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Abstract— Recent advances in the direct computation of Lya-
punov functions using convex optimization make it possible to
efficiently evaluate regions of stability for smooth nonlinear
systems. Here we present a feedback motion planning algorithm
which uses these results to efficiently combine locally valid
linear quadratic regulator (LQR) controllers into a nonlinear
feedback policy which probabilistically covers the reachable area
of a (bounded) state space with a region of stability, certifying
that all initial conditions that are capable of reaching the goal
will stabilize to the goal. We investigate the properties of this
systematic nonlinear feedback control design algorithm on simple
underactuated systems and discuss the potential for control of
more complicated control problems like bipedal walking.

I. INTRODUCTION

Consider the problem of stabilizing a periodic (limit cycle)
trajectory for a bipedal walking robot. Although many well-
developed tools exist for local stabilization[25, 15], dynamic
constraints due to actuator saturation and/or underactuation
limit the validity of these solutions to a small neighbor-
hood around the nominal trajectory. Dynamic programming
approaches based on discretizing the state and action spaces
require potentially very fine resolution to deal with the discon-
tinuous dynamics of impact, and require many simplifications
for application to even the simplest walking models[5].

This paper aims to build on recent advances from control
theory and from randomized motion planning to design effi-
cient and general algorithms for nonlinear feedback control
synthesis in nonlinear underactuated systems like bipedal
walking. Specifically, the controls community has recently
developed a number of efficient algorithms for direct com-
putation of Lyapunov functions for smooth nonlinear systems,
using convex optimization [9, 17]. These tools can plug into
motion planning algorithms to automatically compute planning
“funnels” for even very complicated dynamical systems, and
open a number of interesting possibilities for algorithm de-
velopment. In particular, we present the LQR-Tree algorithm,
which uses locally optimal linear feedback control policies
to stabilize planned trajectories computed by local trajectory
optimizers, and computational Lyapunov verification based on
a sum-of-squares method to create the funnels.

The aim of this work is to generate a class of algorithms
capable of computing verified feedback policies for under-
actuated systems with dimensionality beyond what might be

Fig. 1: Cartoon of motion planning with funnels in the spirit of [4].

accessible to grid-based algorithms like dynamic program-
ming. The use of local trajectory optimizers and local feedback
stabilization scales well to higher-dimensions, and reasoning
about the feedback “funnels” allows the algorithm to cover
a bounded, reachable subset of state space with a relatively
sparse set of trajectories. In addition, the algorithms operate
directly on the continuous state and action spaces, and thus
are not subject to the pitfalls of discretization. By considering
feedback during the planning process, the resulting plans
are certifiably robust to disturbances and quite suitable for
implementation on real robots. Although scaling is the driving
motivation of this approach, this paper focuses on the coverage
properties of the LQR-Tree algorithm by carefully studying
a simple 2D example (the torque-limited simple pendulum),
which reveals the essential properties of the algorithm on a
problem where the control synthesis procedure can be easily
visualized.

II. BACKGROUND

A. Feedback motion planning

For implementation on real robots, open-loop trajectories
generated by a motion planning system are commonly stabi-
lized by a feedback control system.1 While this decoupled
approach works for most problems, it is possible that a

1Note that an increasingly plausible alternative is real-time, dynamic re-
planning.
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planned trajectory is not stabilizable, or very costly to stabilize
compared to other, more desirable trajectories. Algorithms
which explicitly consider the feedback stabilization during the
planning process can avoid this pitfall, and as we will see,
can potentially use a local understanding of the capabilities
of the feedback system to guide and optimize the search in a
continuous state space.

Mason popularized the metaphor of a funnel for a feedback
policy which collapses a large set of initial conditions into
a smaller set of final conditions[16]. Burridge, Rizzi, and
Koditschek then painted a beautiful picture of feedback motion
planning as a sequential composition of locally valid feedback
policies, or funnels, which take a broad set of initial conditions
to a goal region[4] (see Figure 1). At the time, the weakness
of this approach was the difficulty in computing, or estimating
by trial-and-error, the region of applicability - the mouth of the
funnel, or preimage - for each local controller in a nonlinear
system. Consequently, besides the particular solution in [4],
these ideas have mostly been limited to reasoning about vector-
fields on systems without dynamics[12].

