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Abstract 

Although most racers are good at controlling their cars, world champions are always 

talented at choosing the right racing line while others mostly fail to do that. Optimal 

racing line selection is a critical problem in car racing. However, currently it is 

strongly based on the intuition of experienced racers after they conduct repeated 

real-time experiments. It will be very useful to have a method which can generate the 

optimal racing line based on the given racing track and the car. This paper explains 

four methods to generate optimal racing lines: the Euler spiral method, artificial 

intelligence method, nonlinear programming solver method and integrated method. 

Firstly we study the problem and obtain the objective functions and constraints for 

both 2-D and 3-D situations. The mathematical and physical features of the racing 

tracks are studied. Then we try different ways of solving this complicated nonlinear 

programming problem. The Euler spiral method generates Euler spiral curve turns at 

corners and it gives optimal results fast and accurately for 2-D corners with no 

banking. The nonlinear programming solver method is based on the MINOS solver 

on AMPL and the MATLAB Optimization Toolbox and it only needs the input of the 

objective function and constraints. A heavy emphasis is placed on the artificial 

intelligence method. It works well for any 2-D or 3-D track shapes. It uses intelligent 

algorithms including branch-cutting and forward-looking to give optimal racing lines 

for both 2-D and 3-D tracks. And the integrated method combines methods and their 

advantages so that it is fast and practical for all situations. Different methods are 

compared, and their evolutions towards the optimum are described in detail. 

Convenient display software is developed to show the tracks and racing lines for 

observation. The approach to finding optimal racing lines for cars will be also helpful 

for finding optimal racing lines for bicycle racing, ice skating and skiing. 
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1. Introduction 

In racing sports, the racing line is the route that the vehicle takes. For a given track, there are an 

infinite number of racing lines possible. An optimal racing line minimizes the time needed to 

complete the course. A comparison of two possible racing lines for the same racing track is 

shown in Figure 1.1. 

 
Figure 1.1. Two different racing lines on the same track. (a) makes use of the turns and  

obtains a smooth and consistent racing line, while (b) has random walks  
and unnecessary small turns which will lower the speed and take more time. 

 
 An optimal line considers the conditions of the track and makes smart decisions based on 

the track. For example, comparing the two racing lines in Figure 1.1 for the same track, (b) is 

making many random unnecessary turns, while (a) wisely avoids unnecessary turns and makes 

the line smoother. So (a) is strategically wiser than (b). However, it may not be the best solution. 

 It is obvious that in racing games corners make a large difference in performance. On 

straight tracks, theoretically all racers can reach the maximum speed possible and just go in a 

straight line; thus there is not much difference for racers’ different skills. But when there is a turn, 

the speed cannot go above the allowed level, and there is a trade-off between the speed and the 

length of racing line taken. A smoother racing line with smaller curvature is longer, and a more 

curvy racing line may be shorter. Statistics show that successful car racing champions are always 

following the optimal racing line while other racers are constantly not getting the optimal line. [1] 

The slowest part of the racing track differentiates good and bad racing techniques. 

 Suppose an  is the centripetal acceleration, and an = v2

r
. When 𝑎𝑎𝑛𝑛  is a fixed number, we 

have that 𝑣𝑣2 is proportional to 𝑟𝑟, i.e. 𝑣𝑣2 ∝ 1
𝑘𝑘
 where v is the maximum speed allowed and r is 

(a) (b) 
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the radius of the corner. When r  increases, v  will increase. The larger r  is, the less control it 

has over the speed.    

 Actually, when r  is infinitely large, the corner becomes a straight line, and the maximum 

speed allowed will just be the physical limit of the car maxv (Figure 1.2). In contrast, consider the 

curvature k . When k  increases, the maximum speed allowed decreases (Figure 1.3). 

 
Figure 1.2. Relationship between the maximum allowable speed v  and the radius of the corner r  

Maximum speed goes up when radius goes up. 
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Figure 1.3. Relationship between the maximum allowable speed v and the curvature of the track k. 

Maximum speed goes down when curvature goes up. 
 

 The racing line at corners depends on the following factors: braking point, turn in point, 

apex and the position and direction of the next corner.[19] 

 Let’s start with the problem of only going through one corner. When analyzing a single 

corner, the optimal line is the one that minimizes the time cost during the corner and maximizes 

the overall speed of the vehicle through the corner. If one uses the path with the smallest radius, 

the distance travelled around the corner is minimized. However, by fitting a curve with a wider 

radius, i.e., smaller curvature, into the corner, higher speeds can be maintained. This may 

compensate for the extra distance travelled. When analyzing the whole track, the optimal racing 

line minimizes the total time and maximizes the overall speed around the track.  

 Some research has been done on this topic to find optimal racing lines. However, much of 

it focuses on highly simplified physical conditions and does not have a complete analysis of the 

real situation. There is also no work regarding 3-dimensional tracks, which are actually the most 

commonly seen racing tracks, and the 3-dimensional condition is much more complicated. It has 
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some major differences with the 2-dimensional track. And in published papers, the optimization 

objectives are all set to be the minimization of integral of curvature squared ∫𝑘𝑘2𝑑𝑑𝑑𝑑 , a 

commonly seen expression for calculating the elastic potential energy, without clear explanation 

of why 𝑘𝑘2 is used here; or directly the time lapse which will depend heavily on how the speed 

function is correlated with the racing line. We will also show that the integral of the square root 

of k (∫√𝑘𝑘𝑑𝑑𝑑𝑑) instead of ∫𝑘𝑘2𝑑𝑑𝑑𝑑  is often a better optimization objective by experimental 

results. And the minimization of ∫𝑘𝑘2𝑑𝑑𝑑𝑑 is practically achieved by the Euler spiral for one 

corner. Thus the Euler spiral is not guaranteed to be the best solution, just one of the 

close-to-best solutions. 
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2. Problem formulation 

The objective of the problem is to minimize the time cost for the car to complete the whole 

racing track.  

                         𝑡𝑡 = ∫𝑑𝑑𝑡𝑡 = ∫ 𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = ∫ 1

𝑣𝑣
𝑑𝑑𝑑𝑑                             

where t is the total time cost, s is the length that the car travels through, and v is the velocity of 

the car. 

 So the time cost is the integral of the reciprocal of speed from zero to the total length 

travelled. 

 There are several constraint conditions with respect to the road (track) condition and the car 

features. We will study the optimization problem of minimizing t with various constraints. We 

will first analyze the 2-dimensional racing track, and then extend it to the more general 

3-dimensional racing track. 

 Figure 2.1 shows two screenshots in two electronic racing games. The track in (a) is a 

2-dimensional track while the track in (b) is a 3-dimensional track. (b) looks more like a real life 

simulation with the complicated road condition, different bending angles and banked turns. 

  

 
(a)                                         (b) 

Figure 2.1. Demonstration of 2-D racing track and 3-D racing track by video game screenshots. (a) is 
from a 2-D racing game and (b) is from a 3-D racing game. 

 

 Clearly, in Figure 2.1 (a) the track can be represented by a 2-D geometric shape, like the 

view in the figure that is looking directly down. However, the track in Figure 2.1(b) is a lot more 

complicated as the car bends toward the right side and its left wheels are lower than its right 

wheels due to the banked corner. 
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2.1 Problem formulation for two-dimensional racing tracks 

Let’s start with the two-dimensional (2-D) racing tracks. Two-dimensional racing tracks are flat 

tracks with no slopes or banked corners along the way. In an x-y-z space the whole track can be 

expressed with z=0. 

 There are some constraints for a car on a 2-D track. We will analyze them one by one. 

1) Assume that there is no skid. The car is always running within control. To satisfy the 

non-skid constraint, the velocity should not be too large at a turn, so that the friction force 

on the car can provide the centripetal acceleration needed (Figure 2.2). 

 
 Figure 2.2. On a 2D track, the lateral force to support the turning of the car is provided by the 

friction force only. 
  

         𝑚𝑚𝑣𝑣2

𝑟𝑟
≤ 𝜇𝜇𝑚𝑚𝜇𝜇  ⟺   𝑣𝑣

2

𝑟𝑟
− 𝜇𝜇𝜇𝜇 ≤ 0 𝑖𝑖. 𝑒𝑒. 𝑘𝑘𝑣𝑣2 − 𝜇𝜇𝜇𝜇 ≤ 0.                  

Here m  is the mass of the car, µ  is the friction coefficient, and g is the acceleration of        

gravity. 

The value of µ  depends on the road conditions and the car’s features. Ignoring 

the difference between car wheels, a table of the friction coefficients that are usually used 

is in Appendix (A). 

2) The car moves an angle of △ 𝜃𝜃 degrees in total (Figure 2.3). From the formula of curve 

length, we know that 

                    ∫ 1
𝑟𝑟
𝑑𝑑𝑑𝑑 = △ 𝜃𝜃  𝑖𝑖. 𝑒𝑒.  ∫𝑘𝑘𝑑𝑑𝑑𝑑 = △ 𝜃𝜃                                                         
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Figure 2.3. △ 𝜽𝜽 can parameterize the distance that the car has travelled along the line, given the 

radius information at all the points and that the track that bounds a convex region.  
 

3) There is a physical limit for cars to turn. For example, a car cannot turn immediately 180 

degrees. This indicates that the turning radius of the car cannot be too small (Figure 2.4). 

                       𝑟𝑟 ≥ 𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛  𝑖𝑖. 𝑒𝑒. 𝑘𝑘 ≤ 𝑘𝑘𝑚𝑚𝑎𝑎𝑚𝑚                                 

 

    
(a)                       (b) 

Figure 2.4. The turning of a car with the grey rectangle representing a car. (a) is an applicable turn 
because the radius of the turn is large enough. But (b) is not applicable because the radius is too 

small and the car cannot turn so dramatically at once. 
 

4) Speed limit by the engine or by racing regulations. The car cannot run with infinitely 

large speed. There is a maximum speed limit 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚 .  

                               𝑣𝑣 ≤ 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚                                 

5) Acceleration limit by engine. There are upper and lowers bounds for the allowable 

acceleration 

                            amin ≤ a ≤  amax                             

 amin  is a negative number and defines the maximum deceleration;  amax  is a positive 

number and defines the maximum acceleration. From the F1 car features, we set 

 amin = −4g,  amax = 1.45g (referring to Appendix (B)). It is obvious that the absolute 
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value of deceleration is much larger than the absolute value of acceleration. This ensures 

the safety of the racer. 

 

    Summarizing the constraints, the optimization problem is formulated as follows:        

                             

2

max

max

max

mi

1Minimize                                                           

. .            0

               

               
               
               
               

ds
v

s t kv g

kds

k k
v v
a a
a a

µ

θ

− ≤

= ∆

≤
≤
≤
≥

∫

∫

n

 

    This is a nonlinear optimization problem involving dynamic programming. The objective 

function is the total time cost expressed as an integral of a function of distance travelled. There 

are six constraints. Two of them are nonlinear constraints and four of them are linear. When the 

number of variables is large, it will be a large-scale optimization problem. 

