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Abstract

We discuss the identification and estimation of discrete games of complete informa-

tion. Following Bresnahan and Reiss (1990, 1991), a discrete game is a generalization of

a standard discrete choice model where utility depends on the actions of other players.

Using recent algorithms to compute all of the Nash equilibria to a game, we propose

simulation-based estimators for static, discrete games. We demonstrate that the model

is identified under weak functional form assumptions using exclusion restrictions and

an identification at infinity approach. Monte Carlo evidence demonstrates that the

estimator can perform well in moderately-sized samples. As an application, we study

entry decisions by construction contractors to bid on highway projects in California.

We find that an equilibrium is more likely to be observed if it maximizes joint profits,

has a higher Nash product, uses mixed strategies, and is not Pareto dominated by

another equilibrium.
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1 Introduction

In this paper, we study the identification and estimation of static, discrete games of complete

information. These are the canonical normal form games of basic microeconomic theory, with

a history dating back to the seminal work of Nash (1951). Econometrically, a discrete game

is a generalization of a standard discrete choice model, such as the conditional logit or multi-

nomial probit, that allows an agent’s utility to depend on the actions of all other agents. The

utilities of all agents are common knowledge, and we assume that observed outcomes are gen-

erated by a Nash equilibrium. Discrete game models been applied to diverse topics such as

labor force participation (Bjorn and Vuong (1984), Soetevent and Kooreman (2007)), entry

(Bresnahan and Reiss (1990, 1991), Berry (1992), and Jia (2008)), product differentiation

(Seim (2001), Mazzeo (2002)), technology choice (Ackerberg and Gowrisankaran (2006) and

Ryan and Tucker (2009), Manuszak and Cohen (2004)), advertising (Sweeting (2008)), long

term care and family bargaining (Stern and Heideman(1999), Stern and Engers (2002)), an-

alyst stock recommendations (Bajari, Hong, Nekipelov and Krainer (2004)) and production

with discrete units (Davis (2006)).

A generic feature of normal form games is that, for a given set of payoffs, there are often

multiple Nash equilibria. Therefore, the model does not satisfy the standard coherency

condition of a one-to-one mapping between the model primitives and outcomes. This is

problematic for identification and estimation. The literature has taken three approaches

to deal with multiple Nash equilibria. The first approach is to introduce an equilibrium

selection mechanism that specifies which equilibrium is picked as part of the econometric

model. Examples include random equilibrium selection in Bjorn and Vuong (1984) and the

selection of an extremal equilibrium, as in Jia (2008). The second approach is to restrict

attention to a particular class of games, such as entry games, and search for an estimator

which allows for identification of payoff parameters even if there are multiple equilibria. For

example, Bresnahan and Reiss (1990, 1991) and Berry (1992) study models in which the

number of firms is unique even though there may be multiple Nash equilibria. They propose

estimators in which the number of firms, rather than the entry decisions of individual agents,

is treated as the dependent variable. A third method, proposed by Tamer (2002), uses bounds

to estimate an entry model. The bounds are derived from the necessary conditions for pure

strategy Nash equilibria, which say that the entry decision of one agent must be a best

response to the entry decisions of other agents. Bounds estimation has also been used by

Ciliberto and Tamer (2009), Pakes, Porter, Ho, and Ishii (2005), and Andrews, Berry, Jia

(2005). Berry and Tamer (2006) and Berry and Reiss (2007) survey the econometric analysis

of discrete games.
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In this paper, we study identification and estimation of discrete complete information

games, explicitly allowing for both multiple and mixed strategy equilibria. We propose a

simulation-based estimator for these games. The model primitives include player utilities

and an equilibrium selection mechanism which determines the probability that a particular

equilibrium of the game is played. Using these primitives, we define a Method of Simulated

Moments (MSM) estimator. We exploit recent algorithms that compute all of the equilibria

for general discrete games (see McKelvey and McLennan (1996)). Finding the entire set

of Nash equilibria is computationally expensive in all except the most simple games. For

example, in a game of five players with two actions each, we have found that it may take up

to 20 minutes of CPU time on a 3.0 GHz single processor workstation to compute all Nash

equilibria. Therefore, we construct a smooth simulator for our model using an approach

related to work on importance sampling by Ackerberg (2009) and Keane and Wolpin (1997,

2001). As we shall demonstrate in Section 3, this algorithm significantly reduces the com-

putational burden of estimation and can be easily implemented as a parallel process. In a

Monte Carlo study, we find it takes less than a day of CPU time to construct estimates and

standard errors for our model. We provide Monte Carlo evidence that our estimator works

well even with moderately size samples. Finally, we apply our framework to study entry in

an asymmetric first-price auction model. We study the strategic decision of contractors to

bid on highway repair projects in California, estimating both the payoffs to the entry game

and an equilibrium selection mechanism.

Our approach makes several contributions to the literature on estimating static discrete

games. First, our approach can be applied to any normal form game of complete information.

Several of the previous approaches in the literature restrict attention to specific classes of

games, such as entry games or games with strategic complementarities. Also, our estimator

allows agents to play mixed strategies. In Section 2, we demonstrate that unless strong re-

strictions are made on the underlying payoffs or on the support of the error terms, a discrete

game model predicts mixed strategy equilibrium with strictly positive probability. Some

research argues that mixed strategy equilibria are more likely to occur than pure strategies

in some games. For example, in their study of penalty kicks, Chiapporri, Groseclose, and

Levitt (2002) find evidence in favor of mixed strategies. Levin and Smith (2001) conduct

an experimental study of entry in auctions and find evidence in favor of the mixed strategy

entry equilibrium compared to the pure strategy entry equilibrium. In experimental studies,

El-Gamal and Grether (1995) and Shachat and Walker (2004) both found that mixed strat-

egy equilibria can be consistent with an unobserved mixture of Bayesian learning by players.

While mixed strategy equilibria can be accounted for in a number of current estimation algo-

rithms for the mean utility parameters that work off Nash equilibrium of a game, including
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Pakes, Porter, Ho and Ishii (2005), our estimator is more efficient and also accounts for the

equilibrium selection mechanism.

Second, we explicitly model and estimate the equilibrium selection mechanism. McKelvey

and McLennan (1997, 1997) have established that normal form games generically have large

numbers of Nash equilibria that increase at an exponential rate as the number of players

and/or actions grow. Estimating the selection mechanism allows the researcher to simulate

the model, which is central to performing counterfactuals. This contrasts with the earlier

literature on discrete games, which propose estimators that do not specify which equilibrium

to select, making it impossible to simulate the model.

Understanding how equilibria are selected in actual plays of a game is also a topic of

independent interest. There is a large and influential literature on refinements of the Nash

equilibrium solution concept, such as trembling hand perfection or stability. However, there

may be a large number of Nash equilibria which satisfy even the strongest refinements.

Currently, there is no generally accepted method in economic theory for selecting between

alternative equilibria to a normal form game. As a result, in some applications, the usefulness

of game theory may be limited because the economist is forced to either make simplifying

assumptions which guarantee a unique outcome or propose an ad hoc rule for selecting

between multiple equilibria. We contribute to the literature by taking an empirical approach

to the problem of equilibrium selection. We believe that an empirical approach may be useful

given the lack of theory for selecting between alternative equilibria in many applications.

Our third contribution is to propose conditions for the semiparametric identification of

both the structural parameters underlying the payoff functions and the parameters of the

equilibrium selection mechanism. We propose two separate sets of conditions. The first

identification strategy is based on an identification at infinity argument. Here we suppose

that the structural utility parameters can be defined as a linear index, and that the covariates

have a sufficiently rich support. We demonstrate that it is possible to identify the structural

parameters of our model by examining choice behavior for sufficiently large values of the

covariates. The second strategy is based on finding an appropriate exclusion restriction. For

example, if there are covariates that shift the utility of one player, but can be excluded from

the utility of another player, then we demonstrate that both the payoffs and the equilibrium

selection mechanism are locally identified. For example, in an entry game, we would search

for a covariate that shifts the profitability of one firm but that can be excluded from the

profits of all other firms. In oligopoly models, profits typically depend on a firm’s costs,

actions, and the actions of other firms in the market. The costs of competing firms are

typically excluded from profits. Therefore, if a researcher can find firm specific cost shifters,

our approach demonstrates that the model is identified. Firm specific cost shifters are
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commonly used in empirical work. For example, Jia (2008) and Holmes (2008) demonstrate

that distance from firm headquarters or distribution centers is a cost shifter for big box

retailers such as Walmart.

Both exclusion restrictions and index restrictions have been previously used to identify

econometric models of discrete games. Bresnahan and Reiss (1991) and Tamer (2002) use

these restrictions to identify latent utility parameters in two by two games. Bresnahan and

Reiss (1991) show without any restrictions, all outcomes are observationally equivalent in

games other than two by two games. To the best of our knowledge, we are the first to use

these restrictions to identify both payoffs and the equilibrium selection mechanism in general

normal form games.

Finally, we consider an application to entry in auctions, where researchers have not

formally treated the possibility of multiple equilibria to the auction game (see Bajari and

Hortacsu (2003) and Athey, Levin, and Seira (2008)). We construct a data set of bidder

entry into procurement auctions for highway paving projects in California. This application

fits our modeling assumptions well. First, contractors’ entry decisions can reasonably be

modeled as a simultaneous move game. Contractors are prohibited by antitrust law from

communicating before submitting their bids, which is enforced by the threat of both civil and

criminal penalties. Second, the dependent variable in our model is the decision to bid for a

single, precisely specified construction project with a fixed duration. In our application, we

find that backlog and other dynamic factors are fairly minor in explaining bidding behavior.

Thus, we argue that our entry decision can be reasonably modeled as static, isolated instances

of the entry game. In other applications, entry decisions will involve competing in a market

for an indeterminate period of time, which suggests that allowing for a dynamic model is

important.

The focus of our application is the estimation of the equilibrium selection mechanism.

We allow the probability that a particular equilibrium is observed to depend upon whether

the equilibrium is in pure strategies, maximizes joint profits, has the highest Nash product

among pure strategies, and whether it is dominated. To the best of our knowledge, this is

the first empirical test of alternative criteria for equilibrium selection in a normal form game.

2 The Model

The model is a simultaneous move game of complete information, commonly referred to as

a normal form game. There are i = 1, . . . , N players, each with a finite set of actions Ai.

Define A = ×iAi and let a = (a1, . . . , aN) denote a generic element of A. Player i’s von

Neumann-Morgenstern (vNM) utility is a map ui : A→ R, where R is the real line. Let πi
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denote a mixed strategy over Ai. A Nash equilibrium is a vector π = (π1, . . . , πN) such that

each agent’s mixed strategy is a best response.

Following Bresnahan and Reiss (1990, 1991), assume that the vNM utility of player i

when the action profile of all players is a can be written as:

ui(a, x, θ1, εi) = fi(x, a; θ1) + εi(a). (1)

We will sometimes abuse notation and write ui(a) instead of ui(a, x, θ1, εi). In Equation (1),

i’s vNM utility from action a, ui(a), is the sum of two terms. The first term is a function

fi(a, x; θ1), which depends on a, the vector of actions taken by all of the players, covariates

x, and parameters θ1. The second term is εi(a), a random preference shock. The term

εi(a) reflects information about utility that is common knowledge to the players, but not

observed by the econometrician. Note that the preference shocks depend on the entire vector

of actions a, not just the actions taken by player i. In our model, the εi(a) are assumed to

be i.i.d. with a density gi(εi(a)|θ2) and joint distribution g(ε|θ2) =
∏

i

∏
a∈A gi(εi(a)|θ2). In

much of the literature, a different assumption is used, where stochastic shocks are only a

function of player i’s own actions. We could easily modify our estimator to allow the εi(a)

to only depend on the actions of i or to drop the independence assumption, for example by

including random effects to account for unobserved heterogeneity. We discuss the stochastic

assumption of the error terms in more detail in our section on identification.

Let ui = (ui(a))a∈A denote the vector of utilities for player i, and let u = (u1, . . . , uN).

Given that there may be more than one equilibrium for a particular u, let E(u) denote the

set of Nash equilibria. We now introduce a mechanism for how a particular equilibrium is

selected in the data. We let λ(π; E(u), β) denote the probability that equilibrium π ∈ E(u)

is selected, where β is a vector of parameters. In order for λ to generate a well-defined

distribution it must be the case that, for all u and β:∑
π∈E(u)

λ(π; E(u), β) = 1.

Economic theory and the specifics of a particular application may suggest a potential

model for λ. For example, the researcher may hypothesize that the probability that an

equilibrium is played may depend on whether it is in pure strategies, Pareto dominated or

maximizes the sum of the utilities of players in the game. Given π ∈ E(u), define the vector
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y(π, u) as follows:

y1(π, u) =

1 if π is a pure strategy equilibrium,

0 otherwise.
(2)

y2(π, u) =

1 if π is Pareto dominated,

0 otherwise.
(3)

y3(π, u) =

1 if (
∑

i

∑
a π(a)ui(a))− û = 0,

0 otherwise,
(4)

where π(a) =
∏

i πi(ai) and û = maxπ′∈E(u) {
∑

i

∑
a π
′(a)ui(a)}.

