improvement.

4.1 Basic Bound on Error Probability with Feedback

In this section we introduce the basic idea behind our bounds and derive a preliminary bound
on the error probability. We start with deriving an upper bound on the error probability,
in terms of the expected value of a function of the likelihoods of the messages, ξn. Function
ξn has a natural extension of to the time instances before n, in terms of the likelihoods of
the messages at those time instances. By deriving bounds on the expected rate of decrease
in the value of ξt we bound the error probability from above. For doing that we use random
coding argument and the matching scheme of Zigangirov and D’yachkov.

4.1.1 Error Analysis

We have a discrete memoryless channel with input alphabet X , output alphabet Y and a
noiseless, delay-free feedback link from the receiver to the transmitter as before. In this
section we assume the encoding scheme Φ is deterministic, i.e. the encoding function at
time t is of the form,

Φt(·) :M×Yt−1 → X ∀t ∈ {1, 2, . . . , n}. (4.1)

We will specify Φt(·) later. For any encoding scheme the maximum likelihood decoder is
given by,34

M̂ = argmax
m

P[Yn|m] . (4.2)

A maximum likelihood decoder, decodes erroneously only when the likelihood of the actual
message is less than or equal to the likelihood of another message. Thus the indicator
function of the error event is upper bounded as,

1{M̂6=M} ≤

(∑
m 6=M P[Yn|m]λ

P[Yn|M]λ

)ρ
∀λ ≥ 0, ρ ≥ 0. (4.3)

Since Pe = E
[
1{M̂6=M}

]
, equation (4.3) implies that,

Pe ≤ E[ξn] (4.4)

where

ξt,E

(∑m 6=M P
[
Yt
∣∣m]λ

P[Yt|M]λ

)ρ∣∣∣∣∣∣Yt
 . (4.5)

Note that ξt is only a function of Yt and the encoding scheme up to t, it does not depend
on the transmitted message M.

3If there are multiple messages with same likelihood the one with the smaller index is chosen.
4We make a slight abuse of notation and use P[Yn|m] instead of P[Yn|M = m] .
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Let us assume for the moment that there exists an encoding scheme that satisfies fol-
lowing inequality for all realizations of Yt and for all t in {1, 2, . . . , n}

E
[
ξt+1|Yt

]
≤ e−G(ρ,λ)ξt (4.6)

where G(ρ, λ) is a real valued function of ρ and λ. For such an encoding scheme we have

E[ξn] ≤ e−G(ρ,λ)E[ξn−1]

≤ e−nG(ρ,λ)E[ξ0] . (4.7)

Thus using equations (4.4) and (4.7) together with the fact that ξ0 = |M − 1|ρ < enR we
can upper bound error probability as follows

Pe < e−n(G(ρ,λ)−ρR). (4.8)

Any lower bound on the achievable values of G(ρ, λ) in equation (4.6) gives us an upper
bound on the error probability via equation (4.8). In the following two subsections we
establish lower bounds to achievable values of G(ρ, λ) using a random coding argument and
using the encoding scheme of Zigangirov and D’yachkov. Before starting that discussion let
us point out a fact that will become helpful later on.

For any Yt such that ξt = 0 we have ξt+1 = . . . = ξn = 0. Hence, E
[
ξt+1|Yt

]
≤ e−G(ρ,λ)ξt

holds trivially for all real G(ρ, λ)’s. Because of that we assume from now on without loss
of generality that ξt > 0. For Yt such that ξt > 0, E

[
ξt+1|Yt

]
/ξt can be written only as a

function of the likelihoods of the messages at time t and the encoding scheme at time t+ 1
as follows,

E[ξt+1|Yt]
ξt

=

∑
m,Yt+1

P[Yt|m]
1−λρ

W (Yt+1|Φt+1(m,Yt))1−λρ

( ∑
m̃ 6=m

P[Yt|m̃]
λ
W (Yt+1|Φt+1(m̃,Yt))λ

)ρ
∑
m

P[Yt|m]1−λρ
( ∑

m̃ 6=m
P[Yt|m]λ

)ρ . (4.9)

4.1.2 Encoding for The Basic Bound on Error Probability

We use different techniques for establishing lower bounds to the achievable G(ρ, λ)’s de-
pending on the value of ρ. For ρ ∈ [0, 1] case we use a random coding argument, to show
that there exists a mapping with the given G(ρ, λ). For ρ ≥ 1 case on the other hand we
use a slightly modified version of the encoding scheme suggested by Zigangirov [44] and
D’yachkov [14] to obtain an achievable value of G(ρ, λ).

Random Coding

Consider the ensemble of assignments of messages m ∈M to x ∈ X at time t+ 1 in which
each message m is assigned to the input letter x with probability P (x ), independently of
the encoding in previous time instances Φt

1, previous channel outputs Yt and assignments
of the other messages at time t+ 1, i.e. for all realizations of previous channel outputs Yt,
for all previous assignments Φt

1 and for all (x 1, x 2, . . . , x |M|) in X |M| we have

E
[∏

m
1{Φt+1(m,Yt)=xm}

∣∣∣Yt,Φt
1

]
=
∏

m
P (x m) (4.10)

where E[·] stands for the ensemble average.
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As a result of equation (4.9) and the independence of assignments of different messages
i.e. equation (4.10) we have,

E
[
E[ξt+1|Yt]

ξt

∣∣∣∣Yt,Φt
1

]
=

∑
m,Yt+1

P[Yt|m]
1−λρE[W (Yt+1|Φt+1(m,Yt))1−λρ|Yt,Φt1]∑

m P[Yt|m]1−λρ(
∑

m̃ 6=m P[Yt|m]λ)
ρ

· E
[(∑

m̃ 6=m
P
[
Yt
∣∣ m̃]λW (Yt+1|Φt+1(m̃,Yt))λ

)ρ∣∣∣Yt,Φt
1

]
.

Using the concavity of zρ function for ρ ∈ [0, 1] together with Jensen’s inequality we get,

E
[
E[ξt+1|Yt]

ξt

∣∣∣∣Yt,Φt
1

]
≤
∑

m,Yt+1
P[Yt|m]

1−λρE[W (Yt+1|Φt+1(m,Yt))1−λρ|Yt,Φt1]∑
m P[Yt|m]1−λρ(

∑
m̃ 6=m P[Yt|m]λ)

ρ(∑
m̃ 6=m

P
[
Yt
∣∣ m̃]λ E[W (Yt+1|Φt+1(m̃,Yt))λ

∣∣∣Yt,Φt
1

])ρ
=
∑

x
P (x )µx (P, ρ, λ) (4.11)

where
µx (P, ρ, λ) =

∑
y
W (y |x )(1−ρλ)

(∑
x̃
P (x̃ )W (y |x̃ )λ

)ρ
. (4.12)

The inequality (4.11) holds universally for all realizations of Yt and Φt
1. If the ensemble

average over the mappings at time t+1 satisfies inequality (4.11) then there exists at least
one mapping of M to X that satisfies (4.11). Thus for all realizations of Yt and Φt

1 there
exists a mapping at time t+1 such that

E[ξt+1|Yt]
ξt

≤
∑

x
P (x )µx (P, ρ, λ) ∀ρ ∈ [0, 1], λ ≥ 0. (4.13)

where µx (P, ρ, λ) is defined in equation (4.12).

Zigangirov-D’yachkov Encoding Scheme

Z −D encoding scheme is given in terms of a probability distribution P on the input
alphabet X and a likelihood vector onM. The assignment of messages to the input letters
at time t+1 depends on previous channel outputs Yt and the assignments Φ1,Φ2, . . . ,Φt only
through the likelihoods of the messages P

[
Yt
∣∣m] for m ∈M. First, messages are reordered

according to their likelihoods in a decreasing fashion and tilted mass γ of all input letters
are set to zero. Then starting from the most likely message, messages are assigned to the
input letters with the smallest γ(x )/P (x ) ratio, one by one. After the assignment of each

message the tilted mass γ(x ) of the corresponding letter is increased by P
[
Yt
∣∣m]λ.