B. Direct computation of Lyapunov functions

Burridge et al. also pointed out the strong connection
between Lyapunov functions and these motion planning
funnels[4]. A Lyapunov function is a differentiable positive-
definite output function, V (x), for which V̇ (x) < 0 as the
closed-loop dynamics of the system evolve. If these conditions
are met over some ball in state space, Br, containing the
origin, then the origin is asymptotically stable. The ball,
Br, can then be interpreted as the preimage of the funnel.
Lyapunov functions have played an incredibly important role
in nonlinear control theory, but can be difficult to discover
analytically for complicated systems.

The last few years has seen the emergence of a number
of computational approaches to discovering Lyapunov func-
tions for nonlinear systems, often based on convex optimiza-
tion(e.g., [9, 17]). One of these techniques, which forms the
basis of the results reported here, is based on the realization
that one can check the uniform positive-definiteness of a
polynomial expression (even with constant coefficients as
free parameters) using a sums of squares (SOS) optimization
program[17]. Sums of squares programs can be recast into
semidefinite programs and solved using convex optimization
solvers (such as interior point methods); the freely available
SOSTOOLS library makes it quite accessible to perform these
computations in MATLAB[18]. As we will see, the ability to
check uniform positive (or negative) definiteness will offer the
ability to verify candidate Lyapunov functions over a region
of state space for smooth (nonlinear) polynomial systems.

These tools make it possible to automate the search for
Lyapunov functions. Many researchers have used this capa-
bility to find stability proofs that didn’t previously exist for
nonlinear systems[17]. In this paper, we begin to explore the
implications for planning of being able to efficiently compute
planning funnels.

C. Other related work

The ideas presented here are very much inspired by the
randomized motion planning literature, especially rapidly-
exploring randomized trees (RRTs)[11] and probabilistic
roadmaps (PRMs)[10]. This work was also inspired by [14]
and [19] who point out a number of computational advantages
to using sample-paths as a fundamental representation for
learning policies which cover the relevant portions of state
space.

In other related work, [1] used local trajectory optimizers
and LQR stabilizers with randomized starting points to try to
cover the space, with the hope of verifying global optimality
(in the infinite resolution case) by having consistent locally
quadratic estimates of the value function on neighboring
trajectories. The conditions for adding nodes in that work were
based on the magnitude of the value function (not the region of
guaranteed stability). In the work described here, we sacrifice
direct attempts at obtaining optimal feedback policies in favor
of computing good-enough policies which probabilistically
cover the reachable state space with the basin of attraction.
As a result, we have stronger guarantees of getting to the goal
and considerably sparser collections of sample paths.

III. THE LQR-TREE ALGORITHM

Like many other randomized planning algorithms, the pro-
posed algorithm creates a tree of feasible trajectories by
sampling randomly over some bounded region of state space,
and growing the existing tree towards this random sample
point. Here, when each new trajectory “branch” is added
to the tree, we do some additional work by creating a tra-
jectory stabilizing controller and by immediately estimating
the basin of attraction of this controller using semi-definite
programming. Because both the feedback design and the
stability analysis work backwards in time, we perform these
computations on only a backwards tree, starting from the goal.
The result is that the backwards tree becomes a large web of
local controllers which grab initial conditions and pull them
towards the goal (with formal certificates of stability for the
nonlinear, continuous state and action system). We terminate
the algorithm when we determine (probabilistically) that all
initial conditions which are capable of reaching the goal are
contained in the basin of attraction of the tree.