A parsimonious, parametric model of λ is then:

λ(π; E(u), β) =
exp(β · y(π, u))∑

π′∈E(u) exp(β · y(π′, u))
. (5)

Note that in the denominator in (5) the sum is taken over all π′ ∈ E(u). If β1 is greater

than zero, this means that a pure strategy equilibrium is more likely to be selected, all else

held constant. This assumption is implicity made in the bounds estimation literature on

games which assumes that only pure strategy equilibrium are observed. If β2 < 0, then

Pareto dominated equilibrium are less likely to be observed. In economic theory, researchers

frequently rule out such as equilibrium as a prior implausible. Finally, if β3 > 0, then the

equilibrium which maximizes joint payoffs is more likely to be observed and equilibrium

which results in much lower total utility are less likely. This assumption is sometimes used

in the theoretical literature on collusion or the empirical literature on entry.

A unique aspect of including λ in our model is that we explicitly estimate how equilibrium

is selected rather than impose an ad hoc rule for selecting an equilibrium. While there is

a large literature on refinements to normal form games, even the strongest refinements do

not rule out enough equilibria to make most discrete games give a unique prediction. Our

framework allows the researcher to treat equilibrium selection as an empirical problem. By

estimating β, we can find which equilibrium best matches the outcomes observed in the data.

Combining the elements of the model together, we obtain the following expression for

the probability of observing a specific action profile in a play of the game:

P (a|x, f, λ) =

∫  ∑
π∈E(u(f,ε),x)

λ (π; E (u (f, ε) , x))
(∏

N
i=1π(ai)

) g(ε)dε. (6)
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Holding a draw of the error terms fixed, the utility of the agents can be written as

u(x, θ, ε) = fi(a, x; θ1) + εi(a)

This defines the payoffs in the normal form game. We can then compute the equilibrium

set E(u(f, ε), x), which appears in the index of the summation. Next, we sum over all

of the π ∈ E(u(f, x, ε, θ1)) which are elements of the equilibrium set. For a particular

equilibrium,
∏

N
i=1π(ai) is the probability that a is observed. We weight these terms by

λ (π; E(u(f, x, ε, θ1)), β), the probability that a particular equilibrium is observed.

To evaluate Equation (6) it is necessary to compute the set E(u). McKelvey and McLen-

nan (1996) survey the available algorithms in detail. The free, publicly available software

package, Gambit, has routines that can be used to compute the set E(u) using these meth-

ods.1 Finding all of the equilibria to a game is not a polynomial time computable problem.

However, the available algorithms are fairly efficient at computing E(u) for games of mod-

erate size. Readers interested in the details of the algorithms are referred to McKelvey and

McLennan (1996). In the next sections, we shall take the ability to compute E(u) as given. In

reality, the computation burden for finding E(u) remains large for moderate to large number

of players and actions, and increases exponentially with the number of players and actions.

For example, Turocy (2008) tabulates average runtimes to compute all equilibria for various

combinations of players and actions. The Gambit routine that we use computes both pure

strategy and mixed strategy Nash equilibria by solving systems of polynomial equations and

inequalities. Inequality solutions to the polynomial system are searched by enumeration.

Equality solutions to the polynomial system, which correspond to mixed strategy equilibria,

are searched through the use of a homotopy method.

2.1 Discussion

2.1.1 Mixed Strategies

Allowing for mixed strategies in our framework is necessary if the error term has large enough

support. As a result, our estimator would be ill-defined if we restricted attention to pure

strategy equilibria. Consider the well-known game of matching pennies, illustrated in the

figure below:

Matching Pennies

1Gambit can be downloaded on the web from http://econweb.tamu.edu/gambit/.
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H T

H (1,-1) (-1,1)

T (-1,1) (1,-1)

In matching pennies, each player simultaneously chooses heads (H) or tails (T). If the

choice of strategies match, then player one receives utility of one and player two receives a

utility of negative one. If the strategies differ, the payoffs are reversed. The only equilibrium

of this game is in mixed strategies with each player placing probability 1/2 on H and 1/2 on

T. Consider games that have payoffs in a neighborhood of matching pennies by perturbing

the payoffs as follows:

Perturbed Game
H T

H (1+ε1(H,H),-1+ε2(H,H)) (-1+ε1(H,T ),1+ε2(H,T ))

T (-1+ε1(T,H),1+ε2(T,H)) (1+ε1(T, T ),-1+ε2(T, T ))

For sufficiently small, but still non-zero, values of ε it can easily be verified that there is

no pure strategy equilibrium to this game. For example, (H,H) cannot be a pure strategy

equilibrium since player 2 would have an incentive to deviate and play T. Thus, there is an

open set of payoffs for which discrete games only has an equilibrium in mixed strategies. As

a result, our model must accomodate the possibility of equilirium in mixed strategies. If

we only allowed for pure strategies, the model would have no equilibrium with probability

greater than zero and would not be well defined. It is straightforward to show that this

result can be generalized to games with more players and more strategies.

Previous research on complete information games generally limits attention to entry

games (see Bresnahan and Reiss (1990, 1991), Berry (1992) and Tamer (2002)). These

papers carefully restrict payoffs to guarantee the existence of a pure strategy equilibrium.

Thus, the estimators proposed in these papers, which restrict attention to pure strategies,

do not need to accommodate mixed strategies. However, since we are interested in a more

general specification of payoffs, we must allow for mixed strategies.

2.1.2 Equilibrium Selection

A unique aspect of our framework is that we include the equilibrium selection mechanism,

λ, in our econometric model. The inclusion of λ is useful for two reasons. First, there

are frequently multiple Nash equilibria to a normal form game. Equilibrium selection is an

extremely important question in theoretical economics, however there is very little empirical

work in this area outside of experiments. Using our modeling framework, we are able to
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empirically investigate equilibrium selection, which is important given that economic theory

may provide little guidance about which equilibrium to select.

Second, including λ specifies the probability of each equilibrium and therefore allows us to

simulate the model. This is necessary for both the construction of our estimator in the next

section and for counterfactual analysis. The bounds approach to games has the advantage of

remaining agnostic about λ, other than assuming that all equilibrium are in pure strategies.

However, in the bounds approach, the researcher only estimates fi(a, x; θ1). This approach

typically does not allow the researher to estimate g(ε; θ2 /) and λ. As a result, the researcher

lacks the infomation to compute P (a|x, f, λ, θ, β). Therefore the researcher cannot simulate

the model, which greatly limits the scope of applications that can be considered.

Consider the pure coordination game below, where player one chooses {T,B}, top or

bottom, and player 2 chooses {L,R}, left or right.

Coordination Game
L R

T (1,1) (0,0)

B (0,0) (1,1)

This game has three equilibria (T,L), (B,R), and a mixed strategy equilibrium where each

player plays each strategy with probability 1/2. Economic theory provides little guidance as

to which equilibrium is most likely in this game. It does not seem possible to use theory to

predict whether the (T,L) or (B,R) equilibrium is most plausible, since equilibrium generate

the same payoffs and only differ in the names assigned to the strategies. The inability

of economic theory to select a unique equilibrium is not specific to this example. Many

games generate multiple equilibria that satisfy the best known refinements in the theoretical

literature.

Our approach allows for an empirical approach to equilibrium selection. Suppose that

the payoff matrix is known and that the economist has access to data on repeated plays

of this game. With a sufficiently large number of observations, the economist will be able

to precisely estimate the probability of observing the strategy pairs (T,L), (T,R), (B,L),

and (B,R). In this example, knowing λ requires the economist to specify the probability

with which each of the three equilibria is played. Since the economist has knowledge of

four probabilities, three of which are linearly independent, it follows that λ is identified.

Therefore, while economic theory cannot be used to determine equilibrium selection, our

simple example suggests that an empirical approach to this problem may be more fruitful.

In our identification section, we investigate conditions under which both the equilibrium

selection mechanism and the payoff matrix can be simultaneously identified. We demon-

strate, similar to Bresnahan and Reiss (1991) that in general our problem is underidentified.

10



However, we also describe two sets of sufficient conditions for identification that may be

useful in some applications.

2.1.3 Comparison with Incomplete Information Games

An alternative approach used in the applied literature is to assume that the error terms only

depend on player i’s own actions and are private information. Incomplete information games

are attractive for empirical work since it is often possible to estimate these models using a

simple two-step procedure.2 However, discrete games with incomplete information have a

very different equilibrium structure than games with complete information. In a coordination

game, Bajari, Hong, Krainer, and Nekipelov (2006) use numerical methods to show that the

number of equilibria decreases as the number of players in the game increases. In a complete

information game, by comparison, the average number of Nash equilibria will increase as

players are added to the game (see McKelvey and McLennan (1996)). Thus, the assumption

of incomplete information refines the equilibrium set. The properties of this refinement are

not completely understood and is an active area of research, see Brock and Durlauf (2001),

McKelvey and Palfrey (1995), and Sannikov (2007). We believe that evaluating the merits

of both games with complete and incomplete information is an important topic for future

research.3

2.2 Examples of Discrete Games

The model that we propose is quite general and could be applied to many discrete games

considered in the literature. We discuss three examples: entry, technology adoption with

network effects, and peer effects. The first example is static entry into a market (see Bres-

nahan and Reiss (1990, 1991), Berry (1992), Tamer (2002), Ciliberto and Tamer (2009), and

Manuszak and Cohen (2004)). In applications of entry games, the economist observes a cross

section of markets and the players correspond to a set of potential entrants. The potential

entrants simultaneously choose whether to enter: ai = 1 denotes a decision by i to enter

the market and ai = 0 not to enter the market. In empirical work, the profit function, fi,

typically takes the form:

fi =

θ1 · x+ δ
∑

j 6=i 1{aj = 1} if ai = 1,

0 if ai = 0.
(7)

2See Pesendorfer and Schmidt-Dengler (2003), Aguirregabiria and Mira (2007), Brock and Durlauf (2001),
Sweeting (2008), Bajari, Benkard and Levin (2007) and Bajari, Hong, Krainer and Nekipelov (2006).

3In addition, it may be easier to compute the set of all equilibria in games of complete information. See
Bajari, Hong, Nekipelov and Krainer (2004) for a discussion.
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In Equation (7) the mean utility from not entering is set equal to zero.4 The covariates x

are variables which influence the profitability of entering a market, such as the number of

consumers in the market, average income, and market-specific cost variables. The parameter

δ measures the influence entry by other firms on firm i’s profits. If profits decrease from

having another firm enter the market, then δ < 0. The error εi(a) captures shocks to

the profitability of entry that are commonly observed by all firms in the market, but are

unobserved to the econometrician. In applied work, it might be desirable to include a

market-specific random effect in εi(a) in order to account for common shocks to profitability.

A second example is technology adoption in the presence of network effects, as in Acker-

berg and Gowrisankaran (2006) who model the decision by banks in spatially separated

markets to adopt the Automated Clearing House (ACH) payment system. The players in

the game are the existing banks in some market. Let ai = 1 denote a decision to adopt ACH

and ai = 0 denote non-adoption. A priori, network effects are likely since the customers

of bank i are able to transfer funds to customers of bank j if both banks adopt ACH. An

empirical model of network effects could take the form:

fi =

θ1 · xi + δ
∑

j 6=i 1{aj = 1} · cj · ci if ai = 1,

0 if ai = 0.
(8)

In Equation (8), xi denotes some factors which influence the costs and benefits to adoption

by firm i, such as the number of customers of bank i and their characteristics (e.g. large

corporate or government agencies commonly use ACH to make automatic payroll deposits).

The term ci is the current number of customers of bank i. The term δ
∑

j 6=i 1 {aj = 1} · cj · ci
captures the network effect. The marginal benefit of i’s adoption depends on ci · cj.

A third example is peer effects, as in Manski (1993) and Brock and Durlauf (2001, 2006).

A peer effect connotes a situation where there is a benefit from conforming to the average or

norm behavior. For example, consider the decision by a high school senior to take calculus.

The players in the game are all of the students who could potentially take the class. Let

ai = 1 if student i decides to take calculus and ai = 0 otherwise. The utility of student i is:

fi =

θ1 · xi + δ
∑

j 6=i 1{aj = 1} · sj if ai = 1,

0 if ai = 0.
(9)

In Equation (9), the covariates xi could include terms that shift a student’s incentives to

take calculus, such as the educational status of her parents. The term si denotes the score

4We formally discuss this normalization in our section on identification.
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of student i on a standardized achievement test and is commonly used to proxy for ability.

If δ > 0, the term δ
∑

j 6=i 1{aj = 1} · sj captures a positive peer effect, i.e. the utility to

student i from taking calculus in an increasing function of the number of other students who

take calculus, interacted with the test scores of student i’s peers.

