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Abstract

Fix integers n and b with n > 3 and 1 < b < n - 1. Let k be an algebraically closed

field. Consider the moduli space X of hypersurfaces in P" of fixed degree I whose

singular locus is at least b-dimensional. We prove that for large 1, X has a unique

irreducible component of maximal dimension, consisting of the hypersurfaces singular

along a linear b-dimensional subspace of P".
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Chapter 1

Introduction

Let n and b be fixed integers with n > 3 and 1 < b < n - 1, and let k be an

algebraically closed field of characteristic p > 0. Fix a positive integer 1. Inside the

projective space of all hypersurfaces in P' of degree 1, consider the ones which are

singular along some b-dimensional closed subscheme,

X = {[F] c P(k[xo. x, ]1) 1 dim V(F)sing 2 b}

(this is a closed subset).

A simple argument (Lemma 5.1) will show that

X1 :{[F] E X I L C V(F)sing for some linear b-dimensional L c P'}

is an irreducible closed subset of X of dimension (/ f) - anb(l), where

an,b(l) : = b) + (n b) (1 + b) + 1 - (b+ 1)(n - b)

=- b+ 1

b!

Theorem 1.1. There exists an integer lo = lo(n, b,p), such that for all / > 10, X 1 is

the unique irreducible component of X of maximal dimension.

In fact, the proof of the theorem will give a simple procedure to compute a possible



value of 10, given n, b, p (assuming a conjecture of Eisenbud and Harris when b > 2).

In addition, again for large 1, we find the second largest component of X, at least

when char k # 0: it comes from the hypersurfaces singular along an integral closed

subscheme of degree 2 (Corollary 7.16).

We now sketch the main idea of the proof. Let Hilbd denote the disjoint union

of the finitely many Hilbert schemes Hilbp, where Pc, ranges over the Hilbert poly-

nomials of integral b-dimensional closed subschemes C C Pn of degree d, and define

the restricted Hilbert scheme Hilb as the closure in Hilbd of the set of points cor-

responding to integral subschemes. Let V = k[xo, ..., x,],. Consider the incidence

correspondence

{(C, [F]) E Hilb x P(V) C C V(F)sing}.

The first step1 is to show that for 2 < d < - ("small" degree), any irreducible

component of Ud has dimension less than dim X1 . For this, we apply the theorem
~ _ d

on dimension of fibers to the map 7r: Ud - Hilb . A result of Eisenbud and Harris

~ d
gives dim Hilb when b = 1; for b > 1, they state a conjecture for the corresponding

result. (We assume this conjecture but also note that our proof can be modified to

give an alternative unconditional - but ineffective - proof of Theorem 1.1.) So it

remains to give an upper bound for the dimension of the fiber of 7r over an integral C

of degree d. For this, we specialize C to a union of d b-dimensional linear subspaces

that contain a common (b - 1)-dimensional linear subspace.

The second step is to handle the case d > LT'1 ("large" degree). For this, the

first main observation is that it suffices to assume that k - F in the statement of

the main theorem. The reason is that the variety X is the basechange by Spec k -

Spec Z of a projective variety X""n" -> Spec Z, and in order to give an upper bound

for dim XuiV x Q, by upper-semicontinuity, it suffices to give an upper bound for

dim Xuniv x IF for a single prime p (we will take p = 2).

'We are going to be slightly imprecise here; see Section 5.3 for the exact statement.



So let k =l and d > -1 . We have to give an upper bound for the dimension of

Td = {[F] E P(k[xo, ..., X,],) I V(F)sing contains

a subscheme with Hilbert polynomial among {PQ}}.

Any variety T over 7P_ comes from a variety To defined over some finite field Fqo; in

order to give an upper bound dim T < A, it suffices to prove that #To(]Fq) = O(qA)

as q -4 o, by the result of Lang-Weil [8]. So we reduce the problem to giving an

upper bound on the number of hypersurfaces F E Fq[xo, .. xnj, such that V(F)sing

contains an integral closed subscheme of large degree d.

For this, we mimic the main argument in [101. We sketch it here in the case b 1

and / = 1 (mod p) to simplify notation. Write F in the form

n

F = Fo +( Gixi,
i=O

where Fo has degree 1, each G, has degree T = , and note that

OF OFo

Oxi  Oxi

Fix Fo. We exhibit a large supply of (GO,..., G,) such that the F constructed in this

way has the property that V(F)sing contains no integral curves of degree d. To do

this, we first give a large supply of (Go. G,- 2 ) such that V( y7, .. , ' F) has all

components of dimension 1. The number of such components is bounded by Bezout's

theorem. It remains to give a large supply of G. 1 such that no irreducible component

C of V(O , ... , OF ) of degree d is contained in V(O -+Gn ). We accomplish this by

specializing C to a union of d lines again, and giving an upper bound on the number of

Gn- with C C V(OF +GPa 1 ). With some technical details concerning the uniqueness

of the largest-dimensional component in characteristic 0. this completes the proof of

Theorem 1.1. The discussion of the second largest component is along the same lines.

We also give an alternative approach for the case of small degree d (when b = 1).



Namely, in Chapter 8, we fix an integral curve C - P' with ideal sheaf I, and

associate to it an ideal sheaf 3 C Op. (with 3 D 12) such that for F E k[XO, . ., Xn]l,

we have C c V(F)sing if and only if F E F(P", (l)). Next, we compute the Hilbert

polynomial of 3, and hence the dimension of Wc := {F E k[xo, ... ,x I C c

V(F)sing} (in terms of invariants of C) for 1 > 0. We use Mumford regularity to find

a polynomial P2(d) such that this formula for dim Wc is valid for all integral curves

C of degree d and for all 1 > P2 (d).



Chapter 2

Notation

For a field k, the graded ring k[xo,..., x,] will be denoted by S. For a graded S-

module M (in particular, for a homogeneous ideal), M, will denote the /-th graded

piece of M. When I c S is a homogeneous ideal, (I2); is denoted simply by 12. Also,

k[xo, ..., xn<,; denotes the vector space of (inhomogeneous) polynomials whose total

degree is at most 1. When the field k and the integer 1 are fixed, V will denote the

vector space V = k[xo, ..., Xn] .

For a finite-dimensional k-vector space V, P(V) denotes the projective space

parametrizing lines in V, so for a k-scheme S, HomSch/k(S, P(V)) consists of a line

bundle 1 on S, together with an injective bundle map (i.e., with locally free cokernel)

L -+2 V ok Os. Given a homogeneous ideal I c k[xo, ..., xn], V(I) denotes the closed

subscheme Proj(k[xo, ... , xn]/I) <-+ Pn, and for i = 0, ..., n, D+(xi) is the complement

of V(xi). We often abbreviate V({Gi} 1i,) C P" as V(G 1 ), when the index set I is

irrelevant or understood.

For F E Si, V(F)sing c P" is the closed subscheme V(F, j) = V(F, 5, .,

of P", so when F 5 0, the underlying topological space of V(F)sing is the singular

locus of V(F).

If C - Pn is a closed subscheme of dimension b and Hilbert polynomial Pc(z)

z+ ... , we say that C has degree d.

We will reuse 1a for different bounds as we go along, in order to avoid unnecessary

notation; however, it will be clear that we are actually referring to different values of



1o even though we use the same symbol. Also, it will be understood that sometimes

the value of lo is the maximum of a finite set of previously defined bounds, each of

them still denoted by /0.

When X is a scheme of finite type over an algebraically closed field, we often

identify X with its set of closed points, since most of our arguments will be just on

the level of closed points. So when we say "x E X," we usually refer to a closed point

x E X (this will be clear from the context).

For integers b and n with 1 < b < n - 1, we denote by G(b, n) the Grassmanian

of b-dimensional projective linear subspaces of P".

For a scheme X, let QCoh(X) and Coh(X) denote the categories of quasi-coherent

and coherent sheaves on X, respectively.



Chapter 3

The incidence correspondence

The goal of this chapter is twofold: first, to prove that the incidence correspondence

is a closed subset of the product HilbP xP(k[xo, ..., zt)1) (Corollary 3.2). and second,

to show that we can define a universal incidence correspondence QP over Spec Z and

to introduce the universal moduli spaces TP - Spec Z (defined at the end of the

section). The reason we want to work over Spec Z is that later we will use upper-

semicontinuity to compare dim TT with dim Tf.
Q 1Kp

Recall that if Y is a scheme and a: Ei-+ E2 is a map of vector bundles on Yo,

the functor Van. Loc. a: Sch0 P -+ Sets given by

Van. Loc. a(S) = {t: S - Yo I t*a = 0}

is representable, by a closed subscheme of Y. If U = Spec A is an affine open U C Yo

on which Ei, S2 are trivial, so the map a: An - A12 on U is given by an r2 x r1 matrix

(fij) with entries in A, then (Van. Loc. a) n U -* U is given by the closed embedding

Spec(A/(fij)) -- * Spec(A). If F E Z[o,..., xn] is a homogeneous polynomial of degree

1, it gives rise to a map 0: Opg -+ Op, (l); then the functor Van. Loc. 3 is represented

by the closed subscheme V(F) C Pl".

Let 1 > 1 be an integer, and let V = Z[xo,..., x,],. For F E V. we can describe the



map 3 above as the composition

Opn -+ V @zOJ& n --+ O )n ,

where the first map is given by F E V = F(Pn. V Oz Op,) and the second one is the

canonical map.

Let V' = Z[xo, X..,n]I. Consider the linear maps D1 : V -+ V', F H-+ ' for i =ax,

0, ... , n, and fix a nonzero polynomial P E Q[z]. The functor Hilbrn x P(V): SchP -

Sets is given as follows: an element of HilbrP xIP(V)(S) consists of a closed subscheme

X -+- P such that the composition X -+ P" -+ S is flat and each fiber has Hilbert

polynomial equal to P, together with a line bundle C on S and an injective bundle

map a: C -+ V Oz Os-

A map a: C -* V Oz Os induces maps a?: C -+ V @z Os D V' z OS,

for i = 0, .n. Let y: V 9Z Op. --4 Op. (l) and ': V' @z Op, -+ Or (I - 1) be

the canonical maps. Since the pullback to P of the target of a coincides with the

pullback of the source of -y (similarly for a, and -y'),

I T
S

we can form the compositions

E: 7r*L E1* V' 0z OZ g p" O(- 1)

si: 7r*f - V/ @z OP, Pas -1

which are maps of line bundles on Pn. Thus, for any (X ', , a: C + V z Os) E

HilbP xP(V)(S), we have attached maps E, Ej, I = 0 .n of line bundles on PS.

Consider the subfunctor F: Sch0 P -+ Sets of the (representabe) functor HilbP x P(V),

given as follows: F(S) is the set of all (X -+ P[,C,,C -- V ®z Os) E HilbP x P(V)(S)



such that the pullback of E and each Ei (for i = 0, ..., n) to X vanishes.

X S

Proposition 3.1. The functor F is representable by a closed subscheme Q' of

Hilbp x P(V).

Proof. Consider the scheme Y = Hilbp xP(V), and let (X - Py, E, a: C - V ®k

Oy) be the tautological element of Hilbp xIP(V)(Y). This gives rise to maps E, Ei of

line bundles on P'. Let ?, fi be the pullbacks of E, Ei to X.