 

2.2 Problem formulation for three-dimensional tracks 

Three-dimensional (3-D) tracks are the most commonly seen tracks in real life racing. 

Three-dimensional refers to both the biased banking of the track to the left or right and the up 

and down slopes of the track. Different tracks have different 3-D features. Some racing tracks 

like NASCAR tracks have more banked corners, while some racing tracks like Formula One 

tracks have less banking but more up and down slopes. 

 The basic concepts of dealing with the two-dimensional and three-dimensional tracks are 

similar, but the three-dimension situation is much more complicated and the force analysis is 

very different.  

 We will first do force analysis, give the 3-dimensional problem formulation and then 

introduce the way of representing the tracks in 3-D. 
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2.2.1 Force analysis 

It makes a difference whether we consider the car as a single point or as an extended object. If 

we see the car as an extended object, its two wheels may receive different forces. If we see the 

car as only one point, all forces are applied to its geometric center of gravity. 

In the roller-coaster track in Figure 2.5, assume that the car is undergoing circular movement 

in the vertical plane with a constant speed v. 

 

 
Figure 2.5. Roller-coaster track that can be seen in acrobatics. When the car is at the 3 o’clock position, 
the force analysis is different when we consider the car as a point and when we consider the car as an 

extended object. But usually we can ignore the difference. 

No lateral force 
provided for the 
circling movement 
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 If we see the car as a single point and assume no extra down force on the car, there is no 

force that can serve as a centripetal force to sustain the cornering, and the car is supposed to fall 

down at this point. However, if we look at the car as an extended object, the two wheels are 

receiving some forces to make the turning possible.  

 In the analysis of this thesis, the car is regarded as a point instead of an extended object. 

The difference is ignored because in our racing track, the value of �𝑑𝑑𝑁𝑁
��⃗

𝑑𝑑𝑑𝑑
� is very small. This 

means that the plane of the road is not changing too quickly – the problem described in the 

“roller coaster” track will not occur. 

 The force graphs which consider the car as a single point object are in Figures 2.6 and 2.7.  

 
Figure 2.6. Force analysis of the racing car on the cutting plane orthogonal to the direction of the 

racing line when it is considered as a single point. 
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Figure 2.7. Three-dimensional view of the force analysis of the racing car neglecting the rolling friction 

and air drag forces 
 

1) Firstly, let’s not consider the up and down slopes. So the center line of the track is always on 

the same horizontal plane, and it is only that the road is leaning to left/right at times. This is a 

practical assumption, especially for racing cars like NASCAR. Tracks only have some 

leaning at cornering parts to help racers get higher speeds.  

Consider the forces along the lateral and tangential directions. Here, α is the angle between 

the direction of the car’s motion and the center line. θ  is the angle of the banking.  

       Lateral direction:  

sin cos cosmg mgθ α µ θ± +  

 Tangential direction:  

sin sincarF mg θ α±  

 Here the sign ±  in lateral force depends on the way the racing line curves – inwards or 

outwards. The sign ±  in tangential force depends on whether the tangential line of the 

racing line is on the left or right of the center line. Compare it with the 2-dimensional 

situation: 

 Lateral direction: mgµ  

 Tangential direction: carF  
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 The constraint is firstly on the lateral part. 
2v gmg m v

r k
µµ ≤ ⇒ ≤ . Then the 

tangential part will constrain the acceleration to be applicable.  

 Back to the 3-dimensional model, similarly, we have 

( )2 cos sin cos
sin cos cos

gvmg mg m v
r k

µ θ θ α
θ α µ θ

±
± + ≥ ⇒ ≤  

And when the ±  is chosen as minus, tan cosθ α µ≤ must be satisfied, which requires 

cos
tan
µα
θ

≤  

 

2) For the full three-dimensional model, assume that there are actually up and down slopes. The 

following forces are considered: gravity, support force, lateral friction and pull force by the 

car engine. Here we neglect all the other forces. 

N carF G F f F= + + +
  

 

   where F�⃗  is the total force that the car receives.  

N carF G F f F− = + +
  

 

N carF f FF G

m m

+ +−
⇒ =

  

 

( )1
1 coscar cara g n f n g
m

µ θ⇒ − ⋅ = ⋅ ≤
   

 

( )min 1 maxcara a g n a⇒ ≤ − ⋅ ≤
  

 

     carn  is the direction orthogonal to the direction of the motion of the car in the plane of the 

road. 

 

3) The model we have in 2) is not complete. It does not consider three other factors. 

a) Rolling friction rollf


. 

Rolling friction is usually negligible compared to kinetic friction, but it still counts. An 

obvious example is that when you are driving and you stop the engine, the car will 

actually slow down and stop gradually. The whole stop procedure by rolling friction and 
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air drag force does not take too much time. So rolling friction is worth considering. The 

value of rolling friction coefficient is usually around 0.001. 

b) Drag force drF


 

In fluid dynamics, drag (sometimes called air resistance or fluid resistance) refers to 

forces that oppose the relative motion of an object through a fluid (liquid or gas). Drag 

forces act in a direction opposite to the oncoming flow velocity. Unlike other resistive 

forces such as dry friction, which is nearly independent of velocity, drag forces depend 

on velocity. When racing cars are moving at a very high speed in the air, the drag force 

of the air may become significant. The formula for drag force is 𝐹𝐹𝐷𝐷 = 1
2
𝜌𝜌𝑣𝑣2𝐶𝐶𝑑𝑑𝐴𝐴, where 

𝜌𝜌 is the density of the air, v is the velocity relative to the air, A is the reference area, and 

𝐶𝐶𝑑𝑑  is the drag coefficient. It is a dimensionless parameter and it is usually 0.25 to 0.45 

for a normal car and 0.8 to 1.1 for F1 racing cars. F1 cars have higher drag coefficient, 

but they have comparatively small reference area as well. 

c) Down force and lift force LF


 

The down force of the car is often called “ground effect”, because cars have an extra 

force pushing down to achieve higher speeds at corners. The down force comes from air 

pushing on the wings of the car or from the low pressure created beneath cars with 

special designs. The formula for down forces is similar to the formula for drag forces: 

𝐹𝐹𝐿𝐿 = 1
2
𝜌𝜌𝑣𝑣2𝐶𝐶𝐿𝐿𝐴𝐴. The existence of down force may significantly change the value of 

friction forces and change the strategy of racing as well. Lift force refers to the force 

that is lifting the car when the speed is very large.  

        

  So with all factors considered, the total force that the car receives is  

N car dr roll LF ma G F f F F f F= = + + + + + +
      

 

  G


 is the gravitational force on the car which is pointing toward the ground. 

  NF


 is the normal force from the road which is perpendicular to the racing track. 

  f


 is the friction force which is parallel to the plane of the track but orthogonal to the 

motion of the car. 
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  carF


 is the pulling force of the car which is assumed to be parallel to the motion of the car. 

  drF


 is the drag force of the car, i.e. air resistance, which opposes the relative motion of the 

car through the air. 

  rollf


 is the rolling friction which is assumed to be parallel and just opposite to the motion 

of the car. 

     LF


 is the down force and lift force, which is perpendicular to the racing track. 

2.2.2 Three-dimensional constraints 

Ground effect (down force) used to be a very popular technique in racing in the 20th 

century.  Indy cars still employ ground effect to some extent [12], but recently it has been 

restricted or forbidden in some racing events especially in F1 due to safety concerns [2]. If the 

lateral friction of the car largely relies on the huge down force instead of the gravitational force, 

it can be very dangerous when the down force suddenly disappears due to technical error or 

malfunction of the car – the car will skip away and the racer will be in danger. Lift force from 

the air is usually very small and negligible compared to down force. To simplify the problem, we 

assume that no down force is allowed and no lift force is significant enough to be considered. i.e. 

0LF =


. And comparatively, drag force always exists and we are going to take it into account. 

The data found for drF


is: air density 31.2 /kg mρ ≈ , and 20.6dC A m≈ . [4] 

     n  is the normal vector of the surface of the track, cart


is the tangential vector of the racing 

line the car takes, and carn  is the normal vector of the racing line in the plane of the road 

(pointing to the right). The force components in the three directions are: 

i) ( )L NF G F n F− − ⋅ =
    

ii)  ( )L car car car dr rollingF G F t F t F f− − ⋅ = ⋅ − −
    

 

iii)  ( )L carF G F n f− − ⋅ =
  

 
  Note that 

        
0,  0L car L carF n F t⋅ = ⋅ =
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     So ii) and iii) are actually  

ii)  ( ) car car car dr rollingF G t F t F f− ⋅ = ⋅ − −
   

 

iii)  ( ) carF G n f− ⋅ =
 

 
 

     As a result, the constraints are 

       ( ) 0LF G F n− − ⋅ ≥
    

maxgk k≤   

maxv v≤  

Nf Fµ≤


 

min maxcar carma F t ma≤ ⋅ ≤
 

  

where gk  is the geodesic curvature. According to the definition of curvature, 
2

2
card xk

ds
=



. We 

define here 
2

2
car

g car
d xk n

ds
= ⋅


 . 

  Similar to 2-D situation, the curvature constraint is used to avoid physically infeasible 

turning. The geodesic curvature is explained in Figure 2.8 below. 

  The reason for using the geodesic curvature is that we are looking at a 3-D road surface in 

a way which is similar to what we have done for a 2-D road. The geodesic curvature is the 

component of the curvature in the plane of the surface of the road. 

     For example, if a car is moving along the equator of a sphere with radius r, then its 

geodesic curvature is always 0, although in 3-D space it has a curvature equal to 1
r

. 
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Figure 2.8. Explanation for geodesic curvature using a sphere. The geodesic curvature is zero for a 

path of minimum length. The marked path has some curvature in the plane tangential to the surface. 
 

  The total acceleration a  can be decomposed into two components: 
2

2

2
2

2

  

  

car

car

car car

d xa
dt

dxdv v
ds s

dx d xdvv v
ds ds ds

=

 = ⋅  
 

= +






 

 

  
cardxdvv

ds ds



 is the tangential component of a , and 
2

2
2
card xv

ds



 is the orthogonal (to the 

motion of the car) component of a . 

 

     Let’s look at the relation (i). 
2

2
2
card xF n ma n mv n

ds
⋅ = ⋅ = ⋅

      

zG n m g n⋅ = ⋅ ⋅
  , 

where zn  is the z-component of n . 

     As 
2

2
card x n

ds
⋅


  is not a convenient form, we will do some reformulation to it, as follows. 

0cardx n
ds

⋅ =
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     Taking the derivative with respect to s  on both sides of the equation, we have      
2

2 0car card x dx dnn
ds ds ds

⋅ + ⋅ =
  

  

2

2
car card x dx dnn

ds ds ds
⋅ = − ⋅

  
 . 