Although many trajectory stabilizing feedback controller
designs are possible (and potentially compatible with this
approach), we have selected to use a time-varying lin-
ear quadratic regulator (LQR) design. LQR, iterative LQR
(iLQR)[21, 23], and the closely related differential dynamic
programming (DDP)[8] are common tools for roboticists, and
have demonstrated success in a number of applications. LQR
control synthesis has the additional benefit that it returns the
quadratic cost-to-go function for the linear system, which
is also a valid Lyapunov function for the nonlinear system
over some region in the vicinity of the trajectory. We design
a conservative approximation of this region using sums-of-
squares optimization. Finally, we use the computed basin of
attraction to influence the way that our tree grows, with the
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goal of filling the reachable state space with the basin of
attraction of a sparse set of trajectories.

The details of each of these steps are described in the
remainder of this section.

A. Essential components

1) Time-varying LQR feedback stabilization: Let us first
consider the subproblem of designing a time-varying LQR
feedback based on a time-varying linearization along a nomi-
nal trajectory. Consider a controllable, smoothly differentiable,
nonlinear system:

ẋ = f(x,u), (1)

with a stabilizable goal state, xG. Define a nominal trajectory
(a solution of equation 1) which reaches the goal in a finite
time: x0(t),u0(t), with ∀t ≥ tG,x0(t) = xG and u0(t) = uG.
Define

x̄(t) = x(t)− x0(t), ū(t) = u(t)− u0(t).

Now linearize the system around the trajectory, so that we
have

˙̄x(t) ≈ A(t)x̄(t) + B(t)ū(t).

Define a quadratic regulator (tracking) cost function as

J(x′, t′) =
∫ ∞
t′

[
x̄T (t)Qx̄(t) + ūT (t)Rū(t)

]
dt,

Q = QT ≥ 0,R = RT > 0,x(t) = x′.

In general, Q and R could easily be made a function of time
as well. With time-varying dynamics, the resulting cost-to-go
is time-varying. It can be shown that the optimal cost-to-go,
J∗, is given by

J∗(x̄, t) = x̄TS(t)x̄, S(t) = ST (t) > 0.

where S(t) is the solution to

−Ṡ =Q− SBR−1BTS + SA + ATS, (2)

and the boundary condition S(tG) is the positive-definite
solution to the equation:

0 = Q− SBR−1BTS + SA + ATS,

(given by the MATLAB lqr function). The optimal feedback
policy is given by

ū∗(t) = −R−1BT (t)S(t)x̄(t) = −K(t)x̄(t).

2) LTI verification: We first estimate the basin of attraction
of the linear time-invariant (LTI) feedback controller, K(tG),
executed for t ≥ tG. We verify that this controller stabilizes
the fixed point given by (xG,uG) by demonstrating that a
function, V (x), is a valid Lyapunov function for the nonlinear
system over a bounded region of state-space, B, defined by

B(ρ) : {x|0 ≤ V (x) ≤ ρ}

where ρ is a positive scalar. The origin is asymptotically stable
if
• V (x) is positive definite in B(ρ),
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Fig. 2: Polynomial verification of LTI feedback on the damped simple
pendulum (m = 1kg, l = .5m, b = .1m2kg/s, g = 9.8m/s2,Q =
diag([10, 1]),R = 15, Nf = 3, Nm = 2).

• V̇ (x) < 0 in B(ρ).
Furthermore, all initial conditions in B(ρ) will converge to
0[22].

Here we use V (x) = J∗(x); the linear optimal cost-to-
go function is (locally) a Lyapunov function for the nonlinear
system. The first condition is satisfied by the LQR design. For
the second condition, first observe that

J̇(x̄) = 2x̄TSf(xG + x̄,uG −Kx̄).

In the case where f is polynomial in x and u, we can verify
this condition exactly by specifying a sums-of-squares (SOS)
feasibility program[17]:

J̇∗(x̄) + h(x̄) (ρ− J∗(x̄)) < 0

h(x̄) = mT (x̄)Hm(x̄), H > 0,

where m is a vector of monomials of order Nm. Note that
some care must be taken because J∗(0) = 0; we use a
slack variable approach and search for solutions were J̇∗ is
uniformly less than some numerical tolerance above zero.