For a scheme S, F(S) consists of all maps S - Y such that the maps of line

bundles 5, fi on X pull back to zero on X x y S. Since Y is noetherian and the

morphism X -* Y is flat and projective, this functor is representable, by a closed

subscheme of Y (see Theorem 5.8 and Remark 5.9 in [5]). D

If k is an algebraically closed field and Q/ denotes the basechange Q' x Spec k,

we know the set of closed points of QO:

Homsh /k (Spec k, O§) = F(Spec k).

From the definitions, this is just

(C, [F]) E Hilbyp xlP(k[xo,..., x]) C C V F F)

(inclusion above denotes scheme-theoretic inclusion).

Corollary 3.2. Let k be an algebraically closed field, I > 1 an integer, and P E Q[z]

a polynomial. The set

(C, [F]) E Hilb. x P(k[xo, .. xn]) 1 C c V F, +)
is a closed subset of (the set of closed points of) Hilbpp xP(k[xo .. ,x,] 1).



Let T' denote the scheme-theoretic image of QP - P(V), so we have a diagram

QPC >HilbP xP?(V)

I
T' P P(V ).

Since surjections and closed embeddings are stable under base-change, for any

algebraically closed field k, we have a corresponding diagram

QP( Hilbppn xP(V)

Ik ~k

TP P(Vk)

(where V = V @z k = k[xo, ... , x] 1 ) and by looking at closed points, it follows that

TkP = {[F) E P(Vk) | V(F)sing contains a subscheme with Hilbert polynomial P}.



Chapter 4

Specialization arguments

The first main technique that we use in the proof of Theorem 1.1 is a specialization

argument, that allows us to bound dim{F E k[xo,..., xn], I C c V(F)sing} from above

for a fixed C, by degenerating C to a union of linear spaces. In Section 4.1, we

prove (for lack of reference) that we can specialize a b-dimensional integral closed

subscheme C of P" to a union of d b-dimensional linear spaces containing a common

(b- 1)-dimensional linear space. Next, the bound we obtain in Section 4.2 will be the

main ingredient for the discussion of the cases of small degree 2 < d < L±I1 in Chapter

5. Finally, Section 4.3 is a preparation for the discussion of the case of large degree

d > 1", which will be treated in Chapter 6. The main result of Section 4.3 is stated

in Corollaries 4.9 and 4.11 in a form that is most convenient for later purposes.

In this chapter, k is a fixed algebraically closed field.

4.1 Specialization of a closed subscheme to a union

of linear subspaces

The result of this section is known, but we were unable to find a reference, so we

include it here.

Let C C P" be an integral b-dimensional closed subscheme of degree d. Let

P = V(xo, ... , X.-b) be the (b - 1)-dimensional "linear subspace at infinity." Suppose



that the linear subspace H = V(x-b+1,.-, Xn) intersects C in d distinct points Qi.
Let Li be the unique b-dimensional linear space through P and Qi. The Li are distinct

because if Li = Lj for some i / j, the line through Qi and Qj would be contained in

H but would have to intersect P; this is impossible, since P n H 0. Consider the

projective linear transformations

Aa =
a

1

(where the bottom block has size b x b) and let Ca = AaC.

Proposition 4.1. The underlying topological space of the flat limit Co

dLiisUG, Li.

Proof. Let C = V({G,}) c P" (as a scheme), where G, E k[xo, ..., x,]

neous. Consider the map

= lirna-0 
C a

are homoge-

o-: P" x (Al - {0}) -+ P, ([XO, ... xn], a) -(o, ... , Xn_ , aXn-b+1, ... , aXn),

and define the closed subscheme X c P" x (A' - {0}) as the fiber product

Xc : P" x (A' - {0})

In other words,

X = V(G(xo, ... , baxn-b+1, ..., axn)) C p1

where we regard G,(xo, ., n-baXn-b+1, ... axn) e k[a, a'][xo, Xn]. This is a flat



family X -+ A' - {0}, whose fiber over a # 0 is C, (as a subscheme of P").

Let X be the scheme-theoretic closure of X in P x A1. By the proof of Proposition

111.9.8 in [7], the flat limit of the family (Ca) is the scheme-theoretic fiber X0 .

Consider

Y = V(G,(xo, ... ,-., axn-+1, .axn)) C P" x A'.

Then Y is a closed subscheme of P" x A' containing Xo (scheme-theoretically), so Y

contains X. Thus, X0 C Y is a closed subscheme.

Y

P" x (Al - 0}) P" x A'

A' - {0} A '

We have

Yo = V(G,(xo, .,b, 0, 0)) C P".

Thus, as a set, Yo is UL 1 Li.

We claim that Y is reduced away from P. Equivalently, for i 0, .., n - b, we

have to check that Yo n D+(xi) is reduced. To simplify notation, suppose that i = 0.

Then

Yo n D+(xo) = Spec k[x,.La]
(G, (1, x 1, ... , Xn-b, 0, .. ,0))

= Spec [1..., k[x],...,x.
(G,(1, x1,..., xn), X n-+1,., fon)l1 .

So we have to show that the 0-dimensional ring

k[x1, ..., xa]

(G,(1, x . Xn), n-b+1,... Xn)

21



is reduced. We have assumed that C intersects V(xn-,+1, ..., x,) transversely, so

Proj k[xo, ..., x.]
(G, (xo, .. , Xn), Xn-b+ 1, ... , Xn)

is a reduced 0-dimensional scheme; looking at its intersection with D+(xo), we obtain

the desired conclusion.

Now that Y is reduced away from a subscheme of smaller dimension, it follows

that the Hilbert polynomial of Y has the same degree and leading coefficient (namely,

b and d/b!, respectively) as the Hilbert polynomial of (YO)red. The Hilbert polynomial

of the flat limit X0 also has degree b and leading coefficient d/b!. Moreover, Yo is

equidimensional, so the inclusion X0 - Y must be a homeomorphism. D

Remark 4.2. The proof above does not imply that Y is reduced everywhere. Let us

look at Y in the chart D+(xn), so

Yo n D+(x.) Spec k[x0 . xi1
(G8 (xo. Xn-b 0, 0))

Spec ~ k [x xo, ..., x,, ] -)I , -'= Spec ([x(a-) 6)+Vjib1,-. ,
((G,(xo, .. ,,), Xn-b,1, .. , Xn) t-'n d

Let S = k[xo, ..., Xn /(Gs(xo, ... , xn), xn-b.1, .. X'). We know that Proj S is reduced

as a scheme by the transversality assumption on C n H; however, this does not in

general imply that S itself is reduced as a ring.

Let V = k[xo, ... , xn]i. For each closed subscheme C C P", define the k-vector

space

WC ={F e V C C V(F),ig}.

Corollary 4.3. Let C _- p" be an integral closed subscheme of dimension b and

degree d. There exist d b-dimensional linear subspaces L1 ,..., Ld of P" containing a

common (b - 1)-dimensional linear subspace, such that

dim Wc <; dim WULj,

where ULj is given the reduced induced structure.



Proof. Let P be the Hilbert polynomial of C. Recall the incidence correspondence

from Corollary 3.2 and apply the upper semicontinuity theorem (see Section 14.3 in

[2]) to the map

{(C, [F]) c Hilbp xP(V) C C V(F)sing} "+ Hilbp.

By Proposition 4.1, UL, (with some scheme structure) is the flat limit Co of a family

(Ca), with each Ca (a $ 0) being projectively equivalent to C = C1, and hence

7r- 1(Ca) ~ 7rr(C) for each a / 0. Therefore,

dim P(Wc) = dim 7r-(C) 5 dim 7rK'(Co) = dim P(Wco) < dim P(WUL,).

4.2 An upper bound on the dimension of the space

of F such that C C V(F)sing, for a fixed C of

small degree

Fix a positive integer 1. Recall the notation V = k[xo, ., .

Lemma 4.4. Let L C P" be a b-dimensional linear subspace. Then for F G V, we

have L c V(F)sing if and only if F E IL. Moreover,

codimv{F E V I L C V(F)sjng} ( - b) + (n - b) (I I 1 b).

Proof. Without loss of generality, L = V(J) with I = (Xb+1, ---, xn). For F E V, we

claim that (F, 2-) C I if and only if F EE 2. Suppose that (F, 2) C I. Write

F = Fo + Z I± Fxi + T, where FO, F, e k[xo,.xb] are homogeneous of degrees

1, 1 - 1 respectively, and T E I2. Since LE I for all i, we can assume without loss

of generality that T 0. Now, the condition '9 E I for i = b + 1, ... n implies

F1 E I n k[xo,,x] =0, so Fj = 0. Then F = F E I n k[x...,x] = 0, so F = 0



overall, as desired. Clearly, (S/I 2 )~ k[xo, Xb.. (07=b+1 k[xo, ..., xi)i_1i) has

dimension as in the statement. E

Lemma 4.5. Let L 1 , Ld be d b-dimensional linear subspaces of p" containing a

common (b - 1)-dimensional linear subspace. Then for d < , we have

j~ ( - 2e + 1+ b)\
codimv(WULj) I ( b) + (n - b) d- 2 b '

e=1

Proof. We induct on d. For d = 1, we have equality. Assume 2 <

that the b-dimensional linear subspaces L1 ,..., Ld all contain P =

and that none of them is contained in the hyperplane xo = 0, so

of them is of the form (Xb+1 - Pb+1Xo, .. , - PnXO) for a uniquely

(Pb+---,...,p) E kn-b. Let

d < . Assume

[0, *,.. ,0, ... , 0]

b

the ideal of each

determined tuple

W£± M Wi (i) forti1 d 1=(X+1 - Pb1XO, Xb+2 - Pb 2', . -n - Pno

and without loss of generality

Id (xb+1, .Xn)

By Lemma 4.4, WULL = (I2 n - - n), so we have to give a lower bound for dim(S/2n

n IJ)1. For e E {d - 1, d}, let le = dim(S/I - - n e2) There is a short exact

sequence

I1 n - - i -J n I2 S2 -Sn
i n -..- n Id I n -.-. n Id 1 - ' d 1 I 1

So we have to write down enough linearly independent elements in (IJ2n -. 1I_1/I2n

For each i = 1, ..., d - 1, there exists mi E {b + 1, ... , n} such that pn # 0. Let



F = t-(xm i - Pxo)2. Consider all elements

11I n -.-. n I_
Fxs P(xo, -..., x ) E I .. ' . 1

where j E {b + 1,..., n} and P(Xo, ... , Xb) runs through a basis of k[xo, ..., Xbl-2d+1.

Their number is (n - b) (1-2d+1+b) and we claim that they are all linearly independent.

Indeed, it suffices to check that their images under the injection (12fl. - n J/I n

... n Ij <--> (S/Id), become linearly independent. This is evident, however, since

(S/IJ) ~ k[xo, ... , XbI e k[xo, ... , X]l1x1lb+l e - - - k[xo, ., X]1xn as k-vector spaces.,

and the images of the elements under consideration are

(P() )2 .(p~d-1))2X
2 (d1)xPxT)

Therefore

PId 2 p_ l+ (n - b)(- 2 d+I+b),

and the statement follows by induction. El

4.3 An upper bound on the dimension of the space

of F such that C c V(F), for a fixed C of small

degree

Lemma 4.6. Fix positive integers 1, m, with m < / + 1. For any integral closed

subscheme C C IP of dimension b and degree d > m, we have

codimv{G E V C C V(G)} 7 le +1+b) Ab(l, M).