We assume without loss of generality5 ∀m, m̃ ∈M if m≤ m̃ then P
[
Yt
∣∣m]≥P

[
Yt
∣∣ m̃].

With that assumption the encoding scheme at time (t+ 1) for any P (·) is given by:

γ0(x ) = 0 ∀x ∈ X

Φt+1(m,Yt) = argmin
x∈suppP

γm−1(x)
P (x)

γm(x ) =
∑

1≤m̃≤m:Φt+1(m̃,Yt)=x
P
[
Yt
∣∣ m̃]λ .

5 If this is not the case we can rearrange the messages m ∈M, according to their likelihoods in decreasing
order. If two or more messages have same mass we order them according to their indices.
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In [44] and [14] instead of tilted likelihoods of the messages, posterior probabilities of the
messages calculated according to a “noisier” DMC V from X to Y is used for calculating
γ’s. Apart from this above encoding scheme is identical to the ones in [44] and [14].

Z-D encoding scheme distributes the tilted likelihoods over the input letters in a par-
ticular way: if we consider all the tilted mass except that of m ∈ M and normalize it to
sum up to one, it is a convex combination of P (x ) and δx ,x̃ ’s for x̃ 6= Φt+1(m,Yt), i.e.

∑
m̃ 6=m 1{Φt+1(m̃,Yt)=x}P[Yt|m̃]

λ∑
m̃ 6=m P[Yt|m̃]λ

= pm(0)P (x ) + pm(x ) ∀x ∈ X ,∀m ∈M (4.14a)

pm(0) +
∑

x∈X
pm(x ) = 1 ∀m ∈M (4.14b)

where pm ≥ 0 and pm(Φt+1(m,Yt)) = 0.

In order to see this first assume that m is the last message assigned to the the input
letter Φt+1(m,Yt). Then as a result of the construction we know that

∑
m̃<m 1{Φt+1(m̃,Yt)=Φt+1(m,Yt)}P[Yt|m̃]

λ

P (Φt+1(m,Yt)) ≤
∑

m̃<m 1{Φt+1(m̃,Yt)=x}P[Yt|m̃]
λ

P (x) ∀x ∈ X

Since no other message is assigned to Φt+1(m,Yt) after m we also have

∑
m̃ 6=m 1{Φt+1(m̃,Yt)=Φt+1(m,Yt)}P[Yt|m̃]

λ

P (Φt+1(m,Yt)) ≤
∑

m̃ 6=m 1{Φt+1(m̃,Yt)=x}P[Yt|m̃]
λ

P (x) ∀x ∈ X (4.15)

The likelihood of the messages that are assigned prior to m can not be less than P
[
Yt
∣∣m],

hence equation (4.15) holds for all the messages, not just the last message assigned to each
input letter. Consequently we can conclude that there exists a γm(·) ≥ 0 such that∑

m̃ 6=m
1{Φt+1(m̃,Yt)=x}P

[
Yt
∣∣ m̃]λ = γm(0)P (x ) + γm(x ) ∀x ∈ X , ∀m ∈M∑

m̃ 6=m
1{Φt+1(m̃,Yt)=Φt+1(m,Yt)}P

[
Yt
∣∣ m̃]λ = γm(0)P (Φt+1(m,Yt)) ∀m ∈M

If we normalize γm(x )’s over x for each m to sum up to one, we obtain equation (4.14).

Using equation (4.14b), the convexity of zρ for ρ ≥ 1 and Jensen’s inequality we get,[∑
x

(pm(0)P (x ) + pm(x ))W (Yt+1|x )λ
]ρ

=
[
pm(0)

(∑
x
P (x )W (Yt+1|x )λ

)
+
∑

x
pm(x )

(
W (Yt+1|x )λ

)]ρ
≤ pm(0)

(∑
x
P (x )W (Yt+1|x )λ

)ρ
+
∑

x
pm(x )W (Yt+1|x )λρ (4.16)

As a result of equations (4.9), (4.14a) and (4.16) for all ρ ≥ 1, λ ≥ 0 input distributions P
we have

E[ξt+1|Yt]
ξt

≤ max
x∈suppP

max{µx (P, ρ, λ), νx (ρλ)} (4.17)

where µx (P, ρ, λ) is given in equation (4.12) and νx (ρλ) is give by

νx (ρλ) = maxx̃ 6=x ,x̃∈suppP
∑

y
W (y |x )(1−ρλ)W (y |x̃ )ρλ. (4.18)
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Figure 4-1: Lower bound on the error exponent given in Theorem 9 and previously known best,

Dyachkov’s lower bound given in [14], are plotted for a ternary symmetric channel with δ = 10−4,

together with random coding exponent and sphere packing exponent. Recall that sphere packing

exponent is an upper bound on the error exponent with feedback for symmetric channels even.

4.1.3 Basic Bound Error Probability

We summarize the results of our analyzes given in (4.8), (4.13) and (4.17) as follows.

Theorem 9 For any block length n, rate R > 0, input distribution P and tilting factors
ρ ≥ 0, λ ≥ 0 there exists a feedback encoder with |M| = benRc messages whose error
probability with maximum likelihood decoder is upper bounded as,

Pe < e−n(G(P,ρ,λ)−ρR)

where

G(P, ρ, λ) =

{
− ln maxx∈suppP max{µx (P, ρ, λ), νx (ρλ)} ρ ≥ 1

− ln
∑

x P (x )µx (P, ρ, λ) ρ ∈ [0, 1]

}
(4.19)

and µx (P, ρ, λ) and νx (ρλ) are given in equations (4.12) and (4.18) respectively.

When optimized over P , ρ and λ, Theorem 9 recovers the results of Zigangirov [44] and
D’yachkov [14] for binary input channels. The improvements due to the analysis presented
in this section become salient only in channels with more than two input letters. The
channels whose transition probabilities are of the form

W (y |x ) =

{
1− δ x = y
δ

|X |−1 x 6= y
(4.20)

are called k-ary symmetric channels. On k-ary symmetric channels previously known best
performance is that of [14]. In Figure 4-1 we have plotted the exponent curves resulting
from [14] and Theorem 9 for a ternary symmetric channel with δ = 10−4 for comparison.
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4.2 Improved Error Analysis with Weighted Likelihoods and
Stopping Time

In the previous section we have required the encoding scheme to satisfy

E
[
ξt+1|Yt

]
≤ e−G(ρ,λ)ξt

for all values of Yt. In order to ensure that when finding the feasible G(ρ, λ)’s we established
bounds that hold for all possible |M| dimensional likelihood vectors. However we do know
that likelihoods of the messages will have comparable values at least for the initial part of
the block. In other words, if we calculate a posteriori probability distribution by normalizing
the likelihoods; for some part of the block, even the message with the maximum posterior
probability will have a posterior probability smaller than ε for an ε� 1. In order make use
of this fact we will keep track of the likelihoods using a stopping time and apply different
encoding schemes before and after this stopping time.

In addition in previous section we have used the same tilting factor in encoding through-
out the block. But depending on the tilted probability distribution we might want to allow
changes in tilting factor of the encoding. For doing that we need to replace the maximum
likelihood decoder with a weighted maximum likelihood decoder. Clearly maximum likeli-
hood decoder is the best decoder for any encoder in terms of the average error probability.
However, it does not necessarily lead to the best bounds on the error probability when used
in conjunction with our analysis. As we will see later in this section for certain values of
the rate, maximum weighted likelihood decoders result in better bounds than the maximum
likelihood decoder.