In many cases (including the manipulator dynamics con-
sidered in this paper), even if f is not polynomial it is still
possible to perform the verification algebraically through a
change of coordinates. However, for simplicity and generality,
in the algorithm presented here we simply approximate the
stability condition using a Taylor expansion of f , with order
Nf greater than one. We use f̂ to denote the Taylor expansion
of f and ˆ̇J∗ for the resulting approximation of J̇∗.

Finally, we estimate the basin of attraction by formulating a
convex optimization to find find the largest region B(ρ) over
which the second condition is also satisfied:

max ρ subject to
ˆ̇J∗(x̄) + mT (x̄)Hm(x̄) (ρ− J∗(x̄)) < 0

ρ > 0, H > 0.

The estimated basin of attraction is a conservative approx-
imation of the true basin of attraction in every way, except
that the nonlinear dynamics are approximated by the polyno-
mial expansion. This limits our analysis to smooth nonlinear
systems, and restricts our strict claims of verification in this
paper to truly polynomial systems. In practice, the algorithm
acquires conservative, but impressively tight approximations
of the basin of attraction for the system in detailed tests with
the pendulum, as illustrated in Figure 2, and the cart-pole.
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3) LTV verification: Next we attempt to verify the per-
formance of the linear time-varying feedback over the time
t ∈ [0, tG]. Rather than stability, we specify a bounded region
of state space, Bf , (the outlet of the funnel) and search for a
time-varying region, B(t), (the funnel) where

B(t) : {x|F(x, t) ∈ Bf}, (3)

and F(x, t) is defined as the simulation function which in-
tegrates the closed-loop dynamics from t to tf . When Bf is
chosen as the LTI basin of attraction from the previous section,
this funnel becomes the basin of attraction of the infinite-
horizon trajectory. As before, we will use the cost-to-go as
a (now time-varying) storage function, V (x, t), and search
for the largest positive time-varying level-set, ρ(t), over the
interval [t0, tf ], which defines a region,

B(ρ(·), t) : {x|0 ≤ V (x, t) ≤ ρ(t)},

satisfying condition 3. Similarly, we use

Bf : {x|0 ≤ V (x, tf ) ≤ ρf},

where ρf is a positive constant representing the constraint on
final values (specified by the task). Note that this naturally
implies that ρ(tf ) ≤ ρf .

A sufficient, but conservative, verification of our bounded
final value condition can be accomplished by verifying that
B(ρ(·), t) is a closed set over t ∈ [t0, tf ]. The set is closed if
∀t ∈ [t0, tf ] we have
• V (x, t) ≥ 0 in B(ρ(·), t),
• V̇ (x, t) ≤ ρ̇(t) in B](ρ(·), t),

where B] is the boundary of the region B,

B](ρ(·), t) : {x|V (x, t) = ρ(t)}.

Again, we choose here to use V (x, t) = J∗(x, t); the
first condition is again satisfied by the LQR derivation which
ensures S(t) is uniformly positive definite. Now we have

J̇∗(x̄, t) = 2x̄TS(t)f (x0(t) + x̄,u0(t)−K(t)x̄) + x̄T Ṡ(t)x̄.
(4)

Here, even if f is polynomial in x and u and the input tape
u0(t) was polynomial, our analysis must make use of x0(t),
S(t), and K(t) which are the result of numerical integration
(e.g., with ode45 in Matlab). We will approximate this tem-
poral dependence with (elementwise) piecewise polynomials
using splines of order Nt, where Nt is often chosen to be
3 (cubic splines), with the knot points at the timesteps output
by the variable step integration, which we denote t0, t1, ..., tN ,
with tN = tf , e.g.:

∀t ∈ [tk, tk + 1], Sij(t) ≈
Nt∑
m=0

αijm(t− tk)m = Ŝij(t),

Ĵ∗(x̄, t) = x̄T Ŝx̄.

Once again, we substitute a Taylor expansion of the dynamics
to obtain the estimate ˆ̇J∗.