Proof. As above, we specialize C to a union of d b-dimensional linear spaces containing

P (notation as in the previous lemma). Throwing away some of these linear spaces



if necessary, we may assume d = m. So we induct on m = 1, ... , 1 + 1 to give a

lower bound for dim(S/Ii n -.. n Im)I. We follow the notation and proof of Lemma

4.5, except that this time, we consider F = fJ J'(xm, - p$ xo) and the linearly

independent elements FP E (I, l .. n Im-1/li n - Im),, where P runs through a

basis of k[xo, ... , bl-m+1. Thus,

bbm 2 Im1 b + b

which proves the statement by induction. D

Remark 4.7. Note that

2 -+1b++11b
Ab(l, 1+ 1) > >

so Ab(l, / + 1) dominates a polynomial in I of degree b + 1.

Corollary 4.8. Let k be an algebraically closed field, and ko c k a subfield. Again,

let m, I be fixed integers, with m < I + 1. Let C c P' be a b-dimensional integral

closed subscheme (not necessarily defined over ko) of degree d > m. Then

codimkO[xO,...,,]jG E ko[Xo . n11 | C c V(G)} Ab(l, M).

Here, the condition C c V(G) (inclusion of closed subschemes of P') makes sense

when we regard G E k[xo, ... ,Xn]i first.

Proof. It suffices to prove that

dimko{G E ko[xo, ... , x.] 1 C c V(G)} dimk{G E k[xo, ... , I C c V(G)}.

This is automatic, since any ko-linearly independent elements in ko[xo,.x. ] are

k-linearly independent in k[Xo, ... , Xn].

Corollary 4.9. Let ko = Fq now. Let C c P- be an integral b-dimensional closed

subscheme of degree d > m (again, m < I + 1 is fixed). For G chosen randomly from



F[xo, ... , we have

Prob(C C V(G)) < q~^b('").

Proof. This is just a restatement of Corollary 4.8, since

#{G E Fq[xo,..., xn] | C C V(G)} = qdim{G CcV(G)}

Lemma 4.10. Let k be an algebraically closed field, and S C Pn an integral closed

subscheme of dimension at least b + 1. Then

(l-+-b+ 1N
codimk[to,...,X, f{G E k[xo, ..., In)0  I S c V(G)} > b+1 .

(b + 1

Proof. We can assume that dim S = b + 1. This is a particular case of Lemma 4.6;

just note that Ab+1(l, 1) - ( b)I

The same argument leading from Lemma 4.6 to Corollary 4.9 leads from Lemma

4.10 to the following

Corollary 4.11. Let ko = Fq now. Let S C P" be an integral closed subscheme of

dimension at least b + 1. For G chosen randomly from F,[xo,..., X'11, we have

Prob(S C V(G)) < q b1).
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Chapter 5

The case of small degree d

With the preparations from the previous chapter, it is now easy to handle the cases of

small degree 2 < d < ±. The new ingredient here is a result of Eisenbud and Harris
- 2

(conjectural for b > 2), which gives the dimension of the restricted Hilbert scheme.

So we can treat the cases of small degree d by applying the theorem on the dimension
~d

of fibers to the map Ud -+ Hilb (Section 5.3). The main result of this chapter is

Corollary 5.6. Finally, in Section 5.4, we perform the analogous calculation for the

second largest component of X.

Again, k is a fixed algebraically closed field.

5.1 The component corresponding to d =1

The lemma below is simple, since any two linear b-dimensional subspaces of P" are

projectively equivalent. Recall the definitions of X1 and an,b(l) from the introduction.

Let G(b, n) be the Grassmanian of projective linear b-dimensional subspaces of P'.

Lemma 5.1. The set X 1 is an irreducible closed subset of X of dimension equal to

A= ('--) - ab(l).

Proof. Consider

Q = {(L, [F]) E G(b, n) x P(V) | L c V(F)sing} c G(b, n) x P(V).



By Corollary 3.2, this is a closed subset of the product, since Q' = QP with P(z)

z+b

Let 7r: Q -+ G(b,n) and p: Q' --+ P(V) denote the two projections. The fiber of

7r over any linear b-dimensional L is P(WL). So Q1 is irreducible, and has dimension

dim P(WL) + dim G(b, n) = A (use Lemma 4.4).

Consider now p: Q --* X1 . To prove that Q' and X' have the same dimension, it

suffices to show that some fiber of p is 0-dimensional. This is easy (we prove a more

general statement later; see Lemma 7.4). Li

5.2 The result of Eisenbud and Harris

We first recall (see [1], p. 3) the following classical result.

Theorem 5.2 (Chow's finiteness theorem). Fix positive integers n, b, d. There are

only finitely many Hilbert polynomials PO, of integral b-dimensional closed subschemes

of pn of degree d. The algebraically closed field k varies as well in this statement.

Fix k. For an integer d > 1, let Hilbb, be the disjoint union of the Hilbert schemes

Hilb,' for all the finitely many possible Hilbert polynomials P,, of an integral b-

dimensional closed subscheme C C P " of degree d. Define the restricted Hilbert
- b,d d

scheme Hilbyn to be the Zariski closure in Hilbp, of the set of integral subschemes,

with reduced subscheme structure. Eisenbud and Harris [4] prove the following result
b,d

for the dimension of Hilbpn in the case b = 1.

1,d
Theorem 5.3. Let b = 1. For d > 2, the largest irreducible component of Hilbpn

is the one corresponding to the family of plane curves of degree d; in particular,
1,d

dim Hilbv = 3(n - 2) + 3.2

In analogy, for b > 2, Eisenbud and Harris state the following conjecture:

b.d

Conjecture 5.4. For d > 2, the largest irreducible component of Hilben is the one

corresponding to the family of degree-d hypersurfaces contained in linear (b + 1)-
b,d b)

dimensional subspaces of P'; in particular, dim Hfilbyn = (b+2)(n -b- 1) - 1+(d+b +1



From now on, we will be assuming that this conjecture holds, so the results we

obtain will depend on it, except in the case b = 1. However, we also give an uncon-

ditional (but ineffective) proof of Theorem 1.1 (see Remark 7.3).
b,d - d

From now on, we fix b and n, and abbreviate Hilb, as Hilb

Let Qd be the disjoint union of the finitely many Q- (notation as in Proposition

3.1). Also, define Td as the scheme-theoretic image of Qd -+ P(Z[xo,.x,]i), so we

have a diagram

Qd =Hilba x p(Z[Xo, ... , X'] I)

T dC - P(ZXO, ... , Xn];).

For any algebraically closed field k, we have

T= UT = {[F] E P(V) | V(F)sing contains

a subscheme with Hilbert polynomial among {fP}}.

Any integral closed subscheme of degree 1 is linear, so X1 = Tk. We will use X1 and

Tk' interchangeably.

5.3 The case d < ag (small degree)-2

Fix an integer I as usual, and fix an integer d > 1. As usual, let V = k[xo,., x],.

Recall that

= {(C, [F]) E Hilb x P(V) I C c V(F)sing}.

Define

R ~ d
Rd {(C, [F]) E Hilb x P(V) I C is integral, C C V(F)sing} C Ud.

d ~d
Let Rd be the closure of Rd inside 5d (or inside Hilb x P(V)). Let -r: Hilb x P(V)

~ d ~ d
Hilb and p: Hilb x P(V) -+ P(V) denote the first and second projections.

Lemma 5.5. There exists lo (easily computable) such that for all pairs (d, 1) with



2 <d < -' and I > lo, we have

dim d< dim X'.

It follows that dim p(Rd) < dim X'.

Proof. Let Z be an irreducible component of Rd. Certainly, Z n Rd $ 0, so 7r(Z)

contains an integral subscheme C C P". Degenerate C to a union U_ 1 L? of d

b-dimensional linear spaces, as in Section 4.1. Let LO be any linear b-dimensional
-d

subspace of P". By abuse of notation, let 7r: Z - r(Z) c Hilb . By the theorem on

the dimension of fibers, we have

dim Z < dim r-1 (C) +dim r(Z)

< dim P(Wc) + dim 7r(Z)

< dim P(WUL) + dim Hilbd. (5.1)

Tius, it suffices to check that

d
dim IP( WJL) + dim Hilb < dim IP(WTL) + (b + 1)(n - b)

(recall Lemma 5.1), or, equivalently, that

~ d
codimv WLO + dim Hilb < codimy WeL1 + (b + 1)(n - b).

By Lemmas 4.4 and 4.5, it suffices to prove the inequality

< (1b)+ (n

+ 1b)>+
b

d

b) 1

e=1

1 -1+b) ~d
(n - b) ( + dim Hilb

- 2e +I+b (b 1( b)
b



or, equivalently,

-~~ d(l-2e +I+b\(.2
dim Hub - (b+1)(nr-b) < (n-b)E 2e1b (5.2)

e=2)

for all 2 < d< Li and / > lo. Let c= (b+2)(n-b- 1)-1-(b+1)(n-b). Assume
_ 2-

Conjecture 5.4; then 5.2 is equivalent to

d +b+1 ) < - 2e+1+b

c b+1 < (n b)b53
e=2

for all 2 < d < L and I > lo.
_ _ 2

For 1 > 2d - 1, the right hand side of (5.3) is at least

(n - b) (2d-2e b) (n b)E (2k +-b) (where k d - e)
e=2 k=o

d 2 (2k + b)(2k + b - 1) ... (2k + 1)
=(n-b) Y b

k=o

=(n -b) + ..
k=O

Recall that d kb is a polynomial in d of degree b +1 and leading coefficient .!; so

the right hand side of (5.3) dominates a polynomial in d of degree b + 1 and leading

coefficient (n - b) 2 = ( .b)2b Since (db±) is a polynomial in d of the same degreeb! b+1- - (b-i-)! (b i

b+ 1, but smaller leading coefficient , the inequality (5.3) holds for all l > 2d - 1(b-t1)!

and all d > do for some do (which is easy to calculate algorithmically, for fixed n, b).

On the other hand, for each fixed value d = 2, ... , do, the right hand side of (5.3)

is a polynomial in I of degree b and positive leading coefficient (n-b)(d-l) while the

left hand side is a constant. So there is lo (easily computable for given b, n, do) such

that for all d = 2, ..., do and I 2 lo, the inequality (5.3) holds true. Therefore, for all

2 < d < % and I > 10, the inequality from the statement of the lemma holds, as-2

well. E

Let lo be as in Lemma 5.5.



Corollary 5.6. Let 2 < d < L' and I > 10. If Z C Tk is an irreducible component,

then either Z = X', or dim Z < dim X'.

Proof. We claim that if [F] E Td - (Tn (Ud- 1 Td)) , then V(F)sing contains an

integral b-dimensional subscheme of degree d. Indeed, V(F)sing contains some inte-

gral b-dimensional closed subscheme of degree d E {1,...,d}; if [F] ( U T$, then

necessarily d = d.

Now, we can induct on d, so assume that Z Z U;-_ST$ . Note that Z- (Z r' (Ud- I T') c

Z is a dense open subset of Z, which therefore has the same dimension as Z, but is

contained in Tk - (Tg n (U )Tf) C p(Rd) C p(Rd). Thus dim Z < dim p(Rd) <

dim X 1, by Lemma 5.5 E

In Remark 7.3, we will give a (non-effective) proof of Theorem 1.1 that does not

rely on Conjecture 5.4; for this, we will need the following preparation.