Burnashev [7] has already used similar techniques within the framework of [44] for
binary symmetric channels and improved the results of [44]. For binary symmetric channels
analysis presented in this section is simply an alternative derivation of Burnashev’s results
in [7]. But our analysis technique allow us to extend the gains of these observations to a
broader class of memoryless channels.

In the rest of this section we do the error analysis again from scratch in order to account
for the above mentioned modifications. We first derive an upper bound on the error proba-
bility, in terms of a general encoding scheme and a decoder. Then we specify the encoding
scheme and the decoder and obtain parametric bounds on the error probability.

4.2.1 Error Analysis Part I

Incorporating the two modifications discussed above require us to not only do the error
analysis again from scratch but also change our model of the encoder slightly. We will
assume, that at each time t receiver sends an additional random variable of its choice
Ut together with the channel output Yt to the transmitter. The transmitter receives the
feedback link symbol for time t, Zt = (Yt,Ut) before the transmission of Xt+1 and use it
in the encoding function Φt+1 at time t + 1. Thus the feedback encoder Φ is a sequence
(Φ1,Φ2, . . . ,Φn) of mappings of the form

Φt(·) :M×Zt−1 → X ∀t ∈ {1, 2, . . . , n}. (4.21)

Any performance achievable using a feedback encoder of the form given in equation (4.21)
is also achievable by deterministic encoders of the from given in equation (4.1). We use the
encoder of the form (4.21) in order to simplify the analysis.
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In this section we use weighted likelihoods, φ(Zn|m)’s, instead of likelihoods, P[Zn|m]’s,
in our decoder.

M̂ = argmax
m

φ(Zn|m) (4.22)

where φ(Zn|m) is non-negative function to be specified later.

A decoder of the form given in (4.22) decodes erroneously only when φ(Zn|M) is less
than or equal to φ(Zn|m) for some m 6= M. Hence the indicator function of the error event
is upper bounded as,

1{M̂6=M} ≤
(∑

m 6=M φ(Zn|m)

φ(Zn|M)

)ρ
∀ρ ≥ 0. (4.23)

Unlike equation (4.3) we have not included λ in the bound, simply because we include λ
within the definition of φ(·|·). We define ξt and use it to bound the error probability as we
did in the last section.

ξt,E

[(∑
m 6=M φ(Zt|m)

φ(Zt|M)

)ρ∣∣∣∣Zt] . (4.24)

As it was the case in the last section, ξt is only a function of Zt and the encoding scheme up
to t; it does not depend on the transmitted message M. Furthermore as a result of equations
(4.23) and (4.24) the conditional error probability given Zn is bounded as

E
[
1{M̂ 6=M}

∣∣∣Zn
]
≤ ξn (4.25)

In order keep track of the weighted likelihoods of the messages we use a stopping time
measurable with respect to receivers observation. Let τ be a stopping time with respect
to the stochastic sequence Z1,Z2,Z3, . . ., i.e. with respect to the receivers observation. For
each t let ζt be a high probability subset set of Zt to be determined later.6 Let ζτ be the
set of Zτ ’s such that all subsequences are in the corresponding high probability subset and
ζτ be its complement, i.e.

ζτ,{z τ : ∀t ≤ τ, z t ∈ ζt} (4.26a)

ζτ,{z τ : z τ /∈ ζτ}. (4.26b)

Then for all t, 1{ζτ}1{τ=t} is measurable in Zt, i.e.

E
[
1{ζτ}1{τ=t}

∣∣Zt] = 1{ζτ}1{τ=t}. (4.27)

Note that 1{ζτ} + 1{ζτ} = 1 and 1{τ>n} +
∑n

t=1 1{τ=t} = 1 thus we have

1{M̂6=M} ≤ 1{ζτ} + 1{ζτ}1{τ>n} + 1{ζτ}
∑n

t=1
1{τ=t}1{M̂6=M}. (4.28)

Taking the expectation of both sides of (4.28) over M and using (4.25) and (4.27) we get

E
[
1{M̂6=M}

∣∣∣Zn
]
≤ 1{ζτ} + 1{ζτ}1{τ>n} + 1{ζτ}

∑n

t=1
1{τ=t}ξn. (4.29)

6Say with probability P[ζt] = 1− e−n2 .
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If we take the expectation over Zn we get,

Pe ≤ Pe
∗ + Pe

∗
n +

∑n

t=1
Pet (4.30)

where
Pe
∗,E

[
1{ζτ}

]
(4.31a)

Pe
∗
n,E

[
1{ζτ}1{τ>n}

]
(4.31b)

Pet,E
[
1{ζτ}1{τ=t}ξn

]
. (4.31c)

In order to bound the error probability further we need to specify the decoder, high prob-
ability sets ζt, the stopping time τ and the encoding scheme.

4.2.2 Weighted Likelihood Decoder

We use the following weighted likelihood function in the decoder,

φ(Zt|m),

{
P
[
Zt
∣∣m]λa if t ≤ τ

P
[
Ztτ+1

∣∣m,Zτ
]λb P[Zτ |m]λa if t > τ

}
(4.32)

where τ is the first time instance at which a message reaches a tilted posterior probability
higher than ε.

τ,min

{
t : max

m∈M

P[Zt|m]
λa∑

m̃ P[Zt|m̃]
λa
≥ ε
}

(4.33)

For some Zn ∈ Zn the largest tilted posterior probability among the messages can be smaller
than ε in first n times; in such cases τ > n.

Note that τ given in equation (4.33) is a stopping time with respect to the stochastic
sequence Z1,Z2, . . . as we have assumed in Section 4.2.1. In fact τ is also a stopping time
with respect to the stochastic sequence Y1, (U1,Y2), (U2,Y3), . . .. In order to see this first
note that for any t receiver chooses Ut after observing (Zt−1,Yt), without knowing the actual
message M. Thus given (Zt−1,Yt), Ut is independent of M:

P
[
Ut|Zt−1,Yt

]
= P

[
Ut|Zt−1,Yt,M

]
.

Then the likelihoods of the messages depend on Ut as follows

P
[
Zt
∣∣m] = P

[
Zt−1,Yt

∣∣m] ·P[Ut|Zt−1,Yt
]
. (4.34)

Hence the receiver can determine whether τ > t or not without the knowledge of Ut, i.e. τ
is also a stopping time with respect to the stochastic sequence Y1, (U1,Y2), (U2,Y3), . . ..

4.2.3 Encoding Scheme

The encoding scheme is composed of two phases and the transition between them happens
at τ . In the first phase, [1, τ ], each message is assigned to input letters independently of the
others according to some probability distribution Pa(·) on X . Since all the messages have
small tilted posteriors we will be able to bound the expected change in ξt pretty accurately.
In the second phase, [τ + 1, n], we use an encoding scheme like the one in Section 4.1 that
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ensures at each time ξt decreases in expectation by some fixed multiplicative factor.

Encoding in [1, τ ]: Random Coding

At each time t, encoding function Φt assigns each message to an input letter. For all
(Zt−2,Yt−1) such that t ≤ τ we use Ut−1 to choose these assignments randomly using a
probability distribution Pa(·) on X . For all (Zt−2,Yt−1) such that t ≤ τ assignments of the
messages are independent of one another and (Zt−2,Yt−1):

E
[∏

m
1{Φt(m,Zt−1)=xm}

∣∣∣Zt−2,Yt−1

]
=
∏

m
E
[
1{Φt(m,Zt−1)=xm}

∣∣∣Zt−2,Yt−1

]
=
∏

m
Pa(x m). (4.35)

For such an encoding scheme following approximate equality will hold with high probability
whenever τ ≥ t ∑

m:Φt(m,Zt−1)=x
φ(Zt−1|m) ≈ P (x )

∑
m
φ(Zt−1|m).