Now we approximately verify the second condition by
formulating a series of sums-of-squares feasibility programs

ˆ̇J∗(x̄, t)− ρ̇(t) + h1(x̄, t)
(
ρ(t)− Ĵ∗(x̄, t)

)
+h2(x̄, t)(t− tk) + h3(x̄, t) (tk+1 − t) ≤ 0, (5)

h1(x̄, t) = hT1 m(x̄, t), (6)

h2(x̄, t) = mT (x̄, t)H2m(x̄, t), H2 = HT
2 > 0, (7)

h3(x̄, t) = mT (x̄, t)H3m(x̄, t), H3 = HT
3 > 0, (8)

for k = N − 1, ..., 1.
We attempt to find the largest ρ(t) satisfying the verification

test above by defining a piecewise-polynomial of order Nρ
given by

ρk(t) =
Nρ∑
m=0

βkm(t− tk)m,

ρ(t) =

{
ρk(t), ∀t ∈ [tk, tk+1)
ρf , t = tf ,

and we formulate the optimization:

max
β

∫ tk+1

tk

ρk(t)dt, subject to

ρk(tk+1) ≤ ρk+1(tk+1), equations (5) - (8),

for all k = N − 1, ..., 1.
4) Growing the tree: Another essential component of the

LQR-tree algorithm is the method by which the backwards tree
is extended. Following the RRT approach, we select a sample
at random from some distribution over the state space, and
attempt to grow the tree towards that sample. Unfortunately,
RRTs typically do not grow very efficiently in differentially
constrained (e.g., underactuated) systems, because simple dis-
tance metrics like the Euclidean distance are inefficient in
determining which node in the tree to extend from. Further
embracing LQR as a tool for motion planning, in this section
we develop an affine quadratic regulator around the sample
point, then use the resulting cost-to-go function to determine
which node to extend from, and use the open-loop optimal
policy to extend the tree.

Choose a random sample (not necessarily a fixed point)
in state space, xs and a default u0, and use x̄ = x − xs,
ū = u− u0.

˙̄x =
d

dt
(x(t)− xs) = ẋ(t)

≈f(xs,u0) +
∂f
∂x

(x(t)− xs) +
∂f
∂u

(u− u0)

=Ax̄ + Bū + c.

Now define an affine quadratic regulator problem with a hard
constraint on the final state, but with the final time, tf , left as
a free variable[13]:

J(x̄0, t0, tf ) =
∫ tf

t0

[
1 +

1
2
ūT (t)Rū(t)

]
dt,

s.t. x̄(tf ) = 0, x̄(t0) = x̄0, ˙̄x = Ax̄ + Bū + c.
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Without loss of generality (since the dynamics are au-
tonomous), we will use J(x̄0, tf − t0) as a shorthand for
J(x̄0, t0, tf ). It can be shown that the optimal (open-loop)
control is

ū∗(t) = −R−1BT eA
T (tf−t)P−1(tf )d(x̄(t0), tf ),

where

Ṗ(t) = AP(t) + P(t)AT + BR−1BT , P(t0) = 0

d(x̄, t) = r(t) + eAtx̄, ṙ(t) = Ar(t) + c, r(x̄, t0) = 0

and the resulting cost-to-go is

J∗(x̄, tf ) =tf +
1
2
dT (x̄, tf )P−1(tf )d(x̄, tf ).

Thanks to the structure of this equation, it is surprisingly
efficient to compute the cost-to-go from many initial condi-
tions (here the existing vertices in the tree) simultaneously.
For each x̄ the horizon time, t∗f = argmintfJ

∗(x̄, tf ), is
found by selecting the minimum after integrating P(t) and
r(t) over a fixed horizon. This cost-to-go function provides
a relatively efficient dynamic distance metric2 for the RRT
expansion which performs much better than Euclidean metrics
for underactuated systems[6].