Lemma 5.7. Fix an integer B. There exists 1o such that for all 2 K d < B and

I > 1o, for any irreducible component Z of Tk, either Z = X 1, or dim Z < dim X'.

Proof. Just note that inequality (5.2) in the proof of the previous lemma is satisfied

when d E {2, ... , B} is fixed and l >> 0.

5.4 Preparations for the computation of the sec-

ond largest component

Here we discuss a calculation similar to the one in the previous section, which will

later be used for the computation of the dimension of the second largest component

of X. Define

02 (1) = - + (n -3 b - 1) I~ )- (~ -
b+1 b+1 b+1 b+

and set 72(l) =32(1)+ 1+ - (b + 2)n + b(b+1) We will later see that (1jj) - 72(I) is the

dimension of the second largest component of X, at least when char k # 0. We are

still assuming Conjecture 5.4.



Lemma 5.8. There exists lo (easily computable) such that for all pairs (d, 1) with

3 < d < i and i > lo (if b = n - 1, assume d > 4) and any irreducible component
Z T2

Z of Tk', either Z C TkU T, or

dim Z < (I -n 2().

(In the case b = n - 1, d = 3, we will prove a slightly weaker but sufficient

statement in Remark 7.15.)

Proof. Precisely as in Lemma 5.5, because of inequality (5.1), it suffices to establish

the inequality

dim P(WUL,) + dim Hilbd <
+) 2

n)

-d
Y2(l) -1 I+ dim Hilb < codimv (WUL1 ).

Set c (b+ +)(b4) -1. By Lemma 4.5 and Conjecture 5.4, we are reduced to proving

that

c+ 02 (l)+ (d
+b+1) (l+b)

b+1I b

d

+(n-b)I
e=1

( - 2e+1

Kb

+ b)

or, equivalently, that

c+(n-b)(ltb 3) + (l~b3) + (db± )

d

< (n-b)
e=3

2e -+1 +
b

b)

(5.4)

Suppose first that n - b > 1. If d = 3, this inequality is certainly satisfied for

I >> 0 (look at the leading terms of both sides). Consider now d > 4. Since n - b > 1,

we can find l' such that for all I > ',

c+(n- b) ijb- 3) + (I
(b-1

+ b)
b

What is left now is to prove that there exists I" such that for I > I" and 4 < d < 1,
_ 2

i.e.,

< (n -b) (



we have
d+b+1) d -2e++b

b +1 <(n b) b '
e=4

This is analogous to (5.3) and follows exactly as in the proof of Lemma 5.5. Now we

just take lo = max(l', 1").

Suppose now that n - b = 1 and d > 4. If d = 4, inequality (5.4) certainly holds

for large I (the leading term of the right hand side is L). Consider d > 5. We can

find ' such that for all I > 1',

C+ (l+b-3) + (l+b-3) (1-5+b) + (l-7+b)
c+ b-1 I b )b ]b j

Finally, we have to show that that there exists 1" such that for 5 < d < Eg and I > I".2-

we have
d +1b+1 -2e+1+b

b+1 be=5

Again, this is analogous to inequality (5.3). E



Chapter 6

The case of large degree d, when

k = IF

Fix n and 1 < b < n - I as usual, and fix a prime p. Let k = F,. Recall the definition

of Ab(l, m) from Section 4.3.

The goal of this chapter is to handle the case of large d when k =F. Specifically.

we prove the following

Proposition 6.1. Fix a triple of positive integers (1, in, a). Set T = %) and m' =

min(nm, T + 1). Suppose that

(+ b+1 
b+ 1 >)1 and Ab(Tm')>a-1.

Let d > m. If Z is an irreducible component of Tkd. then either Z c T' for some

1 < d' < d, or

dim Z I+
n I

n) - a.

Let Z C Tk be an irreducible component (notation and assumptions as above).

Suppose that Z Z U I1 Ti'. Then Z - (z =(U Tkd')) c Z is a dense open subset,



and therefore is of the same dimension as Z. It is contained in

iPd := Tkd - (Tkdn U T') .d'=1I

So the goal is now to prove that dim i ('2) - a.

6.1 Reduction to a problem over finite fields

We begin with a general discussion, which applies to any (quasiprojective) variety

over F . Let T = nV(Gi) - nV(G') C P'i be a quasiprojective variety over Fp, where
SFp_

G, G' c F,[yo, ... y)j]. Let A be an integer, and suppose we want to prove that

dim T < A. There is a finite field Fq0 such that Gi, G' E Fo[yo.yi], so T comes

from To := nV(Gi) - nV(G') c P"', which is now a variety over Fq0 . We knowi qO

that dim T = dim To, so suffices to prove that dim To < A. For this, by the result of

Lang-Weil [8], it suffices to prove that #T(F) = O(qA) as q - DC (through powers

of qo of course).

Consider now T = i c P(F[xo, ...,xn]1), and let id (a variety over a finite field

Fq) be as in the previous paragraph. In particular, Td (Fq) consists of all [F] E

(Fq[xo, ... X,1) - {0})/F* such that when we regard [F] in (lF_[xo,...,xn]j - {0})/p*

we have that [F] E td c P(F,[xo.

Remark 6.2. Even if F has coefficients in Fq, we always consider V(F) and V(F)snig

as subschemes of P" by first regarding F in F[xo, xn].

By the argument in the proof of Corollay 5.6, the set t(Fq) is a subset of

d [F] E (Fq[xo, ... , x]I - {0})/F* I V(F)sing C P'- contains

an integral b-dimensional subscheme (over F,) of degree d}.

So our goal now is to prove that #Td O(q(i-") as q -+ oo (through powers

of qo).

As F is chosen randomly from Fq[xo,..., x,]I, let A be the event that V(F)sing



contains an integral b-dimensional subscheme of degree d. Thus, our task is to prove

that Prob(A)q(') = O(q(n -a+1), or equivalently, that Prob(A) = O(q-"+l) as

q -+ oc (through powers of qo).

6.2 Final preparations

Consider the natural homogenization map ~: Fq [xo, Xn_1]i <1 F[xoq , Xn]1 with

respect to the variable x,. We have to be slightly careful because this is not the usual

homogenization map (which takes a polynomial and homogenizes it to the smallest

possible degree); we think of - as "homogenization-to-degree-i" map. Recall that

Lemma 6.3. Let Z C Pn be an integral closed subscheme not contained in the

hyperplane V(xn). Let FO E Fq[xo, ... , xn_]<-1 be a fixed polynomial. Then, as G is

chosen randomly from Fq[xo, ... , xn_1] ,, we have

Prob(Z c V((Fo + GP)~)) < Prob(Z c V(G~)).

Here, the first - is homogenization to degree I - 1, and the second one is homoge-

nization to degree -r.

Proof. Let I C F,[xo, z,- 1] be the (radical) ideal of Z n D+(x,) C D+(xn). We

claim that for an inhomogeneous polynomial H E Fq[xo, ... , Xn-1]1 , we have Z c
V(H~) if and only if H E I. For this, first notice that V(H~) is either V(H)- or

V(H)- U V(x,) (where V(H)- is the topological closure of V(H) c D+(xn) in P )

depending on whether or not the degree of H is equal to the degree of homogenization

of the map -. Since Z is irreducible and not contained in V(xn), we have Z C V(H~)

if and only if Z c V(H)-. In turn, since Z n D+(x,,) # 0, this condition is equivalent

to Z n D+(xn) c V(H), which is precisely the condition H E I.

Therefore, Z c V((Fo + GP)~) if and only if Fo - GP E I. If Fe + GP c I and

Fo + GP E I, then (G - G1)P E I, and hence G' := G - G1 E I. So the number of G

with Fo + GP C I is either zero, or is equal to the number of elements G' E I with



G' E F,[xo, ..., xn_1]<;,. This is precisely the number of G' e Fq[xo, .- 1 ]<;r such

that Z c V((G')~). D

Corollary 6.4. Keep the notation of Lemma 6.3.

a) IfdimZ> b+1, then

Prob(Z c V((Fo + GP)-)) q(W1)

b) If dimZ =b and degZ=d m, then

Prob(Z c V((Fo + GP)~)) q-Atr,m->

where m' = min(m, T + 1).

Proof. Combine Lemma 6.3 with Corollaries 4.9 and 4.11.

6.3 The key step (large degree d)

Fix a triple (1, m, a) of positive integers. Recall thatT = and m' - min(m, T+1).

Let d > m.

As F~ is chosen randomly from lF,[xo,...,x.]j, or, equivalently, as F is chosen

randomly from Fq[xo, ... , Xn_ 1]<, let E, be the event that the following two conditions

are satisfied:

" For each i = 0, n - b - 1, the variety V( ..., OF ) has all irreducible

components of dimension n - i - 1, except possibly for components contained

in the hyperplane V(xn).

* If C C V(O , , O ) is a b-dimensional integral closed subscheme of degree

d, then either C c V(x,), or C Z V( ).

We now proceed to bound Prob(E,) from below (this is the hard part).



Lemma 6.5.

PrbE) n-b-1 I )n-b 61
Prb(s);> QH (,,bl 1 - (6.1)

i=o q b+1 ))

Proof. We now mimic the main argument in [10, Section 2.3]. We will generate a

random F by choosing Fo E Fq[xo,..., xn_1]<i, G E Fq[xo, ..., x-1]< randomly, in

turn, and then setting

F := Fo + Gxo + + GP 1xr_1' (6.2)

For F e Fq[xo,..., i X_-1 , the number of tuples (FO, Go,..., G,-1) for which (6.2)

holds is independent of F. We have

OF dFo
-= - + GP.

Oxi Oxi

Moreover, the homogenization map commutes with differentiation, so

OF- (OF0  p
= +GOxi Oxi

(again, the two uses of - here refer to homogenizations to different degrees, I and

I - 1, respectively).

Let i E {0, ..., n-b-1}. Suppose that Fo, Go,., Gj_ 1 are fixed such that V( , ... , )OF

has only (n - i)-dimensional components, except possibly for components contained

in the hyperplane V(x,). By B6zout's theorem (see p. 10 in [5] for the version we

are using here), V(OF, .. , ) has at most (1 - 1)' irreducible components. Let

Z be one of them, and suppose that Z Z V(xn). As Gi is chosen randomly from

Fq[xo, ...,Xn-1]<, we claim that

rob C V F q +bl)

\ Oxi -

41



This follows from Corollary 6.4a, since dim Z = n - i > b + 1.

For the final step, conditioned on a choice of FO, Go,..., Gb1 such that V( ... OF,

has only b-dimensional components, except possibly for components contained in

V(x,), we claim that the probability, as G,_1 E Fq[xo, ..., X,-_ 1 ,, that some b-

dimensional component C of V(.,. -... F ) of degree d and not contained in

V(xo), is contained in V(QF ) is at most (I - 1)nb q- Ab(7,m

Indeed, the number of b-dimensional components C of V(2 ... ,F- -) of degree

d is at most ( - 1)n-b, by Bezout's theorem again (this is a bound on the total number

of components of all dimensions). If we fix a b-dimensional component C of degree d

and not contained in V(xn), for fixed Fo, Go, ..., Gn-b-1, the probability (as G,- 1 is

chosen randomly from Fq[xo, ..., XTI1]sr) that C c V (( + G-,)-)~ is at most

q- Ab(,r"), by Corollary 6.4b.