The modeling framework we propose could be applied beyond these three examples. In

principal, the framework above could be used to model any discrete choice where 1.) the

payoffs of agents are interdependent, 2.) decisions are made simultaneously, and 3.) there

is complete information. If the number of players or actions is very large, our estimator

may not be computationally feasible due to the computational cost of solving for the entire

equilibrium set. However, in the next section we describe an estimator which reduces the

computational burden of estimation through the use of a parallel algorithm.

3 Simulation

Next, we propose a computationally efficient Method of Simulated Moments (MSM) esti-

mator for θ and β, the parameters governing agents’ payoffs and the equilibrium selection

mechanism, respectively. As in section 2, let P (a|x, θ, β) denote the probability that a vec-

tor of strategies, a = (a1, . . . , aN), is observed conditional on x, θ, and β. MSM estimation

requires an accurate and computationally efficient method for simulating P (a|x, θ, β), which

can be written as:

P (a|x, θ, β) =

∫  ∑
π∈E(u(x,θ,ε))

λ (π; E(u(x, θ1, ε)) , β)

(
N∏
i=1

πi(ai)

) g(ε|θ2)dε. (10)

In principal, this integral could be simulated using a straightforward Monte Carlo procedure.

First, pseudo random values of the random preference shocks ε = (ε1, . . . , εN) are drawn from

the distribution g(ε|θ2). Second, for each pseudo random error draw ε = (ε1, . . . , εN), utilities

are computed using Equation (1); we denote the utilities as u(x, θ, ε) to emphasize their

dependence on the parameters, covariates and preference shocks. Third, the equilibrium set

E(u(x, θ, ε)) is computed. And finally, the probability that an event is observed is computed

by summing over the equilibria π ∈ E and computing 1.) λ(π), the probability that the

equilibrium π is selected, and 2.)
∏N

i=1 πi(ai), the probability that a is observed given π.

By averaging over a large number of draws of ε, the economist could precisely simulate

P (a|x, θ, β).

Unfortunately, this straightforward approach is not practical for applied work in all but

the simplest games. The reason is that druing estimation, P (a|x, θ, β) must be simulated

for each candidate parameter value θ, β and each vector x that appears in the data. The
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equilibrium set E(u(x, θ, ε)) therefore must be computed a large number of times. We have

found that it may take up to 20 minutes to compute E(u(x, θ, ε)) for a 5 player game with

two strategies. As a result, the computational costs of this straightforward approach will

often be prohibitive in applied work.

In order to lower the computational burden of simulating P (a|x, θ, β), we borrow from

Keane and Wolpin (1997), Keane and Wolpin (2001) and Ackerberg (2009). First, we change

the variable of integration in Equation (10) from ε to u. Let h(u|θ, x) denote the density u,

conditional on θ and x. In many models, this density is trivial to compute and simulate. For

instance, suppose that the preference shocks εi(a) are i.i.d. standard normal with density

φ(·). Then, the density h(u|θ, x) is:

h(u|θ, x) =
∏
i

∏
a∈A

φ(ui(a)− fi(x, a; θ1)|0, σ)

which can be computed easily using standard programming packages.

If we change the variable of integration from ε to u, then Equation (10) becomes:

P (a|x, θ, β) =

∫  ∑
π∈E(u)

λ (π; E(u) , β)

(
N∏
i=1

πi(ai)

)h(u|θ, x)du. (11)

Our simulator uses importance sampling; therefore, we rewrite Equation (11) as:

P (a|x, θ, β) =

∫  ∑
π∈E(u)

λ (π; E(u) , β)

(
N∏
i=1

πi(ai)

) h(u|θ, x)

q(u|x)
q(u|x)du,

where q(u|x) is the importance density. For a given value of x, we draw a pseudo random

sequence u(s) = (u
(s)
1 , . . . , u

(s)
N ), s = 1, . . . , S of random utilities from the importance density

q(u|x). Each u
(s)
i is a vector of simulated utility indexes for all the possible action profiles

for player i. We then compute the equilibrium sets E(u(s)), a step which can be performed

in parallel across several CPU’s.

We can then simulate P (a|x, θ, β) as follows:

P̂ (a|x, θ, β) =
1

S

S∑
s=1

 ∑
π∈E(u(s))

λ(π; E(u(s)), β)
(∏

N
i=1πi(ai)

) h(u(s)|θ, x)

q(u(s)|x)
(12)

This simulator has three practical advantages for applied work. First, P̂ (a|x, θ, β) will be an

unbiased estimator of P (a|x, θ, β). Second, given the simulation draws u(s), the parameters
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θ and β do not enter into the expression for the equilibrium set E(u(s)). Therefore, when we

change the parameter values, it is not necessary to recompute the equilibrium set E(u(s)).

Exploiting this property will drastically reduce the time required to compute our estimator.

Third, this simulator is a smooth function of the underlying parameters. As a result, the

minimization of our MSM objective function will be numerically well behaved.5

The theory of importance sampling proves that P̂ (a|x, θ, β) is a smooth and unbiased

simulator for any choice of the importance density q(u(s)|x) that has sufficiently large support.

However, as a practical matter, it is important that the ratio h(u(s)|θ,x)
q(u(s)|x) does not become

too large. In order to ensure this, we need to make sure that the tails of the importance

density q(u(s)|x) are not too thin in a neighborhood of the parameter that minimizes our

MSM estimator. In our applied work, we have often constructed the importance density

q(u|x) by first estimating a version of the model in which the error terms ε = (ε1, . . . , εN)

are private information instead of common knowledge. We then use the method proposed

in Bajari, Hong, Nekipelov and Krainer (2004) to estimate the parameters of the private

information version of the model. This is an extremely simple estimation problem and can

be quickly programmed using a standard statistical package such as STATA. The importance

density q(u|x) is then set equal to the distribution of utilities conditional on x in the private

information version of the game.6

3.1 The Estimator

The economist observes a sequence (at, xt) of actions and covariates, t = 1, . . . , T . Equation

(12) can be used to form a maximum simulated likelihood estimator (MSL) for these obser-

vations. As is well known, MSL is biased for any fixed number of simulations. The number

of simulation has to increase to infinity as the sample size increases in order for MSL to

be consistent. In order to obtain
√
T consistent estimates with an asymptotic distribution

centered at zero, one needs to increase the number of draws S so that S√
T
→∞. If S√

T
→ c

for a constant c that is bounded away from 0, the MLS estimator is still
√
T consistent but

5 We note that while we follow Keane and Wolpin (1997), (2001) and Ackerberg (2009) in constructing
the importance sampler, its use in normal form game estimation is new. In addition, there is also a subtle
difference between our use of the importance sampling and its use by previous authors. The dynamic
discrete choice model in these earlier papers requires a complete random coefficient specification to allow the
importance sampler to reduce the computation burden. The complete information normal form game has
the interesting feature that it does not require a random coefficient specification for the importance sampler
to save on the computation burden of the estimator.

6This estimator can be performed in two stages. In the first stage, the economist flexibly estimates the
choice probabilities P (a|x) using standard methods. In the second stage, the economist assumes that these
estimated choice probabilities represent the agent’s equilibrium expectations. These choice probabilities are
then substituted into the utility function.
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the asymptotic distribution has a bias that is different from zero.7

Alternatively, one can estimate the parameters using MSM. An advantage of MSM is

that it generates an unbiased and consistent estimator for a fixed value of S. To form the

MSM estimator, enumerate the elements of A from k = {1, . . . ,#A}. Note that, because the

probabilities of all of the elements of a ∈ A must sum to one, one of these probabilities will

be linearly dependent on the others, so there are effectively #A−1 conditional moments. Let

wk (x) be a vector of weight functions, with dimension larger than the number of parameters,

for each k and let 1 (at = k) denote the indicator function that the tth vector of actions is

equal to k. The function P (k|x, θ, β) denotes the probability that the observed vector of

actions is k given x and the parameters θ and β. This probability is defined in Equation

(10). At the true parameters of the data-generating process the predicted probability of

each action equals its empirical probability for each action k:

E [1 (at = k)− P (k|x, θ, β)]wk (x) = 0.

Using the sample counterpart of the above expectation, we form a vector of #A−1 moments,

where the k-th element is defined by:

mk,T (θ, β) =
1

T

T∑
t=1

[1 (at = k)− P (k|xt, θ, β)]wk (xt) .

In practice, P (k|xt, θ, β) is evaluated by simulation using the importance sampler in Equa-

tion (12). For each xt, we draw a vector of S simulations u
(s)
t , where s = {1, . . . , S}, from

the importance density q(u|x). We assume that the simulation draws u
(s)
t are independent

over both t and s, and are independent of the data. The k-th moment condition is then

replaced by its simulation analog:

m̂k,T (θ, β) =
1

T

T∑
t=1

[
1 (at = k)− P̂ (k|xt, θ, β)

]
wk (xt) .

Then for a positive definite weighting matrix WT , the MSM estimator is:(
θ̂, β̂
)

= arg min
(θ,β)

m̂T (θ, β)′ ×WT × m̂T (θ, β) . (13)

The asymptotic theory for estimating discrete choice models using MSL and MSM is well

developed. See McFadden (1989), Pakes and Pollard (1989), or (Hajivassilou and Ruud

7In practice we have found that MSL can be useful for finding starting values for MSM. In our experience,
the likelihood function is more concave around the maximum than in the MSM estimator.
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1994) for detailed discussions.

4 Identification

Next, we develop two approaches to identification. To be clear, we are interested in conditions

under which it is possible to recover the unknown primitives of the model in Section 2: f(a, x)

and λ(x). We shall consider the identification of f(a, x) and λ(x) as general functions of

x. Therefore, we shall drop their dependence on θ and β. In the first approach, we provide

sufficient conditions to identify payoffs and the selection mechanism as the support of the

covariates grows large. The second approach considers identification based on agent-specific

payoff shifters. We first discuss two necessary restrictions on the data-generating process

that are familiar from the discrete choice literature. We also present some negative results

on identification before discussing the details of our approaches.

The results in section 4.3 show that, in general, the maximum number of equilibria can

be much larger than the number of moment conditions #A − 1, which means that the

equilibrium selection mechanism cannot be identified for a certain range of the distribution

of the random utility ui (x, ε). This section also justifies more restrictive forms, parametric or

semiparametric, of the equilibrium selection mechanism. Appendix B.4 also provides more

details.

4.1 Scale and Location Normalizations

Assumption 1. The payoffs of one action for each agent are fixed at a known constant.

This restriction is similar to normalizing the mean utility from the outside good to a

constant, usually zero, in a standard discrete choice model. It is clear from the definition

of a Nash equilibrium that adding a constant to all deterministic payoffs does not perturb

the set of equilibria, so a location normalization is necessary. A scale normalization is also

necessary, as multiplying all deterministic payoffs by a positive constant does not alter the

set of Nash equilibria either. This restriction is subsumed in the following assumption about

the distribution of the error terms.

Assumption 2. The joint distribution of ε = (εi(a)) is independent and known to all agents

and the econometrician.

Assumption 2 allows εi(a) to be any known joint parametric distribution. For expositional

clarity, we shall assume that it has a standard normal distribution. Even in the simplest

discrete choice models, it is not possible to identify both fi (a, x) and the joint distribution of
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the εi (a) nonparametrically. Consider a standard binary choice model where the dependent

variable is 1 if the index u(x) + ε is greater than zero, i.e.

y = 1(u(x) + ε > 0) (14)

All the population information about this model is contained in the conditional probability

P (y = 1|x), the probability that the dependent variable is equal to one given the covariates

x. If the CDF of ε is G, then Equation (14) implies that:

P (y = 1|x) = G(u(x)), (15)

Obviously, only the composition of G(u(x)) can be identified. It is therefore necessary to

make parametric assumptions on one part (e.g. G or u) in order to identify the other part.

For instance, if G is the standard normal CDF, we can perfectly rationalize the observed

moments in Equation (15) by setting u(x) to the inverse CDF evaluated at P (y = 1|x).

Therefore, we will assume that the error terms are independently and normally distributed.

4.2 Difficulty of Nonparametric Identification

A model is said to be identified if the model primitives can be recovered given the probability

distributions the economist can observe. In a normal form game, the available population

probabilities are P (a|x) for a ∈ A. Again, the primitives we wish to identify are f(a, x) and

λ(x).

We can generalize Equation (10) by writing P (a|x) in a way that does not hinge on the

specific parametric forms implicitly assumed in Section 2.