Once the “closest” node in the existing tree is identified, by
this LQR distance metric, the tree is extended by applying a
series of actions backwards in time from the closest node. The
initial guess for this series of actions is given by ū∗(t) from the
LQR distance metric, but this estimate (which is only accurate
in the neighborhood of the sample point) can be further refined
by a fast, local, nonlinear trajectory optimization routine.
In the current results, we use a direct collocation[24, 2]
implementation using the formulation from equation III-A.4,
but with the nonlinear dynamics. If the direct collocation
method cannot satisfy the final value constraint, then the point
is considered (temporarily) unreachable, and is discarded.
Interestingly, using the LQR open-loop control to initialize
the nonlinear optimization appears to help overcome many of
the local minima in the nonlinear optimization process.

5) A sampling heuristic: Finally, we take advantage of the
Lyapunov verification by changing the sampling distribution.
Adding branches of the tree that will be contained by the
existing basin of attraction has little value. The sampling
heuristic used here is implemented by sampling uniformly over
the desired subset of state space, then rejecting any sample
which are already in the basin of attraction of any of the
tree branches. This “collision checking” is very inexpensive;
it is far more expensive to add a useless node into the tree.
Other sampling distributions are possible, too. One interesting
alternative is sampling from states that are just at the edges of
the basin of attraction, e.g, ∀iJ∗(x−xi0, t) > ρi(t),∃jJ∗(x−
xi0, t) ≤ 1.5ρj(t).

2Note that it is not technically a distance metric, since it is not symmetric,
but the RRT does not require symmetry.

B. The algorithm

The algorithm proceeds by producing a tree, T , with nodes
containing the tuples, {x,u,S,K, ρc, i}, where J∗(x̄, t) =
x̄TSx̄ is the local quadratic approximation of the value func-
tion, ū∗ = −Kx̄ is the feedback controller, J∗(x̄, t) ≤ ρ(t)
is the funnel, ρ(t) is described by the vector of polynomial
coefficients ρc, and i is a pointer to the parent node.

Algorithm 1 LQR-Tree (xG,uG,Q,R)

1: [A,B]⇐ linearization of f(x,u) around xG,uG
2: [K,S]⇐ LQR(A,B,Q,R)
3: ρc ⇐ level-set computed as described in section III-A.2
4: T.init({xg,ug,S,K, ρc, NULL})
5: for k = 1 to K do
6: xrand ⇐ random sample as described in section III-

A.5; if no samples are found, then FINISH
7: xnear from cost-to-go distance metric described in

section III-A.4
8: utape from extend operation described in section III-A.4
9: for each u in utape do

10: x⇐ Integrate backwards from xnear with action u
11: [K,S] from LQR derivation in section III-A.1
12: ρc ⇐ level-set computed as in section III-A.3
13: i⇐ pointer to node containing xnear
14: T.add-node(x,u,S,K, ρc, i)
15: xnear ⇐ x
16: end for
17: end for

Execution of the LQR-tree policy is accomplished by se-
lecting any node in the tree with a basin of attraction which
contains the initial conditions, x(0), and following the time-
varying feedback policy along that branch all of the way to
the goal.

IV. SIMULATIONS

Simulation experiments on a two-dimensional toy problem
have proven very useful for understanding the dynamics of
the algorithm. Figure 3 tells the story fairly succinctly. The
algorithm was tested on a simple pendulum, Iθ̈ + bθ̇ +
mgl sin θ = τ, with m = 1, l = .5, b = .1, I = ml2, g = 9.8.
Here x = [θ, θ̇]T and u = τ . The parameters of the LQR-tree
algorithm were xG = [π, 0]T , uG = 0, Q = diag([10, 1]),
R = 15, Nf = 3, Nm = 2, Nx = 3, NS = 3.

Figure 3(a) shows the basin of attraction (blue oval) af-
ter computing the linear time-invariant (LTI) LQR solution
around the unstable equilibrium. Figure 3(b) shows the entire
trajectory to the first random sample point (red dot), and the
funnels that have been computed so far for the second-half of
the trajectory. Note that the state-space of the pendulum lives
on a cylinder, and that the trajectory (and basin of attraction)
wraps around from the left to the right. Plots (c-d) show the
basin of attraction as it grows to fill the state space. The
final tree in Figure 3(d) also reveals three instances where
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(a) 1 node (b) 8 nodes

(c) 24 nodes (d) 104 nodes

Fig. 3: An LQR-tree for the simple pendulum. The x-axis is θ ∈ [−π/2, 3π/2] (note that the state wraps around this axis), and the y-axis
is θ̇ ∈ [−20, 20]. The green X (on the left) represents the stable fixed point; the red X (on the right) represents the unstable (upright) fixed
point. The blue ovals represent the “funnels,” sampled at every node.

the trajectories on the tree cross - this is a result of having an
imperfect distance metric.