The reason is that if t ≤ τ then tilted posterior probability of each message is small, i.e.
less than ε, and there are many of them, i.e. |M|. Thus if we assign each one of them to the
input letter x with probability Pa(x ) independently, the total tilted posterior probability of
the messages that are assigned to input letter x is very close to Pa(x ) most of the time for
all x in X . Following lemma states this fact more precisely,

Lemma 13 Let ζt be

ζt=

{
Zt : (t≥τ) or (t< τ and

∣∣∣∣∑m:Φt+1(m,Zt)=x φ(Zt|m)∑
m φ(Zt|m)

− Pa(x )

∣∣∣∣ ≤ ε1Pa(x ), ∀x ∈ X )

}
(4.36)

then

P
[
Zt ∈ ζt

∣∣Zt−1,Yt
]

= 1 t ≥ τ (4.37a)

P
[
Zt ∈ ζt

∣∣Zt−1,Yt
]
≤ 1− 2|X |e−

ε21
2ε

minx :Pa(x)>0 Pa(x) t < τ (4.37b)

Proof:
Note that (4.37a) follows from the definition of ζt−1 trivially, so we focus on (4.37b). Let
am , am(x) and σ(am(x)) be

am(x ),1{Φt(m,Zt)=x}φ(Zt|m) (4.38a)

am(x ),E
[
am(x )|Zt−1,Yt

]
(4.38b)

σ(am(x ))2,E
[
(am(x )− am(x ))2

∣∣Zt−1,Yt
]

(4.38c)

Then

am(x ) = φ(Zt|m)Pa(x ) (4.39a)

σ(am(x ))2 = φ(Zt|m)2Pa(x )(1− Pa(x ))

≤ φ(Zt|m)ε
∑

m̃
φ(Zt|m̃)Pa(x )(1− Pa(x )) (4.39b)

where the inequality follows from the fact that maxm φ(Zt|m) < ε
∑

m φ(Zt|m) when τ > t.
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As result of [10, Theorem 5.3] we have,

P
[
|
∑

m
ãm(x )| ≥ β

∣∣∣Zt−1,Yt
]
≤ 2e

− β2

2
∑

m σ(am (x))2 (4.40)

If we choose β = ε1Pa(x )
∑

m φ(Zt|m) and apply union bound over x ∈ X , Lemma 13
follows from equations (4.38), (4.39) and (4.40).

QED
The closeness of tilted posterior distribution of input letters to Pa(·) can be used to

bound ξτ from above. Note that for ζt given in equation (4.36), ∀Zt ∈ ζt and ∀Yt+1 ∈ Y we
have∣∣∣∣∑m P[Yt+1|m,Zt]

λa
φ(Zt|m)∑

m φ(Zt|m)
−
∑

x
W (Yt+1|x )λaPa(x )

∣∣∣∣ ≤ ε1∑x
W (Yt|x )λaPa(x ) (4.41)

Thus for all Zt ∈ ζτ we have

∑
m̃ φ(Zt|m̃)

φ(Zt|m)
=
∑

m̃ P[Yt|m̃,Zt−1]
λa
φ(Zt−1|m̃)

P[Yt|m,Zt−1]
λa
φ(Zt−1|m)

≤ (1 + ε1)
∑

x W (Yt|x)λaPa(x)

P[Yt|m,Zt−1]
λa

∑
m̃ φ(Zt−1|m̃)

φ(Zt−1|m)

≤ enR (1 + ε1)t
∏t

`=1

∑
x W (Y`|x)λaPa(x)

P[Y`|m,Z`−1]
λa

= enR(1+ε1)t

Γt(m) (4.42)

where Γt(m) is defined as

Γt(m),
∏t

`=1

P[Y`|m,Z`−1]
λa∑

x W (Y`|x)λaPa(x)
(4.43)

Similarly one can also prove that for all Zt ∈ ζτ we have∑
m̃ φ(Zt|m̃)

φ(Zt|m)
≥ enR(1−ε1)t

Γt(m) . (4.44)

Note that for any Zt and m,∑
m̃ 6=m

φ(Zt|m̃) ≤
∑

m̃
φ(Zt|m̃)

Thus as a result of equation (4.42)

ξt ≤ E
[(∑

m φ(Zt|m)

φ(Zt|M)

)ρ∣∣∣Zt]
= (1 + ε1)ρteρnRE

[
Γt(M)−ρ

∣∣Zt] ∀Zt ∈ ζt (4.45)

Encoding in [τ + 1, n]

In the interval [τ + 1, n] we use the deterministic encoding schemes used in Section 4.1 to
ensure a fixed multiplicative decrease in each step as before. For ξt defined in equation
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(4.24), φ(Zt|m) defined in equation (4.32) and Zt such that t ≥ τ we have,

E[ξt+1|Zt]
ξt

=

∑
m,Yt+1

P[Zt|m]W (Yt+1|Φt+1(m,Zt))1−λbρ
(∑

m̃ 6=m
φ(Zt|m̃)

φ(Zt|m)
W (Yt+1|Φt+1(m̃,Yt))λb

)ρ
∑

m P[Zt|m]
(∑

m̃ 6=m
φ(Zt|m̃)

φ(Zt|m)

)ρ (4.46)

Repeating the analysis we have done in Section (4.1) for φ(Zt|m) instead of P
[
Yt
∣∣m]λ we

can conclude that there exists an encoding scheme for which,

E
[
ξt+1|Zt

]
= e−G(Pb,ρ,λb)ξt ∀Zt : t ≥ τ (4.47)

where G(Pb, ρ, λb) is given in equation (4.19).

4.2.4 Error Analysis Part II

In this subsection we continue the error analysis we have started in Subsection 4.2.1 for the
decoder and encoder specified in Subsection 4.2.2 and Subsection 4.2.3 respectively.

Bounding Pe
∗

For ζτ defined in equation (4.26) as a result of the union bound we have

E
[
1{ζτ}

]
≤
∑n

t=1
E
[
1{ζ̄t}

]
. (4.48)

Using Lemma 13 and the definition of Pe
∗ given in equation (4.31a) we get

Pe
∗ ≤ 2|X |ne−

ε21
2ε

minx :Pa(x)>0 Pa(x). (4.49)

Bounding Pe
∗
n

If τ > n then maxm̃ φ(Zn|m̃) ≤ ε
∑

m φ(Zn|m). Thus using equation (4.42) we get,

1{τ>n}1{Zn∈ζn} ≤ 1{
maxm

Γt(m)

enR(1+ε1)n
≤ε
}

≤ 1{
Γt(M)

enR(1+ε1)n
≤ε
} (4.50)

Thus using definition of Pe
∗
n given in equation (4.31b) we get

Pe
∗
n ≤ E

[
1{

Γt(M)

enR(1+ε1)n
≤ε
}
]

≤ (εenR(1 + ε1)n)ρ0E
[
Γn(M)−ρ0

]
≤ (εenR(1 + ε1)n)ρ0

(∑
x
Pa(x )µx (Pa, ρ0, λa)

)n
(4.51)

where µx (P, ρ, λ) is given in equation (4.12).
Indeed there is a slight abuse of notation in the above array of inequalities. The expec-

tations that leads to inequality (4.51) are not the expectations resulting from the encoding
scheme described in Subsection 4.2.3 in which after τ encoder stops using random coding
and switches to a deterministic encoding scheme. In the expressions leading to inequality
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(4.51) it is assumed that random coding continues after τ . Since the equations (4.31b),
(4.45) and (4.50) hold for expectations calculated in either way; expectations calculated in
either way gives us an upper bound on Pe

∗
n.