P (a|x, f, λ) =

∫  ∑
π∈E(u(f,ε),x)

λ (π; E (u (f, ε) , x))
(∏

N
i=1π(ai)

) g(ε)dε (16)

In Equation (16), we write the vNM utilities as u(f, ε) to remind ourselves that they are a

sum of the mean utilities f(a, x) and the shocks ε. Holding x fixed we can view Equation

(16) as a finite number of equations that depend on the finite number of parameters, f(a, x)

and λ(x), where λ(x) implicily defines the vector of equilibrium selection probabilities for

all π in E . Denote this system as P (a|x) = H(f(a, x), λ(x)) where H is the map implicitly

defined by Equation (16) across all the action profiles a. We drop one choice probability for

each player when writing H; not doing so introduces a linear dependence between the rows

of this system, since choice probabilities sum to one. In what follows, we shall invoke the

following assumption:
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Assumption 3. The map H is continuously differentiable. The Jacobian formed by differ-

entiating H with respect to the parameter vectors f(a, x) and λ(x) is denoted by DHf,λ(x).

Given the probabilities P (a|x), suppose that f 0(a, x) and λ0(x) satisfy Equation (16). If

no other pairs of f(a, x) and λ(x) also satisfy (16),
(
f 0(a, x), λ0(x)

)
is said to be globally

identified. On the other hand,
(
f 0(a, x), λ0(x)

)
are said to be locally identified if there

exists an open neighborhood Nx of
(
f 0(a, x), λ0(x)

)
such that there is no other vector(

f̃(a, x), λ̃(x)
)
∈ Nx,

(
f̃(a, x), λ̃(x)

)
6=
(
f 0(a, x), λ0(x)

)
, that also satisfies Equation (16).

P (a|x) is analogous to the reduced form parameters and (f(a, x), λ(x)) to the structural

parameters in the terminologies of Rothenberg (1971) and Gale and Nikaido (1965). The

vector (f(a, x), λ(x)) is called a regular point of DHf,λ(x) if the rank of DHf,λ(x) is constant

in a neighborhood of (f(a, x), λ(x)). However, H is usually highly nonlinear. Theorem 6 in

Rothenberg (1971) states that a sufficient condition for
(
f 0(a, x), λ0(x)

)
to be locally identi-

fied is that the rank of DHf,λ(x) is equal to the total number of parameters in (f(a, x), λ(x))

at
(
f 0(a, x), λ0(x)

)
. Sufficient conditions for global identification are more difficult. Gale

and Nikaido (1965) require the existence of a square submatrix W of DHf,λ(x) with dimen-

sion of (f(a, x), λ(x)), such that W has a positive determinant and that W +W ′ is positive

definitive throughout the parameter space. While we can possibly check the rank identifica-

tion condition of DHf,λ(x) for low dimension two by two games, it is difficult to do so for

general games. At a minimum, this would require us to characterize the set of all equilibria

that can be reached. This can be difficult in games with multiple players and strategies.

A necessary condition for the full rank of DHf,λ(x) is the order condition, which requires

that the number of P (a|x) in forming DHf,λ(x) is larger than the number of parameters in

(f(a, x), λ(x)). The order condition is easier to investigate in general. To fix ideas in what

follows, consider the simple game in table 1. Note that for each player, we have normalized

the payoff of one action to zero.

Table 1: Example of two by two game
L R

T (0, 0) (0, f2(TR, x) + ε2(TR))
B (f1(BL, x) + ε1(BL), 0) (f1(BR, x) + ε1(BR), f2(BR, x) + ε2(BR))

We first note that, even if the selection mechanism λ is known, a two by two game has

more utility parameters that need to be identified than the number of moment conditions

that can be observed in the data. Holding a given realization of x fixed, the econome-

trician observes four conditional moments: P (TL|x), P (TR|x), P (BL|x) , P (BR|x) . How-

ever, because the probability of the actions must sum to one, there are effectively three

moments that the econometrician can use. Meanwhile, we have four utility parameters,
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f1 (BL, x) , f1 (BR, x) , f2 (TR, x) , f2 (BR, x) that need to be identified. Since there are more

free parameters than moments, the model is unidentified. Note that variation in x does not

help to reduce the total number of parameters that need to be identified because we place

no restrictions on how mean utility varies with x.

The result above can easily be generalized to generic games. Consider a game with N

players and #Ai strategies for player i. Holding x fixed, the total number of mean utility

parameters fi (a, x) is equal to N ·
∏

i #Ai −
∑

i

∏
j 6=i #Aj. This is the cardinality of the

number of strategies, times the number of players, minus the required normalizations. The

number of moments that the economist can observe, conditional on x, is only
∏

i #Ai − 1.

If each player has at least two strategies, then for each given x the difference between the

number of utility parameters, fi, to estimate and the number of available moment conditions

is bounded from below by (
(N − 1)− N

2

)∏
i

#Ai + 1 ≥ 0.

Therefore, the model is underidentified.

4.3 Identification at Infinity

The first approach we propose is based on a strategy of identification at infinity. Suppose

the covariates have full support and the mean utilities are defined by a linear index of the

covariates with suitable sign restrictions on the coefficients. That is, fi(a, x) = xai β
a
i for all

ai for which fi(a, x) is not normalized to zero. Identification at infinify strategies are often

needed for linear index models of discrete outcomes, e.g. Manski (1988), Heckman (1990),

and Tamer (2002). We demonstrate this approach can also be applied to discrete games.

The identification strategy involves two steps. In the first step, using arguments similar

to Tamer (2002), we identify the mean utilities by focusing on a path of the covariate values

that gives a unique equilibrium with probability close to 1. We then perturb the covariates

locally to identify the utility parameters, all of which enter fi linearly. In the second step,

under an invariance assumption on the equilibrium selection mechanism, we identify the

equilibrium selection probabilities from the observable choice probabilities.

As a simple example, consider the two by two game in Table 1 in subsection 4.2, where

ε1(TL) = ε1(TR) = ε2(TL) = ε2(BL) = 0. Assume that X = {x1, x2} has nondegenerate

full support on R2. Since payoffs are defined as a linear index, it is possible to find a

sufficiently large value of x2 such that player two will play L with probability approaching

one. For x2 sufficiently large, the probability that player one chooses B is: P (B|x) =

P (f1(BL, x1) + ε1(BL) > 0). Note that this is a single-agent decision problem: x2 is such
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that player two is going to play L regardless of player one’s decision. Therefore, player one

will choose B if and only if the threshold condition above is satisfied. As long as ε1(BL) is

drawn from a known distribution with a strictly increasing cumulative distribution function,

e.g. a standard normal distribution Φ(·), the value of f1(BL, x1) can be recovered by inverting

the empirical analog of P (B|x):

P (B|x) = P (ε1(BL) > −f1(BL, x1)) = Φ(f1(BL, x1)),

The uniqueness of f1(BL, x1) is guaranteed by the monotonicity of Φ(·).
An analogous argument can be made to identify all of the unknown payoff parameters

by a suitable choice of either x1 or x2. Once we have recovered all the payoff parameters,

the only unknowns are those governing the equilibrium selection mechanism. We restrict

attention to a region where the influence of the εi on payoffs is small. In this region, the

utility function is known by the argument in the previous paragraph. The unknown part

of the model is λ. Since there are fewer equilibrium than non-colinear moments, P (a|x), the

parameters of λ are identified. Our invariance assumption guarantees that identification in

this region insures identification globally. The rest of this section we present formal results

for general N -player games. The appendix contains the technical proofs and gives more

details of how the results apply to two by two games.

Assumption 4. For any i = 1, . . . , N and action profile k−i ∈ A−i, there exists a set T k−i

−i

of covariates x such that lim
||x||→∞,x∈T

k−i
−i

P (a−i = k−i|x) = 1.

This assumption requires that for each player i, the covariates x can be shifted along

a dimension such that each element in k−i is a dominant strategy for each player in −i.
This assumption allows for identifying fi (ai, a−i, x) = xai β

a
i as a single agent discrete choice

problem holding a−i fixed at these values of the covariates x.

The next assumption, requires that utilities recovered from this path can be extended

to the entire range of covariates using the linearity assumption on the deterministic payoff

functions,

Assumption 5. For all i and all a ∈ A such that the mean utility fi (a, x) is not normalized,

there exists some L0 > 0 such that

inf
L≥L0

min eigE
[
xai x

a
i |x ∈ T

a−i

−i , ||x|| ≥ L
]
> 0.

Theorem 1. Under assumptions 1, 2, 4 and 5, βai and hence fi(a, x) is identified up to the

normalization in Assumption 1, for all i and all a for each x.
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The next assumption is an invariance property that is required to identify the equilibrium

selection probabilities.

Assumption 6. The equilibrium selection probabilities depend only on the latent utility

indices: ρ (x, ε) = ρ (u (a, x, ε)), and are scale invariant with respect to the latent utility

indexes, i.e. for all α > 0, ρ (αu (a, x, ε)) = ρ (u (a, x, ε)).

The last assumption requires that the total utility indexes can be approximated arbitrarily

well by the observable components.

Assumption 7. There exists a set T such that for all δ > 0:

lim
|x|→∞,x∈T

min
i,a

P

[∣∣∣∣ fi (a, x)

ui (a, x, ε)
− 1

∣∣∣∣ < δ

]
= 1. (17)

Theorem 2. In addition to the conditions in theorem 1, under Assumptions 6 to 7, the

equilibrium selection probabilities ρ (u (x, ε)) are all identified from the observed choice prob-

abilities whenever the cardinality of E (u (x, ε)) is less than or equal to #A− 1.

Remark: Note that the conditions in this theorem depend on the numbers of players and

strategies, and generally also on the particular realization of u (x, ε). When the maximum

number of equilibria for a game is less than or equal to #A− 1, the condition in the above

theorem holds uniformly for all realizations of u (x, ε). Such is the case, for example, for two

by two games and for games with two players each equipped with four strategies.

4.4 Exclusion Restrictions

The results of the previous section are not surprising in light of Bresnahan and Reiss (1991)

and Pesendorfer and Schmidt-Dengler (2003), who demonstrate failures in identification of

discrete games. As we noted in the introduction, the structure of our models is not unlike

treatment effect and sample selection models, with latent utilities f seem analogous to the

treatment equation and λ to the selection equation. It is well known that these simpler

models cannot be identified without exclusion restrictions. That is, we must search for

variables that influence one equation, but not the other. In what follows, we demonstrate

that a similar approach is possible in games.

The exclusion restrictions that we consider are covariates that shift the utility of agent i

but do not enter as arguments into uj(j 6= i) or the equilibrium selection mechanism λ. In

many applications, such covariates are not difficult to find.
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Assumption 8. For each agent i, there exists some covariate, xi that enters the utility of

agent i, but not the utility of other agents. That is, i’s utility can be written as fi(a, x̄, xi).

Furthermore, in addition to assumption 6, ρ (u (α, x, ε)) depends on u (α, x, ε) only through

a set of sufficient statistics of dimension M × (N − 1) where M is a constant that does not

depend on the number of players N .

The first part of Assumption 8 implies that there are agent i specific utility shifters. While

this Assumption is unlikely to be perfectly satisfied, to a first approximation it does seem

reasonable in many applications. The second part of Assumption 8 is a weak assumption

that will be satisfied, for example, if the equilibrium selection probabilities depend only

on the total utilities of all players in each equilibrium. This assumption does impose some

restrictions on λ. The function λ cannot depend freely on the utility indexes. Also, it cannot

grow with the number of covariates, otherwise variation in the covariates will increase the

number of parameters required to characterize the equilibrium selection mechanism.

Theorem 3. Suppose that Assumptions 1, 2, 11, 6 and 8 hold. If #xi are sufficiently large,

the necessary order condition is satisfied.

The intuition behind this theorem is quite simple. When K, the number of support

points of xi, increases, the number of conditional choice probabilities increases at the rate of

KN , which is larger than KN−1, the order of the number of utility and equilibrium selection

probability parameters. Our results demonstrate that identification is possible if we have

covariates that are indexed by the agent’s identity i. Such exclusion results are imposed

in most existing applications of discrete games. For example, consider empirical studies of

strategic entry. In the case of an airline deciding whether to serve a particular city-pair, one

such shifter could be the number of connecting routes that airline has at both endpoints,

or whether one or both of the cities is a hub for that airline. These covariates are typically

excluded from the payoffs of an airline’s competitors. Holmes (2008) and Jia (2008) study

entry decisions by large retailers such as Walmart and Kmart. Their analysis suggests that

a payoff shifter is the distance from the closest regional distribution centers or company

headquarters.

As a second example, consider technology adoption in the presence of network effects, as

in Ryan and Tucker (2009). Here employees within a firm decide whether to adopt a video-

conferencing technology on their personal computers. The benefit to any given employee of

adopting depends on the adoption decisions of other employees. Furthermore, the benefit of

using this technology varies with an employee’s rank in the firm, their geographic locale, and

their job function. All of these characteristics shift the benefits of adoption on an individual
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basis. For example, senior managing directors in equities are likely to have different payoffs

from using the network than a junior administrator in human resources.

Finally, we note that the maintained exogeneity assumptions used in our identification

results are quite strong. We assume that the only form of unobserved heterogeneity is

an iid shock to payoffs. However, it is quite straightforward to include random effects in

our econometric model by modifying the importance sampler to permit correlation between

the error terms. For example, in a study of entry, it will be natural to include market

specific random effect. In other applications, it will be natural to include an estimated

markup equation in fi. For example, in a differentiated product market, we may estimate

markups using Berry, Levinsohn, and Pakes (1995). This allows the economist to control

for unobserved cost and demand shocks.

