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Abstract

We present a combined theoretical and experimental investigation of two systems
in which flexible bodies are induced to oscillate by steady flows. The first system
we study consists of multiple thin sheets of paper in a steady flow, clamped at the
downstream end, which we call the "clapping book". Pages sequentially lift off,
accumulating in a stack of paper held up by the wind. When the elasticity and weight
of the pages overcome the aerodynamic force, the book claps shut; this process then
repeats. We investigate this system experimentally and theoretically, using the theory
of beams in high Reynolds number flow, and test our predictions of the clapping
period.

The second system we consider is inspired by free-reed musical instruments, which
produce sound by the oscillation of reeds, thin strips of metal tuned to specific pitches.
Each reed is mounted above a slot on the upstream side of a support plate, a geometry
that allows a steady flow to induce finite-amplitude oscillations. We study this system
experimentally and propose models, also based on the theory of elastic beams in high
Reynolds number flow. The relative merits of these models is assessed by comparing
their predictions with experiments.
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Title: Professor
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Chapter 1

Introduction

Flow past flexible structures arises in many settings in nature and industry. The

applicability of fluid dynamics to biology has been responsible for much recent interest

in the motion of flexible bodies in ambient flow [50][121. One example is animal

locomotion, where thrust is often generated by bending. Examples of high Reynolds

number flight include that of birds and insects [51] and the passive flight of seedpods

[48]. Swimming has also been studied extensively, both at high and low Reynolds

numbers. Classic works on high Reynolds number swimming include those of Taylor

[49] and Lighthill [35]. Flexibility is also important at low Reynolds number, a classic

introduction to which is given by Purcell [42]. Many microorganisms use cilia and

flagella to move [40], one exotic example being Volvox [24].

Fluid-structure interaction is also relevant to plants. The effect of wind forcing

on plant canopies has been studied [43][23] with the goal of elucidating the factors

influencing wind damage to crops, a problem with enormous consequences in agri-

culture. Similarly, the flow through marshes has been modeled [27]. This class of

problems is not limited to flexible structures suspended in fluid. The fluid mechanics

of blood in the circulatory system [50] [39] has consequences in medicine; this in turn

has motivated an interest in flow through flexible tubes [32][41][8}[11].

The ubiquity of such examples in nature, as well as in industrial applications, has

prompted the study of several canonical problems involving flexible bodies in flow.

The flapping flag is perhaps the most comprehensively studied [5][2][6][37]. More



complex geometries, including arrays of multiple flag-like objects, have also been

considered [45]. The problem of tree leaves curling up in high wind, which reduces

the drag on the tree and its risk of being uprooted, has been studied in the context

of the bending of a flexible fiber in a soap film [3][4].

In the current work, we study two systems, both consisting of flexible solid struc-

tures induced to oscillate by fluid flow. First, we introduce what we refer to as the

"clapping book", a system that can be observed by setting a book outside on a table

on a windy day. Our book consists of a stack of multiple pages clamped at one end

and placed in a wind tunnel. As illustrated in Fig. 2-1, the wind causes the pages

to lift off from the book and form a bent stack of paper, which eventually claps shut.

This process occurs repeatedly with a well-defined period of several seconds. We

seek to understand the essential dynamics: what governs the shape of the stack of

pages, how quickly pages accumulate, what causes them to collapse, and how long it

takes before returning to its initial position. Work has been done on similar systems,

including Lighthill's work on slender fish[35] and recent work on flexible filaments

[46], but little analogous work has been done on systems containing multiple such

structures. In chapter 2, we describe the clapping book, including the experiments,

the theoretical model, and our comparisons between experiments and theory. This

work has been submitted to Phys. Rev. Lett.[10]

Then we turn our attention to free reeds, which are responsible for producing

sound in "free reed aerophone" musical instruments. This family of instruments,

which includes the accordion, concertina, harmonica, harmonium, and reed organ,

was primarily developed in the early 1800's by a number of inventors; the concertina

is noteworthy in that it was invented by the scientist Sir Charles Wheatstone. The

origin of free reeds can be traced to the far East, but a Western free reed is essentially

a flexible metal beam clamped at one end to a support plate, out of which is cut a slot

into which the reed can bend; see Figs. 3-1 through 3-3 for photos and a diagram. A

steady flow of air, provided for example by a set of bellows or a player's lungs, causes

the reed to vibrate, producing the desired pitch.

Rayleigh, in "The Theory of Sound" [44], includes a chapter (8) on the lateral



(transverse) vibration of beams, which can be applied to air-driven reeds, but also to

other instruments such as the Jew's harp and the xylophone. Rayleigh also introduced

(Section 68a) a nonlinear ODE frequently quoted in textbooks as a model of the

clarinet reed, although it is not considered physically realistic. Reed-driven wind

instruments were first discussed by Helmholtz [29], who introduced a classification

system that included "inward-striking" reeds, such as the clarinet reed, oboe reed,

and free reeds, and also "outward-striking" reeds, which referred to brass instruments,

in which the lips play the role of the reed. The acoustics of woodwind instruments

with reeds has been studied by Backus [7], in the context of the clarinet, and by

Fletcher [25]. Fletcher and Rossing devote a chapter in their text [26] to reeds,

including a section on free reeds.

Cottingham and coworkers have done extensive experimental work on the acoustics

of free reeds, both those of Western free reed instruments (which we treat exclusively)

and Asian free reed instruments, many of which also have pipes coupled to the reed.

They made measurements of the oscillation, including the waveform, spectrum, and

shape of air-driven organ reeds [16] and accordion reeds [15], and an analysis of their

modes of vibration. They also measured the dependence of a reed's frequency on the

driving pressure [17]. All these results directly inform our work. One of these authors'

additional areas of focus is the physics of free reeds coupled to pipes. In this context

they address the phenomenon of pitch bending [14], a technique by which harmonica

players can change the note played by a free reed. Pitch bending is also addressed

elsewhere [31].

The only work addressing the fluid dynamics of free reeds appears to be that

of St. Hilaire, Wilson, and Beavers [30]. These authors perform flow visualization

experiments and measurements of vibration amplitude growth, and present a flow

model from which they obtain qualitative agreement with their measurements. In the

current work, we wish to improve upon their model by retaining more of the realistic

features of free reeds. In chapter 3, we introduce free reeds, reviewing previous work

and describing our experiments. In chapter 4, we use recent developments in the

theory of conformal maps on multiply connected domains [21] to solve for the flow



field under the assumption of ideal flow [19]. Finally, in chapter 5, we develop an

improved theory and compare its predictions with our measurements. The results of

chapters 3 and 5 are to be submitted for publication [9].

The clapping book and free reed share several common features. In both problems,

the challenge is to understand why oscillations occur and how to predict measurable

quantities such as their frequency. To correctly explain their behavior, we will need

to consider finite-amplitude deformations of the flexible structure, as well as the role

of fluid viscosity. Both systems involve structures that can be described using the

theory of elastic beams and flows characterized by a high Reynolds number. As a

consequence, similar models will be developed to describe the systems.



Chapter 2

The clapping book

Here, we introduce a novel model system, the clapping book, which we can describe

predictively. The book, a horizontal stack of sheets of paper clamped at one end,

is placed in a wind tunnel with the clamped end downstream. Representative pho-

tographs of the book's behavior under wind loading are presented in Fig. 2-la-e. The

pages lift off (Fig. 2-la-d) and form a bent stack of paper held up by the wind. As

pages accumulate, this elevated stack thickens and moves progressively further up-

stream. Eventually the book claps shut and this process restarts (Fig 2-le) resulting

in continuous oscillations with a well-defined period. We develop a theoretical model

to explain this behavior quantitatively and perform a series of detailed comparisons

with our experiments.

2.1 Model for page deformation

Each elevated page is modeled as a single inextensible elastic beam whose motion

is confined to the xy plane (Fig. 2-1f). The beam has length L, width W < L,

and thickness h < W. Its mass per unit length is pphW and its bending stiffness is

B = Eh3/12(1 - v2), where p, is the beam's density, E its Young's modulus, and

v its Poisson ratio. The beam's shape is represented by x(s, t), with unit tangent

x8 = t = (cos 0, sin 0) and normal n, by convention pointing counterclockwise with

respect to the tangent. Its evolution is governed by the relation between curvature



t=168sd6

Figure 2-1: (a-e) Representative photographs of the clapping book at selected times
during a single period. (f) Schematic diagram of the system.



and torque and the angular and linear momentum equations, which can respectively

be written in dimensionless form as

0 = F, (2.1)

I0tt = Fs + n -F, (2.2)

Xtt = F, + Kn - Aey, (2.3)

where the arclength s and position x are scaled by L, and time t by pphL 4 /B. The

z-component of the internal torque (I), the internal force (F), and the aerodynamic

force per unit length (K) are scaled by BW/L, BW/L 2 and BW/L3 , respectively.

Equivalent equations have been given by Landau and Lifshitz [34] and by Coleman,

Dill, Lembo, Lu, and Tobias [13], although not in this form.

This non-dimensionalization results in two dimensionless parameters,

I = h (2.4)12L2

A = pghL. (2.5)B

A, the elastogravity number, represents the weight of the pages relative to their bend-

ing rigidity. The pages are thin relative to their length, I < 1, and the corresponding

term in Eq (2.2) is therefore dropped for the remainder of this work. This yields a

model equivalent to the flag described by Alben and Shelley [5].

At the clamped end of the beam, the position is fixed and its tangent is horizontal:

xj'=o = 0 (2.6)

0s=o = 0. (2.7)

At the free end, the internal torque and force must vanish:

r ~s=1 = 0 (2.8)

F18=1 = 0. (2.9)



Figure 2-2: Photograph of a single acetate sheet (solid line) with L = 17.1 cm,
W = 2.9 cm, pphW = 0.114 g/cm, and BW = 2.8 x 10~4 Nm 2 , hanging off the
edge of a table in the absence of flow, superimposed with the predicted shape. For
all static shape calculations, we use a spatial resolution of 1000.

Before considering the aerodynamic force K, we test our model for the pages in

the absence of flow. In Fig. 2-2, we present a photograph of a single sheet hanging off

the edge of a table and superimpose the equilibrium shape predicted by the model,

showing excellent agreement.

2.2 Flow model

To describe the flow around the pages, we focus on the case in which W < L.

This allows us to use the slender body theory used by Schouveiler, Eloy, and Le

Gal [46]. We take the wind in the far field to have uniform velocity -Ue,. Viscous

drag can be neglected since the Reynolds number based on page length ranges from

4 x 104 to 2 x 105. In the wind's frame of reference, the beam's shape is given. by

X(s, t) = x(s, t) + Ute, and the flow is determined entirely by the normal component

of the beam's velocity,

V = n - Xt = n -x + Un -e,. (2.10)

In the regime of interest, the speed of the pages is much slower than that of the

flow: The wind speeds U at which the dynamic experiments were run were at least

6 m/s; in contrast, we estimate that it took at least half a second for the beam to

turn an angle of 7/2, which would make for a velocity xt at a radius of 0.2 m of

at most 0.6 m/s. Therefore, for simplicity, we neglect the time derivative term in



Eq. (2.10); this is accurate except where the beam is nearly horizontal, in which case

the accuracy of the flow model is questionable anyway due to the presence of the

table.

We consider two components of the external aerodynamic force on the beam, the

resistive and the reactive forces. The resistive force on an element of the beam is the

drag experienced by a flat plate moving in the direction of its normal, with magnitude

per unit length

1
F1 = 2CaV2W (2.11)

2
1

= CdPaW(n - xt - Usin 6)2, (2.12)
2

where Pa is the density of air and Cd is a drag coefficient that must be determined

experimentally. Assuming the flow reaches a steady state faster than the beam moves,

any other contribution from the unsteadiness of the flow can be neglected. As men-

tioned above, for our simulations, we neglect the first term in Eq. (2.12).

The reactive force arises as the fluid accelerates to follow the shape of the beam.

Following Lighthill [35], we take the flow locally to be the potential flow induced

by a flat plate moving in the direction of its normal. This flow has momentum

P = PaAVn, where paA is the beam's added mass, with A = wr(W/2) 2 being the

area of its circumscribing circle. The change in the fluid momentum at a fixed point

in the moving frame is the sum of its change in time and its change as one looks

in the -Ue, direction, Pt - (Ue, - V)P. Since the flow changes in the tangential

direction by P, and does not change in the normal direction, the second term can

be evaluated (Uex -t)P,. The -n component of the change in the fluid momentum

gives the magnitude of the reactive force (per unit length) on the beam,

F 2  -paA(Vt - (Ucos O)V) (2.13)

= PaW2 ((t -xt + Ucos 0)(Ot - Ucos 0 0,) - n - xtt + Ucos 0 O) . (2.14)
4

Again, the relatively low speed of the pages allows the time derivative term in



Eq. (2.13) to be neglected: Assume that, for wind speeds U of at least 6 m/s, the

value of V varies fairly uniformly between 0 and U over the distance 0.2 m and over

a time at least 0.5 s, so that its time and spatial derivatives can be approximated by

dividing by these time and length scales. Then the ratio V/UV of the magnitudes

of the time and spatial derivatives in Eq. (2.13) is at most 0.07, so the first term is

negligible compared to the second as long as the page isn't nearly vertical so that

cos 0 isn't too small. When the page is nearly vertical, the ratio AV/WU 2 of the

magnitude of the time derivative term in Eq. (2.13) to the magnitude of Eq. (2.12)

is at most 0.01. In either case, it should be safe to neglect the time derivative of V

in Eq. (2.13). Thus, we keep only the U2 cos 2 0 0, term in Eq. (2.14).