Bounding Pet

As a result of definition of τ given in equation (4.33), if τ = t then

maxm φ(Zt|m) ≥ ε
∑

m̃
φ(Zt|m̃).

Thus using equation (4.44) we get

1{τ=t}1{Zt∈ζt} ≤ 1{
maxm

Γt(m)

enR(1−ε1)t
≥ε
}. (4.52)

Equation (4.52) is an implicit lower bound on τ . To see this first note that if Zt ∈ ζt and
t ≤ τ then

Γt(m) ≤
(

max
x ,y

W (y|x)λa∑
x̃ W (y|x̃)λaPa(x̃)

)t
. (4.53)

If in addition t = τ then t ≥ t0 where,

t0,
n(R+ln(1−ε1))+ln ε

maxx ,y
W (y|x)λa∑

x̃ W (y|x̃)λaPa(x̃)

. (4.54)

Hence considering Pet’s definition give in (4.31c) we can conclude that Pet = 0 for t < t0.
In order to bound Pet for t ≥ t0 first we use equation (4.47).

Pet ≤ E
[
1{τ=t}1{Zt∈ζt}ξn

]
≤ E

[
1{τ=t}1{Zt∈ζt}ξt

]
e−(n−t)G(Pb,ρ,λb).

Then using equations (4.45) and (4.52) we get

Pet ≤ E

[
1{

maxm
Γt(m)

enR(1−ε1)t
≥ε
}Γt(M)ρ

]
(1 + ε1)ρtenρR−(n−t)G(Pb,ρ,λb)

The message that gains the tilted posterior probability of ε can be the actual message or
some other message. We analyze two cases separately:

Pet ≤ Peta + Petb (4.55)

Peta,E

[
1{

maxm
Γt(m)

enR(1−ε1)t
≥ε; Γt(M)

enR(1−ε1)t
≥ε
}Γt(M)−ρ

]
(1 + ε1)ρtenρRe−(n−t)G(Pb,ρ,λb)

Petb,E

[
1{

maxm
Γt(m)

enR(1−ε1)t
≥ε; Γt(M)

enR(1−ε1)t
<ε

}Γt(M)−ρ
]

(1 + ε1)ρtenρRe−(n−t)G(Pb,ρ,λb)

Note that equation (4.55) and the definitions of Peta and Petb have the slight abuse of
notation, like the one in equation (4.51): encoding scheme is assumed to continue to employ
the random coding after τ while calculating these expectations.
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Let us start with bounding Peta. Note that if Γt(M)
enR(1−ε1)t

≥ ε then the first condition of

the indicator function is always satisfied. Thus for all ρa ≥ 0 we have

Peta = E

[
1{

Γt(M)

enR(1−ε1)t
≥ε
}Γt(M)−ρ

]
(1 + ε1)ρtenρRe−(n−t)G(Pb,ρ,λb)

≤ E
[
( Γt(M)
enR(1−ε1)tε

)ρaΓt(M)−ρ
]

(1 + ε1)ρtenρRe−(n−t)G(Pb,ρ,λb)

= (1+ε1)ρt

ερa (1−ε1)ρat e
n(ρ−ρa)R

(∑
x
Pa(x )µx (Pa, ρ− ρa, λa)

)t
e−(n−t)G(Pb,ρ,λb) (4.56)

For bounding Petb first note that,

E

[
1{

maxm 6=M
Γt(m)

enR(1−ε1)t
≥ε; Γt(M)

enR(1−ε1)t
<ε

}Γt(M)−ρ
]

= E

[
1{

maxm 6=M
Γt(m)

enR(1−ε1)t
≥ε
}1{

Γt(M)

enR(1−ε1)t
<ε

}Γt(M)−ρ
]

= E

[
E

[
1{

maxm 6=M
Γt(m)

enR(1−ε1)t
≥ε
}1{

Γt(M)

enR(1−ε1)t
<ε

}Γt(M)−ρ

∣∣∣∣∣Yt
]]

(4.57)

Note that given Yt, Γt(m) for different m’s are independent of each other. Hence,

E

[
1{

maxm 6=M
Γt(m)

enR(1−ε1)t
≥ε
}1{

Γt(M)

enR(1−ε1)t
<ε

}Γt(M)−ρ

∣∣∣∣∣Yt
]

= E

[
1{

maxm 6=M
Γt(m)

enR(1−ε1)t
≥ε
}
∣∣∣∣∣Yt
]

E

[
1{

Γt(M)

enR(1−ε1)t
<ε

}Γt(M)−ρ

∣∣∣∣∣Yt
]

= E

[∑
m 6=M

1{
Γt(m)

enR(1−ε1)t
≥ε
}
∣∣∣∣∣Yt
]

E

[
1{

Γt(M)

enR(1−ε1)t
<ε

}Γt(M)−ρ

∣∣∣∣∣Yt
]

≤ E
[∑

m 6=M
( Γt(m)
enR(1−ε1)tε

)ρb
∣∣∣Yt]E

[
( e

nR(1−ε1)tε
Γt(M) )ρcΓt(M)−ρ

∣∣∣Yt] (4.58)

Thus using equations (4.57) and (4.58) we get,

Petb ≤
ερc−ρb (1+ε1)ρt

(1−ε1)(ρc−ρb)t
en(ρ+ρc−ρb)RE

[∑
m 6=M

Γt(m)ρbΓt(M)−(ρ+ρc)
]
e−(n−t)G(Pb,ρ,λb)

≤ ερc−ρb (1+ε1)ρt

(1−ε1)(ρc−ρb)t
en(ρ+ρc−ρb+1)R

(∑
x
Pa(x )ηx (Pa, ρ+ ρc, λa, ρb)

)t
e−(n−t)G(Pb,ρ,λb)

(4.59)

where

ηx (Pa, ρ, λa, ρb) =
∑

y
W (y |x )

[
∑

x̃ Pa(x̃)W (y|x̃)λa ]ρ

W (y|x)λaρ

∑
x̃ Pa(x̃)W (y|x̃)λaρb

[
∑

x̃ Pa(x̃)W (y|x̃)λa ]ρb
(4.60)

Parametric Error Bounds

We use equations (4.30), (4.49), (4.51), (4.55), (4.56), and (4.59) to bound the error prob-
ability in terms of ε, ε1, ρ, λa, λb, Pa, Pb, ρ0, ρa, ρb and ρc as follows:
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Theorem 10 For any block length n, rate R > 0 there exists fixed-length block code with
feedback with |M| = benRc messages whose error probability is upper bounded as,

Pe ≤ Pe
∗ + Pe

∗
n +

∑n

t=t0
(Peta + Petb)

t0 =

⌈
n(R+ln(1−ε1))+ln ε

maxx ,y
W (y|x)λa∑

x̃ W (y|x̃)λaPa(x̃)

⌉

Pe
∗ ≤ 2|X |ne−

ε21
2ε

minx :Pa(x)>0 Pa(x)

Pe
∗
n ≤ ερ0(1 + ε1)nρ0en(ρ0R+ln

∑
x Pa(x)µx (Pa,ρ0,λa))

Peta ≤
(1+ε1)ρt

ερa (1−ε1)ρat e
n((ρ−ρa)R+ t

n
ln
∑

x Pa(x)µx (Pa,ρ−ρa,λa)−(1− t
n
)G(Pb,ρ,λb))

Petb ≤
ερc−ρb (1+ε1)ρt

(1−ε1)(ρc−ρb)t
en((ρ+ρc−ρb+1)R+ t

n
ln
∑

x Pa(x)ηx (Pa,ρ+ρc,λa,ρb)−(1− t
n
)G(Pb,ρ,λb))

where µx (P, ρ, λ), ηx (Pa, ρ, λa, ρb) and G(P, ρ, λ) are given in equations (4.12), (4.60) and
(4.19) respectively.