There is a tradeoff between restricting the individual utility functions and restricting the

equilibrium selection mechanism. In two by two games, as seen in section 4.2, even when

the equilibrium selection mechanism is completely known, the mean utility functions are not

nonparametrically identified without restrictions. However, if the mean utility parameters

are all known, the three conditional choice probabilities will identify the (maximally) two

equilibrium selection probability parameters without imposing additional restrictions. For

general games with multiple players and multiple strategies, tables 10 and 11 in the appendix

show that the maximum number of equilibria typically exceeds the maximum number of mo-

ments available in the data. Therefore even when the mean utility parameters are completely

known, the equilibrium selection probabilities are not nonparametrically identified without

imposing additional restrictions.

5 Application

As an application of our estimator, we model strategic entry by bidders into highway pro-

curement auctions conducted by the California Department of Transportation (CalTrans)

between 1999 and 2000. Econometric modeling of entry has been of considerable interest

in empirical industrial organization; see Bresnahan and Reiss (1990, 1991), Berry (1992) ,

Mazzeo (2002), Tamer (2002), and Ciliberto and Tamer (2009). Bajari and Hortacsu (2003),

Li and Zheng (2009), Athey, Levin and Seira (2008) and Krasnokutskaya and Seim (2005)

have studied entry in bidding markets.

Bidder entry in highway procurements is an attractive application for our estimator

for three reasons. First, CalTrans awards its contracts using an open competitive bidding

system. For each highway contract, there is a fixed and publicly announced deadline for

submitting bids. Any communication between bidders about entry or other bidding decisions
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would be considered collusion and could lead to civil and criminal penalties. Therefore, the

assumption of a simultaneous move game is plausibly satisfied in our application.

Second, there is a well developed empirical literature for estimating structural models

of bidding for highway procurement contracts, see Porter and Zona (1999), Bajari and Ye

(2003), Pesendorfer and Jofre-Bonet (2003), Krasnokutskaya and Seim (2005) and Li and

Zheng (2009). The flexible econometric methods proposed by Guerre, Perrigne and Vuong

(2000) are commonly used in this literature, and in the empirical auctions literature more

generally, to estimate bidder markups. In a first step, we use these methods to precisely

estimate the expected payoffs to each player for all possible configurations of entry. In a

second step, we will use the methods from the previous sections to estimate the fixed costs

of entry and the parameters of our equilibrium selection mechanism.

Finally, in our data set, the dependent variable is a decision by a contractor to submit a

bid to complete a single and indivisible construction project. We focus on paving contracts,

instead of all contracts awarded by CalTrans, as in Pesendorfer and Jofre-Bonet (2003), in

order to reduce the importance of dynamics in our application. Most of the existing entry

literature considers the decision by a firm to enter a spatially separated retail or service

market and compete for an indefinite length of time. We believe that a static model is more

plausible in our application than in much of the previous work on entry.

Our model of entry in auctions is similar to Athey, Levin, and Serra (2008). In the first

stage, contractors simultaneously choose whether to incur a fixed cost in order to participate.

In the second stage, participating contractors submit sealed bids in a first-price auction and

the contract is awarded to the low bidder. Our model of entry often has multiple equilibria,

and there is no clear criterion from economic theory that selects a unique equilibrium of

our game. Previous empirical research on entry in auctions abstracts from the multiplicity

problem by imposing assumptions that guarantee a unique equilibrium.

We contribute to the literature on entry in auctions by estimating λ, the probability

of selecting a particular equilibrium. We parameterize λ to allow four criteria to influence

equilibrium selection: that the equilibrium is in pure strategies, the equilibrium maximizes

joint profits, the equilibrium is Pareto dominated, and the equilibrium has the highest Nash

product among pure strategy equilibria. To the best of our knowledge, this is the first

empirical analysis of equilibrium selection in a normal form game.

5.0.1 The Bidding Game

In the model, there are i = 1, . . . , N potential bidders who bid on t = 1, . . . , T highway

paving contracts. Following previous researchers, we model bidding in this industry as an

asymmetric first-price auction with independent private values (see Porter and Zona (1999),
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Bajari and Ye (2003), Pesendorfer and Jofre-Bonet (2003), Krasnokutskaya and Seim (2005)

and Li and Zheng (2009)). Let N(t) ⊆ {1, . . . , N} denote the set of contractors who submit

bids on project t. We assume that the set of bidders is common knowledge at the time bids

are submitted.8

Before submitting a bid, bidder i will prepare a cost estimate ci,t. The cost estimate

of bidder i is private information which has a distribution Fi(xi,t) where xi,t are publicly

observable covariates which influence bidder i’s cost distribution. We follow previous research

and include in xi,t an engineering cost estimate, the distance of contractor i to project t, a

measure of i’s backlog, contractor fixed effects and project fixed effects. We assume that the

cost distribution has a common support for all bidders and satisfies the regularity conditions

discussed in LeBrun (1996) and Maskin and Riley (2000) so that an equilibrium exists, is

unique, and is strictly increasing in a bidder’s private information.

Let bi,t(ci,t) be the bidding strategy used by bidder i in auction t, and let φi,t(bi,t) denote

the inverse bid function. Bidders are assumed to be risk neutral. The expected profit to

bidder i from bidding bi,t is:

(bi,t − ci,t)
∏

j∈N(t),j 6=i

(
1− Fj

(
φj,t(bi,t)|xi,t

))
Expected profit is the product of two terms. The first term is a markup, (bi,t − ci,t), which

reflects bidder i’s profits conditional on winning the job. Note that since the bid functions

are strictly increasing, the term 1 − Fj
(
φj,t(bi,t)|xi,t

)
is the probability that firm j’s bid is

greater than i’s bid bi,t. As a result, the second term
∏

j∈N(t),j 6=i

(
1− Fj

(
φi,t(bi,t)|xi,t

))
is the

probability that bidder i wins the contract with a bid of bi,t. Thus, expected profits is a

markup times the probability that firm i wins the contract.

Following Guerre, Perrigne, and Vuong (2000), we rewrite bidder i’s profit maximization

8In principal, it is possible to consider a model where bidders are uncertain about which firms will
participate. Changing our estimator to allow for this possibility would be straightforward. However, existence
and uniqueness of equilibrium bidding functions in the first price asymmetric auction with random entry has
not yet been established to the best of our knowledge.

Also, we believe that allowing the set of bidders to be common knowledge corresponds most closely to what
happens in this industry. Bidders that we have spoken with feel like they are quite knowledgeable about
which other contractors will submit bids. Typically, the closest firms and firms with the lowest backlogs of
outstanding work are most likely to bid. Also, CalTrans provides a list of plan holders for the project shortly
before bids are due which allows the contractors to learn about which competing firms are interested in the
project. A similar modeling assumption is made in Athey, Levin and Serra (2008) and Kransnokutskaya and
Seim (2005).
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problem as:

max
bi,t

(bi,t − ci,t)
∏

j∈N(t),j 6=i

(1−Gj(bi,t|xt)).

We let Gj(bi,t|xt) denote the equilibrium distribution of bids submitted by firm j conditional

on the publicly observed information xt = (xi,t)i∈N(t). The first order conditions for profit

maximization imply that:

ci,t = bi,t −

 ∑
j∈N(t),j 6=i

gj(bi,t|xt)
(1−Gj(bi,t|xt)

−1 (18)

Note that the right hand side of the above equation is a function of bi,t and the distribution of

bids, which can be estimated by pooling bidding data across contracts t = 1, ..., T . The left

hand side is the structural parameter ci,t which is unobserved to the econometrician. Again,

following Guerre, Perrigne and Vuong (2000), we will evaluate the empirical analogue of the

right hand side of the above expression in order to recover the structural cost parameter ci,t.
9

5.0.2 The Entry Game

In the first stage of our model, bidders simultaneously and independently decide whether

to bid for contract t. Submitting a bid is a costly decision. Based on extensive industry

experience, Park and Chapin (1992) report that the costs of preparing a bid is typically

one percent of b i,t. Publicly traded firms in the construction industry typically report profit

margins of one to five percent. This implies that the fixed costs of bidding are nontrivial

compared to a firm’s profit margins, hence bidders should selectively submit bids on projects

they are most likely to win. Let θi denote the cost to firm i of submitting a bid.

We will allow the costs of bidding to vary across firms in order to rationalize differences

in participation rates. Indeed, as we shall discuss in the next section, the size distribution of

firms in our data is quite skewed. While there are 271 firms submiting bids, a small number

of these firms account for the majority of total output.

In our application, we shall focus on entry decisions of the four largest firms, each having

a market share of at least five percent, as measured by winning bids. We shall denote these

firms as i = 1, 2, 3, 4. We shall take the entry decisions of the other bidders N(t)\{1, 2, 3, 4}
9In Bajari, Houghton and Tadelis (2006), we argue that bidders’ payoffs are somewhat more complicated

than in the above model because of change orders and cost overruns. However, we find that the method of
Guerre, Perrigne and Vuong (2000) estimates bidder profits quite well. As we report below, our estimates
seem sensible given what is known about bidder markups and other structural parameters.
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as predetermined. It would obviously be preferable to endogenize the entry decisions of

all bidders. However, repeatedly solving for all Nash equilibria with approximately three

hundred players is not computationally tractable. Furthermore, we believe that it innocuous

to take the entry decisions of small, fringe firms as exogenous. Such firms rarely win large

CalTrans contracts, due to lack of capital and managerial expertise to complete large projects

at a competitive price. Fringe firms typically win much smaller jobs in the public sector,

such as resurfacing streets for a mid-sized California city, or smaller private sector jobs, such

as resurfacing parking lots for small businesses. In our CalTrans data, fringe firms have little

influence on the winning bid and hence on profits at the margin. We believe that it is much

more important to carefully model the largest firms’ entry decisions and this is where we

focus our attention.

Let ai,t = 1 if firm i decides to submit a bid on project t and ai,t = 0 otherwise. Given

ai,t, i = 1, . . . , 4 for the largest bidders, the set of bidders who participate will be denoted as

N(t|a). This set includes all the fringe firms observed to participate in the data and those

firms i = 1, . . . , 4 for which ai,t = 1. If one of our four largest firms i enters, then conditional

on a and xt, i’s profit will be:

ui(a;xt, θi) =

∫
(bi,t(ci,t;xt, N(t|a))− ci,t)

∏
j 6=i

(1−Gj(bi,t|xt, N(t|a)))dF (ci,t|xi,t)− θi (19)

In the above, bi,t(ci,t;xt, N(t|a)) denotes firm i’s bid function and Gj(bi,t|xt, N(t|a)) firm

j’s bid distribution when the set of entrants is N(t|a) and the publicly observed project

characteristics are xt.

The above expression implicitly assumes the following timeline for the game: First, all

large firms simultaneously decide whether to enter. The project characteristics, xt, and the

entry decisions of the fringe firms are common knowledge. Second, after entering, each of

the four largest firms observes which other large firms have entered the market. Third, all

participating bidders independently make their cost draws ci,t. Finally, firms submit sealed

bids and the lowest bidder wins. In the above equation, ui(a;xt, θi) is i’s profits conditional on

the entry decisions of the other large firms, the publicly observed data xt, and the parameter

θi. Given ui(a;xt, θi), we can specify a normal form game in the framework of Section 2.

5.1 Estimation

Our estimation procedure consists of two steps. In the first step, we form an estimate of the

term
∫

(bi,t(ci,t;xt, N(t|a)) − ci,t)
∏

j 6=i(1 − Gj(bi,t|xt, N(t|a)))dF (ci,t|xi,t) in Equation 19 by

adapting the approach proposed by Guerre, Perrigne, and Vuong ((2000)). In the second
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step, we take the estimates from the first stage and estimate θi, the fixed cost of preparing

a bid, and λ, the selection of equilibrium, using the methods from Sections 2 and 3.

5.1.1 Markup Estimation

The idea behind Guerre, Perrigne, and Vuong’s estimator is quite simple. The left hand

side of Equation (18) is the bidder’s private information, ci,t, which is unobserved to the

econometrician. The right hand side is a function of the bid, bi,t, the density of bids, gj(bi,t|xt),
and the CDF of bids, Gj(bi,t|xt). By pooling observations from contracts t = 1, . . . , T , we

construct an estimate ĝj(bi,t|xt) and Ĝj(bi,t|xt) using standard nonparametric techniques.

We then construct an estimate of firm i’s private information ĉi,t by evaluating the empirical

analogue of the right hand side of Equation (18). Once we have recovered the distribution

of a firm’s private information, we can then compute the ex-post entry profits in Equation

(19).

5.1.2 Equilibrium Selection

In the second step, we estimate the fixed costs of bidding, θi, and the probability that a

particular equilibrium is selected, taking the expected entry profits in Equation 19 as given.