     Substitute this into 
2

2
2
card xF n ma n mv n

ds
⋅ = ⋅ = ⋅

      and we get 

2 cardx dnF n mv
ds ds

⋅ = − ⋅
    

( ) 2 0car
L z N

dx dnF G F n mv mgn F
ds ds

− − ⋅ = − ⋅ + = ≥
     

 Here we require that the car will land on the track. “Flying” off the track is not allowed. 

2 car
car z

dx dnf n mv mgn L
ds ds

µ  ⋅ ≤ − ⋅ + + 
 

    

21 car
car z

dx dnf n v gn L
m ds ds

µ  ⇒ ⋅ ≤ − ⋅ + + 
 

  

 

where L is the constant such that the acceleration from down force is  
2

La Lv=
 

     The friction force also satisfies 

21
zcar g carf n k v g n

m
⋅ = + ⋅
   

As a result,  

    

2 2

2 2

z

z

car
g car z

car
g car z

dx dnk v g n v gn L
ds ds
dx dnk v g n v gn L
ds ds

µ

µ

 + ⋅ ≤ − ⋅ + + 
 
 + ⋅ ≥ − − ⋅ + + 
 

 

   

Reformulating the inequality constraints, we have 

2

2

z

z

car
g z car

car
g z car

dx dnk L v gn g n
ds ds

dx dnk L v gn g n
ds ds

µ µ µ

µ µ µ

 + ⋅ − ≤ − ⋅ 
 
 − ⋅ − ≥ − − ⋅ 
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     The constraints for the car engine in the tangential direction of the car’s movement are as 

follows: 

2 2
zcar car r z car

dv dnv gt a Dv gn L t v
ds ds

µ   + = − − + − ⋅    




 

 2 2
min maxzcar r z car

dv dna v gt Dv gn L t v a
ds ds

µ   ⇒ ≤ + + + + − ⋅ ≤    




 

where D is the constant such that the acceleration from drag force is  
2

Da Dv=
 

 

     Thus we obtain the constraints for velocity on a 3-dimensional track. 

 

2.3 Representation of the racing tracks and racing lines 

An important question is how to represent the racing tracks. We will discuss the ways to 

represent both 2-D tracks and 3-D tracks. 

2.3.1 Representation of 2-D tracks 

For a 2-dimensional track, we are keeping the information of center line and width. Many points 

along the line are used to represent the center of the racing track. In this thesis, at all parts of the 

track the width is the same. However, it is also convenient to keep a width ( )w i  for every point 

i. The points on the center line can be stored in ( , ) x y format. This is illustrated in Figure 2.9. 
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Figure 2.9. Using center line and width to describe a 2-D racing track. The outside line and inside line 
information can be calculated from the center line and the width.  

 

 We use s, the distance travelled at some point along the center line (initially 0), to locate 

the point ( ) ( )( ),x s y s . 

 

2.3.2 Representation of 3-D tracks 

3-dimensonal tracks are represented in a way similar to 2-dimensional tracks. Let’s take a look at 

several examples of real-life racing tracks. 

 NASCAR is a very popular racing game in North America and the cars are more ordinary 

in appearance. From the outside, NASCAR racing cars look very similar to normal sports cars on 

the street, but from the inside they are completely different. NASCAR tracks are usually very 

simple and do not contain many turns.  

 Figure 2.10 shows the track and seats of Atlanta motor speedway, and Figure 2.11 is a real 

photo of the track. It only has two very large corners and the track is very wide at all places. 
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Figure 2.10. NASCAR Atlanta Motor Speedway  

(Image source: http://www.nascar.com/races/tracks/ams/) 
 

 
Figure 2.11. NASCAR Atlanta Motor Speedway photo 

 (Image source: http://sheilalovesnascar.files.wordpress.com/2009/09/atlanta-6651.jpg) 
 

     In contrast, the F1 racing tracks are not so simply shaped. They focus more on high 

requirements for fast cornering skills. Many F1 racing tracks are distributed in a larger area of a 

city, and make more use of the existing streets. Figure 2.12 is one of the most complicated F1 
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racing tracks, called Circuit de Catalunya in Barcelona, Spain. Figure 2.13 is the projection of 

the 3-D track to the 2-D earth plane. 

 
Figure 2.12. F1 Catalunya racing track (Image source:http://www.loxlee-loves-engines.com/blog 

/wp-content/uploads/2009/11/circuit-de-catalunya-barcelona.jpg) 
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Figure 2.13. 2-D projection of the Catalunya track (Image source: 

http://www.ddavid.com/slot-car-gallery/images/tracks/005_circuit_de_catalunya_12x8_48.gif) 
 

     Another example is the F1 racing track in Monaco, which is unique in that all the tracks 

are also normal city streets (Figure 2.14). The racing track is thus in an interesting shape, too. It 

has a very sharp turn, almost 180 degrees, at the east end of the track (as noted by the orange 

circle). 
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Figure 2.14. F1 Monaco racing track (Graph source: 

http://www.loxlee-loves-engines.com/blog/wp-content/uploads/2009/11/circuit-de-catalunya-barcel
ona.jpg) 

 

From the racing tracks sourced above, here are several useful conclusions: 

1) In NASCAR racing, the tracks have very simple geometry. In F1, the tracks are more 

complicated and emphasize corners.  

2) In NASCAR racing, the 3D aspects of tracks are mostly in the leaning at corners. In F1 

racing, the 3D aspects of tracks are mostly in the small up and down slopes along the way. 

The tracks are more horizontal. 

3) The length of a lap is usually less than or equal to 5 miles. The tracks are wide at all places. 

 

    An effective way of representing three-dimensional racing tracks is to use an array of 

discrete points to keep the center line of the track, and use the leaning angles alpha at each point 

to represent the leaning situation of the track (Figure 2.15). 
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Figure 2.15. Representation of racing track by center line and angle alpha. Alpha is the angle to the 

horizontal plane. 
 

2.3.3 Test cases of different racing tracks  

We are going to test using the following four shapes of curves. 

1) Two semi-circles connected by two straight lines (Figure 2.16). 

 

Figure 2.16. Soccer field racing track 

2) A more complex combination of parts of circles and lines (Figure 2.17). 
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Figure 2.17. Flower shape racing track 

3) The ellipse racing track (Figure 2.18). 

 

Figure 2.18. The ellipse racing track 

4) Rounded square track. 

The rounded square track is a rectangle with edge lengths (m+2r) and (n+2r) and rounded 

corners of radius r (Figure 2.19). The MATLAB plot of the center line of a 2-D rounded 

square track is shown in Figure 2.20, and the MATLAB plot of the center line of a 3-D 

rounded square track is shown in Figure 2.21. 

 

Figure 2.19. The rounded square racing track 
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Figure 2.20. Plot of the center line of a 2-D rounded square racing track in Matlab. 

     Then we add some slope to the straight part so that it is not totally flat. We will 

later compare the two situations. 

 

Figure 2.21. Plot of the center line of a 3-D rounded square racing track in MATLAB.  
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2.4 Problem modification using power constraint 

In Chapter 2.1 and 2.2, we introduced the 2-dimensional and 3-dimensional problem 

formulations. Some results will be shown in Chapter 7. The results achieved using the original 

problem formulation are not perfect. There is one constraint that has not been considered yet - 

power. 

     Under maximum and minimum acceleration constraints, the speed can go from v(i) to 

v(i+1) from point i to point i+1. However, it may be hard for drivers to really implement a given 

set of velocities when they are driving. We can make this a little easier to implement if the upper 

velocity constraint is not for acceleration, but for power.  

  From P F v m a v= ⋅ = ⋅ ⋅  we can see that when the velocity is large, the pull force of the 

car is constrained by v, and so is the acceleration. The velocity will move in a smoother way 

because with large velocity, acceleration cannot be very high, and the velocity can only change 

relatively slowly. The comparison of the two kinds of constraints for a car speeding up from zero 

velocity is in Figure 2.22 

 
(a)                                   (b) 

Figure 2.22. Comparison of v-t graph using acceleration constraint and power constraint 

 

 The comparison of the two figures above shows the difference between using maximum 

acceleration as a constraint and using maximum power.. In the situation where the car speeds up 

from zero to 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚 , in the left figure the acceleration is constantly 𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚  and the velocity curve 

is not differentiable at the turning point where  𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚  is achieved. However, in the right figure, 
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the acceleration is also changing continuously and the velocity curve is differentiable at every 

point. 

 The problem formulation will need a slight change according to the change of constraints. 

For example, in the 2-D situation, the problem changes from 

2

max

max

min max

1Minimize  

. .            0

               

               
               
               

ds
v

s t kv g

kds

k k
v v
a a a

µ

θ

− ≤

= ∆

≤
≤
≤ ≤

∫

∫  

to  

2

max

max

max

min

1Minimize  

. .            0

               

               
               
               
               
               

ds
v

s t kv g

kds

k k
v v
Fv P
F ma
a a

µ

θ

− ≤

= ∆

≤
≤
≤
=
≥

∫

∫
 

Notice that here 𝑎𝑎 is not the total acceleration in the tangent direction, but the component 

provided by the car engine. 

     The 2006 F1 cars have a power-to-weight ratio of 0.93 kW/kg. However the massive 

power cannot be converted to motion at low speeds due to traction loss, and the usual figure is 2 

seconds to reach 100 km/h. After about 130 km/h, traction loss is minimal due to the combined 

effect of the car moving faster and the down force; hence the car continues accelerating at a very 

high rate. [2]  
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3. Optimal cornering with the Euler spiral 

In this chapter we will discuss the Euler spiral method and its implementation and results for the 

optimal racing line problem. 

3.1 Euler spiral method 

An Euler spiral is a curve whose curvature changes linearly with its curve length. Euler spirals 

are widely used for connecting the geometry between a tangent and a circular curve. The 

principle of this transition is: the start point will follow a segment of the Euler spiral to reach the 

end point, and their tangential direction vectors are angle θ∆  apart, where θ∆  is the desired 

turning angle.  

     The Euler spiral comes close to the minimization of 𝐸𝐸 = ∫𝑘𝑘2𝑑𝑑𝑑𝑑, but does not actually 

achieve the minimum value.[5] An example of a double end Euler spiral is in Figure 3.1. 

 

 
Figure 3.1. A double-end Euler spiral[6] 

      

     A small segment of the double-end Euler spiral above is taken to approximate the racing 

line.  

     Some symbols that are used in describing the Euler spiral are as follows: 

r - Radius at a certain point (reciprocal of the curvature) 

cr - Radius of the curve at the end of the spiral 

θ - Angle of curve from beginning of spiral (infinite r) to a particular point on the spiral 
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L - Length measured along the spiral curve from its initial position 

sL - Length of the spiral curve 

     For an Euler spiral, 

1k
r

=  

dLr
dθ

=
 

1 d L
r dL

θ
= ∝

 

c srL r L const∴ = =  

     Let 𝑎𝑎 = 1/�2𝑟𝑟𝑐𝑐𝐿𝐿𝑑𝑑,  then  

22d a L
dL
θ
=  

     Letting 𝑑𝑑 = 𝑎𝑎𝐿𝐿, x(s) and y(s) can be written in the Fresnel integral form 

2

0

2

0

1( ) cos

1( ) sin

s

s

x s s ds
a

y s s ds
a

 =

 =


∫

∫
 

    The Taylor expansions of these functions are as follows: 
5 9 13

7 11 15
3

1( ) ( )
5 2! 9 4! 13 6!