The total aerodynamic force on the beam is the sum of the resistive and reactive

forces, F1 + F2. This can be expressed in dimensionless form as

1 20 - d6
K = - Cd Cy sin20 - A C cos20-, (2.15)

2 4 ds'

where terms have been dropped for our system as described above. Two more dimen-

sionless parameters have been introduced:

PU2L3

CB (2.16)
* B

A = (2.17)
L

Cy is the Cauchy number, the dimensionless ratio of aerodynamic force paU 2 WL to

bending force BW/L 2, and A is the aspect ratio of the beam.

Our model has four parameters, A, A, Cy, and Cd. The drag coefficient, Cd, is the

only parameter that must be determined by fitting to experiments (described below).

The approximate ranges of the other parameters in our experiments are 0.1 < A < 20,

0.1 < A < 0.5, and C, < 60. Given values for these parameters, the static shape of

a beam at equilibrium in the wind can be computed by solving Eqs. (2.1-2.3,2.15)

with the time derivative terms dropped. In Fig. 2-3, we present photographs of the

experimental shapes of a single elastic sheet at three wind speeds and superimpose



Figure 2-3: Photographs of a single acetate sheet (solid lines), with L = 15.0 cm,
W = 2.9 cm, pphW = 0.114 g/cm, and BW = 2.4 x 10- 4 Nm 2 , superimposed with

predicted shapes (dashed lines). Flow speeds were 5.3, 6.8, 8.4, and 11.1 m/s.

16



the shapes predicted by our model, showing satisfactory agreement.

2.3 Critical wind speed

In the experiments, as U is decreased, we observe that there is a critical wind speed

below which a given sheet can no longer be supported. In Fig. 2-4, we show measure-

ments of the critical wind speed for a strip of acetate and a strip of vinylpolysiloxane

(VPS), as L is varied.1 This phenomenon is captured in our model; for given values

of A, A, and Cd, Eqs. (2.1-2.3,2.15) fail to have a valid equilibrium solution when C,

is below a critical value C*. Hence, from Eq. (2.16), a critical wind speed U = U* is

predicted. We compare the experimentally measured critical wind speeds with those

predicted by our model (Fig. 2-4), where the drag coefficient Cd is treated as the

single fitting parameter. In subsequent calculations, we use the average value that

best fits each material, Cd = 1.76 ± 0.03, which is consistent with previously reported

experimental measurements of the drag coefficient for a flat plate [36].

2.4 Page accumulation

Having presented a model for a single wind-loaded sheet, we return to the clapping

book to understand its periodic behavior. At any one time, we consider some of the

book's pages to be lifted up, forming a stack bent by the wind, while the rest remain

flat. When the elevated stack contains more pages than the wind can support, the

book claps shut. We proceed by separately considering three aspects of the process:

(i) page accumulation, (ii) loss of support of the bent pages, and (iii) the subsequent

collapse.

A schematic diagram of the expected flow profile over the flat stack is sketched in

Fig. 2-5, with recirculation zones shown ahead of the step and on the surface of the

10ur wind tunnel was not sensitive enough to provide consistent wind at low enough speeds to
measure the critical speed for a single piece of paper, necessitating the use of other materials. The
use of a VPS strip is a more complete test of the model than the acetate strip because the parameter
A is basically constant for the acetate strip, while it varies for the different lengths of the VPS; thus
the predicted critical Cauchy number C* is not a constant for the VPS.
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Figure 2-4: Measured and predicted critical wind speeds for varying-length strips of
two materials. Lower: acetate strip with W = 3.0 cm, pphW = 0.118 g/cm, and
BW = 2.6 x 10-4 Nm 2 . Upper: VPS strip with W = 2.2 cm, pphW = 2.04 g/cm,
and BW = 2.3 x 104 Nm 2 , with paper on its front surface. Error in wind speed
measurements is around 1%. The value of the drag coefficient used here, Cd =

1.76 ± 0.03, is the average of the value that best fit the acetate and the value that
best fit the VPS. Also shown (x) are the parameter values for the photographs in
Fig. 2-3.

U

Figure 2-5: Illustration of recirculation zones in the flow over the flat stack of pages.
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Figure 2-6: Measured page liftoff rate averaged over 10 oscillations, for a paper book
of 150 pages of dimensions L = 17.0 cm and W = 2.8 cm, with pphW = 0.021g/cm
and BW = 8.2 x 10-6 Nm 2 . Error in liftoff rate measurements is about 2%. The
dashed line is the liftoff rate given by Eq. (2.18) with constants 3 = 12.5m- 1 and
Uo = 4.9 m/s.

top page. This geometry is known as the forward-facing step and has been studied

both experimentally [47] and computationally [52]. A detailed analysis of the flow

would involve determining the precise locations of flow separation and reattachment,

a challenging endeavor that goes beyond the scope of our study.

Instead, we proceed by deducing an empirical relation for the page liftoff rate. We

focus on the regime in which the wind speed is high enough that the pages lift off

continuously. In this regime, we expect the rate at which new pages lift off to be set

by the rate at which previous pages are convected a sufficient distance by the wind,

which should scale with the wind speed U, after accounting for a minimum wind

speed Uo. In Fig. 2-6, we present experimental measurements of the dependence of

the liftoff rate, f, on wind speed for a particular book. We find that f is well described
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Figure 2-7: Critical wind speed measured for an elevated stack of N pages, for the
book described in Fig. 2-6. The model gives C = 18.5, from which the critical wind

speed is calculated (solid line) using Eq. (2.19), as U t asC /Pa L3 .

by the linear relationship,

f = W -O),(2.18)

with ~3=12.5 ± 0.8 mn1 and U0 = 4.9 ± 0.2 rn/s (Fig. 2-6).

2.5 Loss of support

We proceed by determining the maximum number of pages that the wind can support,

using the equilibrium model for a beam introduced above, Eqs. (2.1-2.3,2.15), after

dropping the time derivatives. The elevated pages are treated as a single beam, and we

assume that the pages slide against each other without friction. As such, the bending

energy of the stack of elevated pages is simply the sum of the bending energies of the

individual pages. Thus, if pphW and B characterize a single page, the elastic beam

representing the entire elevated stack of N pages has mass per unit length NpphW



and bending stiffness NB.2 We note that, from Eqs. (2.5,2.17), both parameters A

and A are then independent of N. Hence, since the model's prediction for C* depends

only on A and A, this prediction should be unique for a particular book, regardless

of how many pages have been lifted up. Using this C*, Eq. (2.16) yields a relation

between the number of pages in a stack, N, and the critical wind speed, U*:

paU*2 L3
C* NB (2.19)Y N B

In Fig. 2-7, we show that this prediction is in excellent agreement with the experimen-

tally measured critical wind speeds and provides a validation of our description of the

behavior of multiple pages. Conversely, for a given wind speed U, we use Eq. (2.19)

to obtain the number of pages, N*, for which U is the critical speed. This is the

maximum number of pages this wind speed can support.

2.6 Page collapse

Once this maximum number of pages is exceeded, stability is lost and the bent stack

collapses. We simulate the collapsing stack of pages as a beam using the full time-

dependent form of Eqs. (2.1-2.3,2.15).

We choose initial conditions that take into account the momentum of the pages as

collapse begins. Recall that there is an equilibrium shape for a given number of pages,

which changes as pages accumulate. Near collapse, we observe the actual shape of

the pages to oscillate around the equilibrium shape with a period comparable to the

natural period P of the first mode of an unforced elastic beam. In our nondimen-

sionalization, P = 27r/m 2, with the constant m = 1.88 given by Rayleigh [44]. We

simulate the case when the maximum number of pages N* is reached when the beam

is exactly at its peak position in the oscillation, a quarter of a period before it would

pass through the critical position. The initial shape for the simulation can then be

taken to be the equilibrium shape at a time P/4 before the maximum number of pages
2If the pages were to stick together without sliding, the beam's thickness would scale with N,

resulting in a bending stiffness that scales with N 3 .
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Figure 2-8: Convergence of collapse time Tc for minimum, middle, and maximum
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spatial resolution is varied. The collapse time is longer for lower wind speeds because
the pages have less initial momentum. (Recall that the Cauchy number used for
the simulation is C*, the same for all wind speeds.) For each spatial resolution, all
the results were recalculated, including fitting the drag coefficient. For 50 points of
spatial resolution, we used a dimensionless time step of 5 x 10-8.

has accumulated, with no initial velocity. This would be the equilibrium shape with

Cauchy number calculated with bending stiffness NIcB, where NIc = N* - fP/4.

In reality, the maximum number of pages could be reached at any point during

the oscillation, not necessarily when the beam is at its peak position. Therefore, the

simulated collapse time would have to be adjusted depending on where in the oscil-

lation the critical number of pages is reached. The possible range of this adjustment

will be taken to be the uncertainty in the collapse time, described shortly.

We denote by Tc the time at which the tip of the page becomes horizontal in the

simulations. This occurs nearly simultaneously with the rest of the page becoming

horizontal, as expected from observations. For simplicity, we used the collapse simu-

lation run at the middle wind speed used in the experiments, finding that the collapse



time Tc for the minimum and maximum wind speeds differs by less than 0.1 s. In

Fig. 2-8, we plot the convergence of the middle, minimum, and maximum wind speeds

as the spatial resolution is varied, and choose the value for the middle wind speed at

the highest of these resolutions, Tc = 0.59 s. This agrees roughly with the collapse

time estimated from frame-by-frame analysis of one of the videos, 0.61 s.

2.6.1 Collapse simulation

To simulate collapse, we solve Eqs. (2.1-2.3,2.15) numerically, with the following

method: Consider the beam to be made up of straight segments and vertices. Start-

ing from the clamped end, number the segments and vertices, with the first movable

segment and the first movable vertex (directly after the first segment) each numbered

1. The last segment and last vertex, which is at the very end of the beam, are num-

bered N. Each segment n is described by a tangent angle 6, from which the unit

tangent and unit normal vectors can be calculated, and has associated with it an

internal force Fn. Each vertex n is described by a position xn, and we assume that

the aerodynamic force Kn can be calculated at each vertex given the instantaneous

shape of the beam, to be described later.

At each time step, all values of 6 and Ot are known from the current shape of

the beam. From these, all values of K along the beam can be calculated. These

known quantities are used to construct a system of equations to be solved for the

unknowns F, xit, and Ott along the beam, a total of 5N unknown quantities. This

system consists of three equations to be described below, the torque balance equation,

the momentum equation, and the geometric relation between 6 and x. Because these

last two equations have two components each, this is a total of 5N equations. Once

the equations are solved, the values of Ott are integrated to obtain Ot at the next time

step.

The torque balance equation can be obtained by substituting the s derivative of

Eq. (2.1) into Eq.(2.2), which gives O + n - F = 0. The discrete version of this



equation, evaluated on segment n, is

On+1 ~ 20n + On-I- nF =

ds 2

for n ranging from 1 through N. The discrete versions of boundary conditions

(2.7,2.8),

00 = 0

ON+1

are needed to evaluate 0o and ON+1-

The discrete version of Eq. (2.3), evaluated on vertex n, is

Fn+1 - Fn -Knn -
xut~ cbs Kn -Ay

ds

for n ranging from 1 through N. The discrete version of boundary condition (2.9),

FN+1 0,

is needed for FN+1-

A third equation is required to relate the values of 0 and x. Taking two time

derivatives of the geometric relation defining the unit tangent vector, x, = t, gives

the equation

xtts = -0 2 t + Ottn.

The discrete version of this relation, evaluated on segment n, is

Xtt n - Xtt n-1 = -02 ~±o
ds-B t + Ott nnn,dbs

for n ranging from 1 through N. The discrete version of boundary condition (2.6),

xo = 0,

=ON,



is needed to take xtt o = 0.