Proof of Proposition 6.1. By the hypothesis of Proposition 6.1, each of the exponents

on the right hand side of (6.1) is greater than a - 1. By virtue of the inequality

H (1 - e1 ) 2 1 - Zj, Lemma 6.5 implies that Prob(E,) > 1 - q-r for large q.

Therefore,

1 - Prob(E,) = 0 (qatI) as q - oo.

As F E Fq[xo, ... , Xn-1]i, let E' be the event that any integral b-dimensional

closed subscheme C c V(F)sing of degree d is contained in V(x,). Then En implies

E'. For each i = 0, ...,n - 1, define E, E' in analogy with E, E', except with de-

homogenization with respect to the variable xi (and any ordering of the remaining

variables). The same conclusion 1 - Prob(Ei) = O( -r ) holds for alli = 0,..., n. Note

that A (defined at the end of Section 6.1) implies U=o E> where E denotes the event

opposite to E'. Indeed, f V(xi) = so we cannot have C C V(F)sing contained in

all the coordinate hyperplanes. Therefore,

nnI
Prob(A) 5 Z(1 - Prob(E)) < Z(1 - Prob(E)) = 0 ) as q - oo,

i=o i=o

as desired.



Chapter 7

Proof of the main theorem

We now put together the main results Corollary 5.6 and Proposition 6.1 and finish the

proof of Theorem 1.1. Namely, Theorem 1.1 follows immediately from our previous

work when k = P', and we use upper-semicontinuity applied to Ta - Spec Z to

prove the case char k = 0 (Section 7.1). However, there are technicalities (Corollary

7.7) concerning the uniqueness of the largest component in characteristic 0, which we

discuss in Section 7.2. Finally, in Section 7.3, we finish the discussion of the second

largest component, but only when char k $ 0 (Corollary 7.16).

7.1 Restatement of the problem and the end of the

proof

Lemma 7.1. Let [F] E P(V) be such that dim V(F)sing > b. Then there is an integral

b-dimensional closed subscheme C - P" of degree at most 1(1 - 1)"+1 such that

C C V(F)sing.

Proof. Let Zi, Z, be the irreducible components of V(F)sing = V(F, 59, . .'

Then by Bezout's theorem ([51, p. 10),

deg(Zi) < deg(F) deg OF) /(I - 1)n+ll

OF/&x4#O



But some component Z has dimension at least b, so, intersecting with hyperplanes if

necessary, this component will contain an integral b-dimensional closed subscheme of

degree at most deg(Zi) I(/ - 1)n+1.

Proof of Theorem 1.1 assuming Conjecture 5.4. By Lemma 7.1, X is a finite union:

1(1- 1)n+1

X= U Td. (7.1)
d=1

In particular, X is a closed subset of P(V). The statement of Theorem 1.1 is now

equivalent to the following one: for any d > 2, we have dim(Tkd - Tk) < dim X1. But

Tk- Tk = (T d -Tl)k, and if ko C k is a subfield, then dirn(T -Tl)k = dim(Td -Tl)kO.

So it suffices to assume that k = F, or k = Q.

First, suppose that k =F1. Let r(l) = Lj and n(l) [']. Notice that

m(1) 2 r(l)+1, so m' = -(l)+ 1 in Proposition 6.1. There exists 1o = lo(n, b, p) (easily

computable) such that for all I 2 lo, we have (-r(1)+ i) > an,b(l) and Ab(r(l), T( +1) >

an,b(l), by Remark 4.7 and the fact that alb(l) is a polynomial in 1 of degree b. We can

assume in addition that la satisfies Corollary 5.6. We claim that for any I > lo(n, b. p).

the statement of Theorem 1.1 holds.

In fact, we prove by induction on d > 2 that for any irreducible component Z of

Tk, either Z = X1 or dim Z < dim X1 . For 2 < d < L+-' this follows from Corollary-2

5.6. Let d > 9. Assume that the statement holds for all 2 < d' < d - 1. Then it
_2'

also holds for d, by Proposition 6.1, applied to the triple (1, m(l), an,b(l) + 1).

Now, let k Q. Let p be any prime, and consider I 2 lo(n, b, p) as above. By

the previous paragraph, for any d > 2, dim T! = dim T- < dim X1. But, since

T - Spec Z is projective, by the upper semicontinuity theorem, we know

dimT = dim < dimT < dim X.

Therefore, as long as I > lo(n, b, p) for some p (take p = 2 to obtain the best value

of lo here), we know that X' (over Q) is an irreducible component of X (over Q) of

maximal dimension.



We now address the question of uniqueness of X' as a largest component. In

Section 7.2 we will show that it is possible to choose p such that X1 Z TI for any

d > 2. For such p, and for d > 2, the conclusion from two paragraphs ago implies

dim Td < dim X'.FP

So

dim T < dim T < dim X'.

By (7.1), any irredcible component of X is either X1 or is contained in Tdk for some

d > 2. This completes the proof.

Remark 7.2. We postpone for the next section the fact that over I5, we have X, Z T,

provided that p $ 2 or n - b is even. So for I > lo(n, b, 2), we know that X1 is an

irreducible component of X of largest dimension; for I > 1o(n, b, 2) when n - b is

even, and for I > lo(n, b, 3) when n - b is odd, we also know that X' is the unique

largest-dimensional component of X.

Remark 7.3. We now give a (non-effective) proof of Theorem 1.1 without using Con-

jecture 5.4. It is the same as before, except that we use Lemma 5.7 in place of

Corollary 5.6, and use a different value of m in Proposition 6.1. Set B = pb(n - b+ 1)

in Lemma 5.7, and set m = pb(n - b + 1) + 1 in Proposition 6.1. By the definition

in Lemma 4.6 and by the definition of T(l), we have that Ab(T, m) grows as a poly-

nomial in I of degree b and leading coefficient ' > nb+1, so Ab(T, M) > an,b(l) for

sufficiently large 1 (recall the definition of an,b(l) from the intoduction). Thus, the

hypothesis of Proposition 6.1 is satisfied again.

7.2 Uniqueness of the largest component (in char-

acteristic 0)

We set the following notation for this section. Consider a b-dimensional closed

subscheme C = V(f, Xb+2, ... , Xn) of P', where f E k[xo,..., Xb+11d - {0}, and set



W = (f, x .+2, Xn) . In order to finish the proof of Theorem 1,1, it will be sufficient

to consider the case when C is a linear b-dimensional subspace in the next lemma;

however, we will use the more general statement (when d = 2) in Section 7.3.

Lemma 7.4. Assume I > 2d + 1. There is a dense open subset U1 C P(W) such that

for all [F] E U1 , V(F)sing = C (set-theoretically).

Proof. Consider the incidence correspondence

Y { = ([F], P) E P(W) x (P" - C) I P E V(F)sing} C P(W) X (P" - C)

(it is a closed subset of this product, and hence a quasiprojective variety). We are

going to show that dim Y < dim P(W); this will imply that the closure Y of Y1 in

P(W) x P' also has dimension smaller than that of P(W), and thus the image of

this closure under the projection to P(W) will be a proper closed subset of P(W). Its

complement Ui will satisfy the condition of the lemma.

Consider the second projection r: Y - P" - C, and let P E P' - C. We claim

the fiber T-'(P) is a projective linear subspace of P(W) of codimension n + 1. This

will imply that Y is irreducible, of dimension dim Y1 = dim P(W) - 1.

Suppose first that 'P E Uib+2D+(xi). Without loss of generality, assume that

P = [ao,..., a,- 1 , 1]. Notice that T'(P) is just

P (((xo - aozx, ... , Xn_1 - anixn)2 n (f, b+2 .X )2)1) C P(W),

so it remains to show that

dim -= n + 1,
- (xo - aozan.,Xn_1- Ian-1xn) (f +2..,n2



i.e., that the map

( ixb+2, ... f, x)2
(( o - aox , .. ,xn_1 - a ._1x)2 n(f, Xb+2 ., )2

S ~ n-; nI _1 x x n

((o - aoxn, ... , zI - an_1xn)2) k[xn1e (D k[x,]-I(xi aix,)

is an isomorphism. The images of xI and x 1 (xi - aix n) for i = 0, ... , n - 1 give a

basis of the target.

Suppose now that P E V(xb+2, ... , xn), without loss of generality P = [1, a, . , ab+1, 0, 0].

As above, we have to prove that the following map is an isomorphism:

(f - Xb+2 X. ,n)
2

(x I - axo, .. ,b+1 - ab+1xO, xb+2, . xn) 2 0 (f, xb+2,.

S

((x1 ~ alxo, Xb+ - ab+1xO, xb+2, ---X n)2)
b+1 ) n

k[xo]i e k[xo]_I1(xi - aixo) e( kfxo]ixi)
i =1 i=b+2

Now, dehomogenize f with respect to xo, consider a Taylor expansion at (a,..., ab+1),

and homogenize to degree I again, so f = axd (mod (x1 - a1xo, Xb+1 - ab+xO))

with a $ 0. So f 2 = a2Xbd (mod (x1 - a1xo, ... , Xb+1 - ab+1xo)). Now, the elements

f2I-2d (xi - aixo) (for i = 1,..., b+ 1), f 2 x- 2d-i1xi (for i = b + 2,. n), and f 2x -2d

map to a basis of the target. D

We will use the lemma below only when C is linear, but we prove it here for a

more general C for the purposes of the later discussion in Remark 7.17.

Lemma 7.5. Suppose that I > 2d. If char k $ 2, then there exists a dense open subset

U2 C P(W) such that for all [F] C U2 , we have

dim{P E C | dim TpV (F)sng b+ 1} < b - 1.

If char k = 2 and C is a b-dimensional linear subspace, and n - b is even, then the

same conclusion holds.



Proof. Consider the incidence correspondence

Y2 = {([F], P) E P(W) x C I dim TpV(F),ing 2 b + 1} C P(W) X C

(this is a closed subset). We will show that Y2 $ P(W) x C, i.e., dim Y2  dim P(W) +

b - 1. Once this is done, the map Y2 - P(W) will give a dense open U2 c P(W) such

that the fiber over any [F] E U2 has dimension at most b - 1.

Suppose that char k # 2. Fix a point P [po, . Pb+1, 0, ... , 0] E C with at least 2

nonzero coordinates such that V(f) C Pb+1 V(Xb+2, . X) is smooth at P. Without

loss of generality, 'f(P) / 0 and po # 0. We claim that there exists [F] E P(W)

with dim TpV(F)sing < b.

For [F] E P(W), we have V(F)sing = V(F, - ..- ), so we have to look at the

Jacobian ( (P) F (P) . F (P)

5I -.X ax I'Xj(p) axa (? ... a oax

We know that dimTpV(F)si = n - rkJ(P), so dim TpV(F)sing < b if and only if

rkJ(P) 2 n - b. In other words, we have to give some [F] E P(W) such that some

(n - b) x (n - b) minor of the Jacobian is nonzero. Consider

F = x o-2df 2  Z X12 2

i=b+2

We claim that the bottom right (n - b) x (n - b) minor of J(P) is nonzero. Since

po # 0 and f (P) # 0,

i2 F 2 2Ox2 (P) = 2x0 2 b 1

so the minor

0f (P) # 0,
Ob+1I

( P) b21F(P)axiaxj )b+ I <i~js<

(7.2)



is a diagonal matrix with nonzero diagonal entries.