1( ) ( )
7 3! 11 5! 15 7!

s s sx s s
a

s s sy s s
a

= − + − +
× × ×

= − + − +
× × ×




 

 

     The next step is to determine the speed at each point of the track. As shown in Figure 1.4, 

the relation between v  and k  is specified; v  is defined as a function of k . When curvature 

k  becomes larger (radius r  becomes smaller), the maximum speed decreases. 

     Figure 3.2 shows a segment of the Euler spiral.  
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     Figure 3.2. A segment of Euler spiral. The curvature is decreasing linearly along the line. At the 

starting point, the radius is r1, while at the end point, the radius is r2.  

 

     Suppose that there is a 90 degree turn. The total distance that the car travels will depend on 

the value of the turning radius at each point: 

𝑑𝑑1 = �𝑑𝑑𝑑𝑑 = � 𝑟𝑟(𝜃𝜃)𝑑𝑑𝜃𝜃
𝜋𝜋
2

−𝜋𝜋2

 

     Curvature is changing linearly for an Euler spiral: 

𝑘𝑘(𝑑𝑑) = 𝑟𝑟1 +
𝑟𝑟2 − 𝑟𝑟1
𝑑𝑑1

𝑑𝑑 

     According to the expression of time 𝑡𝑡 = ∫ 1
𝑣𝑣
𝑑𝑑𝑑𝑑, we have 

𝑡𝑡 = �
1
𝑣𝑣
𝑑𝑑𝑑𝑑 = ��

𝑘𝑘(𝑑𝑑)
𝜇𝜇𝜇𝜇

𝑑𝑑𝑑𝑑 = ��
𝑟𝑟1 + 𝑟𝑟2 − 𝑟𝑟1

𝑑𝑑1
𝑑𝑑

𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑 

 
     There is more than one Euler spiral segment connecting the start point and the end point; 

and according to Henry A. Watts[19]  the optimal racing line always makes a smooth curve and 

nicely hit the inside edge of the track at some point of the turn. Thus in implementing the Euler 

spiral, we seek to achieve an apex. 

  Figure 3.3 shows an example of late apex racing line with late turn in point.  

22r

12r
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Figure 3.3. A late-apex racing line is shown by the red line. The two yellow round points  

are the turn in point and the late apex, respectively. To achieve a late apex there  
should be a late turn in point. The dot line is the center-apex racing line. 

 
     Late-apex is usually preferred. Carrying the highest average speed around corners may not 

actually be the quickest way around a track. If the corner leads onto a straight it can be better to 

take a late apex, straighten the car out early and get the power on for a high-speed exit. This is 

generally regarded as the best strategy for racing, with a slightly lower entry speed but a faster 

exit speed. The amount of grip available is the factor which determines how late you can brake 

and touch an apex. 

 

3.2 Implementation results 

The main idea of this approach is to use the Euler spiral to do cornering. In the experiments, 90 

degree turning is tested. An interesting thing is that in this case, we are always using a fixed part 

of any Euler spiral, and s can be used as a deciding factor of the spiral’s shape. Thus, the most 

important thing is to figure out the length of the part of Euler spiral that we need, shown as the 

variable s. 

Late apex 

Turn in point 
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     In the program, by setting an initial value for s  and then changing s  accordingly using 

bisection method, we can find an Euler spiral that is just touching the inner track boundary. 

Figure 3.3 shows a track with rectangular boundaries. 

 
Figure 3.3. Rectangle shaped racing track. At one point the direction of the car is at an angle theta 

with the horizontal line 
  

     In reality, many tracks are rounded square shape as in the following images (Figure 3.4): 

 
Figure 3.4. Square shape rounded corner racing track 

 

     Zooming in at one right angle for the rounded track is Figure 3.5: 
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Figure 3.5. Geometry of the rounded square track corner 

 

     The following flow chart shows how the Euler spiral results are achieved (Figure 3.6). 
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Figure 3.6. Euler spiral method flow chart 

 

     Some of the graphs generated during the process are in Table 3.1. 
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Table 3.1. Results of the Euler spiral cornering 

Not touched yet Touches too much 

 
 

Correctly touches the (late) apex Adding the track shape 
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     The velocity graph is in Figure 3.7. We can see that the speed was originally very large, 

then through the corner it decreases, and then increases again. At the exit, it already achieves the 

maximum speed (assume the maximum speed is 70 m/s). 

 
Figure 3.7. Velocity graph for Euler spiral cornering 

 

     The Euler spiral approach can be used for any angle of cornering, and the above is just an 

example of a 90 degree turn. A general usage of the Euler spiral method is shown in Figure 3.8. 

When the turning angle is θ  we can turn it using a part of the Euler spiral as shown below. 

Sometimes the curve may not be applicable; it may go outside the track. 

Velocity 

Point # 
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Figure 3.8. Euler spiral method for arbitrary angle cornering 
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4. Nonlinear programming solver approach 

The problem can be formulated as a dynamic programming problem, and thus special nonlinear 

programming languages can be used as tools to solve the problem. 

4.1 Problem formulation for nonlinear solver approach  

As before, the total time cost is: 

                            
1t ds
v

= ∫  

 Assume the ideal vacuum 2-D track condition: 
2v k gµ≤  

1 k
v gµ

∴ ≥  

1t kds
gµ

∴ ≥ ⋅ ∫  

     The optimal racing line of shortest time cost is very similar to the racing line of the 

smallest E kds= ∫ . In practice the problem can be simplified to minimizing E kds= ∫ . Of 

course, there are some differences between the time-best racing line and the kds∫  -best racing 

line, so the result will not be precise. This method can run very fast for large-scale problems. If 

there are many points along the center line, the large-scale optimization problem can be easily 

solved by nonlinear solvers. 

 

Consider the nonlinear programming problem: 

(1) Objective function 

( ) ( ) ( ) ( ) ( )2 2 2 21

2

( ) ( 1) ( ) ( 1) ( 1) ( ) ( 1) ( )
 

2

n

i

x i x i y i y i x i x i y i y i
E k i

−

=

− − + − − + + − + + −
= ∑  

(2) Input parameters: 

( ) and ( )    1, 2,...,xc i yc i i n= : The center line coordinates. 
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width : The width of the track 

maxk :  Maximum curvature allowed 

(3) Unknown variables 

( ) and ( )    1,2,...,x i y i i n  

( )    1,2,...,k i i n  

(4) Constraints: 

 

 

   

3
2 2

max

2 2

( ) ( 1)

( ) ( 1)
      2,3, ( 1) 

( 1) ( 1) 2 ( 1)
1

( ) ( 1)

                                                             2,3, ( 1)

1
( ) ( ) ( ) ( )

y i y i

x i x i
k i i n

y i y i y i

x i x i

k i k i n

x i xc i y i yc i

 

 
  

      
  

    

  

   

   

           1, 2, ,
2

( ) ( ) ( ) ( ) ( ) ( ) 0           1, 2, ,

width i n

xc i x i xc i yc i y i yc i i n



    

 

 

There is a problem that ( ) ( 1)x i x i   might be zero. To avoid this, we can use another way to 

represent the curvature variable k, as follows: 
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( )

2 2

2 2 2 2

arctan
1

1 1       
1 1

1       
1
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dx ds
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dx dx
yx xy yx xy

x x yy
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 = = =
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   + +   
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( )

2 2 2

2 2
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∴ +

∴ = −



 

 

 

So the expression for k(i) can also be written as 

( )

( ) ( )
( ) ( )( ) ( ) ( )( )

( ) ( )
( ) ( )( ) ( ) ( )( )

( ) ( )
( ) ( )( ) ( ) ( )( )

( ) ( )
( ) ( )( ) ( ) ( )( )
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2 2

2 2

2 2 2 2

2 2 2 2

2 2 2 2

1 11      
2 1 1 1 1

1 1

1 1 1 1
         

1 1 1 1
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y i y i y i y i

x i x i y i y i x i x i y i y i

x i x i y i y i x i x i y i y i

= −

 
− − + − = +  − − + − − + − + + − 

+ − − −
−

+ − + + − − − + − −
⋅

+ − + + − + − − + − −
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( ) ( )( ) ( ) ( )( )

( ) ( )
( ) ( )( ) ( ) ( )( )
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2 2 2 2
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1 11        -
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+ − − −
−
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⋅
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Simplifying the equation above, we obtain 
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Problem formulation: 
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Assume that max 0.5k  . Then  k i  should be less than or equal to 0.5 to ensure that the turning 

radius is larger than or equal to 2. 
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4.2 Solving the problem using existing commercial nonlinear solvers 

The key point of this method is to make use of existing optimization toolboxes or languages. We 

code it in AMPL and define the input and output data. Since it is a complicated nonlinear 

problem, we should use nonlinear solvers. Current nonlinear solvers for AMPL do not support 

the square root operator in the objective function, so we avoid using the square root operators by 

defining all step sizes to be the same ds. Varying step sizes are not allowed with the existing 

AMPL solvers because they cannot handle the situation where there are variables inside the 

square root sign, such as  f x
 
where x  is a variable. 

     Assume that the distance between any two neighboring points is equal to ds . For a given 

curve, assume that ds  remains unchanged regardless of the racing line taken. Also, square root 

of k is changed to |k| in the objective function. In this case, our problem will be simplified a lot, 

as below.  
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     Different nonlinear solvers are tested here, including MINOS, IPOPT, LOQO and SNOPT. 

IPOPT and LOQO are both nonlinear solver using interior point methods.   

     IPOPT
[21]

 (Interior Point Optimizer) is a relatively new nonlinear solver. It is used for 

large scale nonlinear optimization of continuous systems. It implements a primal-dual interior 

point method, and uses line searches based on Filter methods. It is designed to exploit first 

derivatives and Hessians if provided. If no Hessians are provided, IPOPT will approximate them 

using Quasi-Newton methods. In the experimental results, we can see that this method tends to 
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converge to a locally infeasible point with some curvy tracks like the Flower Track but works 

well with simpler tracks. 

     LOQO[22] and SNOPT [23] are provided in the MIT Athena cluster where we did some tests. 

SNOPT is very effective for a nonlinear problem whose functions and gradients are expensive to 

evaluate. It needs the functions to be smooth, but can deal with the problem formulation without 

the equal- ds  assumption. However, with the assumption that the distances between points are 

all equal, it does not work especially well. LOQO is a system for solving smoothly constrained 

optimization problems. The problems can be linear or nonlinear, convex or non-convex. The 

only real restriction is that the functions defining the problem be smooth (at the points evaluated 

by the algorithm). If the problem is convex, LOQO finds a globally optimal solution. Otherwise, 

it finds a locally optimal solution near to a given starting point. The problem with this method is 

also that often it will converge to a local optimum. 