2.6.2 Uncertainty in collapse time

Represent the "position" of the page around the equilibrium by

2 -r
A sin t

P'

so different times in the oscillation can be referred to by t values varying from 0

to P. Assume the oscillation amplitude is small enough that the "potential well"

in which the page oscillates transitions instantaneously to a "slope" at the instant

the maximum number of pages is reached; that is, the page doesn't oscillate so far

upstream that it starts collapsing before the critical instant. This should be true if

the pages accumulate fast enough.

Suppose that the critical instant is reached at a time t in the oscillation. We

must add to (subtract from) the simulated collapse time whatever amount of time is

necessary to get the actual collapse time. First, we must account for the fact that

the simulation is started from a stationary position, while in reality the page may be

moving at the critical instant. If the page is moving up at the critical instant, we

must add the time required for the page to decelerate. If it's moving down, we must

subtract the time it has already accelerated. The amount of time to add is

T1(t = P/4 -t, 0 < t < P12

t -3P/4, P/2<&t<&P

which ranges between -P/4 and P/4.

If we've added time, we now have to calculate the collapse time for a stationary

page in the position it decelerated to. If instead we've subtracted time, we have to

calculate the collapse time for a stationary page in the position the page would have



accelerated from. This stationary position is:

.A, 0 < t < P/2

x (t) = A - -(t - PI/2), P/ 2 < t < 3P/4

-A + -(t - 3P/4), 3P/4 < t < P

Since the collapse simulation is started at the maximum amplitude A, we have to

subtract the amount of time it takes the page to fall a distance A - x(t). We take

the page to fall at a constant speed equal to the maximum speed in the oscillation,

v = 27rA/P. The time to fall this distance would then be

0, 0 < t < P/2
A - x(t) A

-T 2(t) = v P 2), P/2 < t < 3P/4 ,

2 - (t - 3P/4), 3P/4 < t < P

which ranges from 0 to a maximum of 2A/v at t = 3P/4.

The total time to add to the simulated collapse time is T (t) + T2 (t), which has a

maximum value of P/4 and a minimum value of min(-P/4, -2A/v) = -P/7r (using

the value of v above). This gives the range of uncertainty of the collapse time,

[Te - P/7r, Tc + P/4]. (2.20)

2.7 Clapping period

Having described the accumulation and collapse of the pages, these results can be

combined to calculate the total clapping period, which is a representative and readily

quantifiable feature of the clapping process. The duration of accumulation can be

taken to be the maximum number of pages that can be supported, N* calculated by

Eq. (2.19), divided by the rate at which pages accumulate, f from Eq. (2.18). This

is added to the duration of collapse, Tc, to give the complete clapping period,

T = N*+ Tc (2.21)
f
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Figure 2-9: Measured clapping period as a function of wind speed for the book de-
scribed in Fig. 2-6, averaged over 10 oscillations, compared with the prediction from
Eq. (2.21). The dashed line is the first term of Eq. (2.21); the solid line incorporates
the collapse time as well. The dotted lines indicate the range of uncertainty in the
prediction, Eq. (2.20). Error in clapping period measurements is about 2%.



I /

I /

I /

Figure 2-10: Simulated snapshots of the bent stack of pages during the clapping
process for U = 6 m/s, at selected times after pages begin to accumulate. The solid
and dashed lines are equilibrium shapes during page accumulation and snapshots
during collapse, respectively. The times for the snapshots are 0.9, 1.2, 1.5, 1.8, 2.1,
2.4, and 2.7 s (accumulation) and 3.11, 3.21, 3.25, 3.29, and 3.32 s (collapse).

In Fig. 2-9 we show the measured clapping period for a book as a function of U,

which is in good agreement with our theoretical prediction. In Fig. 2-10 we present

representative calculated page shapes over the course of an oscillation, which compare

well with the photographs in Fig. 2-1.

2.8 Conclusion

We have introduced a novel system that exhibits a robust oscillatory behavior. Ex-

cellent agreement is obtained between experiment and theory. This instance of fluid-

structure interaction was a priori far from trivial since the flow profile couples in a

nonlinear way to the large elastic deformations of the multiple pages. Nonetheless,

the problem was made tractable by reduction to a set of fundamental ingredients

required for a predictive description. We hope that our model system will provide

insight into other problems involving multiple flexible structures and flow, which are

abundant in the natural world.



Chapter 3

Free reeds: background and

experiment

3.1 Introduction

Western free reeds are flexible beams, usually made of steel or brass, riveted to a

support plate. The plate has a slot cut out of it into which the reed can bend. A

leather valve usually covers the other side of the slot to prevent air flow through the

reed when not being played. Many support plates have two reeds, one on each side

of the plate. If both slots have valves, each side of the support plate will have one

reed and one valve. Figs. 3-1-3-2 show a free reed from an accordion on its support

Figure 3-1: Photograph of an accordion reed on its support plate. The reed itself is
the metal strip on the lower half of the plate, riveted to the plate in the lower lefthand
corner. When the reed vibrates, it moves in an out of a slot cut into its support plate

(not visible in this photograph). On the upper half of the support plate is a leather
valve covering a slot for a similar reed on the opposite side of the plate.



Figure 3-2: The reed and support plate from Fig. 3-1, looking from the end on. In
this photo, the reeds on both sides of the support plate are visible, as well as the
leather valve opposite each reed. Air flow in the downward direction would cause the
reed on the top of the plate to oscillate, while the reed on the bottom remains silent.
Similarly, flow in the upward direction would cause only the bottom reed to oscillate.

Figure 3-3: Schematic cross section of the left half of the support plate from Fig.
3-2, with the reed on the top of the plate. In this diagram, the slot through which
the reed vibrates is visible. The valve for this reed, which would normally be on the
bottom of the support plate, is omitted from this drawing. Air flow in the downward
direction would make this reed oscillate, while air flow in the upward direction would
not.



plate; the valve for the other reed is also visible. Fig. 3-3 illustrates a reed and the

slot into which it bends.

Free reeds are designed to oscillate when driven by a flow. Fig. 3-4 shows snap-

shots of a free reed during oscillation. At its peak (first frame), the reed tip's distance

from the support plate is several times its thickness. At its lowest position (third

frame), the tip of the reed is below the upper surface of the support plate.

It is a well known peculiarity of Western free reeds that they only work in one

direction; that is, a reed will only oscillate if attached to the upstream side of the

support plate. If the flow direction is reversed, the reed remains silent. This is why

each support plate used for accordion, concertina, and harmonica reeds supports two

reeds, one on each side; one reed is designed to oscillate in one flow direction ("push-

ing" or "blowing"), the other reed in the other direction ("pulling" or "drawing").

Note that the leather valves pictured in Fig. 3-1 and Fig. 3-2 do prevent air from

flowing in the reverse direction, but this is simply to prevent needless air loss; when a

valve is absent, as is the case for some reeds, the reed still only works with the proper

airflow direction.

The fact that only upstream reeds work has important implications for musical

instrument design. The note layout of the earliest accordions and harmonicas is

arranged so that each button or hole plays two adjacent notes of the scale, one

for each direction of air flow. For such instruments, the fact that reversing the air

flow changes the note is an advantage, letting the player play more notes with less

movement. Other accordions and concertinas play the same note regardless of the

direction of the air flow. For such instruments, each hole must have two reeds tuned

to the same pitch. These instruments have (at least) twice the number of reeds as

notes, resulting in larger weight and cost. Furthermore, the two reeds for a note often

go out of tune with each other, causing a noticeable change in pitch when the air flow

is reversed.

In addition to the condition that a reed be on the upstream side of its support

plate, a further requirement for a reed to oscillate is that it lie close to its support

plate. Typically, the space between the tip of the reed and the plate is comparable



Figure 3-4: Snapshots from a video of an oscillating accordion reed, viewed from the

side. In the first frame, the tip of the reed is approximately at its peak position above

the support plate. In the second, it is moving downward towards the support plate.

In the third frame, the tip of the reed has passed below the top of the support plate

and is no longer visible in the photo. In the final frame, the reed is moving back

towards its initial position. These photos were taken 0.0003 s apart, with air flowing

from top to bottom. The amplitude of oscillation can be estimated from this video

to be several times the reed's thickness, on the order of one or two millimeters.
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to the thickness of the reed itself.

The fact that the behavior of the reed depends on its position relative to the

support plate suggests that this support plate serves a larger role than just anchoring

the reed. It is clear that in order to explain the oscillation of a free reed, the geometry

of the reed and support plate together must be studied. We seek to elucidate the

mechanism by which a steady flow induces oscillations in this geometry.

3.2 Previous work

St. Hilaire, Wilson, and Beavers [30 were the first to study the fluid dynamics of air-

driven free reed instruments, which they did in the context of the harmonium (reed

organ). They performed flow visualization studies in water, which were an important

first step toward understanding the nature of the flow around free reeds. They ob-

served the flow to separate from the reed at its edges, forming a wake downstream

of the reed. This is the expected behavior for flow past a flat plate at high Reynolds

number [38]. An important conclusion the authors drew from their experimental work

is that an instability in the flow itself is unlikely to be responsible for driving the reed's

oscillation. Although they observed vortices behind the reed, the frequency of vortex

shedding was not consistent with the frequency of the reed itself. In addition, they

observed that, at the early stages of oscillation, the amplitude of oscillation grows

exponentially, indicating a driving force linear in the reed's current amplitude. This

suggests a mechanism that depends on the reed's changing configuration, rather than

the flow.

St. Hilaire et al. also presented a model for the flow. They classified the flow into

several regions, each described in terms of potential flow, with the pressure matched

at the boundary between each region. Their model gave approximately correct pre-

dictions for the force on the reed. One major drawback of their model is that it is

based on the assumption of small-amplitude oscillations. Their characterizations of

the flow in each region, and the boundaries on which the matching was performed,

were also somewhat arbitrary. Moreover, their analysis incorporated many ingredi-



Parameter
length
width
thickness
unforced tip height
clearance area
density
Young's modulus
natural frequency

Table 3.1: Geometry
do not generally have
as averages.

Symbol Value How obtained
L 2.27 cm measured directly
W 0.2 cm estimate near reed tip
h 0.05 cm calculated from natural frequency
ao 0.02 cm measured directly
B 0.01 cm 2  estimate
Pr 8 g/cm3  standard value for steel
E 2 x 1012 gcm-1 s- 2 standard value for steel

f 750.1 Hz Fourier transform of sound recording

of the accordion reed used in our experiments. Accordion reeds
uniform width and thickness, so those values should be regarded

ents, making it difficult to isolate the mechanism responsible for oscillations. In this

work, we adopt a different approach in order to avoid these difficulties. For example,

we will treat the reed as a flexible beam, rather than simply a flat plate, making it

easier to compare with experiment.

Our work is also informed by other experimental work. Cottingham, Lilly, and

Reed [16] showed that the shape of an organ reed during oscillatiQn is described

well by the shape of the first mode of an unforced beam, whose formula is given by

Rayleigh [44]. We will use this observation to simplify our analysis. Cottingham [15]

also measured the position of an accordion reed as a function of time, finding it to be

nearly sinusoidal. We will use this as a check for our theory.

3.3 Measurements

We performed measurements on an F#5 free reed obtained from a piano accordion;

values of the relevant parameters are listed in Table 3.1. The reed was waxed into

an appropriately-sized hole in a chamber and driven by compressed air. The main

chamber we used has rough dimensions 10 cm x 10 cm x 30 cm, for a volume of

approximately V ~ 3000 cm 3 , although we made measurements with other chambers

as well. Our chamber was fed by a 1 cm = 2rh diameter hose, approximately Lh W 4 m

long, attached to a source of compressed air.

We explored the reed's behavior during oscillation using a microphone and a



sound recording,
plucked reed

pressure measurement,
0.4 kPa

sound recording,
1.7 kPa

pressure measurement,
1.0 kPa

Figure 3-5: Waveforms associated with an oscillating free reed. The two upper plots
are from sounds recordings made with a microphone of the reed being plucked outside
the chamber (left) and the reed waxed into the chamber and driven with compressed
air at a pressure of 1.7 kPa (right). The microphone was positioned inside the cham-
ber in the second plot. The lower plots are data taken with a pressure sensor posi-
tioned inside the chamber, for two driving pressures. The frequency of all waveforms
is close to the reed's natural frequency, 750 Hz. We did not measure the amplitude
of oscillation, but observed the reed's maximum displacement from its initial position
to be on the order of a millimeter or two.



pressure sensor. We used a recording of the reed being plucked to determine its

natural frequency f, which we in turn used to obtain its thickness h from the values

of its other parameters. We also made a recording of its sound when driven in our

setup, and took data from a pressure sensor. Representative waveforms from these

recordings are shown in Fig. 3-5.

Cottingham, Reed, and Busha made measurements of the dependence of frequency

on driving pressure for a reed from a reed organ [17]. They found that at normal play-

ing pressures, the frequency decreases approximately linearly with increasing pressure.