We use a conditional logit as a parsimonious specification of λ. Following the previous

literature on entry games, we have found four criteria proposed for equilibrium selection on

entry games. First, in empirical papers such as Tamer (2002), Ciliberto and Tamer (2009)

and Andrews, Berry, and Jia (2005), and Jia (2008), it is usually assumed that only pure

strategies are used in the entry game. The authors argue that mixed strategy equilibria

are a priori implausible in these markets. However, in a related experimental literature,

Levin and Smith (2001) argue that mixed strategy equilibrium seems the most reasonable in

auction entry experiments. To acknowledge this possibility, we construct a dummy variable

MIXED(π), which equals one if the equilibrium π involves mixed strategies.

Second, we allow λ to depend on whether the equilibrium is efficient, in the sense that

it maximizes joint payoffs. Economic theory and Ciliberto and Tamer (2009) have both

proposed this criteria for equilibrium selection mechanism. Since the firms in our data

interact repeatedly, they obviously have incentives to tacitly collude on an equilibrium that

maximizes industry surplus.

Third, we include a dummy variable that equals one if an equilibrium is Pareto dominated.

It is commonly assumed that Pareto dominated equilibria are less plausible and, therefore,

less likely to be observed in the data.

Finally, we include the Nash product of a player’s utilities for pure strategy equilibria.

29



Harsanyi and Selten (1988) argue that risk dominant equilibria are more plausible. An

equilibrium having a large Nash product implies that deviating from the observed equilibrium

behavior is especially costly, hence the equilibrium is more likely to be self-reinforcing.

5.2 The Data

We have constructed a unique data set of bidding by highway contractors in the State of

California from 1999-2000. We observe 414 contracts awarded by the California Department

of Transportation (CalTrans) during this time period.10 The total value of winning bids in

this data is $1.326 billion. There are a total of 1,938 bids and 271 bidders in our sample.

Highway improvement projects are awarded using open competitive bidding, which means

that any qualified contractor can submit a bid and contracts are awarded to the lowest

qualified bidder.11 This data set is described in detail in Bajari, Houghton, and Tadelis

(2006). We will describe some of the highlights of the data and the industry in this section.

For each contract t, we observe a detailed list of covariates including bi,t, the bid of

contractor i on project t, ESTt, the engineer’s cost estimate for project t, DISTi,t the

distance in miles of firm i to project t, CAPi,t, the capacity utilization of firm i at the time

of bidding for project t, and FRINGEi,t, a dummy variable equal to one if firm i is a fringe

firm, defined as firms with market shares of less than one percent. The data set includes

the bids for all contractors, not just the winning bids. The engineer’s estimate, ESTt, is

constructed by CalTrans as a fair market value for completing the work. The project plans

and specifications contain an exhaustive list of work items; the estimate is then formed using

blue book prices for specific work items and local material prices.

Table 2 summarizes the market shares of the 10 largest firms in the industry, where share

is defined using the winning bids. The market shares in this industry are quite skewed. The

largest firm, Granite Construction Company, has a share of 27.2 percent, compared to a share

of 1.9 percent for the 10th largest firm, Sully Miller Contracting. This skewed distribution

suggests that productivity varies across firms and hence it is important to include firm fixed

effects in our estimates of gj and Gj.

10The data contain contracts for paving and excludes other contracts such as bridge repair. We look at
only the subset of contracts where asphalt costs accounted for less than 1/3 of the winning bid. We focus
on paving contracts since capacity constraints and the dynamics emphasized in Jofre-Bonet and Pesendorfer
(2003) are less important for this set of contracts. In Bajari, Houghton, and Tadelis (2006) we produce
closely related structural estimates. Here we adjust our estimates to allow for dynamics through non-trivial
capacity constraints. We find that such capacity constraints have little effect on estimated markups. In order
to simplify the presentation, we focus on a static model of profits, although it would be quite straightforward
to extend the analysis to allow for capacity to influence profit margins and markups.

11In about 5 percent of the projects in our sample, CalTrans rejects all bids and awards the contracts
again at a later date. We do not include these contracts in our sample.
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Table 2: Bidder Identities and Summary Statistics

Company Share No. Wins No. Bids Participation Total Bids for
Entered Rate Contracts Awarded

Granite Construction Company 27.2% 76 244 58.9% 343,987,526
E. L. Yeager Construction Co Inc 10.4% 13 31 7.5% 132,790,460
Kiewit Pacific Co 6.6% 5 30 7.2% 112,057,627
M. C. M. Construction Inc 6.5% 2 6 1.4% 89,344,972
J. F. Shea Co Inc 3.3% 9 40 9.7% 43,030,861
Teichert Construction 3.3% 16 43 10.4% 40,177,076
W. Jaxon Baker Inc 2.9% 13 65 15.7% 37,702,631
All American Asphalt 2.2% 14 33 8.0% 30,764,962
Tullis And Heller Inc 2.1% 10 16 3.9% 27,809,535
Sully Miller Contracting Co 1.9% 17 49 11.8% 27,889,186

Table 2 shows that the largest firms tend to bid more often as measured by their partici-

pation rate. However, we note that the second largest firm only submits bids for 7.5 percent

of the jobs compared to Granite Construction Company, which submits bids for 58.9 percent

of the jobs. Hence it is important to account for firm specific differences in the costs of

bidding, θi.

Table 3 provides summary statistics about the bids. In our data, the average winning bid

is $3.2 million dollars, which is about 6 percent below the engineer’s estimate. Meanwhile,

comparing the winning bid to the second highest bid, the average money left on the table

is about 6 percent of the estimate. This suggests that there is asymmetric information in

this market. If the low bidder knew the cost of the second lowest bidder, then in a Nash

equilibrium we would expect these two bids to be much closer. Leaving money on the table

does not increase the probability of winning and only decreases the profit of the low bidder.

Table 4 demonstrates that the the ranking of the bids corresponds closely to the ranking

of the contractors’ distances from the project. For instance, DIST1, the distance of the

lowest bidder, is smaller than DIST2, the distance of the second lowest bidder. The closest

contractor has a lower cost of hauling asphalt to the project site and is therefore more likely

to win the project.

In Table 5, we regress the bids on the various cost controls. In the first column, we regress

bids on the engineer’s estimate. This has an R2 of 0.987 with a coefficient of 1.02, suggesting

that the engineer’s estimate is a very powerful explanatory variable. Starting with second

column, we change the dependent variable to bi,t/ESTt since the variance of the errors

in the bid regressions are likely to be proportional to ESTt. The next set of regressions

demonstrates that distance, the fringe firm dummy, project fixed effects, and firm fixed

effects for the largest four firms are all economically and statistically significant regressors.

Their resultant signs are as anticipated, for example, the positive distance coefficient reflects
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Table 3: Bidding Summary Statistics

Obs Mean Std. Dev. Min Max

Winning Bid 414 3,203,130 7,384,337 70,723 86,396,096
Markup: (Winning Bid-Estimate)/Estimate 414 -0.0617 0.1763 -0.6166 0.7851
Normalized Bid: Winning Bid/Estimate 414 0.9383 0.1763 0.3834 1.7851
Second Lowest Bid 414 3,394,646 7,793,310 84,572 92,395,000
Money on the Table: Second Bid-First Bid 414 191,516 477,578 68 5,998,904
Normalized Money on the Table: (Second Bid-
First Bid)/Estimate

414 0.0679 0.0596 0.0002 0.3476

Number of Bidders 414 4.68 2.30 2 19
Distance of the Winning Bidder 414 47.47 60.19 0.27 413.18
Travel Time of the Winning Bidder 414 56.95 64.28 1.00 411.00
Utilization Rate of the Winning Bidder 414 0.1206 0.1951 0.0000 0.9457
Distance of the Second Lowest Bidder 414 73.55 100.38 0.19 679.14
Travel Time of the Second Lowest Bidder 414 82.51 97.51 1.00 614.00
Utilization Rate of the Second Lowest Bidder 414 0.1401 0.2337 0.000 0.9959

Table 4: Distance to Job Site

Mean Std. Dev. Min Max

DIST1 47.47 60.19 0.27 413.18
DIST2 73.55 100.38 70.19 679.14
DIST3 75.47 95.56 0.13 594.16
DIST4 84.38 89.87 1.45 494.08
DIST5 76.12 86.33 1.25 513.31

Table 5: Bid Function Regressions

Variable bi,t bi,t/ESTt bi,t/ESTt bi,t/ESTt

ESTt 1.025
(56.26)

DISTi,t .000246 .000223
(5.66) (5.01)

UTILi,t 0.02539
(0.93)

FRINGEi,t
0.4288
(4.65)

Constant
-25686 1.19 1.001
(0.56) (94.9) (79.98)

Fixed Effects No Project Project Project/Firm

R2 0.989 0.5245 0.5292 0.5321

Number of observations = 1938; t-statistics are reported in parentheses. Fringe is a dummy variable that
equals one for a fringe firm. Util denotes utilization rates.
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Table 6: Logit Model of Entry

I II III

Constant -.9067 -1.6811
(7.91) (7.53)

DISTi,t -0.00218 -0.00322 -0.00854
(5.42) (5.66) (4.85)

Granite 2.889 4.4537
(13.28) (7.31)

E. L. Yeager - -

Kiewit Pacific -0.1527 1.1969
(0.57) (2.1)

M. C. M.
-1.786 -.70779
(3.94) (1.12)

Fixed Effects No No Project

Observations 1656 1656 1068

Number of Groups 261

Log-Likelihood -784.20 -511.86 -101.0728

The dependent variable is whether one of the four largest firms in the industry
decides to submit a bid in a particular procurement; t-statistics are reported in
parentheses.

bidders’ large transportation costs. Indeed, the average distance of a firm from the project

is 72 miles with a standard deviation of 92 miles. Our results imply that increasing the

distance by a standard deviation will raise bi,t/ESTt, relative to the engineer’s estimate, by

about 2.3 percent. This is substantial because firms are believed to have profit margins of

less than five percent. Granite Construction, the largest firm in our sample, reports a profit

margin of only 3.31 percent and an operating margin of 5.15 percent. Finally, bi,t/ESTt for

fringe firms is 4.2 percent lower. This evidence supports using our simplifying assumption

that fringe firm entry is exogenous. Fringe firms bid much higher and are unlikely to win

many projects as a result.

In Table 6, we estimate a logit model of entry for the four largest firms in the industry.

For each of these firms, we calculate their distance to each project t even the firm does not

submit a bid. We find that participation is a decreasing function of the firm’s distance to the

project. Also, there is heterogeneity across the firms in terms of their participation decisions,

suggesting that inclusion of firm level effects θi is important in modeling entry.
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5.2.1 Estimates of Profits

We estimate bidder markups using the approach by Guerre, Perrigne and Vuong (2000).

Given the number of covariates in our application, it is not feasible to nonparametrically

estimate the distribution of bids gj and Gj. Instead, we use a semiparametric approach. We

first run a regression, as in Table 5:

bi,t
ESTt

= x′i,tα + u(t) + εi,t,

where the dependent variable is normalized by dividing through by the engineer’s estimate.

In addition, we include an auction specific fixed effect, u(t). Let α̂ denote the estimated value

of α and let ε̂i,t denote the fitted residual. We will assume that the residuals of this regression

are iid. Let Ĥ denote the Kaplan-Meier estimate of the CDF of the fitted residuals.12

Under these assumptions, the estimated bid distributions satisfy:

Ĝi(b|zj,t, N(t)) = Pr
(

bi,t
ESTt

≤ b
ESTt

)
= Pr

(
x′i,tα̂ + û(t) + ε̂i,t ≤ b

ESTt

)
= Ĥ

(
ε̂i,t ≤ b

ESTt
− x′i,tα̂− û(t)

)
.

That is, the distribution of the fitted residuals, ε̂i,t, can be used to infer the distribution of

the bids. As the estimates in Table 5 suggest, variation in the estimated bid distribution

will be driven by three factors. The first is the auction fixed effects, û(t). The second is the

distance of each firm from the project; the further a particular firm is away from the project,

the higher its bid will be. The third is the firm fixed effects. The largest four firms will bid

more aggressively than the smaller fringe firms. 13

Recall that earlier we demonstrated that firm specific profit shifters are sufficient to

identify our model under fairly mild parametric assumptions. In our analysis, distance and

firm fixed effects will be the primary shifters of individual firms’ profits. Each firm has

a unique distance to a particular contract t. The variation in transportation cost across

12We estimate the density h of the fitted residuals using kernel density estimation with an estimated optimal
bandwidth. Since there are 1938 fitted residuals, the estimates of H and h are quite precise given θ. Ideally,
our estimates would take into account the first stage estimation error in θ. However, the computational
burden of performing a resampling procedure such as the bootstrap is considerable and beyond the scope of
this research.