     MINOS[24] is used for solving large-scale optimization problems, both linear and nonlinear. 

It is especially effective for linear programs and for problems with a nonlinear objective function 

and sparse linear constraints. MINOS can also process large numbers of nonlinear constraints. 

The nonlinear functions should be smooth but need not be convex. For problems with nonlinear 

constraints, MINOS uses a sparse SLC algorithm, which is a projected Lagrangian method, 

related to Robinson's method. It solves a sequence of sub problems in which the constraints are 

linearized and the objective is an augmented Lagrangian (involving all nonlinear functions). 

Convergence is rapid near a solution. 

     Comparing the pros and cons of the solvers mentioned above, MINOS is the one that fits 

our need since our problem has an objective function for which it is not hard to calculate 

derivatives, but there are many non-linear constraints. It also runs faster than the other methods. 

We write the module and data files, and run the program under the AMPL environment 

(Figure 4.1). 
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Figure 4.1. Solving the nonlinear programming problem in the AMPL environment 

 

     We use the MINOS solver, and the optimal racing line generated for a flower track is 

drawn in Figure 4.2. The blue line is the center line of the track, and red line is the racing line. 
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Figure 4.2. Center line with generated racing line by AMPL 

     The result makes sense here. Note that there are no initial values assigned to x[i], 

i=41,..,50, but for x[i], i=1,..40 the initial values are the center line points. The reason for the 

initialization of some values is to avoid being trapped at a local optimum and not being able to 

jump out. Driving through the center line of a track is a reasonable starting point for the 

optimization process. 

 Without initialization, sometimes the solver will stop and show the message “MINOS 5.5: 

the current point cannot be improved”. This shows the nonlinear programming problem is 

trapped at a local minimum. In order to avoid the large possibility of being trapped at a local 

optimum instead going for the global minimum, the following two steps are taken: 

(1) Set an initial guess which is reasonably close 

(2) Add penalty constraints to avoid unnecessary noise. We can use second derivatives of x and 

y to be penalties. Sharp changes are not preferred.  
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     Zooming in, we can see more detailed features of the optimal result given by the solver in 

Figure 4.3. 

 
Figure 4.3. A zoom-in view of Figure 4.2 

 

     Zooming in Figure 4.2 to get Figure 4.3, we can clearly see the apex strategies that the 

optimal racing line takes to achieve shortest time cost. It has two apexes, one at each corner, and 

both are late apexes. 

     Here we use the AMPL on MIT Athena cluster environment so it will not have constraints 

on the number of variables. 

Apart from the MINOS solver on AMPL, we can also use the Optimization Toolbox from 

MATLAB. The Optimization Toolbox provides a set of functions including nonlinear 

minimization, linear least squares, nonlinear least squares, nonlinear zero finding, minimization 

of matrix problem, etc. As our problem has a nonlinear objective with linear and nonlinear 

constraints, we use the FMINCON function provided by the toolbox. FMINCON finds a 

constrained minimum of a function of several variables. FMINCON attempts to solve problems 

of the form: 
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( )
( )

( ) ( ) ( )
( )

min              

    A X B, Aeq X=Beq    linear constraints

                   0, 0    nonlinear constraints

                                       bounds

X
F X

subject to

C X Ceq X

LB X UB

⋅ ≤ ⋅

≤ =

≤ ≤

 

MATLAB provides a graphical user interface optimtool. We create two files for the 

objective function and the constraints respectively. We enter optimtool in the command window, 

and put the objective function and the constraints files in the form (Figure 4.4). 

 

Figure 4.4. Using MATLAB Optimization Toolbox to solve the nonlinear programming problem. 

 

     The FMINCON function works well for a small number of points, but when the number of 

point is too large, it will get stuck in a local optimum and give unreasonable results. 
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5. Artificial intelligence approach 

To make the problem more generalized for solving the problem of a racing car driver, here we 

are also going to consider the following whole racing circuit track optimization problem. 

5.1 The artificial intelligence algorithm for finding optimal racing lines 

Our main goal in the artificial intelligence method is to develop an intelligent agent, which is a 

system that perceives its environment and takes actions that maximize its chances of success. 

Our method is outlined below: 

(1) Set the starting point 0. 

(2) For each point i, decide the point i+1 using intelligent algorithm with probability distribution 

involved. 

(3) Run many times and compare. Best energy racing line and best time cost racing line are 

chosen. Here we tried the “best energy” in the following formulations 0.2 ,  ,   k ds kds kds∫ ∫ ∫  

2and k ds∫ .  

 

There are two major algorithms in this method: the optimal racing line determination and the 

velocity determination. 

     When looking for the optimal racing line, we are trying to make the program smart by 

carefully trimming possible branches and skewing to the appropriate sides. Let’s assume that we 

use all discrete points first. If there are m points along the center line to express the track 

(triangles in the figure below), and for each point on the center line there are n possible positions 

within the width of the track, then connecting from the start to the end there are mn  different 

possible racing lines. Obviously mn  is exponentially increasing, which means when the track 

grows a little longer, or the points are made denser along the line, the time cost will very 

significantly increase. Hence a complete enumeration of all possibilities is not a practical way of 

solving the problem. 
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Figure 5.1. Explanation of discrete point picking  

in searching for the optimal racing line 
 

     The basic concept of branch-trimming is to choose options that are more likely to lead to 

the optimal result, and abandon the options that are insensible or impossible to be an optimum. 

Besides, purely connecting discrete points may lead to non-smooth lines (piece-wise linear), so 

we make the selection along the width line continuous (Figure 5.2). How much the probability 

distribution is skewed will depend on the past steps and the future track shape (Figure 5.3). 

 

 
Figure 5.2. Explanation of continuous point picking  

in searching for the optimal racing line 
 

     For each point along the line, the probability distribution of possible positions along the 

width of the track is illustrated in Figure 5.3. It is skewed according to previous steps taken and 

future road conditions. 
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(b) 

Figure 5.3. Probability distribution of how much point i+1 is skewed from point i. (a) is a skewed 
normal distribution, while (b) is a skewed linear shape distribution which always passes through the 

center point (0, 0.5) 
 

     One important feature of this intelligent method is that it can apply branch-cutting to 

largely eliminate possibilities and avoid complete enumeration in a wise way. The branch cutting 

can be applied easier when we assume there are only several candidates to choose for each point 

as shown in Figure 5.1. However, when there is an infinite number of candidates for each point 

along the racing line as in Figure 5.2, the solution is to control the probability distribution of the 

chosen point. Figure 5.3 shows two possible ways of controlling the probability distribution.  

     Figure 5.3(a) is a skewed Gaussian distribution. Its probability density function is the 

Gaussian function ( )
( )2

22
2

1
2

x

f x e
µ
σ

πσ

−
−

= . When it is skewed to the right side, the point is more 

likely to fall on the right side. However, this distribution is too dense near its center and it has a 

large possibility of only staying around the region that the center of the probability distribution 

defines.  

     Figure 5.3(b) is skewed more than (a), and its probability density function has a much 

simpler form f ax b= + . The shape of this density function indicates the likelihood for it to 

result in a wider range of possibilities being tried. The trials will not be biased too much and only 

dense at the center. It has enough freedom to jump toward either of the two sides. 

     Some features of our method are explained below: 
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a) Randomness is introduced when searching for the best line. Randomness is necessary in 

order to cover a wide range of possible paths. 

b) Rules are used to trim branches. For example, within three consecutive points, point 2 and 

point 3 should not bend too much toward different directions. The more point 2 bends to the 

left from point 1, the less point 3 is allowed to bend to the right of point 2. This is explained 

in Figure 5.4 below. 

 

 
(a)                       (b)                         (c) 

 

(d) 

Figure 5.4. No jumping to different sides too much on adjacent points constraint. Assume that the big 
arrow shows the direction of the step previous to all 3 points. (a) is not allowed because it turns left 
from the 1st point to the 2nd point and wants to turn right too much at the 2nd point. (b) and (c) are 

allowed because they did not jump too much to different sides at two consecutive points. (d) gives a 
simple example of the forward-backward looking. 

 

     Let’s take a look at Figure 5.4(d). Assume that 1k  and 2k  are the signed curvatures of 

the center line of the track, and let MaxK  be the maximum absolute value of curvature along 

the whole racing track. The number of points we look ahead is such that, between point i and the 

point where 1k  is calculated, no more than a 45 degree turn of the track is completed. Define 

Current point 
Point (i) 

Forward looking 
point with track 
curvature k1 Forward looking 

point with track 
curvature k2 
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2 1min max , 1 ,1k ks
MaxK

 −  = −  
  

 

     Set the probability distribution function as  

( ) 1 1
2 2

f x s x= + ⋅  

     For the randomness, pick a random number p which satisfies [ ]0,1p∈ . Solve the equation 

( )
1

( )
x

F x f t dt p
−

= =∫  

for the variable x. As the integral of ( )f x  is easy to calculate mathematically we have  

( )2 2 2 4 0sx x s p+ + − − =  

     Thus
( )1 1 2 4s s p

x
s

− ± − − −
= . Because x is somewhere between -1 and 1, only the 

positive sign will be taken no matter if 0s >  or 0s < . 

     For three-dimensional tracks, the looking ahead algorithm is the same except that it uses 

the geodesic curvature of the center line instead of the absolute curvature. 

     With this algorithm, when there is a corner not far in front, the look-ahead function will 

notice that and let the car have larger probability to lean to the outside edge of the track to allow 

a larger radius for making the turn and hitting an apex at an appropriate point. 

     From the experiments, we find that kds∫  is the better measure and with this definition 

of E, the best E and best time cost racing lines are almost the same. This can be explained 

theoretically: since max 0.5k = , all curvatures along the line are less than 0.5. So for curvature 

changes, k  is usually more sensitive than 2k ; thus it reflects the curving of the racing line in 

a more amplified way and leads to smoother and generally better results. In the experiments, we 

have tested using different exponents for k and find that 0.5k ds∫ works best in this situation. 

More results are discussed in Chapter 5.2. 

     The artificial intelligence approach can be used for any shape of racing tracks no matter if 

they are 2-dimensional or 3-dimensional. It makes smart decisions on what points to take to 

minimize the time cost.  
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     MATLAB code is used to generate 2-D or 3-D racing tracks. The artificial intelligence 

racing line finder is implemented in C++. We also write a display program for all shapes of 

tracks in Visual Basic. 

     Define E as  
s

E k s ds  . Here we will show the two results from the AI approach 

which lead to optimal time and optimal E, respectively. 
     