Now suppose that char k = 2 but n - b is even and C = V(Xb+1, . ). Let

P = [1, 0, ..., 0]. Consider F = EN Xb+2i-1Xb+2iXo
2. Then the minor (7.2) is nonzero

again. D

Remark 7.6. This lemma fails when char k = 2, C is linear, and n - b is odd.

Corollary 7.7. Suppose that char k | 2 or char k = 2 but n - b is even. Then

X1 T- for any d > 2.

Proof. Let C = V(X+1l,..., xn). Let Ui and U2 be as given by Lemmas 7.4 and 7.5.

Let U =Ui n U2. So U is a dense open subset of P(W) such that for all [F] E U,

V(F)sing = L set-theoretically, and in addition, the closed embedding L <-> V(F)sing

is an isomorphism over the complement of a closed subset of smaller dimension. Thus

the Hilbert polynomial of V(F)sing has degree b and leading term 1/b!, so V(F)sing

does not contain any closed subscheme of dimension b and degree d > 2. In other

words, [F] E X' - Td. El
Fp

Similarly, we can apply Lemmas 7.4 and 7.5 to an integral C = V(f. .X+2, .. , X)

of degree 2 and obtain the following

Corollary 7.8. Suppose that char k # 2. There exists [F] E P(V) such that V(F)sing

is a b-dimensional integral closed subscheme of degree 2 (as a set), and such that

V(F )sing does not contain any b-dimensional closed subscheme of degree d > 3.

7.3 The second largest component

In contrast to the treatment of the largest component of X, the existence of a compo-

nent of the expected second-largest dimension is a little more subtle, so there will be

an extra twist in the argument. We will determine the second largest component of

X when char k $ 0 (Corollary 7.16). Unfortunately, a technical problem will prevent

us from deducing the corresponding statement when char k = 0 (see Remark 7.17).

For now, k is again any algebraically closed field.



Fix n, b as usual, and let d > 1. Define

(lb+1 1  (l-2d+b+1> /bil b) -

3d(l) - +(n - b -1) -( +1b

(n - b+1)db
= b! + .

Sl-db
b+1

Let I = (f, Xb+2, ... , xn) C S = k[xo,..., x,], where f E k[xo, ..., xb+1ld - {0}-

Consider the composition

(D: k[xo, xb+11 k[xo, , xb+111x)i - S -* S1/(1 2 n Se).
(i=b+2

Note that 'P is surjective.

Lemma 7.9. We have that

ker(q ) = {P + EPixi :
i=b+2

f 2lP, f P for i = b + 2,..., n}.

For 1 > 2d, the codimension of I1 in S, equals MOdl).

Proof. If P + E Pixi E ker(D). then we can write P + E Pix = T E 12. Expand

both sides as polynomials in Xb+2, ... , x and just compare the two expressions. The

second part is an immediate consequence. E

Lemma 7.10. Let C -* P" be any integral b-dimensional closed subscheme of degree

2, with (saturated) ideal I. If F E k[xo,...,xJ> satisfies C c V(F)sing, then F e I?.

Proof. Projection from a point on C shows that C is contained in a linear (b + 1)-

dimensional subspace of Pn. So we can assume that C = V(I), with I = (f, Xb+2 . O)

where f E k[xo, . , Xb+1 12 - {0} is irreducible. We claim that the ideal J2 is saturted.

Indeed, let F E S be homogeneous, and suppose that <'F E I2 for all j = 0,...,n

(and for some M). Write F = P + Ei~b+2 PiXi + T, where P, F, P k[xo, --, Xb+1] are

homogeneous of the appropriate degrees, and T E (Xb+2, ... , Xn) 2 . Since XA'F E f 2,

Lemma 7.9 implies that f2 1'P and f IxM P, for each i = b + 2, ..., n. Since f and xO

are relatively prime, it follows that f 2 1P and fIPi for each i, and hence F E 12



Since C is a local complete intersection and the ideal 2 is saturated, the conclusion

now follows from Proposition 8.2, where we prove a more general result. D

Let P = (Z ) - (z3>) (this is the Hilbert polynomial of a degree-2 hypersurface

in Pb+1). Recall that Hilb denotes the closure in HilbF of the set of integral b-
P

dimensional closed subschemes of degree 2; in this case, a point in Hilb is, up to a

change of coordinates, a closed subscheme of the form V(f, Xb+2 . Xn) c P, where

f E k[xo, .-, Xb+1l2 - {O} (not necessarily irreducible of course). Note that

dim Hilb = dim G(b + 1, n) + dim P(k[xo .Xb+1]2)

= (b + 2)n b(b1) (7.3)
2

By Lemma 7.9, if f E k[xo, ... , b1]2 - {0}, then

... ' Xn)2 + n(74

dim P ((f, i b+2, ... nn =0 2(l)--1

Recall the usual incidence correspondence (where inclusion is scheme-theoretic)

NP {(C, [F)) E Hilb x P(V) C C V(F)sing} c Hilb x P(V).

Recall that 7r and p denote the projections to Hilb and P(V), respectively. For

C c P" a closed subscheme, let Ic denote its (saturated) ideal. Consider the subset

Z' = {(C, [F]) E Hilb x P(V) I F e Ic} c UP.

Lemma 7.11. The subset Z' of QP is irreducible.

Proof. By Lemma 7.9, for a fixed f E k[xox- --- zb+1 2 - {O} and given F = FO +

b+2 Fixi + T E k[xo, ... , zn1, where FO E k[xo, ., b+1]l, Fi E k[xo, ., £b+1l-1, and

T E (Xb+2, ), we have that F E (f, 1 b+2 ---, n) if and only if f 2IFo and fIFi

for each i = b+2,... n.

Let V' = k[xo, ... , Xb+1]-4 C (e=+2 k[xo, Xb+1l -3) e (Xb+2, ... , Xn)2. Denote by



A(k[xo,..., Xb+1]2) the affine space parametrizing points in k[xo,...,Xb+112. Consider

the composition

Aut(Pn) x (A(k[xo,.. ., xb+1]2) - {0}) x P(V')

Aut(Pn) x P(k[xo, .Xb+1]2) x P(V)

-P
Hilb x P(V)

where the first map is given by

(o-, f, [Q, Rb+2, ... , Rn, T]) - (-, [f, [f 2 Q + 7f Rixi + T])
i=b+2

and the second map is given by

(a, [f], [F]) - (V(f" x"+2 . --- xX"). [F]").

By construction, Z' is precisely the image of the composition, hence is irreducible. 0

P

Remark 7.12. It is not true that the fibers of Up --+ Hilb are all of the same di-
2 - P

mension. For example, let b = 1, n = 3, and look at C = V(x2, x 3) E Hilb . Let

F =xixi-3. Then (C, [F]) E 7r-(C), but F 2 (xjx 3)
2 . This is why we have to study

the auxiliary Z'.

Let Z be the closure of Z' in QP.

Lemma 7.13. We have that

dim Z = n 0 2 (l) - 1+ (b+ 2)n - b(b 1)
n 2

P -P
Proof. First, r(Z') = Hilb , since given any C E Hilb , the ideal I contains forms

-P
of degree 4 already, so we can certainly find F E (I4)1. Thus, 7r: Z - Hilb is

P
onto. A generic C E Hilb is an integral b-dimensional closed subscheme of degree



2; for such a C, by Lemma 7.10, we know Z = QP and hence also Zc = Zc.

This allows us to compute dim Zc = dim Z = (It") - 02(l) - 1. This computes
P

dim Z = dim Hilb + dim Zc and gives the desired result, by virtue of (7.3) and

(7.4). E

Lemma 7.14. X 2 := p(Z) is an irreducible closed subset of X of dimension (' ") -

02(l) - 1 + (b + 2)n - b(b1). If [F] E X contains an integral closed subscheme of

dimension b and degree 2 in its singular locus, then [F] E X 2.

Proof. It is clear that p(Z) is an irreducible closed subset of X, since Z is irreducible

and closed in QP. Choose any integral b-dimensional C of degree 2. Apply Lemma

7.4 to C to find [F] E P(V) such that we have a homeomorphism C -- V(F)sing. If
-P

C E Hilb is another closed subscheme contained in V(F)sig, then necessarily we

have C -- C, since C is reduced. Hence C C, since C and C have the same

Hilbert polynomial. Therefore, the map Z - p(Z) has a 0-dimensional fiber, so

dim p(Z) = dim Z.

Let [F] E X be such that V(F)ig contains an integral b-dimensional closed

subscheme C of P" of degree 2. Then we know that F E I by Lemma 7.10, so

(C, [F]) E Z', and hence in fact [F] E p(Z') C p(Z) X 2

Remark 7.15. Lemma 5.8 did not treat the case b = n - 1, d = 3. We discuss this

now. When b = n - 1, we can describe X explicitly. Indeed, if V(G) is an integral

(n - 1)-dimensional closed subscheme of P2 (here k has any characteristic) with

V(G) c V(F),irg, then necessarily F = G2H for some H (since V(G) is a complete

intersection and the ideal (G2) is saturated; see Proposition 8.2). For d = 1,.., [J,

consider the map

(Pd: P(k[xo, ... , Xo]) x P(k[xo, .. ] onX-2d) -+ P(k[xo, .... xui)

(G. H) - 2 H.



Certainly, im(ad) C Tkd C X and X =ULJ im(pd), so

X = X U im 02 ) U im( p 3)U (L Td .
d=4

Since any point in the image of cp has only finitely many preimages, it follows that

dim im(Od) (dn) + (l-2d-n) -2.
n n

So dim im(p 3) < dim im(0 2) = dim X 2 for I > lo (where lo is effectively computable)

and hence when b = n - 1, it suffices bound dim Tk only for d > 4, which was handled

by Lemma 5.8.

Corollary 7.16. Suppose that char k = p > 0. There exists (again, effectively com-

putable) lo = 1o(n,b, p) such that for all / > lo, X 2 is the unique irreducible component

of X of second largest dimension.

Proof. Let k = IF,. With the above preparations, the proof is now analogous to that of

Theorem 1.1. We use Lemma 5.8 (with Remark 7.15 if b = n - 1) and Proposition 6.1

to argue that if Z C Tk is an irreducible component of Tk (where d > 3), then either

Z C Tk U Tk, or dim Z < dim X2 (as long as I > lo, for some effectively computable

lo).

We have
N

X = U Tk for N = /(I -1)N+1

d=1

If Z is an irreducible component of X with dim Z > dim X 2 , then Z C T for some

d. If d 2 3, then by the previous paragraph, we have Z C T1 U T2 . So in any case,

Z C T' U T 2 = X1 U X 2 . Hence Z = X1 or Z = X 2. E

Remark 7.17. Let p $ 2. If we could prove that dim Ti- < dim X 2 for all d > 3, we
JFp

would be able to deduce that for d > 3,

dim T4 < dim T L < dim X 2



Suppose instead that dim Tk > dim X2 for some d > 3 and k = FP. Let Z be an

irreducible component of T/ with dim Z > dim X 2. We have Z C XI U X 2 by the

proof of Corollary 7.16. Moreover, Z Z X 2 (since X 2 Z T, by Corollary 7.8), so

Z c X 1 . So it would suffice to prove that dim(Tk n X') < dimX 2 for d 2 3 (this

inequality fails when d = 2). This is the technical problem that unfortunately does

not allow us to remove the assumption char k $ 0 from Corollary 7.16.
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Chapter 8

The space of F such that V(F)sing

contains a fixed C (case b = 1)

In the last two chapters, we approach Theorem 1.1 from a different point of view (when

b = 1), which will result in an alternative argument for the case when d is small. This

second approach gives a proof without explicit bounds, but addresses some questions

that appear naturally, and which are interesting on their own right. Namely, for a

fixed (reduced) C C P', we study the linear space (Wc), := {F E S I C c V(F)sing}

(Section 8.1). It turns out that C gives rise to a certain ideal sheaf j (coming

from exact sequences involving Kahler differentials), such that (Wc), = F(P" 7(l))

(Proposition 8.2). In turn, one naturally asks for the Hilbert polynomial of the sheaf

J; this question is answered in Section 8.2 in terms of invariants of C (Proposition

8.5).