In order to make similar measurements for our reed, we extracted the frequency from

sound recordings at varying pressure, which we show in Fig. 3-6, lowest line. We were

able to fit our measurements well with a line of negative slope, consistent with the

previous authors' work. We did find that this line intersects the p = 0 axis below the

reed's natural frequency, possibly because some amount of damping is present even

with very low flow.

In order to detect any dependence on the geometry of the chamber, we also made

frequency versus pressure measurements with our reed in different chambers. These

measurements are shown in Fig. 3-6 as well. The slope is fairly consistent across

experiments, -2.0 ± 0.4 Hz/kPa. The variation that does exist in the slope seems

not to be correlated with the size of the chamber; in fact, three experiments using the

same chamber showed a large variation. We conclude from this that the systematic

error from one experiment to the next exceeds any variation due to the size of the

chamber. This may be related to the variation in the way the reed was waxed into

the chamber, which was done again for each new experiment.

3.4 Direction of study

Our goal is to elucidate the mechanism by which a steady flow induces oscillations in

free reeds. As noted, the work of St. Hilaire, Wilson, and Beavers indicates that the

force responsible for driving the reed depends on the reed configuration as it changes in

time rather than on any instability of the flow. This suggests that a quasistatic model
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Figure 3-6: The dependence of frequency on driving pressure of the accordion reed
described in Table 3.1, waxed into chambers of various cross sectional areas and
lengths. The best fit line is also shown, with its slope indicated. For the first four
experiments, the leather valve covering the silent reed (shown in Figs. 3-1 and 3-2)
was left on. For the final experiment, it was removed from the support plate and the
slot covered with wax to prevent air loss. Frequencies were obtained from FFT's of
10 s long sound recordings. Measurement error is indicated by marker size.
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for the flow may be sufficient to understand the reed's dynamics. We start by looking

for a model in which the flow, and therefore the force, is determined completely by

the reed's current position and velocity. In order to amplify oscillations, our model

must contain some unsteadiness. Two possibilities for this source of unsteadiness will

be described in Chapters 4 and 5.

We proceed in Chapter 4 by solving for the flow field under the assumption that

the rate of air flow through the reed gap is constant. We further assume that the

flow is two-dimensional, irrotational, and incompressible, which allows us to employ a

conformal mapping technique. Our results direct us towards a source of unsteadiness

that may be responsible for inducing oscillations, specifically, the force due to the

acceleration of the flow. In Section 5.1, we relax the assumption that the flow field

is strictly irrotational, allowing for a wake behind the reed, and investigate whether

the force from the acceleration is responsible for inducing the oscillations observed in

real reeds. Finally, in Section 5.5, we relax the assumption that the flow rate must

be constant, leading to the most plausible physical picture of reed vibration.



Chapter 4

Conformal mapping

Looked at in cross section, the reed and support plate form the boundaries of a doubly

connected two-dimensional region. Recent work [211 has made it possible to find exact

solutions for two dimensional potential flows in doubly connected regions. In this

chapter, we use some of those techniques to solve for the flow in a two-dimensional

reed and support plate system under the assumption that the flow is incompressible

and irrotational.

Our first assumption is that the flow is two-dimensional. Cottingham, Lilly, and

Reed have shown [16] that the motion of a free reed is described well by the first mode

of oscillation of a cantilevered beam. The reed's motion can therefore be characterized

by a single parameter, for example, the displacement at the tip of the reed. In Section

5.1, we show that the time evolution of this displacement is governed by a linear

second-order ODE with constant coefficients, with a forcing term that is simply an

appropriately weighted integral of the force along the length of the reed. We do not

attempt to describe the lengthwise dependence of the force. However, if we assume

the lengthwise dependence is constant, we can solve for the flow in cross section,

and our calculation of the force will be correct up to some order one multiplier. In

other words, we can correctly imagine the reed to be an oscillating plate in a two-

dimensional flow, with the understanding that predictions of the reed's amplitude of

oscillation cannot be made exactly.

A more debatable assumption is that the flow is irrotational. St. Hilaire, Wilson,



and Beavers [30] have done flow visualization studies of free reeds and concluded that

a wake forms downstream of a reed, as would be expected for high Reynolds number

flow past a flat plate [38]. Because the wake would be absent in potential flow, the

forces on an actual free reed are possibly very different than those predicted here.

Even a model that uses purely potential flow, however, may capture the oscillatory

behavior.

Whether a potential flow model can produce oscillations is far from obvious at the

outset. From D'Alembert's paradox [1], the force on an object in a simply-connected

region of fluid is zero; this would apply to a free reed by itself, in the absence of a

support plate. However, our system consists of both the reed and the support plate,

which defines the second boundary in a doubly-connected region of fluid. Just as the

support plate enables a real reed to oscillate, we may find that the second boundary

causes our model reed to oscillate.

4.1 The reed

We describe the dynamics of the reed with a single parameter, h(t), representing the

height of some fixed cross-section of the reed, the tip for example, above the support

plate. This height satisfies an equation of the form

mh + mw2(h - ho) = -F(h, h),

which we will show rigorously in Section 5.1. Here, ho is the reed's initial (unforced)

height, m its mass per unit length, wo its natural frequency, and F the fluid force

(drag) per unit length, which we will see depends on both the reed's current height

and its velocity. The width of the slot in the support plate, W, does not appear in

this equation, but will be important in the calculation of the flow. For a particular

free reed, measured values for these quantities are ho ~~ 0.02 cm, W ~ 0.2 cm,

wo ~ 5, 000 Hz, and m ~~ 0.08 g/cm.

To obtain an estimate for the flow rate past the reed, we apply the steady Bernoulli



formula to a streamline originating far upstream, where the pressure is held fixed at

some value Ap above atmospheric, and ending in the jet through the gap between

the reed and the support plate, where the pressure is atmospheric. Using the reed's

equilibrium height to calculate the area of the gap, the formula gives

1 Q 2

Ap=- .()
2 ho

Using a typical driving pressure of Ap a 2 kPa, the area flow rate Q is approximately

100 cm 2 /S.

We scale all lengths by W, time by 1/wo, and mass by mW. (The influence of

the length of the reed will show up in the natural frequency wo.) Thus, velocities are

scaled by w0W, velocity potentials by woW 2 , pressures by w2m, and forces (per unit

length) by w2mW. Typical values for the dimensionless quantities ho, Ap, and Q are

then ho a 0.1, Ap - 0.01, and Q - 0.6, although these of course may vary by a

factor of roughly two or three, since a reed can be set at different initial heights and

can be driven over a range of pressures. The equation of motion for the reed's height,

written in terms of dimensionless quantities, is

h + (h - ho) = -F(h, h). (4.1)

The width of the reed is fixed, and is typically slightly less than the width of the slot.

Therefore the dimensionless reed width, which we call w, is slightly less than 1.

The force F(h, h) will be calculated by solving for an irrotational, incompressible

flow in the doubly-connected two-dimensional region bounded by the reed and the

support plate. Our analysis will be quasistatic, that is, the flow field will be completely

determined by the reed's current position h and velocity h. The flow field we obtain

will be described by a complex potential w(z, t), analytic in the region except at a

source and a sink which will be introduced to impose a flow of some prescribed Q
past the reed.



4.2 Conformal map

The flow field will be solved by introducing a conformal map z((, t) from the annulus

p < ( < 1 in the ( plane to the reed in the z plane defined by

z((, t) = A + B] 2 (4.2)

where the parameters p, a = ei", # = peib, A, and B are functions of t. The special

function P(() is defined in equation (10) of [22],

P(() = (1(- () J7(i - p2 k()(1 _ P2k-1). (4.3)
k=1

We truncate the infinite sum after M terms; later, we investigate how large a value

of M is necessary for accurate calculations. Fig. 4-1 shows the image of the annulus

under an example of this map. The image of K(| = p represents the reed and the

image of |(I = 1 represents the support plate. The points ( = +1 map to infinity.

As seen in this figure, we will use the convention that the reed is oriented vertically,

with the oscillations occurring horizontally.

The five parameters must be chosen to give the image the desired geometry. The

parameters A and B simply translate and scale the image; for values of a, b, and

p, they can be chosen to make the slot centered on the origin and of width 1. The

convention that the reed moves horizontally means that A and B will be real.

The parameters that characterize the proportions of the reed are a, b, and p. Both

a and b are real and between 0 and 7, and p, the radius of the inner circle in the

( plane, is between 0 and 1. They must be chosen so that the image of the map

has the desired reed height h(t) and reed width w. In addition, the map must be

single-valued throughout the annulus; that is, the function

c (Z, 0 = P(('a-1)P(('a1 )P(('31 )P(('#-1) d('

e ate o zero. = 2

must evaluate to zero. For given h(t) and w, we use the Newton-Raphson method
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Figure 4-1: The |(| = 1 and |(I = p circles in the ( plane (top), and their images
(bottom) under the map defined in Eq. (4.2) with a ~ 0.80, b ~ 1.80, p ~ 0.16,
A ~~ -0.40, and B ~~ 0.03. The image of |(| = 1 is the vertical line whose real
coordinate is 0 with a gap between -0.5i and 0.5i; this represents the support plate.
The image of |(I = p is the single vertical line to the left, which represents the reed
itself. The images of the points a and #, and their complex conjugates, are marked,
as well as the images of ±p. The points i1 map to infinity. In our setup, the reed

moves horizontally, with -h(t) measuring the reed's location on the real line.



[28] to find the values of a, b, and p that satisfy

h(a,b, p) = h(t)

w(a,b,p) w

c(a, b, p) = 0.

In order to evaluate the pressure, it will be necessary to calculate the time deriva-

tives of certain functions, for example, the complex potential. However, these func-

tions are not explicit functions of time; rather, they are calculated from the values of

the map parameters a, b, p, A, and B, which change in time as the reed moves in the

physical plane. We require a way to calculate these time derivatives from the time

dependence of the physical variables.

Since A and B are calculated from values of a, b, and p, the functions can be

regarded as functions of a, b, and p only, the latter being functions of time. (They

may also depend on (, but this dependence will be suppressed in the notation here.)

By the chain rule, the time derivative of any such function f(a, b, p) can be calculated

from the time derivatives of the map parameters a(t), b(t), and p(t),

df _Of da Of db of dp

dt adt abdt Opdt

The quantities Of/oa, etc., which indicate how the function is affected by varying

the map parameters, can be calculated numerically, for example,

Of f (a + da, b, p) - f (a, b, p)
(a, b, p) da

We also need to calculate how the map parameters change with time, da/dt, etc.

As the reed moves, the map parameters a, b, and p must change together in such a

way as to change the reed's height h(a, b, p) appropriately, while keeping the reed's

width w(a, b, p) fixed at w and the value of c(a, b, p) fixed at zero,

h(t) = h(a, b, p)



w w(a,b,p)

0 = c(a,b,p).

Taking the total time derivative of these equations gives

dh hda +hdb + hdp
dt - adt 9bdt pdt

wda wdb wdp
-+=-+F-

adt bdt apdt
0 c da Oc db Oc dp
0 a dt ab dt ap dt

When the velocity of the reed dh/dt is specified, this linear system of equations

can be solved for da/dt, db/dt, and dp/dt. We calculate the quantities &h/&a, etc.,

numerically, for example,

Ah h(a + da, b, p) - h(a, b, p)

aa (a, b, p) = da

4.3 Complex potential

With the reed's current configuration specified, we turn to the problem of describing

the flow. From a complex potential w(z), the velocity field, and in turn the pressure

field, can be calculated. We seek to solve the problem in the annulus p < |(M < 1

rather than in the physical plane, and so introduce the complex potential in the zeta

plane, W() = Wz().

Because the reed is moving, the normal component of the fluid velocity at the

boundaries must match the velocity of each boundary. The complex potential must

be chosen appropriately. Crowdy, Surana, and Yick [22] show that when the boundary

conditions are written as conditions on the complex potential in the ( plane, they

reduce to a version of the modified Schwarz problem. Calling this complex potential

W2 and the imposed velocities on the outer and inner boundaries Uo and U1, these



conditions are

Re [-iW2(()]

Re [-iW2(()]

= Re [-iuoz(() + do

= Re [-iUiz(()] + d1 ,

where the first condition applies on the outer circle, |( = 1, and the second on the

inner circle, |(M = p. For clarity, constants have been retained in both conditions.

Any values of these constants will satisfy the boundary conditions; however, it will

be seen that the constants cannot be chosen independently if the problem is to have

a solution.

We use the following procedure [18] to solve for W2((). The known expression on

the right hand side of each boundary condition can be written as a Fourier series,

Re [-iuoz(() =

Re [-iUz(p()] =

K/2-1

E fn("
n=-(K/2-1)

K/2-1

Y gn(",
n=-(K/2-1)

where the substitution ( -> p( has been used in the second condition so that both

conditions apply on = 1. The correspondence with Fourier series can be seen by

taking ( = e'O,

Re -izoz(eo)]

Re [-iU z(peO)]

K/2-1

= E fne"

n=-(K/2-1)

K/2-1

= S gne in,
n=-(K/2-1)

from which it is clear that the coefficients fn and gn for n = - (K/2 - 1) through

K/2 - 1 can be found by an FFT. The appropriate number of coefficients to use in

the analysis, K, will be investigated later.