In the program, we keep track of the two racing lines: the line that has the smallest time 

cost, and the line that has smallest value of E. The E-best racing line is chosen according to its E 

value instead of its time cost, and that is why the E best racing line always costs at least as much 

time best racing line. In the plots, we call E energy, but be noted that here “energy” refers to the 

integral of square root of curvature, not the physical energy. The flow chart of the program is 

shown in Figure 5.5.
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Figure 5.5. Flow chart for finding the optimal racing line 
 

     The method is based on intelligently random tests. When we generate the path, branch 

cutting is used to reduce the number of iterations needed to achieve an optimal solution. Suppose 

that we start from the center line at point 0. The distance from each point to the center line will 

be somewhere between (-d/2, d/2). From point 1 and onwards, the range of distance to centerline 

depends on the previous steps to avoid too much zig-zagging. For example, if the previous step is 

leaning to the right, the next step cannot lean to the left too much. The looking ahead technique 

is also used to see how long of a straight line is left or how far the next corner is. The probability 

of the point falling on some position relative to the center line will be skewed appropriately.  
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The procedure to choose velocity ( )v i  step by step for a given path is as follows 

1) At point 0, the velocity is initialized to 0, i.e., ( )0 0v =  

2) For ( )v i , firstly calculate the maxv  without considering the power constraint. If maxv satisfies the 

deceleration constraint, then choose ( )v i based on maxv  and the power constraint. If not, set 

( ) maxv i v= and correct ( ) ,v j j i< from 1j i= − .Correct ( )1v i −  to satisfy the maximum 

deceleration constraint, and if necessary, correct ( )2 , .v i etc−  

This procedure is explained in Figure 5.6 below. 

 
Figure 5.6. Flow chart for finding the velocity along a racing line 
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     Let’s analyze the time complexity of the artificial intelligence algorithm. Assume that the 

number of iterations is m , and the number of points to describe the track is n . Because of the 

backwards adjustment steps, the worst time cost will be ( )2O m n⋅ . If we see m as a fixed number 

instead of a variable, the time complexity is ( )2O n . The best situation would be that no 

backwards velocity adjustment is necessary, and the time cost will be only ( )O m n⋅ , or ( )O n  

when m  is fixed. 

     To improve the performance of the algorithm, a divide-and-conquer strategy of “big-small 

step” is also introduced. In this strategy, the points will not be determined one by one. Instead, it 

will be once every n points, where n is the number of small steps in a big step. The step size of a 

big step is n times the step size of a small step. This strategy will expose the program to more 

possible options at first, and then choose remaining points based on the optimal solution of the 

first stage results. This method turns out to be very effective in our experiments. The results 

analysis after applying this improvement algorithm is in Chapter 5.2.3. 

 

5.2 Implementation and results 

We implemented the artificial intelligence method for both 2-D and 3-D racing tracks, and the 

results are obtained and studied. 

5.2.1 Optimal racing line for 2-D racing tracks 

We can get the optimal racing lines according to any given 2-dimensonal racing tracks and car 

information. The 2-dimensonal situation is a simpler version of the 3-dimensonal situation. Three 

kinds of tracks are tested out here. 

 



63 

 

5.2.1.1 Flower shape racing track 

The flower shape racing track contains 2 symmetric three-quarter-circles, a half circle and a 

straight line. In the following plots, the outside edge line and the inside edge line (both in blue 

color) are used to represent the racing track and the optimal racing line found is represented by 

the red line. 

 

(1)30,000 iterations 

The comparison of E best and t best results are listed in Table 5.1. 

 

Table 5.1. Comparison of E best path and time best path after 30,000 iterations of the Artificial 
Intelligence method for Flower Track 

 E best Time best 

E ( ( )
s

E k s ds= ∫ )  288.843  291.369 

Time cost (sec) 124.283 123.735 

 

 

 

The optimal racing line generated is displayed in Figure 5.7. 
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Figure 5.7. Optimal racing line for flower track using AI method after 30,000 iterations. The apexes are 

marked. 

apexes 
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Figure 5.8. Breakdown analysis graphs for results after 30,000 iterations 
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Figure 5.9. Racing lines of E best and time best after 30,000 iterations 

 

     It is interesting to notice the difference between time best path and E best path. In Figure 

5.9 shown above, the E-best path tends to stay around the outside line more, which is 

understandable because its main goal is to achieve the lowest curvature. Besides, the time best 

path has a smoother speed graph as shown in Figure 5.8. 

(2)100,000 iterations 

When we increase the number of iterations from 30,000 to 100,000, the results are improved 

slightly (0.038% in this case).  
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Table 5.2. Comparison of E best path and time best path after 100,000 iterations of the Artificial 
Intelligence method for Flower Track 

 E best Time best 

E(  
s

E k s ds  ) 
288.515 294.566 

Time cost (sec) 124.643 123.688 

 

     Comparing Tables 5.1 and Table 5.2, we can see that the time cost for the time best path 

becomes a little smaller, and the E value for the E best path becomes a little smaller. The paths 

and speed graphs of the E best line and time best line are displayed in Figure 5.10. 

 

Figure 5.10. Breakdown analysis graphs for results after 100,000 iterations 
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     From Figure 5.10, we can see again that the speed graph for the time best racing line is 

much better than the E best racing line; the car can generally stay more at the high speed level. 

The E best racing line may sacrifice the real time cost for making the nk ds∫  value smaller. 

     The larger graphs showing the time best racing line and the E best racing line are in Figure 

5.11. 

 
Figure 5.11. Time best and E best racing lines after 100,000 iterations. The apexes in the time best 

racing line are marked. 
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     From the results, we can see that with more loops the results could be better, but 30,000 

loops are already enough to get a reasonably good answer. Besides, due to the probability factors 

in the program, more loops do not always guarantee better results – they just usually get more 

precise results. 

 

5.2.1.2 Soccer field racing track 

     Next, we use MATLAB to generate a track consisting of two double circles and two 

straight lines connecting them. According to the experimental results, after trying several n 

values for E = nk ds∫  we get the best result here by setting E to ( ) 0.2

s

k s ds  ∫
 

     
The time cost results are in Table 5.3 below. 

Table 5.3. Comparison of E best path and time best path after 30,000 iterations of the Artificial 
Intelligence method for Soccer Field Track 

 Time  E  

Time best (sec) 78.6361 811.397 

E ( ( ) 0.2

s

k s ds  ∫ ) best 79.1217 685.408 
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Figure 5.12. MATLAB plot of the optimal racing line generated by the Artificial Intelligence method 
for the soccer field shape track 
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Figure 5.13. Display software written in VB. It draws the results of the Artificial Intelligence method 
for the soccer field track. The two apexes are marked. 

We can see there are two apexes in the optimal racing line, one for each corner. 

  

apexes 



72 

 

5.2.1.3 Ellipse racing track 

 

Figure 5.14. Display software drawing the results of the Artificial Intelligence method for the ellipse 
track. The apexes are marked. 

     The ellipse track is different than the other tracks that we tested in that it does not have any 

straight parts. The whole track has some curvature; thus it will limit the speed of the car and 

require the racer to make smart and consistent decisions along the whole track. From the results 

above, we can see that there are two points that can be called apexes, but the concept of apex is 

not as concrete. Overall, the optimal racing line makes the ellipse rounder. 

 

5.2.2 Optimal racing line for 3-D racing tracks 

The three-dimensional track is more likely to appear in real life racing. To observe the result, we 

introduce a new method here. The display application is written in Visual Basic. 

apexes 
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     In two-dimensional situations, we only need to see the whole race track in one plane, but 

in three-dimensional situations it may have different views from different angles. Assume that 

there is a photographer taking the photo of the track, then the photo he takes will depend on 

where he stands (x, y and z coordinates), the angle that the camera is pointing from (theta and 

phi), as well as the features of the camera (width and focus). This is illustrated in Figure 5.14. 

 

 
Figure 5.15. Looking at the racing track behind a camera. The blue lines show the x, y, and z axes; the 

black lines show the camera and its focus and width of taking views; the red lines show another 
possible position and direction of the camera. 
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Figure 5.16. The new modified software interface to display racing lines on 3-D racing tracks 

 

     Tick in the boxes that you want to display. For example, if you want the optimal path 

found by the program to be displayed, tick the box and click on the “Choose Path” button to 

choose a path file. If you do not want to show the center line, do not tick the box in front of the 

center line button. 
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Figure 5.17. Choose path in the 3-D display program. The 3-D display software is similar to  

the 2-D display software. Select files of the lines that we want to display and click draw. The  
only difference from 2-D is that we can adjust the values of x, y, z, theta, phi, width and focus  

as explained before in Figure 5.14.  
 

     After choosing files for the path line, inside line and outside line, set the position, direction 

and features of the camera. The origin point (0,0,0) is the center point of the whole soccer shaped 

racing field. In Figure 5.18 the camera is at the southwest corner and high up, pointing towards 

the field. 
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Figure 5.18. Display of optimal racing line for the 2-D soccer field track. We can see the difference 

between the 2-D and 3-D display softwares here. The angles and distance are adjustable. 
 

     One thing to notice is that the display in Figure 5.18 is only the result of a 2-D track using 

the 3-D display application. This is transitional for introducing some banking to the racing track.  

     In Figure 5.19, the results for a real three-dimensional track are displayed. The track has 

banking around both turns (like NASCAR racing tracks), and the results are very interesting to 

look at. From the same viewing angles and distance as in Figure 5.18, we can see the two 

late-apexes. But with the banked turns, the cornering is easier and can achieve high speeds. 

There are adjustments in the two straight line parts to achieve the two late-apexes. Note that for 

three-dimensional tracks, we define E as 

( )sgn
z

g

g car
z

k
E ds

k n
n

µ

=
⋅

−
∫  

This is a generalized expression which reduces to E kds= ∫ for two-dimensional tracks. 
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Figure 5.19. Three-dimensional display of optimal racing line in 3-D track with banked corner. The 

view is from the audience seat high up from the southwest corner 
 

     Figure 5.20 gives a clearer view of the banking part around the corner. Now the viewing 

position is right at the origin point ( )0,0,0 . For two-dimensional racing tracks, the picture taken 

with the camera placed right at the origin with zero height will just be one straight line. Here in 

Figure 5.20 we can clearly see the outside line of the track, the inside line of the track and the 

racing line. Obviously the outside line is higher than the inside line, and this bank can help cars 

achieve higher speed when they are turning.  
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Figure 5.20. Three-dimensional display of optimal racing line in 3-D track with banked corner. The 

view is from the ground at the center of the soccer field and looking directly to the corner 
 

     Its MATLAB plot for the 3-D track is in Figure 5.21. From the graph we can easily see the 

banking along the track. Here we set the banking angle to be constant. However, it can also be 

set to change if needed. 

 

 
Figure 5.21. MATLAB 3-D plot of the 3-D soccer field racing track. The 3-D track has banked corners.  

We are viewing it from the audience in the southwest corner. 
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The optimal racing line on this 3-D track is shown in the *-line of Figure 5.22.  

 
Figure 5.22. MATLAB 3-D plot of the 3-D soccer field racing track. The 3-D track has banked corners.  

We are viewing it from the audience in the southwest corner. 
 