Note that if εn
ε12 = o(1/n) then Pe

∗ decays super exponentially with block length n. Fur-
thermore if ε1 = o(1) and ε decays to zero subexponentially with n then terms in front of
the exponential functions in Pe

∗
n, Peta and Petb diverges to infinity subexponentially with

n. Thus for a (ε, ε1) pair satisfying both conditions, like ε = 1
n(ln n)3 and ε1 = 1

ln n , the

exponential decay rate of the error is determined by the worst exponent among Pe
∗
n, Peta’s

and Petb’s.

In order to generalize results of [7] for binary symmetric channels to general DMCs we
assume that ρa ∈ [0, ρ] and set ρ0 = ρ−ρa, ρb = 1+ρa, ρc = 0 and λa = 1

1+ρ . Consequently;

− ln Pe
∗
n

n = H(Pa, ρ, ρa)− (ρ− ρa)R + o(1)

− ln Peta
n = t

nH(Pa, ρ, ρa) + (1− t
n)G(Pb, ρ, λb)− (ρ− ρa)R + o(1)

− ln Petb
n = t

nH(Pa, ρ, ρa) + (1− t
n)G(Pb, ρ, λb)− (ρ− ρa)R + o(1)

where

H(Pa, ρ, ρa) = − ln
∑

x ,y
Pa(x )W (y |x )

(∑
x̃ Pa(x̃)W (y|x̃)

1
1+ρ

W (y|x)
1

1+ρ

)ρ−ρa
(4.61)

Thus

E(R) ≥ F (R) = max
Pa,ρ

min
α∈[α0(ρ,Pa),1]

max
ρa∈[0,ρ],Pb,λb

αH(Pa, ρ, ρa) + (1− α)G(Pb, ρ, λb)− (ρ− ρa)R

= max
Pa,ρ

min
α∈[α0(ρ,Pa),1]

max
ρa∈[0,ρ]

[
αH(Pa, ρ, ρa)− (ρ− ρa)R + (1− α) max

Pb,λb
G(Pb, ρ, λb)

]
(4.62)

where H(Pa, ρ, ρa),G(Pb, ρ, λb) are given in equations (4.61), (4.19) and α0(ρ,Pa) is given by

α0(ρ,Pa),min

 R

maxx ,y ln
W (y|x)

1
1+ρ∑

x̃ Pa(x̃)W (y|x̃)
1

1+ρ

, 1

 .
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Figure 4-2: Improvement resulting from Theorem 10 is plotted together with the previous results

for a ternary symmetric channel with δ = 10−4 given in Figure 4-1.

In binary symmetric channels the lower bound in (4.62) is equal to the one in [7, Theorem
1], which was derived specifically for binary symmetric channels.

One can further simplify the lower bound F (R) by noting the concavity of H(Pa, ρ, ρa)
in ρa. As a result of Holder’s inequality7 and the definition of H(Pa, ρ, ρa) given in (4.61)
we have

βH(Pa, ρ, ρa1) + (1− β)H(Pa, ρ, ρa2) ≤ H(Pa, ρ, βρa1 + (1− β)ρa2).

Consequently H(Pa, ρ, ρa) is convex in ρa for a given (Pa, ρ). Hence we can change order of
the minimization over α and maximization over ρa in the definition of F (R).

F (R) = max
Pa,ρ

max
ρa∈[0,ρ]

min
α∈[α0(ρ,Pa),1]

[
αH(Pa, ρ, ρa)− (ρ− ρa)R + (1− α) max

Pb,λb
G(Pb, ρ, λb)

]
= max

Pa,ρ
max
ρa∈[0,ρ]

[
H(Pa, ρ, ρa)− (ρ− ρa)R + (1− α0(ρ,Pa)) min{H(Pa, ρ, ρa),max

Pb,λb
G(Pb, ρ, λb)}

]
(4.63)

In Figure 4-2 we have plotted lower bound on Ee(R) given in equation (4.63) for a ternary
symmetric channel8 with δ = 10−4, together with the previously derived lower bounds,
random coding exponent and sphere packing bound. Recall that sphere packing bound in
an upper bound to Ee(R) for all symmetric channels.

7For any two positive random variables u, v and for any α ∈ [0, 1], E[uv] ≤ E
[
u

1
α

]α
E
[
v

1
1−α

]1−α
.

8Transition probabilities of a k-ary symetric channel is given in equation (4.20).
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4.3 Conclusions

We have presented an alternative method, for analyzing the error probability of feedback
encoding schemes. We have recovered or improved all previously known results [44], [14],
[4]. Our results suggest that if matching schemes are used at a rate below capacity then the
encoding should be damped down via some kind of tilting in order to be optimal in terms
of error performance. This not only explains why so called posterior matching schemes
[39] are suboptimal in terms of error performance, but also suggests a way to make them
optimal in terms of error performance.

Recall that posterior matching schemes are the counter part of Schalkwijk-Kailath
scheme in DMC’s. Schalkwijk Kailath scheme was designed for memoryless additive Gaus-
sian noise channels. It is already known that, [32], [44], [17] that Schalkwijk and Kailath
scheme is suboptimal in terms of its error performance in Gaussian channels. What stands
as curious question is whether or not a tilting mechanism can be used to improve the error
performance of Schalkwijk-Kailath scheme in additive Gaussian noise channels.
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Appendix A

The Error Exponent Tradeoff for
Two Messages:

Lemma 14 Γ (T,Π) defined in equation (2.34) is equal to

Γ (T,Π) =


∞ if T < D (U0‖W a|Π)

D (Us‖W r|Π) if ∃s ∈ [0, 1]s.t. T = D (Us‖W a|Π)
D (U1‖W r|Π) if T > D (U1‖W a|Π)



where Us(y |x , x̃ ) =


1{W (y|x̃)>0}∑

ỹ:W (ỹ|x̃)>0 W (ỹ|x)W (y |x ) if s = 0

W (y|x)1−sW (y|x̃)s∑
ỹ W (ỹ|x)1−sW (ỹ|x̃)s

if s ∈ (0, 1)
1{W (y|x)>0}∑

ỹ:W (ỹ|x)>0 W (ỹ|x̃)W (y |x̃ ) if s = 1


Proof:

Γ (T,Π) = minU :D(U‖Wa|Π)≤T D (U‖W r|Π)

= minU supλ>0 D (U‖W r|Π) + λ(D (U‖W a|Π)− T )

(a)
= supλ>0 minU D (U‖W r|Π) + λ(D (U‖W a|Π)− T )

= supλ>0 minU −λT + (1 + λ)
∑

x ,x̃ ,y
Π(x , x̃ )U(y |x , x̃ ) ln U(y|x ,x̃)

W (y|x)
λ

1+λW (y|x̃)
1

1+λ

(b)
= supλ>0−λT − (1 + λ)

∑
x ,x̃

Π(x , x̃ ) ln
∑

y
W (y |x )

λ
1+λW (y |x̃ )

1
1+λ (A.1)

where (a) follows from convexity of D (U‖W r|Π)+λ(D (U‖W a|Π)−T ) in U and linearity
(concavity) of it in λ; (b) holds because minimizing U is U 1

1+λ
. The function on the right

hand side of (A.1) is maximized at a positive and finite λ iff there is a λ such that

D
(

U 1
1+λ

∥∥∥W a|Π
)

= T . Thus by substituting λ = 1−s
s we get

Γ (T,Π) =


∞ if T < lims→0+ D (Us‖W a|Π)

lims→0+ D (Us‖W r|Π) if T = lims→0+ D (Us‖W a|Π)
D (Us‖W r|Π) if T = D (Us‖W a|Π) for some s ∈ (0, 1)

lims→1− D (Us‖W r|Π) if T = lims→1− D (Us‖W a|Π)
lims→1− D (Us‖W r|Π) if T > lims→1− D (Us‖W a|Π)

 (A.2)

Lemma follows from the definition Us at s = 0, s = 1 and equation (A.2).
QED
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Proof [Lemma 3]:
Proof is very much like the one for the converse part of [38, Theorem 5], except few
modifications that allow us to handle the fact that encoding schemes in consideration are
feedback encoding schemes. Like [38, Theorem 5] we construct a probability measure
PT [·] on Yn as a function of T and the encoding scheme. Then we bound the error
probability of each message from below using the probability of the decoding region of the
other message under PT [·].