(4.4)

(4.5)



We write the unknown function W2(() as a Laurent series in the following form,

K/2-1 K/2-1

-iW 2(() = E3 a7 (Q ± pan (4.6)
n=o n=1

The factors of p have been introduced for numerical stability. The goal is to calculate

the values of the coefficients a-(K/2-1) through aK/2-1. Substituting the series into

both boundary conditions, using ( = 1/(, and equating positive powers of ( gives

formulas for the coefficients,

2(fn - pngn)
an =I p2n

a-n -2 (y - p" fn)
1 - p 2 n '

for n = 1 through K/2 - 1. Equating the (o terms of the conditions gives two more

formulas,

Re[ao] = fo+do

Re[ao] = go+di.

We choose do = 0, so that the first equation gives the real part of ao. di, though

not needed for the calculation, would have to be chosen to make the second equation

consistent. The imaginary part of ao is arbitrary as well; we choose 0.

For our problem, the reed is moving and the support plate is stationary; thus

Uo 0 and U1 = -h. With the coefficients of W2 (() now known, it can be evaluated

on |(| = p by substitution into Eq. (4.6). Likewise, BW 2/8( can be evaluated on

= p by substitution into the derivative of Eq. (4.6).

We wish to impose a uniform flow. To accomplish this, we include another con-

tribution to the complex potential,

Q logP((c-_)P(( 
)

W r = -log .



Because P((c-1) and P(-(c1 ) have zeros at ( = c and ( = -c, respectively, W1 (()

has logarithmic singularities at ( = c and ( = -c, respectively,

W1(() ~ log(( - c)27r

W1(( ~ Q- log(( + c).

W1 (() thus represents a source at z(-c) and a sink at z(c), both of strength Q. As

described later, c will be chosen so that z(-c) and z(c) are sufficiently far from the

reed that it effectively sees a uniform flow in the far field.

The derivative BW 1 /8( will also be required to calculate the velocity. It can be

written as

BW1_ - Qi (K((c-1) + K(C() - K(-(c-1 ) - K(-(T)) . (4.7)
a( 2Tr (

K(() is a special function defined in equation (40) of [20],

K(() =
P(O)

M 2k M P2k(-2

1- I1-p2k + _p2k(-1

For the total complex potential W((), we use the sum of the two contributions,

W(() = W1(() +W 2 ((). It can be shown that the imaginary part of W1 (() is constant

on both boundaries. Using this, it can be verified by substitution that the total

complex potential W() satisfies the same boundary conditions as W2((), Eq. (4.4-

4.5), for possibly different constants.

Fig. 4-2 shows the fluid velocity field for a particular reed geometry and velocity.
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Figure 4-2: Left: The velocity field for a reed with width w = 0.8 and height h = 0.5,

moving at velocity h = 0.5, with flow rate Q = 0.5. c = -0.5 has been chosen for the

source/sink position in the ( plane in order to show the source and sink in the plot.

Right: Closeup of the velocity field for the same parameters, except with c = -0.999,

to simulate uniform flow in the far field. This larger value of c is used for the actual

calculations. The magnitude of the arrows is arbitrary in both plots.

4.4 Force on the reed

With the reed geometry z((, t) and the flow field W((, t) = w(z((, t), t) known, the

force on the reed can be calculated.

The pressure at any point in the flow satisfies the unsteady Bernoulli formula,

+ -u2 + = G(t),
2 p

(4.8)

where G(t) is an arbitrary function of time whose value turns out to be unimportant

for the total force. Written in terms of dimensionless quantities, this formula may be

reexpressed as
1 2

2
at
at

pP= G(t)
Pd

where Pd is the dimensionless fluid density,

pW
2

Pa =

49

* - # ! -,--------
I t I

- .---------

- - - - - - --- - - - - -

-0. -0. -0. 0 0. 0.4 ----



For our reed in air, the value of this parameter is approximately Pd ~ 5 x 10-4.

Expressed in terms of the complex potential w = <b + i@b, where U = &w/&z, the

formula is
Dw 1 am 2

Re ± + + = G(t).
&t 2 Dz Pd

Using the unit normal n = -idz/ds, the total force F, + iFy is the following integral

around the boundary of the object in the z plane,

- pnds = i Jpdz,

with P/pd given in terms of aw/az and aw/at above, and G(t) dropping out of the

final integral.

We need to write aw/Dz and aw/at, the derivatives of the complex potential in

the physical plane, in terms of az/a(, az/at, aW/a, and aW/at, the derivatives of

*the map and potential in the ( plane. Using the definition of W((, t),

W((,t) = W(z((,t),t),

these relationships follow from the chain rule,

aw aw az
a( oz a(
aw aw az aw
at aza t at

Therefore aw/az and aw/at are given by

aw _aw az
az a( a
aw _aw -(awlaz) az
at at a( /( at

Putting everything together, and using dz = (az/a()d(, the complex force F+iF



is given by

1 +Wz &W az &W z aW az az &z awaW /
F =- p+ |-+ /- di

2 -a(,p\t& at a( a( at a( at a(a( a( a( az

The fourth and fifth terms have singularities at ( = and ( = /, the points that map

to the ends of the reed. Physically, this is because our potential flow model requires the

fluid to turn 1800 there, causing its velocity to be undefined. This happens because

the tangent to the reed, dz/d(, is zero at those points. By inspection of Eq. (4.2),

dz/d( has a simple zero at 3 and #; therefore the conjugates of the integrals of the

fourth and fifth terms can be calculated using the Plemelj formula. Using the relation

= p2 on the |( = p circle, the conjugates of those integrals are, respectively,

8W az 19z az p2
_ _ d(a ( at a( a( (2

aw aw Oz P2d
clI=P a( a( a( (2

The Plemelj formula give, for functions f(() with simple zeros at 1 and 3,

f(() d(= i (Res(f, #) + Res(f, /)) + P.V. f (() d(.

We calculate Res(f, /) numerically, by evaluating

Res(f, 0) = (C - 13)f(()

for a small value of ( -0. We calculate the principal value integral using the alternate-

point trapezoidal rule [18].

Due to the vertical symmetry of the problem, we expect the imaginary part of

F to be zero to within numerical error. The real part turns out to be fairly small

compared to the other quantities, on the order of 106. We expect the fluid force to

be much smaller than the elastic force, because the reed undergoes fixed-amplitude

oscillations on a short time scale, requiring a long time scale (hundreds of oscillations)

for the fluid force to appreciably change the amplitude.
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Figure 4-3: Real part of force (upper plot) and numerical error in the boundary

condition on the inner circle, Eq. (4.5), (lower plot) as the number of integration
points N is increased. The error in the boundary condition on the outer circle is

always much lower. For this and subsequent convergence tests, we use values for
the parameters obtained from the other convergence tests, M = 10, K = 30, and

c = -0.999. We use a reed with geometry w = 0.8, h = 0.5, h = 0.5, and Q = 0.5.

4.5 Convergence tests

In this section, we justify our choice of values for the numerical resolutions N, K,

and M, and the location of the source and sink, c. We also check that our calculation

satisfies D'Alembert's paradox when the reed and support plate are sufficiently far

away.

In order to determine how many integration points are necessary to use for the

calculations, we analyze the convergence of the force F, as well as the discrepancy

in the boundary conditions, Eq. (4.4-4.5), as N is increased. From these results,

shown in Fig. 4-3, we choose N = 1000, which appears to give an accuracy of about

1%. We use this value in all calculations, unless otherwise stated. To determine how

many coefficients K are necessary for the Fourier series used for the calculation of

W2, we plot the convergence as K is increased in Fig. 4-4. We choose K = 30 for

our calculations, by which point the force has converged to its final value to within a

factor of 2 x 10-8. Finally, to determine how many terms are necessary to include in
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Figure 4-5: Real part of force (top) and error in the inner boundary condition (bot-
tom) as M varies, for the same parameters as in Fig. 4-3.
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Figure 4-6: Plot of the force as the value of c in Eq. (4.7) is varied. The x axis
indicates how far c is from ( = -1.

the evaluation of P(C) in Eq. (4.3), we plot the convergence as M is increased in Fig.

4-5. We choose M = 10, by which point the force has converged to its final value to

within a factor of 5 x 10~.

As described above, the complex potential includes terms for a source and sink

located at c and -c, respectively, in the ( plane, where c is a negative real number.

The value of c must be chosen so that the points z(tc) are far enough from the

reed that it effectively sees a uniform flow. This occurs when c is close to the outer

boundary of the annulus, near ( = -1, which maps to infinity in the z plane. In

order to investigate how close c must be to -1, we calculate the force as c is varied.

The results are shown in Fig. 4-6. The force rapidly converges as c converges to -1;

after c = -0.999, for example, it has converged to its final value to within a factor of

10-6. We use this value, c = -0.999, in calculations.

In the absence of a support plate, the reed, like any object in a simply-connected

flow region, should feel no force. Therefore, as a check on the calculation, the force

should tend towards zero as the reed is positioned farther from the plate. Fig. 4-7

confirms this.
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Figure 4-7: Plots of the real part of the force on the reed as h is varied: log-linear

plot above; log-log plot below. The curve with smaller absolute value is for h = 0.5,
the one with larger absolute value, h = 1.

4.6 Motion of the reed

Now that we are able to calculate the fluid force F(h, h), we can use Eq. (4.1) to

analyze the motion of the reed. We perform a linear stability analysis to investigate

the parameters for which reed oscillation is possible. The equilibrium position can be

calculated by substituting h = h*, h = h = 0 into Eq. (4.1),

h* - ho = -F(h*, 0), (4.9)

and solving for h*. In the analysis that follows, we treat the equilibrium position h*

as given. The initial position ho for which h* is the equilibrium could be calculated

by solving Eq. (4.9), if desired.

The stability of an equilibrium position h* can be determined by linearizing

Eq. (4.1) around h = h*, h = 0. Near this equilibrium, the fluid force can be

approximated by

F )F
F(h, h)~F(h* 0) + (h* 0) (h - h*) + (h* 0).



Using u = h - h* and v = h to measure the perturbation of the position and veloc-

ity from the equilibrium, Eq. (4.1) can be converted into a linear system for these

quantities,

U = V

S= -(1 + Fh)u - Fhv

Here, Fh and Fh are used as shorthand for OF/Oh(h*, 0) and OF/ah(h*, 0), the cor-

responding partial derivatives evaluated at the equilibrium point with h = 0; we

calculate these derivatives numerically. The eigenvalues of the matrix for this system

are
-Fh F -4(1+ Fh)

A 2
2

When F < 4(1 + Fh), the eigenvalues are complex, so the linear system exhibits

oscillations. These oscillations are unstable when the real part of the eigenvalues,

Re[A} = -Fh (4.10)

is positive.

The goal is to determine the conditions under which the reed can be induced

to oscillate, that is, when the eigenvalues are complex with positive real part. We

choose values for the reed width and flow rate and calculate the eigenvalues over a

range of h*. We find that they are always complex. The real part of the eigenvalues

for a few different reed widths is plotted in Fig. 4-8. Positive values indicate that the

flow will induce oscillations; negative values indicate that oscillations will be damped.

Evidently, if the reed is very close to the support plate, no oscillations occur. However,

there seems to be a critical distance above which the reed does oscillate, although

the growth rate of the oscillations diminishes for large h*. This is the opposite of

the behavior that is observed for actual reeds, which must be positioned close to

the support plate in order to work. Evidently the potential flow calculation predicts

different behavior than is observed for real reeds.
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Figure 4-8: Re[A], calculated according to Eq. (4.10), as the equilibrium position

h* is varied, with flow rate Q = 1. For this range of h*, the eigenvalues are always

complex, so the real parts of both eigenvalues are equal. Each curve is for a different

reed width: From top to bottom, w = 0.95, 0.8, and 0.5. The model predicts that the

reed will oscillate when h* is above some critical value which decreases as the reed

width approaches the width of the slot.

Fig. 4-8 also shows that the growth rate depends on the reed geometry. For reeds

whose width is almost that of the slot in the support plate, the growth rate is rapid;

the growth is diminished if the reed is made significantly smaller than the slot. In

addition, reeds that are almost as wide as the slot will oscillate over a greater range

of h* than reeds with more clearance. This agrees with the behavior of actual free

reeds, which are usually manufactured with close tolerances. Anecdotally, if there is

a lot of extra clearance between the edge of the reed and the support plate, the reed

is less responsive.