13We note that we must estimate the distribution of each firm i’s bid even if it does not participate in
a particular auction. We have therefore computed the distance of each of the four largest firms from all
t = 1, . . . , 414 projects even if they did not submit a bid. We use Equation 18 to infer the distribution of
firm i’s bid in this case. The estimates of Table 6 suggest that bidder i will have a low chance of winning a
particular procurement t if it is a long distance from the project site.
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Table 7: Margin Estimates

Variable Num. Obs. Mean Std. Dev. Median 25th Percentile 75th Percentile

Profit Margin 1938 0.0644 0.1379 0.0271 0.0151 0.0520

The markup is defined as 1 minus the ratio of the estimated cost, which is private information, to the actual
bid.

projects generates shifts in the payoffs of individual firms and therefore allows us to identify

our model.

In Table 7, we summarize the distribution of estimated markups on the 1,938 bids in our

data set. The average markup is about 6 percent. Note that the distribution of markups is

skewed: the median markup is 2.71 percent and the 75th percentile is 5.2 percent. These

markups are comparable to the reported margins of Granite Construction and, more broadly,

Census data on markups in the construction industry.

5.2.2 Equilibrium Selection Parameters and Bid Costs

As mentioned in Section B.2, the choice of the importance density is vital for our estimation

procedure. To choose an importance density, we first estimate a private-information version

of the entry game to obtain starting values for bid preparation costs and the profit scale pa-

rameter. While these parameters will not generally be consistent estimates for the complete

information game, they should be in the correct neighborhood, which greatly aids conver-

gence of our importance sampling MSM procedure. All equilibrium selection parameters

are initially set at zero. We performe several sequential estimations, using 409 importance

games initialized with the previous iteration’s final value. When the parameter values are

consistent after several iterations, we run the Laplace-type estimator of Chernozhukov and

Hong (2003) to generate standard errors and to ensure that the estimated coefficients are

robust to the optimization method used in the initial steps. The results are reported in Table

8.

The first parameter that needs interpretation is the coefficient on profit scale. The

expected entry profits for a firm are expressed in tens of thousands of dollars. These expected

profits are then multiplied by the profit scale parameter, equal to 0.0965. Therefore we should

interpret each unit of the fixed costs of bidding as about $96,500. For example, Kiewit Pacific

faces an average cost of approximately $161,650 to prepare a bid, which is roughly five

percent of the average winning bid. This amount varies across the four firms, from $22,590

for Granite Construction to $235,460 for M. C. M. Construction. Given that winning bids

are drawn from the left tail of the bid distribution, these numbers are roughly consistent
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Table 8: Games Estimation Results

Variable Mean Median Std.Dev. 95% Confidence Interval

Equilibrium Selection Parameters (λ)

Pure Strategy -1.3524 -1.5345 0.7979 -2.4903 0.1954
Joint Profit Maximizing 6.4365 6.4226 0.5321 5.6151 7.5149
Dominated -5.3841 -5.3316 0.7002 -6.7164 -4.0986
Nash Product 4.4143 4.2025 1.1017 2.9651 6.4836

Profit Scale

Profit Scale 0.0965 0.0954 0.0015 0.0954 0.0984

Bid Preparation Costs (θi)

Granite Construction 0.2341 0.2393 0.0977 0.0679 0.4271
E. L. Yeager 1.4583 1.4757 0.0941 1.2563 1.6227
Kiewit Pacific 1.6751 1.6720 0.0511 1.5775 1.7789
M. C. M. Construction 2.4490 2.4360 0.1144 2.2547 2.6966

Estimation and inference was performed using the LTE method of Chernozhukov and
Hong (2003). A Markov chain was generated with 500 draws for each parameter. 409
importance games were used in the importance sampler for the 409 observations.

with Park and Chapin (1992), who argue that bid preparation costs are approximately equal

to one percent of the total bid in magnitude.

A second check of validity is that bid costs should be monotonically and inversely related

to participation rates. Indeed, the two firms with similar participation rates, E. L. Yeager

and Kiewit Pacific, have almost identical bid preparation costs, while the bid costs for M.

C. M. Construction, with a low entry rate of 1.4 percent, are much higher.

Turning to the parameters of the equilibrium selection mechanism, we have several inter-

esting results. Firstly, mixed strategy equilibria are more likely than pure strategy equilibria.

This is consistent with the results in Levin and Smith (2001), who find support for mixed

strategy equilibria in auction entry experiments. They argue that a pure strategy equilib-

rium requires too much coordination of behavior on the part of agents. In a pure strategy

equilibrium, agents must coordinate on which subset of the potential bidders will submit

bids in an auction. The number of subsets of {1, ..., N} is large even for moderately sized

N. In our application, coordinating entry decisions through explicit communication would

be collusion, making coordination even more difficult.

We find that efficiency has a strong effect on the probability of an equilibrium being

chosen. Given that there are typically many pure and mixed strategies in a given game, this

shifter is by far the most influential in deciding which equilibrium is played. This suggests

firms are tacitly colluding, since they are more likely to choose the Nash equilibrium which
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maximizes joint profits.

We find that the coefficient on dominated equilibria is strongly negative. This is also

consistent with tacit collusion by bidders in the auction. Finally, the coefficient on the

equilibrium with the highest Nash product is strongly positive. This indicates that among

pure strategy equilibria, the one with the highest Nash product has a strong tendency to be

played in the data.

6 Conclusion

Estimating models that are consistent with Nash equilibrium behavior is an important em-

pirical problem. In this paper, we have proposed algorithms which estimate both the utilities

and the equilibrium selection parameters for static, discrete games. Our algorithms can be

applied to general normal form games, umlike those of previous research that frequently ap-

ply to specific examples such as entry games. The algorithms use computationally efficient

methods and our Monte Carlo work demonstrates that they work well even with a moderate

number of observations.

We also study the nonparametric identification of these games. We propose two strate-

gies: identification at infinity and exclusion restrictions. If payoffs are restricted to be a

linear index and covariates have full support, we can find a region in which players −i will

play a given strategy a−i. This allows us to treat each agent i’s choice of strategy as a single

agent model. As a result, we can identify payoff parameters. Knowing payoffs, we can

restrict attention to regions where ε has a small impact on total utility. This means that

the payoff matrix is known, up to a small error. In turn, this allows us to identify λ, the

equilibrium selection mechanism.

We also show that exclusion restrictions allow us to identify our model. We search for

covariates xi which shift the utility of i, but do not enter the utility of −i. The presence

of these covariates allow us to shift the payoff matrix one cell at a time. Generating this

variation allows us to identify the model. In both approaches, λmust not be too complicated.

If there are more equilibrium than moments in the data, we cannot identify a fully general

model of λ.

As an application of our methods, we study the decision of four large construction firms’

entry into procurement auctions in California. We recover fixed bid preparation costs for

each of the four firms which rationalize their entry rates into these auctions. The application

also highlights one strength of our approach: the ability to estimate an equilibrium selection

mechanism. Our estimates indicate that mixed strategy equilibria are selected with a greater

probability than pure strategy equilibria. We also find that the equilibrium mechanism
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favors joint profit maximizing and non-Pareto dominated equilibria. Among pure strategy

equilibria, the one with the largest Nash product is selected with higher probability. The

estimation method we propose is, to our knowledge, the most efficient approach capable of

accommodating both multiplicity and mixed strategy equilibria.
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A Proofs of Theorems

Proof of theorem 1: For each i, and a = (ai, k−i), the observational data identifies the

conditional probabilities P (εi(a) + xai β
a
i > εi(a

′
i, k−i) + x

a′i,k−i

i β
a′i,k−i

i |a−i = k−i, x). Because of

assumption 4, in the limit this converges to a single agent decision problem for player i:

lim
|x|→∞,x∈T

k−i
−i

P (εi(a) + xai β
a
i > εi(a

′
i, k−i) + x

a′i,k−i

i β
a′i,k−i

i |x).

This implies that for each k−i, the ordering of εi(a) + xai β
a
i is identified for a = (ai, k−i)

across ai, along the path |x| → ∞ and x ∈ T k−i

−i . Hence the linear utility indexes xai β
a
i are

also identified along this path. (cf. Amemiya (1985) and Fox (2007)) Assumption 5 further

identifies the coefficient parameters βai . According to assumption 5, for every βai 6= βai0, there

exist a set of x with positive probability such that xai β
a
i 6= xai β

a
i0, which implies identification

of βai .

Proof of theorem 2: Using assumption 7, we can recover the mixing probabilities with

arbitrary precision using larger and larger values of the covariates x. By assumption 6,

the equilibrium selection probabilities with smaller values of the latent utility indexes are

obtained by extrapolation along the remote sections of a ray that emanates from the origin

and goes through the latent utility indexes.

Proof of theorem 3: The proof follows similarly to that of the previous section. Hold

x fixed. Consider a large but finite number of values of xi equal to K for each agent.

Consider all the KN distinct vectors of the form x = (x1, . . . , xN) that can be formed.

42



Consider the moments generated by these KN distinct covariates. The number of mo-

ments is equal to KN ·

(∏
i

#Ai − 1

)
. The number of mean utility parameters is equal

to
∑
i

K (#Ai − 1)
∏
j 6=i

#Aj plus the number of parameters required to characterize λ. The

maximum number of parameters required to characterize λ depends on the total number

of players and the number of strategies for each player, but does not depend directly on

xi. Thus, the second part of assumption 8 implies that the number of equilibrium selection

probability parameters grows at most at the rate of KN−1. The number of utility parameters

depends linearly on K and the number of equilibrium selection probabilities grows at the

rate of KN−1, but the number of moments grows exponentially at the rate of KN . Therefore,

by choosing sufficiently large values for K, the order condition is satisfied.
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B Technical Appendix

B.1 Identification at Infinity in Two-by-Two Games

For the purpose of illustration, in this appendix we specialize the arguments for identification

to the two by two game.

Identifying the mean payoff functions Given a linear specification of the mean utility

functions, let fi (τ , x) = xτi β
τ
i for τ = (2− i)Bk + (i− 1) jR. The following assumption

requires a rich support of the covariates.

Assumption 9. For each i = 1, 2, j = T,B, and k = L,R, there exists a set T j(2−i)+k(i−1)i

of covariates x such that lim||x||→∞,x∈T j(2−i)+k(i−1)
i

P [ai = j2−iki−1|x] = 1.

Assumption 9 requires that for each player i and for each of player i’s strategies, we can

shift the covariates x along a dimension such that action ai is a dominant strategy for player

i with probability arbitrarily close to 1. For example, for i = 2 and k = L, Assumption 9

requires that along a path of ||x|| → ∞, x ∈ T L2 , P [a2 = L|x]→ 1, or

P
[
xTR2 βTR2 + ε2 (TR) < 0, xBR2 βBR2 + ε2 < 0 (BR)

]
−→ 1.

Assumptions 1, 2, and 9 allow us to identify the mean utilities along these paths. The next

assumption requires that we can extrapolate knowledge of the deterministic utilities along

this path to other values of x on its support.

Assumption 10. For each i = 1, 2, j = T,B, k = L,R, x ∈ T j(2−i)+k(i−1)i , there exists

some L0 > 0 such that

inf
L≥L0

min eigE
[
xτi x

τ ′
i |x ∈ T

j(i−1)+k(2−i)
3−i , ||x|| ≥ L

]
> 0.

Assumption 10 requires that the linear deterministic payoff functions xτi β
τ
i can be ex-

trapolated from the path ||x|| → ∞, x ∈ T j(i−1)+k(2−i)3−i to the full support of x.

Theorem 4. Under Assumptions 1, 2, 9, and 10, fi ((2− i)Bk + (i− 1) jR, x) is identified

for all i = 1, 2, j = T,B and k = L,R.

Proof. For i = 1, 2, k = L,R, j = T,B, denote by P̄ ((2− i)Bk + (i− 1)jR|x) the uncondi-

tional probabilities P (εi(τ)+xτi β
τ
i ≥ 0|x). The data does not directly identify this probability

but only identifies the conditional probabilities:

P

(
ai = (2− i)B + (i− 1)R

∣∣∣∣a3−i = (2− i) k + (i− 1)j, x

)
.
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However, because of Assumption 9,

lim||x||→∞,x∈T (i−1)j+(2−i)k
3−i

[
P

(
ai = (2− i)B + (i− 1)R

∣∣∣∣a3−i = (2− i) k + (i− 1)j, x

)
−P̄ ((2− i)Bk + (i− 1) jR, x)

]
= 0.

This implies that P̄ ((2− i)Bk + (i− 1) jR, x) and hence fi ((2− i)Bk + (i− 1) jR, x) can

be identified along the path of ||x|| → ∞, x ∈ T (i−1)j+(2−i)k
3−i . Because the cumulative distri-

bution function of εi(τ) is strictly increasing, the linear index xτi β
τ
i is identified along this

path. Assumption 10 further identifies the coefficient parameters βτi . According to assump-

tion 10, for every βτi 6= βτi0, there exists a set of xτi with positive probabilitiess such that

xτi β
τ
i 6= xτi β

τ
i0, which implies identification of βτi .