Note that state x = [0, 0]T , corresponding to the stable
fixed-point of the unactuated pendulum, is covered by the
basin of attraction after 32 nodes have been added. The
algorithm was not biased in any way towards this state, but this
bias can be added easily. The entire space is probabilistically
covered (1000 random points chosen sequentially were all
in the basin of attraction) after the tree contained just 104
nodes. On average, the algorithm terminates after 146 nodes
for the simple pendulum with these parameters. For contrast,
[3] shows a well-tuned single-directional RRT for the simple
pendulum which has 5600 nodes. However the cost of adding
each node is considerably greater here than in the traditional
RRT, dominated by the line search used to maximize the
estimated region of stability. The entire algorithm runs in about
two minutes on a laptop, without any attempt to optimize the
code.

V. DISCUSSION

A. Properties of the algorithm

Recall that for nonlinear systems described by a polynomial
of degree ≤ Nf , the verification procedures used here are
conservative; the true basin of attraction completely contains

the estimated stability region. In practice, this is often (but not
provably) the case for more general smooth nonlinear systems.

Proposition 1: For nonlinear systems described by a poly-
nomial of degree ≤ Nf , the LQR-tree algorithm probabilisti-
cally covers the sampled portion of the reachable state space
with a stabilizing controller and a Lyapunov function, thereby
guaranteeing that all initial conditions which are capable of
reaching the goal will stabilize to the goal.

Proving proposition 1 carefully requires a proof that the
local trajectory optimizer is always capable of solving a
trajectory to a reachable point in the state space that is in
an ε-region outside the existing basin of attraction. This is
likely the case, seeing as the nonlinear optimizer is seeded
by a linear optimal control result which will be accurate over
some region of similar size to the basin of attraction ellipse.
However, the full proof is left for future work.

Perhaps even more exciting is the fact that, in the model
explored, this coverage appears to happen rapidly and allow for
fast termination of the algorithm. The pendulum is a surpris-
ingly rich test system - for example, as key parameters such as
R or b change, the size of the funnels can change dramatically,
resulting in quite different feedback policy coverings of the
state space, and always resulting in rapid coverage.
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It is also worth noting that the trajectories out of a more
standard RRT are typically smoothed. Trajectories of the
closed-loop system which result from the LQR algorithm
are (qualitatively) quite smooth, despite coming from a ran-
domized algorithm. The LQR stabilizing controller effectively
smoothes the trajectory throughout state space.

B. Straight-forward variations in the algorithm

• Compatible with optimal trajectories. The LQR-tree
algorithm provides a relatively efficient way to fill the
reachable state space with funnels, but does not stake
any claim on the optimality of the resulting trajectories.
If tracking particular trajectories, or optimal trajectories,
is important for a given problem, then it is quite natural
to seed the LQR-tree with one or more locally optimal
trajectories (e.g., using [1]), then use the random explo-
ration to fill in any missing regions.

• Early termination. For higher dimensional problems,
covering the reachable state space may be unnecessary or
impractical. Based on the RRTs, the LQR-trees can easily
be steered towards a region of state space (e.g., by sam-
pling from that region with slightly higher probability)
containing important initial conditions. Termination could
then occur when some important subspace is covered by
the tree.

• Bidirectional trees. Although LQR-trees only grow
backwards from the goal, a partial covering tree (from
an early termination) could also serve as a powerful tool
for real-time planning. Given a new initial condition,
a forward RRT simply has to grow until it intersects
with the volume defined by the basin of attraction of the
backwards tree.