It is worth noting that it is vital to include the time-dependent terms in the

formula for the pressure, the terms that come from the first term in Eq. (4.8).

Fig. 4-9 compares the linear stability calculation performed with and without these

terms. Physically, if the time-dependent terms are absent, the only variation in the

force that comes from varying h comes from the fluid that must be displaced by the

moving reed; the fact that the gap size varies in time, changing the flow rate, is not

taken into account. Including the time-dependent terms is what allows the steady



-2.5-/

-3

-3.5
0 0.5 1 1.5 2

h

Figure 4-9: Re[A] versus h*, plotted with (solid) and without (dashed) the time-
dependent terms, the first term in Eq. (4.8), for w = 0.8 and Q = 1.

imposed flow to drive the reed.

Fig. 4-10 shows the effect of changing the flow rate on the growth rate. As

expected, when the flow rate is larger, which corresponds to the reed being driven

at a higher pressure, the growth rate is larger. Interestingly, when the flow rate

is negative, corresponding to the reed being driven in the other direction, the reed

behaves differently: A reed close to the support plate is induced to oscillate, while

a reed far away is not. This is not consistent with the behavior of real free reeds

driven in the wrong direction, which do not oscillate at all. Instead, it is closer to the

behavior of real free reeds driven in the proper direction. The characteristic behavior

of free reeds evidently depends on the non-ideal nature of the flow.

In conclusion, this theory captures certain aspects of the problem: A steady flow

can induce oscillations of a reed by virtue of the doubly-connected reed-plate geom-

etry. This model agrees with actual free reeds in that oscillation is made easier by a

reed positioned closer to the support plate, a smaller clearance between the reed and

the edge of the support plate, and a larger flow rate. It fails to capture the fact that

a reed only oscillates when positioned very close to its support plate on the upstream

side. Most likely, the failure stems from the inability of a potential flow theory to
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Figure 4-10: Re[A] versus h*, plotted for different flow rates Q: From top to bottom,

Q = 1, 0.5, and -0.5. In this plot, the reed width is fixed at w = 0.8.

take into account the wake behind the reed. These results do offer insight on how

to proceed next: It is evidently important to take into account the time-dependent

term in the Bernoulli formula. Physically, this term represents the force on the reed

resulting from acceleration of the fluid. In our next model, we retain this feature of

the current model but propose a more realistic description of the flow.



Chapter 5

Further theoretical modeling

In the previous chapter, we solved for the flow field under several assumptions, the

most significant being that the flow is irrotational. This model failed to make qual-

itatively correct predictions of the conditions under which a free reed will oscillate,

a discrepancy most likely due to the fact that a potential flow model fails to take

into account the presence of a wake behind the reed, as was observed by St. Hilaire,

Wilson, and Beavers [30]. The analysis did indicate the importance of the time-

dependent term in the Bernoulli formula, which represents the force on the reed due

to the acceleration of the flow. In light of these results, we proceed by constructing a

theory that incorporates both this acceleration and the wake behind the reed.

5.1 Vibration of beams

Before describing the flow model, we will first improve upon our earlier description of

a reed as a rigid plate, instead treating the reed as a flexible beam. This will enable

our predictions to be compared with measurements for an actual reed.

Rayleigh [44] gives the equation of motion for lateral vibrations of a beam with

rectangular cross section. In our notation, described in Table 3.1, this equation is

1
prhWytt + h3WEy.,x2 = F(x, t),

12



where y(x, t) is the lateral displacement of the beam and F(x, t) is an externally

imposed force per unit length. x indicates the position along the beam from 0 to L

and t indicates time. We assume that h < W < L, which is largely true for real

reeds. Here, the beam is fixed at x = 0 and free at x = L.

Previous work [16] indicates that the shape of a free reed during oscillation is

described well by the shape of the first mode of an unforced beam. The mode shapes

can be found by looking for solutions of the homogeneous equation with a sinusoidal

time dependence,
M 2 h E

y (X, t) = f (X) Cos --- t,
(V/1 L2 r,

requiring the mode shape f(x) to satisfy the equation

L4
f,,= L f.

Rayleigh gives the solutions,

mx mx
f,(x) = (sin m + sinh m) cos L cosh L

-(cos m + cosh m) (sin - - sinh L '

with m = mi = 1.875104 corresponding to the first mode, and shows that different

mode shapes are orthogonal, in that an appropriately weighted integral of the product

of two mode shapes gives zero. For convenience, fm(x) will refer to the mode shapes

normalized so that f(L) = 1; f(x) will refer to the first mode shape. It will be

necessary to use the values of the integrals

L
F1 = f(x) dx

F2 = f2(x) dx,

etc., constants that can be easily computed numerically.

In order to determine the effect of an arbitrary force distribution F(x, t) on the



reed, the displacement can be written as a sum of all the modes,

y (x, t) = E am (t) fm (x).

Substituting into the equation of motion, multiplying by f(x), and integrating from

x = 0 to x = L gives an ODE for am (t), written henceforth as a(t):

Pr hWd + h3W E a F(x, t)f (x) dx. (5.1)12 L4 F

This is an ODE for the amplitude a(t) of the first mode. We neglect the presence

of the other modes. Because f(L) = 1, a(t) is just the displacement of the tip of

the reed. (We will use the convention that a positive a(t) is a displacement in the

upstream direction.) The ODE shows that the effect of any force distribution F(x, t)

on the tip displacement can be found by integrating its product with the first mode

shape.

5.2 Force on the reed

We wish to improve on our earlier model by accounting for the wake behind the

reed. We make use of extensive studies of the flow past a flat plate. Milne-Thomson

[38] presents solutions of the flow field around obstacles of a variety of geometries,

including a flat plate, under the assumption that a wake is formed behind the obstacle.

These solutions are presented for the case of a steady far-field velocity U. Anticipating

that the unsteadiness of the velocity may be important for our problem, we extend

Milne-Thomson's result for a flat plate to the case of an unsteady far-field velocity

U(t). As in Chapter 4, we assume that the flow adjusts instantaneously to changes

in U(t), that is, that the flow is always identical to the steady flow past a flat plate

with the current far-field velocity. This assumption will prevent us from capturing

unsteady structures in the flow, such as vortex shedding. However, as discussed in

Section 3.4, the work of St. Hilaire et al. [30] suggests that a quasistatic model may

be sufficient for this problem.



Milne-Thomson calculates the drag on a flat plate in a steady flow of speed U by

introducing a conformal map z(() from the interval [-1, 1] in the (-plane to the plate

in the z-plane. Here we use this map but allow the far-field velocity to be a function

of time, U(t). The complete reed-plate geometry, which we study in Section 5.3, will

determine the time dependence. Using 1 for the width of the plate and U(t) for the

far field velocity (also the velocity at the edge of the plate), the conformal map is

defined by equation (3) of 12.20,

dz
U =z K(-1 -, 1-m()

d(

where the constant K is determined from equation (4),

Ul = -K(2 + r/2).

He also gives the complex potential in the (-plane in equation (5),

Ul(2
w7+4

Here, we change the notation to be consistent with that used in Chapter 4, and correct

the sign to account for Milne-Thomson's opposite sign convention for the potential.

The pressure p at any point on the plate can be calculated by applying the time-

dependent Bernoulli formula to that point and the plate's edge,

p U2 84 pedge U2  acedge
p 2 at p 2 at

The total drag (per unit length) is calculated by integrating the pressure over the

plate. We follow Milne-Thomson in taking the pressure in the wake to be the pressure

at the edge of the plate. The drag is then

D = (p Pedge)dx = p - + - dx,

where the integral is taken over the upper surface of the plate. It can be evaluated in



the ( plane using the standard formulae for complex potential flow, ? = dw/dz, <=

Re(w). (The integration is trivial for the first and third terms, which are constant.)

For our time-dependent potential,

OW (lC2

Ot 7r+4'

since the fluid velocity changes as the reed moves.

After integration, the drag on the plate (per unit length) is found to be

D = C1plU 2 + C2P120, (5.2)

where the constants C1 and C2 are

C1= r/(7r + 4) ~0.44

C2 = (97r + 32)/(12(7r + 4)2) 0.10.

The first term is the drag on a flat plate in steady flow, while the second term is

additional drag due to acceleration of the fluid; it can be regarded as the added

mass of the plate. We expect the drag coefficients C1 and C2 to depend on a variety

of factors, such as the material of the plate, but we use these calculated values for

simplicity. We will apply this formula to calculate the force on a reed; the time

dependence in the far field velocity will come from the effect of the support plate on

the flow.

5.3 Motion of the reed

Equipped with a formula for the force on the reed in a time-dependent flow, we

proceed to use the system's geometry to relate the flow to the reed's position. The

essential idea we use is that the velocity is given by mass conservation: The closer

the reed is to the support plate (that is, the smaller the area of the gap between the

reed and the support plate), the faster the fluid must move in order to maintain a



constant flow rate. Put another way, the effect of the support plate is to control the

fluid velocity.

Based on the results of the last section, we can predict how this variation in

velocity affects the force on the reed. When the reed is moving away from the support

plate, the size of the gap is increasing, so by mass conservation, the fluid velocity is

decreasing. This makes for a smaller pressure drop across the reed, and therefore the

drag is lower than if the reed were not moving. In contrast, when the reed is moving

downward, the gap is getting smaller, so the fluid velocity is increasing, resulting in

a larger pressure drop and therefore a larger drag. In either case, there is a force in

the direction of the reed's motion in the same direction as the reed's velocity, which

causes oscillations to increase in amplitude.

In order to calculate the gap area, we begin by specifying the initial shape of the

reed. We allow the reed to be initially bent into some shape q(x), so that the reed's

shape at any time is given by

y(x, t) = q(x) + a(t)f (x).

Define a function A(a) to be the area of the gap as a function of the reed tip dis-

placement. This function describes how the gap area changes as the reed moves. If

the support plate is thick enough that the reed tip never reaches below the bottom,

the area function can be calculated via

|LA(a) = B+ 2 J [q(x)+af(x)] dx +W [q(L)+a],

where the brackets indicate that zero should be taken when the argument is negative.

Here, we have taken into account the clearance between the reed and the support

plate by including a constant minimum area B. The second and third terms are the

areas of the gaps at the sides and at the end of the reed, respectively. This formula

only describes a reed attached to the top of its support plate. For a reed attached to

the bottom, the area would instead decrease as the tip rose.

In this work, we take the reed's initial shape to be simply a multiple a0 of the first



mode shape,

y(x, t) = (ao + a(t))f(x).

This simplifies the analysis because the reed's initial position can be described by a

single parameter. It is qualitatively correct in that the height above the support plate

increases towards the tip of the reed. With this simplification, the area function can

be written in terms of several known constants,

A(a) = B + (2F1 + W) [ao + a]. (5.3)

The derivative of the area A'(a) will also be needed,

A'(a) = 2F 1 + W, (5.4)

or A'(a) = 0 when ao + a < 0.

We expect the aerodynamic force on the reed to have two contributions, one of

the form for a steadily translating plate and one resulting from the unsteady nature

of the flow. Using W for the width of the reed, Urei(X, t) for the velocity of the fluid

relative to the reed, and o-(x, t) for its sign (+1 or -1), Eq. (5.2) gives the force per

unit length on a segment of the reed,

F(x, t) = UCiPWu,ei + C 2pW 2(urei)t. (5.5)

Determining the form of Urel requires that we make an assumption about the velocity

distribution of the flow around the reed. The simplest model would be a uniform

velocity, the velocity at every position being the flow rate Q(t) divided by the area

of the gap,
Q(t)

uid (X, It) = A(a(t))'

The velocity of the reed itself is a function of position,

Ureed(X, t) = at(t)f(x).



The relative velocity is the difference,

Urei (X, t) = fuid(X, t) - Ureed(X, t). (5.6)

Using this velocity, the fluid force on the reed can now be calculated. Substituting

Eq. (5.6) into Eq. (5.5), and in turn into Eq. (5.1), gives a second-order ODE for

the reed tip displacement a(t),

1 mi oC1p Q2  Q C 2 pW QQA'.
12h L4  F2  F1lA 2 + 2 F2A+Fa)±F 2  AF1 +F1A 2  -F2a),

(5.7)

where for simplicity we evaluate the sign of the velocity o at the reed tip, o(x, t) =

o-(L, t). This simplification is correct as long as the flow speed exceeds the speed of

the reed tip.

5.4 Constant-flow-rate theory

The ODE for a(t) is not complete until a flow rate Q(t) is specified. In this section,

we make the assumption that Q(t) is a constant; we will revisit this assumption in

Section 5.5. Here, we express the flow rate Q in terms of the driving pressure Ap by

the steady Bernoulli formula applied at the reed's equilibrium position. Using A* for

the reed's equilibrium area, which is approximately equal to 0.05 cm 2 for our reed,

this formula is

AP = Pp Q) 2  (5.8)

Equations (5.3), (5.7), and (5.8) together constitute this second-order model. In the

current model, the same volume of air flows through the gap in a given time, even as

that gap changes size; as the reed moves, the fluid velocity adjusts to maintain the

flow rate.