     NASCAR racing tracks have banked corners designed to increase the maximum speed 

allowed during turning because when the surface of the road leans toward the corner center, there 

will be a component of gravity that can serve as lateral force for the turn. In our experimental 

results, the 3-D track also shows its advantage in the overall speed around the corner. The 

optimal racing line velocity graphs for two tracks are shown below. Figure 5.23 is the track with 

unbanked corners, and Figure 5.24 has constant banking angle. 
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Figure 5.23. Velocity graph for 2D optimal racing line (no banking) 
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Figure 5.24. Velocity graph for 3D optimal racing line (with banking) 

 

     Note that on the x-axis is the point number, and in this soccer-field track case the points 

are not evenly distributed. The ups and downs of speeds are within the limits of the 

minimum/maximum accelerations. 

 The graph below (Figure 5.25) plots the differences between Figure 5.23 and Figure 5.24. 

As a whole, banking can increase the speed because it makes the maximum cornering speed 

higher. 
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Figure 5.25. Velocity difference graph for two racing tracks with the same center line, one with 

banking and one without. The points are floating but most  
of the graph is in the upper half. 

 

The banking part can generally increase the speed of turning if designed properly. The time 

cost for going through a corner may be decreased dramatically when the corners are banked. 

To make the velocity graph smoother, we replaced the upper acceleration constraint with a 

power constraint as described in Chapter 2.4. The velocity graph after using the power constraint 

is in Figure 5.26. 
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Figure 5.26. Velocity graph for 3D optimal racing line under power constraint. Because of the 

constraint by power in the speed-up section, the up slope of the velocity graph is smoother than in 
Figure 5.24. 

 

Let’s test the method again on the flower track, and use the power constraint instead of the 

acceleration constraint. The 3D flower track has banking at all of its corners, and it is flat on the 

straight line part (Figure 5.27). 

 
Figure 5.27. MATLAB plot of the 3-D flower track 
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     The track is shown in the graph above. Because the banking angle is only 6 degrees, it is 

not very obvious to see the three dimensional features, but we can still see it in the change of 

width from this observation angle. 

 

 
Figure 5.28. Optimal racing line on 3-D flower track 

 

     Displaying it in the 3-D display software, we can take a look from different angles and 

distances. Figure 5.29 is watching higher up from the south of the track. 
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Figure 5.29. Three-dimensional display of optimal racing line in 3-D flower track with banking on all 

the corners 
 

When the viewing position is in the center of the track and higher up, we can see a 2D 

projection view as in Figure 5.30. 
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(a) 

 
(b) 

Figure 5.30. The 2D projection of the 3D optimal racing line in the flower track. (a) shows the whole 
track and (b) shows a zoom in view of the three consecutive large cornering parts. 

Start point at the outside line 



87 

 

     It is clear that the optimal racing line makes a smart solution. It follows a smooth route 

which touches several apexes. The Figure 5.30(b) shows clearly how the line goes along three 

consecutive corners. According to our calculation, it takes only 114.015 seconds to complete a 

lap. Because the corners are very large, the speed performance is also very good without much 

loss of speed during the turns. And the power constraint makes the positive acceleration part 

jump less. Let’s look at the velocity graph in Figure 5.31. 

 
Figure 5.31. Velocity graph for optimal racing line of the 3D flower track 

 

     The figure shows that at many points the speed reaches the maximum allowed (70m/s), 

with the lowest speed at the smallest radius corner. 

     Now we are going to test the 3-D optimal racing line method for a rounded square track. 

The rounded square track is special in that it has four 90 degree corners and four segments of 

straight racing lines. We will test it in three scenarios: without banking or slopes, with banking 

but without slopes, and with banking and slopes. The results are shown in Figures 5.32, 5.33 and 

5.34.  
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Figure 5.32. The optimal racing line generated for a rounded square track whose m=500, n=400 and 

r=80 and which does not include banked corners. 
 

     We can see that it does not necessarily have apexes at each corner. Whether or not an apex 

is needed depends on the road condition. Late apex ensures that the car has a large exit speed, but 

when the straight line part after the corner is not long enough, it may not be a good idea to take a 

late apex. 
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Figure 5.33. The optimal racing line generated for a rounded square track whose m=500, n=400 and 

r=80 and which includes banking. 
 

     The banking angle in Figure 5.33 is very small, so it does not have a very large effect on 

the racing line. We see two apexes and the other two corners do not have apexes. 
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Figure 5.34. The optimal racing line generated for a rounded square track whose m=500, n=400 and 

r=80. This track contains both banked corners and up/down slopes. 
 

     With up and down slopes along the way, the optimal racing line may look a little less 

regular. But the essential point is still trying to maximize cornering performance to save time 

cost during the course of the race. 

 

5.2.3 More result analysis 

We may choose different numbers of points along the track picked for the same racing track with 

the same number of iterations. Here we are going to try 5 different numbers for the rounded 

square track. The rounded track has the following shape: 
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Figure 5.35. The rounded square shape track. 

The table below shows the execution time and optimal time cost with different numbers of points 
along the track. Note that 80 points are picked along this track. 

 

     We are going to run 20,000 iterations for all of them. Different numbers of points are used 

to represent the same racing track. The optimal time cost result and the execution time will be 

different. Obviously the more points there are along the track, the more precise they represent the 

original track, and the more time it may cost to run the program. 

 

Table 5.4. Relations of execution time, optimal time cost and number points along the track 

 # of points along the track Execution time 

(seconds) 

Optimal time cost (seconds) 

1 40 22 63.7886 

2 60 38 62.8897* 

3 80 48 67.9346 

4 100 57 66.984* 

5 120 72 71.5797 

 

     Note that for the two numbers with * in the time cost column, the time best racing line and 

the E best racing line generated are the same. For the other three, these two racing lines are not 
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the same, and the time cost to finish the track using time best racing line is less than that using 

the E best racing line. 

Figures 5.36 and 5.37 analyze the relations between the execution time and the number of 

points along the track, and between the time cost of the optimal racing line generated and the 

number of points along the track. 

 

 
Figure 5.36. Execution time of the program vs. number of points along the track 

  

From the graph above we can see that the program execution time almost changes linearly 

with the number of points along the track. The time complexity here is O(n). Note that we 

discussed before that the program complexity is O(mn) where m is the number of iterations and n 

is the number of points. Here we have a fixed number of 20,000 iterations, so the time 

complexity is O(n). 
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Figure 5.37. Time cost of the optimal racing line vs. the number of points along the track 

 

On the other hand, we use different numbers of iterations for the same track with the same 

number of points picked along the track. The results are shown below (Table 5.5). 

 
Table 5.5. Execution time, time cost result and number of iterations 

 
 # of iterations Execution time (seconds) Optimal time cost (seconds) 

1 2,000 5 60.2128 

2 10,000 29 60.2880 

3 20,000 59 59.6270 

4 30,000 88 59.5317 

5 50,000 146 59.1855 

6 100,000 288 59.5565 
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Figures 5.38 and 5.39 analyze the relations between the execution time and the number of 

iterations, and between the time cost of the optimal racing line generated and the number of 

iterations. 

 

 
Figure 5.38. Execution time vs. number of iterations 

 

     From Figure 5.38, we can see that the execution time increases linearly with the number of 

iterations. 

 

 
Figure 5.39. Optimal time cost vs. number of iterations 
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     Figure 5.39 shows the relationship between the number of iterations and the optimization 

results. We can see that when the number of loops goes up, the time cost is generally going down. 

However, due to randomness involved in this method, a larger number of iterations does not 

always guarantee a better result. For example, 2,000 iterations is acting slightly better than 

10,000 iterations, and 100,000 iterations is not performing better than 50,000 iterations in this 

case. However, generally speaking, better results are obtained with more iterations. We can see 

this by running with these specified loop numbers for many times and taking the average values. 

     Besides, the big-small step strategy is helpful in covering wider possibilities of paths and 

obtaining better results. However, the number of small steps in a big step can be a factor in its 

effectiveness. In the table below we study the different numbers of small steps in one big step for 

the same racing track. Note that on the 1st row, the step size of big step is just the step size of 

small step, i.e., no big-small step strategy is used. Here for row 1, the data is the result after 

90,000 iterations, while for the others they all run for 30,000 iterations. The reason is that in the 

big-small step algorithm, firstly an optimal racing line considering only big steps is generated 

after 30,000 iterations, and this is followed by filling in the small steps for the time best and E 

best racing lines consisting of big steps, each with 30,000 iterations. So in total it is comparable 

to 90,000 iterations of the usual method. The results are listed in Table 5.6. 

 

Table 5.6. Relations of execution time, optimal time cost and number of small steps in a big step 

 Number of small steps 

 in one big step 

Execution time (sec) Optimal time cost (sec) 

1 1 247 59.4582 

2 2 293 56.6146 

3 3 273 56.6531 

4 4 270 56.6357 

 

Figures 5.40 and 5.41 show the influence of number of small steps in one big step, i.e., the 

step size of big step divided by the step size of small step. 
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Figure 5.40. Execution time vs. Number of small steps in one big step 

 

We can see that for 2, 3 and 4, the execution time of the program is decreasing with the 

increase in number of small steps in one big step. This is because the bigger number of small 

steps in one big step, the fewer the big steps, so it can run faster and faster in the first phase of 

this algorithm. But there is also a limit for this. To take an extreme example, when the size of a 

big step equals the total length of the track, it is equivalent to having no big-small step strategy at 

all. 
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Figure 5.41. Optimal time cost vs. number of small steps in one big step 

The big-small step algorithm is clearly very useful. Even when using 2 small steps for each big 

step, the improvement is impressive: about 6% smaller time cost. 
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6. Integrated approach 

6.1 Introduction to the integrated approach 

Racing line optimization is complicated in that there is not a method that is best for all situations. 

Which method to choose will depend on the features of the track. The good news is that the 

artificial intelligence method is universally applicable to any kind of 2-D or 3-D tracks with any 

slopes or banking. However, it is comparatively slow and not always the best way of finding the 

solution. In some specific cases, such as a track with regular large corners connected by long 

straight lines or curvy lines, the Euler spiral method is definitely better and faster for the corner 

part, while the artificial intelligence method can be used to deal with the rest of the track. What’s 

more, if the curvy line is long and curvy in a regular way, we can use a nonlinear solver to solve 

for the points. As a result, it is important to be able to flexibly integrate different methods at 

different parts of the track. Some implementation results of the integrated method will be 

discussed in Chapter 7. 

6.2 Implementation and results 

The integrated approach starts with analyzing the shape and special features of the racing track. 

Basically, we take advantage of the fast speed and precise results of Euler spiral method when 

there are corners, and connect the other parts by either the AI method or the nonlinear solver 

method depending on the problem size. After that we connect the different segments of racing 

line along the track and calculate the total result. 
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Figure 6.1. The flow chart for the integrated method to find the optimal racing line 

 

Assume that there is a rounded square track with the following parameters 

500,  400,  20 16 / 2 28m n r= = = + = . 