Here, k is any algebraically closed field.

Let S = k[xo, ..., x,] with the usual grading. Recall the functor

F: QCoh(P") -+ Graded S-modules,

ate

We denote its left adjoint by Loc (denoted -on p. 116 in [7)). Recall that Loc-e id



and that if M is a finitely-generated graded S-module, then M -+ FLoc(M) is an

isomorphism in large degrees.

8.1 Understanding the condition C c V(F)sing for a

fixed C

Let I c A = k[i, .xn] be a radical ideal, and C = Spec(A/I). For f E A, f 7 0,

we have C C V(f)sing if and only if f E m2 for any maximal m D I (here, V(f)sing

is the set of singular points of V(f) - Spec(A/f)). We now have to understand this

condition.

Lemma 8.1. For f E I, we have f m m2 for all m D I if and only if f belongs to the

kernel of

I -- > A/kIIQA/k-

Proof. Suppose that f satisfies f C m2 for all m : I. Let B = A/I. We claim that f

belongs to the kernel of the map I -+ QA/k/IQA/k; i.e., we claim

df E IQA/k,

where d: A -+ QA/k is the canonical derivation. (In this way, we linearize our un-

handy condition that f Ei m2 ). We know that for each maximal m D I, we have

QA/k/mQA/k - QA/k (&A A/m n m/m 2 as A/m-vector spaces, and

I/I2 m/m 2

d I4
QA/k/IQ A/k QA/k/mQA/k

commutes, so the condition f E M2 is equivalent to df E mQA/k.



Since QA/k is a free A-module, we conclude that

df E (mQAtk) = (m QA/k = IQA/k.
m:I m

The converse is obvious from the commutative diagram above.

Let i: C -* P be any reduced closed subscheme (not necessarily integral or 1-

dimensional), and let I be its ideal sheaf. Define g E Coh(C) as the kernel of the

first map in the second fundamental exact sequence,

0 - g -+ i*I - iC - c 0,

and 7-( E Coh(C) by the exactness of

0 -- N -* - c -+ 0,

so we have a short exact sequence

0 -+ g -+ i*I - N -0.

Since i,, is exact (as i is a closed embedding, hence affine), it follows that ii*I -* I.

is surjective, and hence so is the composition I - 1/12 = ii*I -* i>N. Let j denote

its kernel, so we have a short exact sequence

0 - J -+ I -+ i,'H -+ 0.

In other words, J is defined by the exactness of

0 -+ -+* I -+ Qpe/IQ1 e -, ijQc - 0.

Note that 12 C J, and we have an equality if C is a local complete intersection,

since in this case, g = 0 (see Exercise 16.17 in [2)).



Proposition 8.2. With notation as above, for F C Shomog, we have C C V(F)sing if

and only if F C f(J).

Proof. For i = 0, ..., n, let fi = F(xo, ..., 1,...,x) be the i-th dehomogenization of

F. Assume that F # 0, so also fi # 0. The condition F E F(J) is equivalent to

fi c F(D+(xi), J) for all i = 0, ..., n. On the other hand, C C V(F)sing is equivalent

to C n D+(xi) C V(fi)sing, and hence the statement of the proposition reduces to the

following affine statement.

Let A = k[x1,...,x,] and C = Spec(A/I), where I C A is radical. Let B = A/I.

Define an A-module J by the exactness of

0 J - I ' QA/IQA - -* ~ 0.

Then for a nonzero polynomial f E A, we have C C V(f)sing if and only if f E J.

This follows from Lemma 8.1. D

8.2 Computing the Hilbert polynomial of J

Lemma 8.3. Let

0 -4 F' - F -> F" -* 0

be a short exact sequence in QCoh(P"), with F' coherent. Then for large 1,

o --+ I(F')r F (F) - F(F") - 0

is a short exact sequence of k-vector spaces.

Proof. Apply Theorem 111.5.2(b) in [71 to F'. E

Let C be any integral curve over k (not necessarily projective for now), and let

p: C -> C be its normalization. Consider the canonical map a: Qc - p-Q 0 . Let

R1, R 2 E Coh(C) denote its kernel and cokernel:

0 -+ - c' P*QC -+ R2 -+ 0.



Since p is an isomorphism over a dense open U C C, so is a-, and hence R 1 and R 2

have finite support, contained in Csing. For each P E Csing, the stalks (RI)p and

(R2)P are finite-dimensional k-vector spaces.

Define

p(C) := (dimk(Rl)P - dim(R2)P).
PECsing

For the rest of

let # be the genus

this chapter, let i: C -, P" be an integral curve of degree d, and

of its normalization.

Lemma 8.4. For large 1,

dim,, F(C, Qc(l)) = dl + + - 1 p(C).

Proof. Consider the exact sequence

0 - R 1 - QC P*Q,5 -+ R 2 -+ 0.

For large 1, the sequence

0 -> F(C, R 1(l)) - F(C, Qc(l)) -> F(C, (pQ)(l)) -+ F(C, R 2 (l)) -* 0

is exact.

Note that

F(C, R 1(l)) ~ F (C. R1 ) e (R1)P,
PeCSnsg

(8.1)

and similarly for IZ2.

Now, we look at the term F(C, (pQ0 )(l)). By the projection formula, we know

(pinceCha p*c() a le hy))-

Since C has degree d, p*0c(l) is a line bundle on C of degree dl (see Corollary 5.8 on



p. 306 in [9]). By the Riemann-Roch theorem applied to C, it follows that for large 1,

dimk F(C, @ 9 P*cC(l)) = dl + - 1.

Take the alternating sum of dimensions in (8.1).

For an integral curve i: C -- + P" with ideal sheaf I and I = F(I), we let d be its

degree and pa be its arithmetic genus, so for large 1, we have

dimk(S/I)1 = dI + 1 - p,.

For I > 1, let

(W0c)= { F c S, | C c V(F)sing}.

Proposition 8.5. Let C, i, be as in Lemma 8.4. For / >> 0,

dimk(Si/(Wc)I) ndl 1 I+ (n + 1)(1 - d - pa) - - p(C).

Proof. Recall the short exact sequences

0 -+ h -+ i*Qen - QC -+ 0

0 - J - _ -4 i,, -+ 0

and

(definition of 'H)

(definition of J).

We will be using Lemma 8.3 continuously without explicit notice. By Proposition

8.2, for all 1, we have (Wc) = F(7)1 , so we have to compute dimk f(0n/J)I for

large 1. From the short exact sequence

0 - i. H -+- OP. /J - Op" /I - 0,

(8.2)



we obtain a short exact sequence

0 - F(i,-)i -+ F(Op./J), -+ F(Or, /)1 - 0

for large 1. Since the last term is (F(Orn)/F(I))1  (S/I) for large 1, and hence of

dimension dl + 1 - pa, it suffices to compute the dimension of the first term.

Applying the exact functor i, to (8.2), we obtain short exact

0 -+ i,7-t -> Qe/IQP" - iSQc -- + 0,

which for large I gives short exact

0 -+ F(ihH i -+ F(QGe/IQn ) - F(C,Qc(l)) -+ 0.

We know the last term has dimension dl + g - 1 + pi(C).

Finally, we have to compute dimkf (QP1n /IQr )i for large 1.

11.8.13 in [7] the short exact sequence

0 -* Or -+ Op,(-1)o(n+0 -- + Op - 0.

Since Opn is locally free, applying - ®o,. Opn/I to this short

a short exact sequence

Recall from Theorem

exact sequence yields

(p" Or"(-1) ( O, 0.
0c agi by -m 83 0

Once again by Lemma 8.3, we know that

~ / f \ (- 1) (n+ (opF 0

is exact for large I. Again, we have to compute the dimensions of the second and

third terms. For large 1, the third term has dimension dl + 1 - pa, as before.

We are left to compute dimkf(O(-1)/IO(-1))j for large 1. Notice that IO(-1)



I(-1) and that for large 1, l(O(-1)/I(-1)), is which is

(S/I)1_1 for large 1. This is a shift of S/I and thus dimension equal to d(l - 1) +1 -pa

Going back through the exact sequences, we complete the calculation. D

Remark 8.6. Comparing Proposition 8.5 with Lemma 7.9 (combined with Proposition

8.2) shows that for an integral plane curve C, we have p(C) = Pa - g. However, this

fails for a-general integral curve C.

Remark 8.7. Lemma 8.4 and the previous remark imply that for any integral plane

curve C -* P2 C P', the Hilbert polynomial of the sheaf Qc of Kdhler differentials is

x(Qc(l)) = dl + pa -1.



Chapter 9

Alternative argument for the case

b =1

The goal is now to make the conclusion of Proposition 8.5 uniform over integral curves

of given degree; in fact, we will prove that there exists a polynomial P2 (D) E Z[D] such

that the formula for dim(Wc)l holds for all integral C of degree d and all 1 2 P2(d)

(Lemma 9.8). The technique we use throughout this chapter is Mumford regularity

(see Section 9.1). Section 9.2 is technical; the goal there is to give a uniform bound

on the invariant p(C) just in terms of the degree of C. Once this is done, the second

proof of Theorem 1.1 is easily finished in Section 9.3 (small degree) and Section 9.4

(large degree).

Again, k is an algebraically closed field.

9.1 Mumford regularity

Definition 9.1. A coherent sheaf F on P' is m-regular if for any i 2 1,

H'(P",.F(m - i)) = 0.

One can show (see Chapter 5.2 in [5]) that if T is m-regular, then H'(P", F(l)) = 0

for all i > 1, 1 > m - i (in other words, F is also m'-regular, for any m' 2 m).



Moreover, if Y is m-regular, then for any I > m, the sheaf F(l) is generated by global

sections.

Theorem 9.2 (Mumford). There exists a polynomial F, E Z[xo,...,xnj with the

following property. Let I C Opn be any ideal sheaf, and let the Hilbert polynomial of

I be

(I(l)) ai ).
i=0

Then I is m-regular, where m = Fn(ao,..., a).

9.2 Uniform bound on p(C)

The goal of this technical section is to prove the following

Lemma 9.3. There are polynomials PO, P1 E Z[D] such that if C P" is any integral

curve of degree d, then

Po (d) p(C) < P1 (d).

The proof requires some preparation.

Lemma 9.4. There exists a polynomial Q E Z[D, G] such that for any integral curve

C -, P" of degree d and arithmetic genus g, and for any I > Q(d, g), we have

H'(C, Qc(l)) = 0.