• Finite-horizon trajectories. The LQR stabilization de-
rived in section III-A.1 was based on infinite horizon
trajectories. This point was necessary in order to use the
language of basins of attraction and asymptotic stabiliza-
tion. Finite-horizon problems can use all of the same tools
(though perhaps not the same language), but must define
success as being inside some finite volume around the
goal state at tG. Funnels connecting to this volume are
then computed using the same Riccati backup.

C. Controlling walking robots

A feedback motion planning algorithm like the LQR-tree
algorithm could be a very natural control solution for walking
robots, or other periodic control systems. In this case, rather
than the goal of the tree being specified as a point, the goal
would be a periodic (limit cycle) trajectory. This could be
implemented in the tree as a set of goal states, which happen
to be connected, and the basin of attraction of this goal would
emerge from the periodic steady-state solution of the Riccati
equation and verification process on the limit cycle. Limit
cycles for walking systems in particular are often described
as a hybrid dynamics punctuated by discrete impacts. These
discrete jump events must be handled with care in the feedback

design and verification, but are not fundamentally incompati-
ble with the approach[20].

Figure 4 cartoons the vision of how the algorithm would
play out for the well-known compass gait biped[7]. On the
left is a plot of the (passively stable) limit cycle generated by
the compass gait model walking down a small incline. This
trajectory can be stabilized using a (periodic) time-varying
linearization and LQR feedback, and the resulting basin of
attraction might look something like the shaded region in
Figure 4(a). The goal of the LQR-tree algorithm would then
be to fill the remaining portion of state space with transient
“maneuvers” to return the system to the nominal limit cycle.
A potential solution after a few iterations of the algorithm is
cartooned in Figure 4(b). This work would naturally build on
previous work on planning in hybrid systems (e.g.,[3]).

D. Multi-query algorithms

Another very interesting question is the question of reusing
the previous computational work when the goal state is
changed. In the pendulum example, consider having a new
goal state, xG = [π + 0.1, 0]T - this would of course require
a non-zero torque to stabilize. To what extent could the tree
generated for stabilizing xG = [π, 0]T be used to stabilize this
new fixed point? If one can find a trajectory to connect up the
new goal state near the root of the tree, then the geometry of
the tree can be preserved, but naively, one would think that all
of the stabilizing controllers and the verification would have
to be re-calculated. Interestingly, there is also a middle-road,
in which the existing feedback policy is kept for the original
tree, and the estimated funnels are not recomputed, but simply
scaled down to make sure that the funnels from the old tree
transition completely into the funnel for the new tree. This
could be accomplished very efficiently, by just propagating a
new ρmax through the tree, but might come at the cost of
losing coverage. One reason why this multi-query question is
so exciting is that the problem of controlling a robot to walk
on rough terrain could be nicely formulated as a multi-query
stabilization of the limit cycle dynamics from Figure 4.

E. A software distribution

A MATLAB toolbox implementing the LQR-Tree algo-
rithm is available at http://groups.csail.mit.edu/
locomotion/software.html.

VI. SUMMARY AND CONCLUSIONS

Recent advances in direct computation of Lyapunov func-
tions have enabled a new class of feedback motion planning
algorithms for complicated dynamical systems. This paper
presented the LQR-Tree algorithm which uses Lyapunov com-
putations to evaluate the basins of attraction of randomized
trees stabilized with LQR feedback. Careful investigations on
a torque-limited simple pendulum revealed that, by modifying
the sampling distribution to only accept samples outside of
the computed basin of attraction of the existing tree, the result
was a very sparse tree which covered the state space with a
basin of attraction.
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(a) The initial tree (b) After expanding four random nodes

Fig. 4: Sketch of LQR-trees on the compass gait biped.

Further investigation of this algorithm will likely result
in a covering motion planning strategy for underactuated
systems with dimensionality greater than what is accessible
by discretization algorithms like dynamic programming, and
early termination strategies which provide targeted coverage of
state space in much higher dimensional systems. The resulting
policies will have certificates guaranteeing their performance
on the system model.
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