For any T ≥ T0 and Π, let ST,Π be

ST,Π,


0 if T < D (U0‖W a|Π)
s if ∃s ∈ [0, 1]s.t. D (Us‖W a|Π) = T
1 if T > D (U1‖W a|Π)

 . (A.3)

Recall that

T0 = max
x ,x̃
− ln

∑
y:W (y|x̃)>0

W (y |x ) and D (U0‖W a|Π) = −
∑
x ,x̃

Π(x , x̃ ) ln
∑

y:W (y|x̃)>0

W (y |x ).

Thus
T0 ≥ D (U0‖W a|Π) (A.4)

As a result of definition of ST,Π given in (A.3) and equation (A.4)

D
(

UST,Π

∥∥W a|Π
)
≤ T ∀T ≥ T0. (A.5)

Using Lemma 14, definition of ST,Π given in (A.3) and equation (A.4)

D
(

UST,Π

∥∥W r|Π
)

= Γ (T,Π) ≤ Γ (T ) ∀T ≥ T0. (A.6)

For a feedback encoding schemes with two messages at time t, Φt(·) : {m1,m2} × Yt−1,
given the the past channel outputs, y t−1, channel input for both of the messages are fixed.
Thus there is a corresponding Π:

Π(x , x̃ ) =

{
0 if (x , x̃ ) 6= (Φt(m1, y

t−1),Φt(m2, y
t−1))

1 if (x , x̃ ) = (Φt(m1, y
t−1),Φt(m2, y

t−1))

}
. (A.7)

Then for any T ≥ T0 let PT
[
y t| y t−1

]
be

PT
[
y t| y t−1

]
= UST,Π(y t|Φt(m1, y

t−1),Φt(m2, y
t−1)). (A.8)

As a result of equation (A.5) and equation (A.6) we have,∑
yt

PT
[
y t| y t−1

]
ln

PT [yt|yt−1]
P[yt|M=m1,yt−1]

≤ T (A.9)∑
yt

PT
[
y t| y t−1

]
ln

PT [yt|yt−1]
P[yt|M=m2,yt−1]

≤ Γ (T ) . (A.10)

Now we make a standard measure change argument,

P[yn|M = m1] = e
ln

P[yn|M=m1]
PT [yn] PT [yn] (A.11)
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Note that

ln P[yn|M=m1]
PT [yn] =

∑n

t=1
ln

PT [yt|yt−1]
P[yt|M=m1,yt−1]

=
∑n

t=1

[
−Zt,1(y t|y t−1) +

∑
ỹt

PT
[
ỹ t| y t−1

]
ln

PT [ỹt|yt−1]
P[ỹt|M=m1,yt−1]

]
(A.12)

where Zt,1(y t|y t−1) is given by

Zt,1(y t|y t−1) =
∑

ỹt
PT
[
ỹ t| y t−1

](
ln

PT [ỹt|yt−1]
P[ỹt|M=m1,yt−1]

− ln
PT [yt|yt−1]

P[yt|M=m1,yt−1]

)
. (A.13)

Thus using equation (A.9), (A.11), (A.12) and (A.13) we get

P[yn|M = m1] ≥ e−nT e
∑n
t=1 Zt,1(yt|yt−1)PT [yn] . (A.14)

Following a similar line of reasoning and using equation (A.10) instead of (A.9) we get

P[yn|M = m2] ≥ e−nΓ(T )e
∑n
t=1 Zt,2(yt|yt−1)PT [yn] (A.15)

where Zt,2(y t|y t−1) is given by

Zt,2(y t|y t−1) =
∑

ỹt
PT
[
ỹ t| y t−1

](
ln

PT [ỹt|yt−1]
P[ỹt|M=m2,yt−1]

− ln
PT [yt|yt−1]

P[yt|M=m2,yt−1]

)
. (A.16)

Note that ∀m∈{m1,m2}, t∈{1, 2, . . . , n}, y t−1∈Yt−1 and k∈{1, 2, . . . , t− 1} we have∑
yt

PT
[
y t| y t−1

]
Zt,m(y t|y t−1) = 0 (A.17a)

(Zt,m(y t|y t−1))2 ≤ 4(lnPmin)2 (A.17b)∑
yt

PT
[
y t| y t−1

]
Zt,m(y t|y t−1)Zt−k,m(y t|y t−1−k) = 0 (A.17c)

Thus as a result of equation (A.17), for all m = {m1,m2}∑
yn

PT [yn]
∑n

t=1
Zt,m(y t|y t−1) = 0 (A.18a)∑

yn
PT [yn]

(∑n

t=1
Zt,m(y t|y t−1)

)2
≤ 4n(lnPmin)2 (A.18b)

For m ∈ {m1,m2} let Zm be

Zm =
{

yn : |
∑n

t=1
Zt,m(y t|y t−1)| ≤ 4

√
n ln 1

Pmin

}
Using equation (A.18) and Chebychev’s inequality we conclude that,

PT [Zm ] ≥ 3/4 m = m1,m2 ⇒ PT [Zm1 ∩ Zm2 ] ≥ 1/2.

Thus either the probability of intersection of Zm1∩Zm2 with the decoding region of the
first message is strictly larger than 1/4 or the probability of intersection of Zm1∩Zm2 with
the decoding region of the second message is equal to or larger than 1/4. Then Lemma 3
follows from equations (A.14) and (A.15).

QED
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As it has been noted previously T0 does have an operational meaning: T0 is the maximum
error exponent the first message can have, when the error probability of the second message
is zero.

Lemma 15 For any feedback encoding scheme with the message set M = {m1,m2} if
Pe|m2

= 0 then Pe|m1
≥ e−nT0. Furthermore there does exist an encoding scheme such that

Pe|m2
= 0 and Pe|m1

= e−nT0.

Proof:
In order to prove the outer bound i.e. the first part of the lemma we use a construction
similar to the one used in the proof of Lemma 3,

PT
[
y t| y t−1

]
= U0(y t|Φt(m1, y

t−1),Φt(m2, y
t−1)).

Recall that
U0(y t|x , x̃ ) =

1{W (y|x̃)>0}∑
ỹ:W (ỹ|x̃)>0 W (ỹ|x)W (y |x ).

Thus

PT
[
y t| y t−1

]
≤ eT0P

[
y t|M = m1, y

t−1
]

PT
[
y t| y t−1

]
≤ 1{P[yt|M=m2,yt−1]>0}.