Proof. Fix a surjection

O. (qj) -> Qpn -+ 0.

Consider a polynomial F, E Z[o,..., n] from Mumford's theorem. Write (,") -

(Dl + 1 - G) = E'-0 a ( ), where a, E Z[D, G]. If C -4 P is any integral curve

of degree d and arithmetic genus g, so that its ideal sheaf I has Hilbert polynomial



(ln) -(dl+ I1-g), we know that I is m-regular, for any m > Fe(ao,..., an)|(D,G)=(d,g) E

Z. Set Q(D, G) = Fn(ao, ..., an) + max(-qi) E Z[D, G].

Now, let i: C __+ P" be any integral curve of degree d and arithmetic genus g. and

suppose that I > Q(d, g). Since we have a surjection i*Qpe - Qc, in order to prove

that H 1 (C, Qc(l)) = 0, it suffices to prove that H 1 (C, i*Qpy(l)) = 0. In turn, we have

a surjection

e Oc (qj + i) -- i*Qp (l) - 0,

and so it suffices to prove that H'(C, Oc(qj + 1)) = 0 for all i. Twist the short exact

sequence

0 -> I -+ OF - i.Oc - 0

by qj + 1 and note that since H1(P", Or (qj + 1)) = 0, it suffices to prove that

H2 (pn _I(q, + 1)) = 0. This holds since I is (qj + )-regular by our choice of 1. E

Lemma 9.5. There is a polynomial Q1(D, G) E Z[D, G] such that for any integral

curve i: C -+ P" of degree d and arithmetic genus g, if we define a sheaf H by

exactness of

0 - * i*Qwn c-+ c -+ 0,

then H1(C, R(l)) =0 for all I > Q1(d, g).

Proof. Let F, C Z[xo,..., xn] be a polynomial from Mumford's theorem. Write (1 ) -
(Dl + 1 - G) = E 0 a() and consider Fn(ao, ., an) E Z [D, G]. Set Q1(D, G)

2Fn(ao, ..., an) E Z[D, G]. Let i: C -- P" be any integral curve of degree d, arithmetic

genus g, and ideal sheaf I; let R be defined as in the statement of the lemma, and

let 1 > Q1(d, g). We claim that H 1 (C, N(l)) 0.

Indeed, if lo = Fn(ao, ..., an)|(D,G)=(d,g) E Z, we know that I is lo-regular. In

particular, 1(lo) is generated by global sections, and so there is a surjection

e Opn -* 1(l) - 0.



Twist this surjection by 1 - lo 2 lo to obtain a surjection

(@ OP. (10 + I') -> I(1) - 0,

where ' > 0. Apply i* to obtain a surjection

SOc(lo+ l') -~ i*I(l) -+ 0.

Now, H 1(C, Oc(lo + l')) 0: twist the short exact sequence 0 - I -+ Op-

i-Oc -* 0 by 1o + ' and note that H2 (Pn,I(lo + I')) = 0, since I is to-regular.

The surjection above implies that H 1 (C, i*I(1)) = 0. Since we know that there is a

surjection

I -+ R -> 0,

twisting by I and taking cohomology implies H 1(C, RH(1)) = 0. as desired. D

Setting Q2 (D, G) = ('+") - (Dl + 1 - G), we know that for any integral curve

C -4 P' of degree d, arithmetic genus g, and ideal sheaf I, and any I > Q2(d, g). we

have H 1(P', I(l)) = 0. Combining this with the lemma above, we conclude that there

exists a polynomial Qo(D, G) E Z[D, G] with the following property. Let i: C -* P"

be any integral curve, and let d, g, I denote its degree, arithmetic genus, and ideal

sheaf, respectively. Define the sheaf R by exactness of 0 -+ N - i* n -+ c -+ 0.

Let I > QO(d, g) be any integer. Then H'(P" I(I - 1)) = 0 and H'(C. R(l)) = 0. Fix

such a polynomial Qo(D, G).

Lemma 9.6. There exists a polynomial Q(D, G) G Z[D, G] such that for any integral

curve i: C +-* p" of degree d and arithmetic genus g, we have

dimk l'(c, i * Qe (i)) < Q (d, g).

for i = Qo (d, g).

Proof. Set Q(D, G) = (n + 1)(Qo(D,G) n) and let n: C - P' be an integral curve

as in the statement.



Start with the short exact sequence

0 -+ Q _ -, O',r(-1)e(n+1) - o - 0,

apply i*, twist by I = Qo(d, g), and take global sections, to obtain an injection

0 -+ F(C, i*Qpn (l)) -+ F(C, Oc(l - 1 -

On the other hand, twisting the short exact sequence

0 -+ I -+ on -4 i-Oc -+ 0

by I - 1 and taking global sections, we obtain a surjection

F(P" ,O,,(l - 1)) -+ F (C, Oc (l - 1)) - 0,

because H1(P', I(l - 1)) = 0 (since 1 = Qo(d, g)). Thus,

dimk F(C, i*Qpe (1)) (n + 1) dimk F(C, Oc(l - 1)) Q(d, g),

as required.

Fix a polynomial Q as in the statement of Lemma 9.6.

Corollary 9.7. For any integral curve C -- P" of degree d and arithrntic genus g,

we have

dimkF (C, Qc (l)) < Q (d, g),

for / = Qo(d, g).

Proof. Twist the short exact sequence

0 ->X -+i* -- QC - 0,

by / = Qo(d, g), and take global sections. By choice of Qo(d, g), we have H'(C, RH(l)) =



0, so dim F(C, Qc(1)) dim F(C, i*Q,(1)). Now apply Lemma 9.6.

Proof of Lemma 9.3. Castelnuovo's theorem (see Theorem 3.7 in [3]) gives a polyno-

mial bound on the arithmetic genus in terms of d. So it suffices to find polynomials

Po, P1 E Z[D, G] in two variables such that for any integral curve C of degree d and

arithmetic genus g, we have

Po(d, g) < p(C) < P1 (d, g).

Define Po(D, G) = -DQ(D, G) -G+1 and P1(D, G) = Q(D, G) -DQo(D, G)+1.

Let C - P' be any integral curve, let d, g be its degree and arithmetic genus,

and let p: C -+ C be the normalization map. Recall that p(C) is defined as p(C) =

X(7ZI) - (Z 2 ), where Th1 , 7Z2 denote the torsion sheaves in the exact sequence below

0 - 71 - QC -> Q - 2 - 0.

The Hilbert polynomials of 7Z1, Z2 are of degree 0. Thus, twisting the above exact

sequence by an integer 1, using that p is an affine map, and applying Riemann-Roch

to C, we obtain

pa(C) = x(c(l)) - x(p-Q0(l)) = x(c(l)) - x(A(l)) = x(Qc(l)) - (dl + # - 1)

for any integer 1.

Set I = Q(d, g) in the above expression (see Lemma 9.4). For this choice of 1, we

know that H'(C, Qc(l)) = 0, and so x(Qc(l)) = dimk F(C, Qc(l)) > 0. Consequently,

p(C) 2 -(dl + j - 1) = -dQ(d, g) - j + 1 2 -dQ(d, g) - g + 1, which gives the lower

bound.

As for the upper bound, set I = Q0(d, g) in the expression for p(C). We obtain

p(C) < dimk F(C, QC(l)) - (dl + - 1) < Q(d, g) - dQo(d, g) + 1,

by Corollary 9.7. E



9.3 The curves of small degree

Lemma 9.8. There exists a polynomial P2 E Z [D] such that if C -+ P" is any integral

curve of degree d and I > P2(d), then

codimvk[xo,...,xjn,{F G k[xo,.,xnli C C V(F),ing} - ndl+1+(n+1)(1-d-pa)-j-p(C)

(where Pa, j, L(C) are as in Section 8.1).

Proof. Recall that we have attached a certain ideal sheaf j C Op, to the curve C,

such that for F E k[o, ., Xnll, C C V(F)sing if and only if F E F(P" J(l)). Also, by

Proposition 8.5, for 1 > 0,

dimk r(P", J))=l+ n -[ndl + 1 + (n + 1)(1 - d - p,) - j - p(C)] = a ,

where ai are polynomial expressions in d, pa, p p(C). Consider F,(ao, a,) (where

F, is from Mumford's theorem); this is likewise a polynomial in d, pa, j, p(C). Since

we have a lower and upper bound for each of these quantities in terms of d, there is

a polynomial P2 E Z[D], independent of C, such that F,(ao, ... , a,) P2 (d) for any

such curve C.

Thus, for I > P2(d), we have I > F,(aO, ...,a,), and hence J is I-regular. Thus

H1 (P", j(l)) = 0 for all i > 1, so dimk F(P", j(l)) agrees with the value at I of the

Hilbert polynomial x(J(l)). D

Corollary 9.9. Let P2 be as above. There is a polynomial P3 c Z[D] such that if

C - P'" is any integral curve of degree d and I > P2 (d), then

codimv({F G V C C V(F),ing}) ndl + P3 (d).

Proof. Lemma 9.3 yields a polynomial bound on p(C). By Castelnuovo's theorem

and the fact that j < Pa, polynomial bounds exist for pa and , too. El



Remark 9.10. Even if are interested in proving the inequality from the corollary, the

proof goes through the equality in Lemma 9.8 first, in order to give bounds for the

coefficients of the Hilbert polynomial x(J(l)) in terms of d and to be able to apply

Mumford's theorem. In particular, we had to bound p(C) from both sides.

Recall by Theorem 5.3 that dimHilb < P4 (d), where P4 (d) = 3(n-2)+d(d+3)/2.

Let L C P' be a line.

Corollary 9.11. There exists a polynomial P [ Z(D] such that for I > P(d), we have

- d
dim(Wc)i +dimHilb <dim(WL) +dim G(1,n),

for any integral curve C __4 P" of degree d > 2.

Proof. Rewrite the inequality as

~d
codims, (WL), + dim Hilb < codims, (Wc) + 2(n - 1). (9.1)

The left hand side is bounded above by nl + 1 + P4 (d), and the right hand side, for

l > P2 (d), is at least ndl + P3 (d) + 2(n - 1) by Corollary 9.9. Thus (9.1) will hold as

long as 1 2 P2 (d) and nl + 1 + P4(d) < ndl + P3(d) + 2(n - 1). There is a polynomial

P E Z[d] such that these two conditions are satisfied whenever d > 2 and I > P(d)

So replacing P by dM if necessary for some Al (take d = deg P + 1 and treat the

finitely many d > 2 for which P(d) > d" separately as we had done before in Lemma

5.7), we have handled now the cases of small degree d < [ V].

Corollary 9.12. There exists M such that for all pairs (d, 1) with 2 < d < V-, and

any irreducible component Z c Td, either Z = X', or dim Z < dim X'.

(This is weaker than Corollary 5.6, but sufficient.)



9.4 The case of large degree d > /7

Let m(1) F [ ml, m'(l) = min(m(l), T(l) + 1), where r(l) [L--] as in Proposition

6.1 (so m'(l) m(l) for large 1). Notice that

A 1(l, m) =1m 2- + 1) + 2m

2I[ Al/]-, +~'7(~~ -1) +i-2[ Vul]
2

is of order I VI and is therefore greater than an,i(I) (which is linear in 1), as long as

I is large enough. So there exists 1o such that for ;> lo, we have A 1(l, m(1)) > an,(1)

and (7(l+2) > a,, 1 (l). Apply Proposition 6.1 to the triple (1, m(l), a,,i(l) + 1) and

combine it with Corollary 9.12 to finish this alternative proof of Theorem 1.1.
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