Some results below show the 90 degree turn of a large racing track whose width is 16 

meters and radius is 200 meters. The red line represents the Euler spiral optimal racing line, 

while the blue line represents the inside edge of the racing track. 

(1) When the end of line radius 100sR = , the result is shown in Figure 6.2. 
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Figure 6.2. MATLAB plot of the Euler spiral shape optimal racing line hitting one apex on the 

inside line of the 90-degree corner track when the ending radius Rs=100 
 

     The time cost for making a 90 degree turn is 8.52548 secondst = . Obviously at this point 

the red line did not bend 90 degrees yet. This means the designated Rs is too large. We can try 

some smaller values of Rs. 

(2) When the end of line radius 50sR = , the result is shown in Figure 6.3. 
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Figure 6.3. MATLAB plot of the Euler spiral shape optimal racing line hitting one apex on the 

inside line of the 90-degree corner track when the ending radius Rs=50 
 

The total time cost is 9.70311 secondst = . For the red line, the two points at the 

beginning and the end are ( )0,0  and (200,  374.6) .  

According to the symmetry of the rounded square racing track, ( )2m r+ should be at least 

200+374.6=574.6 to let all four corners have an Euler spiral part of the racing line. For the 

rounded square track of 500,  400,  208,    16m n r width= = = = , the solution by purely 

artificial intelligence method is in Figure 6.4. 
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Figure 6.4. The artificial intelligence method results for a rounded square racing track 

 

     The velocity graph for the optimal racing line in Figure 6.4 is as follows (Figure 6.5): 
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(b) 

Figure 6.5. Velocity graph of the optimal racing line for a rounded square track with m=500, n=400, 
r=208, generated by the Artificial intelligence method. (a) shows the velocity for a whole lap; (b) 

shows the velocity for a single corner. 
 

From Figure 6.5 we can see that for a single corner, the speed goes down and then up 

again. For the whole lap, the velocity graph tends to be bouncing and it is clear to see that there 

are four corners along the track. Note that in order to make the execution time shorter, points are 

picked with a relatively large distance between each other. That’s why the graph does not look 

very smooth. We should take it as showing that the speed needs to change from v(i) to v(i+1) in a 

smooth and reasonable way from point i to point i+1. 

The total time cost of the optimal racing line generated by the AI method is 59.022 

seconds. However, using the integrated method, the four corners use the Euler spiral in Figure 

6.3, and connect with the straight parts using the AI method. 
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This result is better than the 59.022 seconds needed by the pure AI method, and it also runs faster. 

The velocity graph for the corner is shown in Figure 6.6. 

 

Figure 6.6. The velocity graph of the corner part using the Euler spiral method 

 

From the velocity graph above we can see that the exit speed will reach the maximum 

value allowed 70 m/s. Moreover, it already got to 70 m/s before it completes the turn. The speed 

along the line is very smoothly changing and there are no sudden jumps. 

 

We tested the integrated results with different sR  values from 20 to 1000 with the 

incremental step of 20. Some interesting results are shown in Figure 6.7. The x  coordinate 
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and starts decreasing again until it reaches 3 seconds. The reason is that when sR  is very large, 

the line between the start point and the end point will be very close to a straight line, and 

according to the straight line rule (‘for a plane surface, the shortest distance between two points 

is a straight line’), the time cost will gradually reduce to 3 seconds which is the time cost to go 

through the straight line connecting the start point and the end point.  

 
Figure 6.7. Test results for different values of Rs. (a) shows how x changes with Rs. (b) shows how y 
changes with Rs. (c) displays the different time costs when we use different Rs values. (d) shows the 

positions of the end points with different Rs values. 
 
     From the end point coordinates graph we can see that there are some constraints for the 

proportions of the track to make the Euler spiral cornering work well. If the straight line is not 

long enough, it will not give enough space for the Euler spiral to spread out and make a complete 

turn of 90 degrees. And even if the 1st corner part is completed by an Euler spiral, there may be 

not enough room to prepare for the 2nd corner.  
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Actually, it will not be always optimal to use an Euler spiral in every corner. According to 

the output, even when it is applicable to use Euler spirals for all 4 corners, it may not be good if 

the straight part is comparatively too small or the radius of the corner is comparatively too large. 

When 500,  200,  50,  80m n r N= = = = , the time cost by purely AI is 46.5598 seconds. 

With integrated method, end point (92.0879, 150.6400). The total time cost is 43.2257 seconds. 

The integrated method is performing slightly better. 

When 500,  200,  30,  80m n r N= = = = , the time cost by purely AI is 41.1489 seconds. 

Use integrated method, and the end point is (75.4566, 141.9656). The total time cost is 37.8588 

seconds. The integrated method is performing slightly better.  

When 500,  200,  30,  320m n r N= = = = , the time cost by purely AI is 41.1489 seconds, 

the same as before. But using integrated method, we know that end point (75.4566, 141.9656), 

and the total time cost is 35.8588 seconds. The integrated method is performing even better. 

The advantage of the integrated method will be more obvious when the straight part takes 

up a significant percentage of the track, and when more points are included to describe the track. 

One key point of change in the original artificial intelligence method is that there are more 

inputs. For the original methods, the only input is the track information (Figure 6.8). 

 

 
Figure 6.8. Input/output relations for the three methods that we mentioned above: Euler spiral 

method, nonlinear programming solver method and Artificial intelligence method. 
 

Now there are four more inputs: starting position, finishing position, starting speed, 

finishing speed (Figure 6.9). These inputs make it possible to connect together results from 

different methods for different parts of the track. For example, the end speed of one segment 

equals the start speed of the next segment. 
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Figure 6.9. Input/output relations for the integrated method 
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7. Summary 

In this thesis we investigate the problem of optimal racing line selection based on racing track 

and car information. Four methods introduced in the previous four chapters all work out in some 

situations. The artificial intelligence method is widely applicable, and the integrated method 

absorbs the advantages of the artificial intelligence method, but speeds up the process by making 

decisions about which method to use on different segments of a whole racing track.  

7.1 Comparison of different methods 

Each method introduced above has its own advantages and disadvantages. The comparison is 

made in detail in Table 7.1. 

 

Table 7.1. Advantages and disadvantages of the four different methods that are introduced above 

 Advantage Disadvantage 

Euler spiral method a. Guarantee of near-optimum in 

cornering part 

b. Natural achievement of an apex, 

and late apex can assure high 

exiting speed 

c. Velocity is changing continuously 

d. High computing speed for the 

appropriate type of track 

a. Not flexibly applicable to irregular 

shapes of racing tracks. 

b. The model is not guaranteed to be 

the best when more factors other 

than the lateral friction are 

considered 

c. Not applicable for complex 3D 

situations 

Nonlinear solver 

method 

a. Very fast execution compared to 

artificial intelligence method using 

the specific nonlinear solver 

program 

b. Comparatively easy to write and 

modify. 

a. Many approximations have to be 

made to make the program 

formulation recognizable by AMPL 

b. All different kinds of nonlinear 

solvers have their own features and 

they cannot guarantee not to 

become stuck in a local optimum 
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Artificial intelligence 

method 

a. Very flexible to find the optimal 

racing line for all kinds of irregular 

and complicated 2-D or 3-D racing 

tracks 

b. Guaranteed to get a racing line 

that can beat most other racing 

lines and an acceptably good time 

cost. 

a. The velocity graph will not be 

automatically smooth and many 

adjustments are needed to make 

the velocity changes practical with 

the limitation of accelerations. 

b. The execution time may be long 

when the track is very long 

Integrated method a. A good combination of the 

mathematically and physically 

optimal Euler spiral curve and the 

optimal line found by the Artificial 

Intelligence method. 

b. Usually will be an improvement to 

the pure AI method 

c. More widely applicable to 

different shapes of tracks 

a. Not applicable for all shapes of 

tracks. Pre-analysis of the track 

shape is required 

b. No guaranteed improvement of the 

pure AI method because 

sometimes the shape does not 

apply to the Euler spiral method 

very well, or the radius isn’t small 

enough to make the tradeoff 

between shorter distance and 

larger turning speed. 

 

 

7.2 Usage of results from our research 

The methods described in this thesis can be used to calculate the optimal racing line for any 2-D 

or 3-D racing track. When the actual racing line is too long, the integrated method can be used to 

separate the original racing track into several segments. Given more iterations and longer time, 

the artificial intelligence method can obtain better results with lower time costs. There are 

parameters for different car features and road features, so different values can be substituted in 

for different cases. 
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7.3 Conclusions and future work 

This thesis studies the optimal racing line for a given track and type of car. We find some 

common features about optimal racing lines through the different methods that we describe in 

this paper. The optimal racing lines usually make use of both the corner parts and the straight 

parts of a racing track. There are often apexes reached around corners. On straight lines a car can 

mostly go in one direction and keep on speeding up to its upper limit, but at the same time it 

should make adjustments early enough for a good cornering strategy.  

     As cornering performance greatly determines the outcome of a racing match, a good 

strategy to determine what racing lines to take and what speeds to use at non-straight parts is 

critical for any racer. The optimal cornering strategy depends on many factors, such as how 

much straight line there is before and after the corner, whether the corner is banked or not, how 

much the corner is banked and whether there are any slopes on the road. Generally, if the straight 

line after the corner is long enough, a late apex will be preferred to a middle apex. A middle apex 

is more neutral but most of the time not the best. Also when there is more banking, the car can go 

through a line that has smaller turning radii.  

     We also find that for 2-D tracks the racing lines with smallest time cost and with smallest 

value of nE k ds= ∫ (for   0.2,  0.5,  1 and 2n = ) are very similar but not the same. This is why 

the Euler spiral can be used to approximate optimal cornering in a convenient way since it comes 

close to a minimal value of 2k ds∫ . For general 3-D tracks, minimizing a modified definition of 

E  with   0.5 n = can achieve a result close to the optimal racing line. 

     For a specific problem, the four methods in this thesis all have their own pros and cons, so 

we should choose an appropriate method for each track. As an example, the integrated method 

can be used for a rounded square track because it has four complete 90 degree turns connected 

by four straight parts. 

     There is some more work to be done in the future on optimal racing line selection. 

Looking for a mathematical model for optimal cornering in 3-D conditions similar to the Euler 

spiral in 2-D is an interesting topic. Different models of cars and different kinds of racing tracks 

need attention. The present work can be used as a starting point for future investigations. 
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Appendix 

Appendix (A) Friction coefficient table 

The following table shows the friction coefficients we used for this thesis. 

 On dry asphalt On wet asphalt 

Static friction coefficient for a car 1.20 0.80 

Kinetic friction coefficient for a car 0.85 0.60 

 

Appendix (B) F1 car features 

The following table shows the speed and acceleration limits for typical F1 cars.[2] 

 Usual Extreme (Maximum) 

Positive Acceleration 1.45 g (14.2 m/s²)  

Negative Acceleration  4 g (39 m/s²) 5-6 g 

Maximum speed 200 km/h (124 mph) 300 km/h (186 mph) 

Lateral acceleration 3.0g 5-6 g 

 

 