Then

P[yn|M = m1] ≥ e−nT0PT [yn] (A.19)

P[yn|M = m2] ≥ en lnPminPT [yn] (A.20)

where Pmin is the minimum non-zero element of W . Since Pe|m2
= 0 equation (A.20)

implies that PT

[
M̂ = m2

]
= 1. Using this fact and equation (A.19) one gets

Pe|m1
≥ e−nT0 . (A.21)

In order to prove the inner bound i.e. the second part of the lemma, let us consider the
following encoder decoder pair

• The encoder sends x ∗1 for the first message and x ∗2 for the second message where
(x ∗1, x

∗
2) is the maximizing input letter pair satisfying T0 = − ln

∑
y:W (y|x∗2)>0

W (y |x ∗1).

• The decoder decodes to the second message unless ∃t ∈ {1, 2, . . . , n} and Yt = y∗

where y∗ satisfies W (y∗|x ∗2) = 0.

Then the conditional error probabilities Pe|m1
and Pe|m2

are given by

Pe|m1
= e−nT0 . Pe|m2

= 0

QED
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Appendix B

Certain Results on Ee(R, Ex, α, P,Π)
B.1 Convexity of Ee(R, Ex, α, P,Π) in α:

Lemma 16 For any input distribution P , ζ(P,Q,R) defined in equation (2.33) is convex
in (Q,R) pair.

Proof:
Note that

γζ(Ra, P,Qa)+(1−γ)ζ(Rb, P,Qb) = min
Va,Vb:

I(P,Va)≤Ra I(P,Vb)≤Rb
(PVa)Y =Qa (PVb)Y =Qb

γD (Va‖W |P )+(1−γ)D (Vb‖W |P )

Using the convexity of D (V ‖W |P ) in V and Jensen’s inequality we get,

γζ(Ra, P,Qa) + (1− γ)ζ(Rb, P,Qb) ≥ min
Va,Vb:

I(P,Va)≤Ra I(P,Vb)≤Rb
(PVa)Y =Qa (PVb)Y =Qb

D (Vγ‖W |P )

where Vγ = γVa + (1− γ)Vb.
If the set that a minimization is done over is enlarged, then the resulting minimum does
not increase. Using this fact together with the convexity of I (P, V ) in V and Jensen’s
inequality we get,

γζ(Ra, P,Qa) + (1− γ)ζ(Rb, P,Qb) ≥ min
Vγ :

I(P,Vγ)≤Rγ
(PVγ)Y =Qγ

D (Vγ‖W |P )

= ζ(Rγ , P,Qγ)

where Rγ = γRa + (1− γ)Rb, Qγ = γQa + (1− γ)Qb.

QED

Lemma 17 For all (R, Ex, P,Π) quadruples such that Er(R, P ) ≥ Ex, Ee(R, Ex, α, P,Π)
is a convex function of α on the interval [α∗(R, Ex, P ), 1] where α∗(R, Ex, P ) is the unique
solution1 of the equation αEr(

R
α , P ) = Ex.

Proof:
For a given input distribution P , the function Er(R, P ) is non-negative, convex and
decreasing in R on the interval R ∈ [0, I (P,W )]. Thus for an (R, P ) pair such that
R ∈ [0, I (P,W )], function αEr(

R
α , P ) is strictly increasing and continuous in α on the

1The equation αEr(
R
α
, P ) = 0 has multiple solutions; we choose the minimum of those to be the α∗ i.e.,

α∗(R, 0, P ) = R
I(P,W )

.
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interval α ∈ [ R
I(P,W ) , 1]. Furthermore αEr(

R
α , P )

∣∣
α= R

I(P,W )
= 0 and αEr(

R
α , P )

∣∣
α=1
≥ Ex.

Thus for an (R, P ) pair such that R ∈ [0, I (P,W )] the equation αEr(
R
α , P ) = Ex has a

unique solution for α.
Note that for any γ ∈ [0, 1]

γEe(R,Ex, αa, P,Π) + (1− γ)Ee(R, Ex, αb, P,Π)

= min
Qa,R1a,R2a,Ta,Qb,R1b,R2b,Tb:

R1a≥R2a≥R Ta≥0
R1b≥R2b≥R Tb≥0

αaζ(
R1a
αa

,P,Qa)+R2a−R+Ta≤Ex

αbζ(
R1b
αb

,P,Qb)+R2b−R+Tb≤Ex

γ
[
αaζ(R2a

αa
, P,Qa) + R1a − R + (1− αa)Γ

(
Ta

1−αa ,Π
)]

+(1− γ)
[
αbζ(R2b

αb
, P,Qb) + R1b − R + (1− αb)Γ

(
Tb

1−αb ,Π
)]

≥ min
Qγ ,R1γ ,R2γTγ :

R1γ≥R2γ≥R Tγ≥0

αγζ(
R1γ
αγ

,P,Qγ)+R2γ−R+Tγ≤Ex

αγζ(
R2γ

αγ
, P,Qγ) + R1γ − R + (1− αγ)Γ

(
T

1−αγ ,Π
)

= Ee(R, Ex, αγ , P,Π).

where αγ , Tγ , Qγ , R1γ and R2γ are given by,

αγ = γαa + (1− γ)αb Tγ = γTa + (1− γ)Tb Qγ = γαa
αγ
Qa + (1−γ)αb

αγ
Qb

R1γ = γR1a + (1− γ)R1b R2γ = γR2a + (1− γ)R2b

The inequality follows from convexity arguments analogous to the ones used in the proof
of Lemma 16.

QED

B.2 maxΠEe(R, Ex, α, P,Π) > maxΠEe(R, Ex, 1, P,Π), ∀P ∈ P (R, Ex, α)

Let us first consider a control phase type ΠP (x 1, x 2) =
P (x1)P (x2)1{x1 6=x2}

1−
∑

x (P (x))2 and establish,

Ee(R, Ex, α, P,ΠP ) > Ee(R, Ex, 1, P,ΠP ) ∀P ∈ P (R, Ex, α) (B.1)

First consider

D (U‖W a|ΠP ) = 1
1−
∑

x (P (x))2

∑
x1,x2:x1 6=x2

P (x 1)P (x 2)
∑

y
U(y |x 1, x 2) log U(y|x1,x2)

W (y|x1)

= 1
1−
∑

x (P (x))2

∑
x1,x2:x1 6=x2

P (x 1)P (x 2)
∑

y
U(y |x 1, x 2)

[
log U(y|x1,x2)

VU (y|x1) + log VU (y|x1)
W (y|x1)

]
≥ 1

1−
∑

x (P (x))2

[
I
(
P, V̂U

)
+ D (VU‖W |P )

]
(B.2)

where the last step follows from the log sum inequality and transition probability matrices
VU and V̂U are given by

VU (y |x 1) = W (y |x 1)P (x 1) +
∑

x2:x2 6=x1

U(y |x 1, x 2)P (x 2)

V̂U (y |x 2) = W (y |x 2)P (x 2) +
∑

x1:x1 6=x2

U(y |x 1, x 2)P (x 1).
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Using a similar line of reasoning we get,

D (U‖W r|ΠP ) ≥ 1
1−
∑

x (P (x))2

[
D
(
V̂U

∥∥∥W |P)+ I (P, VU )
]

(B.3)

Furthermore ∀P ∈ P (R, Ex, α) using the inequalities (B.2) and (B.3) together the definition
of Ee given in (2.13) and (2.18) we get,

Ee(R, Ex, α(R, Ex), P,ΠP ) ≥ Ee(R, Ex, 1, P,ΠP ) + δP

for some δP > 0. Consequently ∀P ∈ P (R, Ex, α), equation (B.1) holds.
Note that ∀Π and ∀P ∈ P (R, Ex, α)

Ee(R, Ex, 1, P,ΠP ) = Ee(R, Ex, 1, P,Π).

Thus,

max
Π

Ee(R, Ex, α, P,Π) > max
Π

Ee(R, Ex, 1, P,Π) ∀P ∈ P (R, Ex, α) . (B.4)
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