We perform a linearization of the equation of motion for the reed, Eq. (5.7), to

investigate the conditions under which the theory predicts small-amplitude oscilla-

tions. For small oscillations, the flow velocity always exceeds the reed velocity, so the



relative velocity is always in the downward direction, allowing us to take o- = -1.

Setting a = d = 0 gives an equation specifying the equilibrium state,

12C 1F1 pL4 Q2

m4F 2  Eh3

Combining this equation with (5.8) gives a formula for the equilibrium reed tip dis-

placement in terms of the driving pressure,

24C1F1 L4 Ap
mF 2 Eh3

We are interested in the behavior of small oscillations around this equilibrium.

We linearize the second-order ODE at a = a*, i = 0,

Md + B& + K(a - a*) = 0,

where the coefficients M, B, and K are calculated to be

M = ph + C2pW

B = 2C 1 - C2FWAI*
A* (F2 A*
m 4h 3 E 2CIFpQ2A'*

K 1A'
12L4A F2 A*3

The area and its derivative at equilibrium, A* = A(a*), A'* = A'(a*), are calculated

according to Eq. (5.3-5.4). The flow rate is given by Eq. (5.8).

Such a second-order system will undergo oscillations if the eigenvalues are complex,

that is, if B 2 < 4MK, and their real part is positive, that is, B < 0. For our system,

this second condition takes the form

A'* 2C 1F2
W > . (5.9)

A* C2F1

To have oscillations, the quantity A'/A at the equilibrium point must exceed a certain

constant. This quantity measures how much the gap area changes with reed tip



displacement. Physically, the force from the fluid acceleration must exceed the drag

due to the motion of the reed itself. This occurs when the gap area changes sufficiently

to accelerate the fluid.

This prediction is consistent with both major observations about free reeds. If

a reed is mounted on the downstream side of the plate, the gap area decreases as

the reed moves upstream. In this case A'* < 0, so Eq. (5.9) can never be satisfied.

Furthermore, for a reed on the upstream side of the plate, A'*/A* decreases as the

equilibrium position moves farther from the plate. At some critical position, the ratio

A'*/A* will fall below the required constant, precluding the possibility of oscillations.

The frequency of oscillation can also be calculated from the coefficients,

K B )2(5.10)
M 2M

When this frequency is real, the eigenvalues are complex, which must be the case for

oscillation to arise.

Fig. 5-1 illustrates a simulation of the second-order system, Eqs. (5.3), (5.7),

and (5.8), at Ap = 0.5 kPa. The behavior is qualitatively correct. However, the

frequency is only 631.0 Hz, much lower than the measurements in Fig. 3-6. Fig. 5-2

shows a simulation at a higher pressure, Ap = 1.0 kPa. In this simulation, the reed,

after about 0.4 s, is pushed below the top of the support plate. This behavior seems

to occur for all higher driving pressures as well. Since the magnitude of the fluid

velocity is Q/A, it is not surprising that when the flow rate Q is fixed, the force on

the reed is very large when the gap area A becomes small.

These results indicate that, under the assumption that the flow rate Q is constant,

our model fails to adequately describe free reed oscillation. In the next section, we

extend our model by allowing for a reed driven at a constant pressure to experience

a time-varying flow rate Q(t).
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Figure 5-1: Simulation of a reed's oscillation, found by solving Eq. (5.3,5.7). The
reed position ao + a(t) is plotted. The reed parameters listed in Table 3.1 are used,
with a driving pressure of 0.5 kPa determining the constant flow rate by Eq. (5.8).
The best fit frequency, obtained from the simulation by fitting a line to the times
corresponding to the reed position minima starting after the limiting amplitude has
been reached, is 631.0 Hz.
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Figure 5-2: Simulation of the reed's oscillation, Eq. (5.3,5.7,5.8), driven at 1.0 kPa.
At about 0.4 s, the reed is pushed below the top of the support plate, where it remains
for the rest of the simulation, its amplitude decaying. The best fit frequency after it
is pushed below the top of the plate is 751.6 Hz.



5.5 Time-varying flow rate

The deficiencies discussed so far suggest that we relax the assumption that the flow

rate through the gap Q is constant and allow it to change in time, Q(t). So far, our

model includes the reed and the support plate but does not consider the source of the

flow. In order to understand the dynamics of the flow rate, we must add a description

of the reservoir that provides air to the reed. The nature of this reservoir is different

for different instruments. In the case of an accordion or concertina, for example, the

reed is driven by the air inside the bellows; for a harmonica, this reservoir would

include the player's mouth and possibly also the player's throat and lungs. In our

experimental setup, both the chamber to which the reed is mounted and the hose

that feeds the chamber from the compressed air source must be considered.

A time-varying flow rate through the reed introduces the possibility of air accu-

mulating in the chamber over the course of the reed's oscillation. We proceed by

demonstrating that this effect is not significant. This would be significant if the cor-

responding changes in air density contribute to pressures of the same order as those

predicted by the current theory. We argue that any such change in density has a

negligible effect on the reed dynamics. We assume the worst, that the flow rate into

the chamber is constant, making no attempt to adjust to the varying flow rate out of

the chamber through the reed. We also assume the greatest possible variation in flow

rate into the chamber, that is, that the flow rate drops to nearly zero when the reed

goes into the support plate and increases in proportion to the reed's distance from

the support plate. (This worst-case assumption would be the case if the flow rate had

little inertia and therefore adjusted quickly to the reed's position.) Under these two

assumptions, the magnitude of the net flow rate into or out of the chamber, AQ, is

some order one multiple of the equilibrium flow rate Qo. Using the steady Bernoulli

formula to calculate Qo from the equilibrium gap area A0,

Qo = Ao 2pp_



we have that a net flow rate of up to

zXQ r.Ao Ap/p

may be entering or leaving the chamber. A volume of AQ/w may accumulate over

the course of an oscillation, increasing the mass of the air in the chamber by pAQ/w,

and therefore the density by
A p rAQ

wvc

We wish to know whether such density changes will affect the pressure in the

chamber. Pressure differences are related to density differences by

AP dp p
dp

Using c2 = dp/dp, we find that the pressure can vary by an amount

c2pAo Ap

The ratio of this pressure perturbation to the driving pressure, which we take to be

the magnitude of the dynamic pressures, is

AP c2Ao p
Ap wVc Ap

For the 750 Hz reed in our setup, driven at 2 kPa, this ratio is

AP
~ 9 x 10-4.

This indicates that we can safely neglect the pressure changes that would result

from accumulation of air inside the chamber. This amounts to treating the air as

incompressible for the purpose of calculating velocities and pressures.

Our apparatus is fed through a hose by a source of compressed air. We take the

pressure at the source to be constant, ps. The hose is connected to the base of the



chamber, where we assume the air enters as a jet, and therefore take the pressure at

the jet equal to the pressure in the chamber near the entry point, pc. The pressure

drop along the length of the hose is therefore related to the flow rate Q(t) by

Ps - pc = RhQ + pIQ. (5.11)

Here, we have incorporated terms for both the resistance (Rh) and inertia (Ih) of the

air in the hose. For another model that incorporates these terms, see Bertram and

Pedley's model of unsteady flow in collapsible tubes [8]. The air leaves the chamber

as a jet through the gap between the reed and the support plate, whose pressure we

therefore take to be atmospheric, po. This jet is moving much faster than the air

in the chamber itself, whose velocity we therefore neglect. The pressure within the

chamber is related to the flow rate by

1 (Q) 2

pc -po = -p - + RcQ + IcQ. (5.12)
2 A

Re and Ic are the coefficients for the resistance and inertia of the air in the chamber.

Adding Eq. (5.11) and Eq. (5.12) gives an ODE for Q(t),

(Ih + Ic)Q + (Rh + Rc)Q + Ip ( = ps - Po. (5.13)

The resistance Rh AP/Q of the hose can be estimated from its radius rh =

0.5 cm and length Lh ~ 4 m using Poiseuille's law[33],

Rh = 8iLh 3 gcm-4 s-i. (5.14)
7ITh

The inertia of the air in the hose can be calculated by applying the time-dependent

Bernoulli equation to each end of the hose:

dt dt

Here, #, is the value of the velocity potential at the source end of the hose and #c



is its value at the chamber end. Assuming uniform flow throughout the hose, the

velocity potential as a function of distance x from the source end is

7rrh

Their difference is therefore #c -# = QLh/7rr , giving a formula for the inertia

coefficient lh = AP/Q,

Ih = ~ 0.6 gcm-4 . (5.15)
_7rh

We can make a similar estimate for the resistance of the chamber, but since the

chamber's dimensions are so much larger, it's clear from the form of Rh that the

hose's resistance will dominate the chamber's. We can also make an estimate for

the inertia of the air in the chamber, although this is more difficult because the flow

ceases to be uniform as it approaches the reed. The inertia of the uniform region will

clearly be dominated by that of the hose, so can be safely neglected. We can make a

crude estimate for the flow entering the reed gap by taking it to be a line sink with

out-of-plane length L corresponding to the length of the reed. The velocity potential

of this line sink would be, as a function of radial distance from the reed r,

#(r) = log r.
7rL

It is unclear exactly where the flow transitions from this form to the constant-pressure

jet, but an estimate would have the line sink extend from the equilibrium reed position

r = ao to one reed length away, r = L. For our reed with ao ~~ 0.02 cm and L ~ 2 cm,

the inertia coefficient AP/Q for this region would then be

7 log a ~~ 0.0007 gcm~
irL ao

indicating that the inertia of this flow is also dominated by that of the air in the hose,

regardless of whether this estimate captures the precise form of the flow. We therefore

neglect both the resistance and inertia of the air in the chamber. This approximation



also implies that the pressure we measure in the chamber is approximately equal to

the source pressure. We therefore take the driving pressure measured by our pressure

gauge to be Ap = ps - po.

To simplify Eq. (5.13) even further, we calculate the ratio of the resistance term to

the inertia term. Substituting in the values of Rh and Ih, and using the reciprocal of

our reed frequency, 750 Hz, for a time scale, we obtain RQ/IQ - 0.008. We therefore

neglect the resistance term, resulting in a simple ODE for the flow rate Q(t),

.1 Q\ 2

IQ + p(3) = Ap, (5.16)

where I is the value lh from Eq. (5.15). It should be noted that there is a large

degree of uncertainty in the value of I, because the relationship between pressure and

flow rate at the source is not clear. Also, the value of I will be different for different

experimental setups, depending as it does on the detailed geometry of the reservoir.

5.6 Comparison with experiment

We supplement the second-order system for the reed's position a(t), Eqs. (5.3) and

(5.7), with the first-order equation for the flow rate Q(t), Eq. (5.16), giving a third-

order model. In this section, we consider whether this model can describe the oscil-

lations of free reeds.

Fig. 5-3 shows a simulation of the third-order model, Eq. (5.3,5.7,5.16), using

Ap = 1 kPa for the driving pressure and I = 0.6 gcm-1 for the inertia coefficient

in Eq. (5.16). There is apparently a short period at the beginning of the simulation

during which the flow rate, whose initial value is set by the unforced gap area, adjusts

to a lower value. In contrast to the simulation in Fig. 5-2, the reed is not pushed

below the top of the support plate. Furthermore, the simulated frequency, 744.2 Hz,

is within the range measured in the experiments described in Fig. 3-6.

Fig. 5-4 shows the waveforms of the reed position and flow rate. The position

waveform is sinusoidal, consistent with the results of Cottingham [15]. The form of
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Figure 5-3: Simulation of the reed's oscillation using the third-order model, Eq.
(5.3,5.7,5.16), using I = 0.6 gcm 1 for the inertia coefficient. The reed's posi-
tion ao + a(t) is plotted above, the flow rate Q(t) below. The reed was driven at
Ap = 1 kPa. The best fit frequency is 744.2 Hz.
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Figure 5-4: Simulated waveforms of reed position (top) and flow rate (bottom) over
several oscillations, using the third-order model, for the same conditions as Fig. 5-3.
Note that the reed position and flow rate are both periodic, but that the flow rate
lags a fraction of a period behind the reed position.
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Figure 5-5: A reed driven by airflow in the wrong direction, simulated using the third-
order model. The same parameters from Table 3.1 are used, except the equilibrium
position ao is taken to be -0.02 cm; that is, the reed is initially below the bottom of
the support plate. Eq. (5.3) is corrected so that the gap area drops to its minimum
when the reed position ao + a exceeds zero. The reed is driven at 1 kPa using
I = 0.6 gcm- 4 . The frequency of oscillation is 800.2 Hz.



the flow rate looks different from that measured in Cottingham's experiments, but

it does bear some similarity to our own (Fig. 3-5). Comparison of the reed position

and flow rate plots reveals an interesting fact: The flow rate appears to lag behind

the reed position by a sizable fraction of a period. This is understandable now that

we are taking into account the inertia of the air in the reservoir; the flow rate takes

time to adjust to the current size of the gap. Therefore, when the reed is moving

away from the support plate, the flow rate is lower than when it is moving towards

the support plate. The result is an asymmetrical distribution of force on the reed,

greater when the reed is moving towards the plate and smaller when it is moving

away. For a reed positioned on the upstream side of its support plate, the unsteady

component of the force is in the direction of the reed's motion, driving its oscillations.

For a reed positioned on the downstream side, the unsteady component of the force

is opposed to the reed's motion, damping its oscillations. In Fig. 5-5, we verify that

the theory predicts this behavior for a reed on the downstream side of its support

plate, a further check that this model gives behavior consistent with real free reeds.

In Fig. 5-6, we plot the dependence of amplitude and frequency on driving pres-

sure. Because the value of the I parameter would differ between setups, and is

uncertain even for our setup, we performed simulations at different values of I. Sev-

eral discrepancies are evident. First, the slope of the frequency versus pressure plot

does not match the measured slopes shown in Fig. 3-6. Second, for one of the values

of the inertia coefficient, I = 0.1 gcm- 4 , the amplitude quickly grows to over 1 cm,

much higher than the observed amplitude, which is at most several millimeters. This

value of I would be expected in a setup with a shorter hose, for example. Further

work is required to understand these discrepancies. Perhaps the amplitude is kept

small by damping not considered in our model.

We have introduced two models of free reeds that predict oscillations: The second-

order model described by Eq. (5.3,5.7,5.8) relies on a force due to the fluid's acceler-

ation, while the third-order model described by Eq. (5.3,5.7,5.16) also incorporates a

time-varying flow rate. The second-order model predicts oscillation frequencies much

lower than those observed and breaks down when the reed's amplitude allows it to pass



1.6

1.4-

1.2-

E 1-
V

0.8-

0.6-

0.4-

0.2-

0 ' ' ' '

0 0.5 1 1.5 2 2.5 3 3.5 4
driving pressure, kPa

750-

N
S745 -

Cr

740-

73 

'

0 0.5 1 1.5 2 2.5 3 3.5 4
driving pressure, kPa
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in Fig. 3-6 are also shown (+). 81



under the top of the support plate (Fig. 5-2). The third-order model does not break

down for large driving pressures and predicts more realistic frequencies, although it

involves the parameter I, whose value is uncertain and depends on the geometry

of the air reservoir. Further study, and more exact comparison to experiments, is

definitely required.



Chapter 6

Conclusion

We have considered two physical systems with several common features: structures

that can be described by the theory of elastic beams and unsteady flows in which

wakes are present. In both systems, steady imposed flows produce oscillations of the

structure, and the goal was to elucidate the mechanism responsible for the oscillations

and construct theoretical models that describe experiment. The challenges in the

two problems turned out to be different: In the clapping book, the large-amplitude

deformations of the structure necessitated nonlinear equations, and the presence of

multiple sheets required determining how the sheets interact. For free reeds, the

principal difficulty was modeling and measuring high-speed flow over small structures

with complicated geometry.

For the clapping book, we have successfully described the shapes of elastic sheets

in flow using the theory of finite-amplitude deformations of slender beams, which we

applied to both individual elastic sheets and stacks of paper. Our model predicts the

critical wind speed below which a sheet falls, which we used to fit the drag coefficient

and calculate the number of pages required for the clapping book to begin to collapse.

We combined this with a heuristic description of page liftoff and simulations of page

collapse in order to obtain a complete picture of the clapping process. We tested our

predicted clapping period and found good agreement.

Our study of free reeds was motivated by a desire to explain two qualitative fea-

tures of reed oscillation, that Western free reeds only oscillate when on the upstream



side of the support plate, and that they must be near the support plate to oscillate.

We also sought a model that predicted realistic amplitudes, matched the frequencies

we measured, and produced waveforms that resembled the ones we recorded. Our

work was directed by several previous workers' observations: The amplitude growth

is exponential [30], suggesting a quasistatic model of the flow; the reed oscillates

primarily in its first mode [16], simplifying our analysis; and a wake is present down-

stream of the reed [30], which lead us to eventually abandon the potential flow model.

Our first attempt (Chapter 4), motivated by recent work in conformal mapping

on multiply connected domains, failed in describing the problem using potential flow,

but identified the acceleration of the fluid as potentially important to the mechanism.

This prompted a second attempt, introduced in Sections 5.1-5.4, which used a more

realistic, if less exact, description of the flow, which took into account the presence of

a wake. It successfully explained the qualitative features of reed oscillation but failed

to produce quantitative agreement with measurements. Our third theory, introduced

in Section 5.5, included a description of the flow of air within the reservoir, and

required the introduction of an additional parameter. This theory seems likely to

give quantitative agreement with measurements, although more experimental work is

still required.

In retrospect, a better way to approach the free reeds problem would have been

to first make measurements and then use data to construct a theory, rather than

to make a guess at a theory and try to modify it to get the data to fit. Both the

potential flow model (Chapter 4) and the second-order ODE model (Sections 5.1-5.4)

were interesting to develop but did not end up relating to real free reeds; both omit

ingredients (the wake behind the reed and a time-varying flow rate) that we now

think are necessary to describe the problem.

Given the ubiquity of the interaction of flexible bodies and high Reynolds number

flow in nature, we hope that the approaches developed for these problems will find

wider application in the biological sciences.



Bibliography

[1] D. J. Acheson. Elementary Fluid Dynamics, chapter 4. Oxford, 1990.

[2] S. Alben. Simulating the dynamics of flexible bodies and vortex sheets. J.
Comput. Phys., 228:2587-2603, 2009.

[3] S. Alben, M. Shelley, and J. Zhang. Drag reduction through self-similar bending
of a flexible body. Nature, 420, December 2002.

[4] S. Alben, M. Shelley, and J. Zhang. How flexibility induces streamlining in a
two-dimensional flow. Phys. Fluids, 16(5), May 2004.

[5] S. Alben and M. J. Shelley. Phys. Rev. Lett., 100(074301), 2008.

[6] M. Argentina and L. Mahadevan. Fluid-flow-induced flutter of a flag. Proceedings
of the National Academy of Sciences of the USA, 102(6):1829-1834, February
2005.

[7] J. Backus. Small-vibration theory of the clarinet. J. Acoustical Soc. of America,
35(3), March 1963.

[8] C. D. Bertram and T. J. Pedley. A mathematical model of unsteady collapsible
tube behaviour. J. Biomech., 15:39-50, 1982.

[9] P. Buchak and J. Bush. Flow-induced oscillation of free reeds. (in preparation),
2010.

[10] P. Buchak, C. Eloy, and P. Reis. The clapping book: wind-driven oscillations in
a stack of elastic sheets. Phys. Rev. Lett (submitted for publication), 2010.

[11] C. Cancelli and T. Pedley. A separated-flow model for collapsible-tube oscilla-
tions. J. Fluid Mech., 1985. See equations (18).

[12] S. Childress. Mechanics of swimming and flying. Cambridge, 1981.

[13] B. Coleman, E. Dill, M. Lembo, Z. Lu, and I. Tobias. Arch. Rational Mech.
Anal., 121:339-359, 1993.

[14] J. P. Cottingham. Pitch bending and anomalous behavior in a free reed coupled
to a pipe resonator. In Proceedings of the International Symposium on Musical
Acoustics (ISMA2007), Barcelona, Spain, September 2007.



[15] J. P. Cottingham. Reed vibration in western free-reed instruments. In Proceedings
of the International Congress on Acoustics, Madrid, Spain, September 2007.

[16] J. P. Cottingham, C. J. Lilly, and C. H. Reed. The motion of air-driven free
reeds. In Collected Papers of the 137th meeting of The Acoustical Society of
America and the 2nd Convention of the European Acoustics Association: Forum
Acusticum, Berlin, March 1999.

[17] J. P. Cottingham, C. H. Reed, and M. Busha. Variation of frequency with
blowing pressure for an air-driven free reed. In Collected Papers of the 137th
meeting of The Acoustical Society of America and the 2nd Convention of the
European Acoustics Association: Forum Acusticum, Berlin, March 1999.

[18] D. Crowdy. (private communication).

[19] D. Crowdy and P. Buchak. (in preparation).

[20] D. G. Crowdy. European Journal of Mechanics B, 25:459-470, 2006.

[21] D. G. Crowdy. Schwarz-christoffel mappings to unbounded multiply connected
polygonal regions. Math. Proc. Camb. Phil. Soc., pages 319-339, 2007.

[22] D. G. Crowdy, A. Surana, and K-Y. Yick. Phys. Fluids, 19(018103), 2007.

[23] E. de Langre. Effect of wind on plants. Annu. Rev. Fluid Mech., 40:141-68,
2008.

[24] K. Drescher, K. Leptos, I. Tuval, T. Ishikawa, T. Pedley, and R. Goldstein.
Dancing volvox: Hydrodynamic bound states of swimming algae. Phys. Rev.
Lett., 102(168101), 2009.

[25] N. H. Fletcher. Excitation mechanisms in woodwind and brass instruments.
Acustica, 43, 1979.

[26] N. H. Fletcher and T. D. Rossing. The physics of musical instruments. Springer,
1991.

[27] M. Ghisalberti and H. Nepf. Shallow flows over a permeable medium: the hydro-
dynamics of submerged aquatic canopies. Transport in Porous Media, 78(385-
402), 2009.

[28] Greenspan and Benney. Calculus: An Introduction to Appl. Math., page 555.
1997.

[29] H. L. F. Helmholtz. On the sensations of tone. 1877.

[30] Arthur 0. St Hilaire, Theodore A. Wilson, and Gordon S. Beavers. Aerodynamic
excitation of the harmonium reed. J. Fluid Mech., 49(4):803-816, 1971.



[31] R. B. Johnston. Pitch control in harmonica playing. Acoustics Australia, 15:69-
75, 1987.

[32] Katz, Chen, and Moreno. Flow through a collapsible tube. Biophysics J., 1969.

[33] Pijush K. Kundu and Ira M. Cohen. Fluid Mechanics, Third Edition, page 285.
Elsevier, 2004.

[34] L. D. Landau and E. M. Lifshitz. Theory of Elasticity. 1959.

[35] M. J. Lighthill. J. Fluid Mech., 9(2), 1960.

[36] D. Lisoski. Nominally two-dimensional flow about a normal flat plate. PhD
thesis, California Institute of Technology, 1993.

[37] A. Manela and M. S. Howe. On the stability and sound of an unforced flag. J.
of Sound and Vibration, 2008.

[38] L. M. Milne-Thomson. Theoretical Hydrodynamics, chapter 12. Macmillan, 1960.

[39] T. Pedley. The fluid mechanics of large blood vessels. 1980.

[40] T. J. Pedley and J. 0. Kessler. Hydrodynamic phenomena in suspensions of
swimming microorganisms. Annu. Rev. Fluid Mech., 24:313-58, 1992.

[41] T. J. Pedley and X. Y. Luo. Modelling flow and oscillations in collapsible tubes.
Theoretical and Computational Fluid Dynamics, 10:277-294, 1998.

[42] E. M. Purcell. Life at low reynolds number. Am. J. Phys., 45(1), 1977.

[43] C. Py, E. de Langre, and B. Moulia. A frequency lock-in mechanism in the
interaction between wind and crop canopies. J. Fluid Mech., 568:425-449, 2006.

[44] J. W. S. Rayleigh. The Theory of Sound, volume 1. 1878.

[45] L. Schouveiler and C. Eloy. Coupled flutter of parallel plates. Phys. Fluids,
21(081703), 2009.

[46] L. Schouveiler, C. Eloy, and P. Le Gal. Phys. Fluids, 17(047104), 2005.

[47] M. Sherry, D. Jacono, J. Sheridan, R. Mathis, and I. Marusic. In Sixth Interna-
tional Symposium on Turbulence and Shear Flow Phenomena, 2009.

[48] D. Tam, J. W. M. Bush, M. Robitaille, and A. Kudrolli. Tumbling dynamics of
passive flexible wings. Phys. Rev. Lett., 104(184504), 2010.

[49] G. Taylor. Analysis of the swimming of long and narrow animals. Proc. Roy.
Soc. A, pages 158-183, 1952.

[50] S. Vogel. Life in Moving Fluids. Princeton, 1994.



[51] Z. Jane Wang. Dissecting insect flight. Annu. Rev. Fluid Mech., 37:183-210,
2005.

[52] D. Wilhelm and L. Kleiser. J. Scientific Computing, 17:1-4, 2002.