A special case of Assumption 9 is when ε = (εi (jk)) , i = 1, 2, j = T,B, k = L,R has

finite support but the support for xτi for i = 1, 2 and all τ is either larger or infinite. Denote

by Ū an upper bound of the absolute value of the support of εi (jk) for all i, k, and j. Then

a sufficient condition for Assumption 9 to hold is that for all i and τ , P
[
xτ
′
i β

τ
i > 2Ū

]
> 0

and P
[
xτ
′
i β

τ
i < −2Ū

]
> 0. Then we do not need the requirement that ||x|| → ∞. The sets

T j(2−i)+k(i−1)i can be defined as T B(2−i)+R(i−1)
i =

{
x : xτi β

τ
i > 2Ū , ∀τ

}
and T T (2−i)+L(i−1)i ={

x : xτi β
τ
i < −2Ū , ∀τ

}
. In this case, a sufficient condition for Assumption 10 to hold is that

for all i = 1, j = {T,B}, and i = 2, k = {L,R}, the matrices E
[
xx′|x ∈ T (i−1)j+(2−i)k

3−i

]
are

positive definite and finite.

Identifying the Equilibrium Selection Mechanism Given that the deterministic util-

ity components are identified in Theorem 4, the next goal is to identify the equilibrium

selection mechanism. The equilibrium selection probabilities are only needed when there are

three equilibria, which can be either (TL,BR,mix) or (BL, TR,mix). The mixing probabil-

ities for these two cases are:

Pm (R;x, ε) =
f1 (BL, x) + ε1 (BL)

f1 (BL, x)− f1 (BR, x) + ε1 (BL)− ε1 (BR)
, Pm (L;x, ε) = 1− Pm (R;x, ε)

and

Pm (B;x, ε) =
f2 (TR, x) + ε2 (TR)

f2 (TR, x)− f2 (BR, x) + ε2 (TR)− ε2 (BR)
, Pm (T ;x, ε) = 1− Pm (B;x, ε) .

2



In the ideal case where there are no error terms: ε1(BL) = ε1(BR) = ε2(TR) = ε2(BR) = 0,

all of Pm (R) , Pm (L) , Pm (T ), and Pm (B) are functions of the known deterministic pay-

offs. Define the observed equilibrium selection probabilities as: ρ (TL, x) , ρ (BR, x) , 1 −
ρ (TL, x)−ρ (BR, x) in the case of (TL,BR,mix), and as ρ (BL, x) , ρ (TR, x) , 1−ρ (BL, x)−
ρ (TR, x) in the case of (BL, TR,mix), where the dependence on covariates x is made explicit.

Then for those values of x where (TL,BR,mix) is realized,

P (TL|x) = ρ (TL, x) + (1− ρ (TL, x)− ρ (BR, x))Pm (T )Pm (L)

P (TR|x) = (1− ρ (TL, x)− ρ (BR, x))Pm (T )Pm (R)

P (BL|x) = (1− ρ (TL, x)− ρ (BR, x))Pm (B)Pm (L) .

These are three equations that identify the two unknown variables ρ (TL, x) and ρ (BR, x).

Similarly, for values of x such that (BL, TR,mix) is realized,

P (BL|x) = ρ (BL, x) + (1− ρ (BL, x)− ρ (TR, x))Pm (B)Pm (L)

P (BR|x) = (1− ρ (BL, x)− ρ (TR, x))Pm (B)Pm (R)

P (TL|x) = (1− ρ (BL, x)− ρ (TR, x))Pm (T )Pm (L) ,

are the three equations that overidentify the two unknown variables ρ (BL, x) and ρ (TR, x).

In the presence of the unobservable error terms ε’s, additional identification assumptions

need to be imposed to isolate the effects of the error terms.

Assumption 11. The equilibrium selection probabilities depend only on the utility indices:

ρ (x, ε) = ρ (ui ((2− i)Bk + (i− 1) jR, x)∀i, j, k.) ,

where ρ (x, ε) = [ρ (TL;x, ε) , ρ (BR;x, ε) , ρ (BL;x, ε) , ρ (TR;x, ε)] . In addition, the equilib-

rium selection probabilities are scale invariant with respect to the utility indexes. For all α >

0, ρ (αui ((2− i)Bk + (i− 1) jR, x) ,∀i, j, k) = ρ (ui ((2− i)Bk + (i− 1) jR, x) ,∀i, j, k) .

This assumption rules out the possibility that ρ (x, ε) might depend on x and ε nonsepa-

rably, independent of the latent utility indices. It also requires that the equilibrum selection

probabilities only depend on the relative but not absolute scales of the latent utilities.

The scale invariance assumption, supplemented by the next support condition on the

observables and unobservables, allows us to identify the equilibrium selection probabilities

from the variations in the covariates x. In particular, Assumption 11 implies that the deter-

minants for the equilibrium selection probabilities are the same as the determinants for the

mixing probabilities. It allows for a rich class of equilibrium selection mechanisms but does

3



exclude some important ones. For example, it allows for the Pareto efficient equilibrium to be

selected with a larger probability and for this probability to depend on the relative efficiency

level. This restriction follows from the intuition that if all payoffs were scaled by a constant,

we would not expect the distribution over outcomes to change. However, it does not allow

this probability to depend on how much more efficient the efficient equilibrium is compared

to the inefficient ones in absolute terms. It also rules out equilibrium selection probabilities

that depend independently on some of the observed covariates but not on other observed

covariates or the error terms. This potentially limits the antitrust implications of the model,

because firms concerned with avoiding the suspicions of antitrust investigators might want

to choose selection rules which depend on some variables that are easier to communicate but

not others.

Assumption 12. There exists a set T such that for all ε > 0:

lim
|x|→∞,x∈T

P

(
fi ((2− i)Bk + (i− 1) jR, x)

ui ((2− i)Bk + (i− 1) jR, x, ε)
> 1− η

)
= 1, (20)

for all i = 1, 2, j = T,B, k = L,R and that for all Λ = R,B, T, L,

lim
|x|→∞,x∈T

P

(
Pm (Λ;x, ε)

Pm (Λ;x, 0)
> 1− ε

)
= 1.

This assumption is satisfied if ε has finite support but x has infinite support.

Theorem 5. Under Assumptions 1 to 12, the equilibrium selection probabilities

ρ (ui ((2− i)Bk + (i− 1) jR, x) , ∀i, j, k)

are all identified from the observed choice probabilities.

Proof. Assumptions 1 to 10 identify the payoff functions fi ((2− i)Bk + (i− 1) jR, x) for

all i, j, k. Using Assumption 12, we can approximate the mixing probabilities with arbitrary

precision by using larger and larger values of the covariates x. This allows us to recover

the equilibrium selection probabilities with arbitrary precision at very large values of the

covariates x. By assumption 11, the equilibrium selection probabilities with smaller values

of the latent utility indexes are obtained by extrapolation along the remote sections of a ray

that emanates from the origin and goes through the latent utility indexes.
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B.2 Monte Carlo

To demonstrate the performance of our estimator in small samples, we conduct a Monte

Carlo experiment using a simple entry game with two players. Each player has the following

profit function:

πi(a) = 1(ai = 1) {β1xi1 + β2x2i + εi(a)} ,

with the observable covariates defined by xi1 ∼ N(1, 1) and x2i = n(a), where N(µ, σ2) is

the normal distribution with mean µ and variance σ2, and n(a) is the number of competitors

a firm faces given action profile a. The idiosyncratic error term, which is different for

each player for each action profile a, is drawn independently from the standard normal

distribution. The choice of unit variance in the random shock satisfies the need for a scale

normalization, and assigning payoffs of zero to not entering the market satisfies the location

normalization. x1i represents variability in profits to firm i from entering that market, and

x2i captures the effects of having a competitor. The true payoff parameters are β1 = 2 and

β2 = −10.

The distributions of the covariates were chosen such that when payoffs are evaluated

at their means, it is optimal for only one of the two firms to enter the market. Under

these circumstances the set of equilibria in this game, denoted by E , has three elements:

two pure strategies characterized by one firm or the other entering the market, and one

mixed strategy where firms enter with some probability. We specify that the probability of

equilibrium πi ∈ E being played as:

Pr(πi) =
exp(θ1MIXEDi)∑
πj∈E exp(θ1MIXEDj)

,

where MIXEDi is an indicator variable equal to one if equilibrium πi is in mixed strategies.

When θ1 = 0 one of the three equilibria is picked with equal chance. As that parameter

tends to either negative or positive infinity, the mixed strategy is played with probability

approaching zero or one, respectively. The true selection parameter is θ1 = 1.

Our game has three unknown parameters: β1, β2, and θ1. The game generates moments

from the probabilities of observing the four possible combinations of entry choices. Only

three of these moments are linearly independent, as the probabilities must sum to one,

implying that our model is exactly identified. We generate 500 samples of size n = 25, 50,

100, 200, and 400 to assess the finite sample properties of our estimator. We set the number

of importance games per observation to be equal to the sample size, and generated new

importance games for each observation and each replication. Asymptotic errors for each run
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Table 9: Monte Carlo Results

Mean Median Mean Median Mean Median
Mean Median StdDev Bias Bias AD AD ASE ASE

N = 25

β1: 1.982 2.017 0.491 -0.018 0.017 0.346 0.218 0.624 0.595
β2: -9.952 -10 0.916 0.048 0 0.643 0.399 2.22 1.249
θ1: -1.743 -0.977 3.959 -2.743 -1.977 3.421 2.398 2.644 2.346

N = 50

β1: 2.048 2.039 0.401 0.048 0.039 0.265 0.113 0.588 0.574
β2: -9.962 -10 0.787 0.038 0 0.534 0.28 1.232 1.148
θ1: -0.62 0.526 3.395 -1.62 -0.474 2.04 0.588 2.545 2.124

N = 100

β1: 2.057 2.036 0.327 0.057 0.036 0.221 0.095 0.544 0.536
β2: -10.016 -10.012 0.663 -0.016 -0.012 0.442 0.213 1.086 1.071
θ1: 0.14 0.611 2.297 -0.86 -0.389 1.122 0.498 2.218 1.882

N = 200

β1: 2.049 2.037 0.245 0.049 0.037 0.166 0.063 0.452 0.434
β2: -9.981 -10.003 0.543 0.019 -0.003 0.347 0.114 0.915 0.887
θ1: 0.664 0.779 0.598 -0.336 -0.221 0.461 0.303 1.548 1.187

N = 400

β1: 2.044 2.041 0.224 0.044 0.041 0.166 0.105 0.274 0.261
β2: -10.013 -10.026 0.496 -0.013 -0.026 0.362 0.231 0.579 0.566
θ1: 0.732 0.756 0.377 -0.268 -0.244 0.356 0.281 0.275 0.257

The true parameter vector is β1 = 2, β2 = −10, and θ1 = 1. Each sample size was evaluated 500 times. AD
= Absolute Deviations. ASE = Asymptotic Standard Errors.

are calculated using the optimal weighting matrix from a two-step GMM procedure. The

Laplace-type estimator of Chernozhukov and Hong (2003) is used to recover the parameters.

The results of our Monte Carlo are reported in Table 9.

The results are encouraging even in the smallest sample sizes. The payoff parameters

are tightly estimated near their true values, while the mixed strategy shifter is estimated

with considerably lower precision. There is a distinct downward bias in the estimates of the

equilibrium selection parameter that shrinks as the sample size grows. The median bias in

all parameters is much better than the mean bias, implying that the mean bias is largely

driven by occasional extreme outliers.

The standard deviation of the estimates of all three parameters shrinks as the sample
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size increases, as do the mean and median absolute deviations. Significantly, the decrease in

the standard deviation for the payoff parameters is close to
√
n, as theory implies. The rate

of convergence of the equilibrium selection parameter is much more dramatic as the sample

size increases, largely because this parameter is not precisely estimated at smaller sample

sizes.

We include the means and medians of the asymptotic standard errors as well as the stan-

dard deviations of the Monte Carlo results. The asymptotic errors are usually comparable

to the Monte Carlo standard errors, which are calculated by looking at the variance of the

parameter estimates across the 500 replications for each sample size. The asymptotic errors

tend to overstate the variance of the payoff parameters and understate the variance of the

selection parameter relative to the Monte Carlo errors. Their magnitude decreases at an

increasing rate as the sample size grows, also similar to the Monte Carlo errors. Overall, our

results suggest that the asymptotic errors are good small-sample approximations to their

Monte Carlo counterparts.

The precision of the estimated payoff coefficients relative to the equilibrium selection

parameter follows from the intuition that the payoff-relevant covariates define the thresholds

at which firms are willing to enter a market, and thus enter the likelihood of every observation

directly. On the other hand, the equilibrium selection parameter enters the estimating

moments in a more subtle manner. This parameter is identified using coordination failures

between firms due to mixed strategy equilibrium.

To illustrate, suppose that all payoffs, including idiosyncratic shocks, are observed by

the econometrician. For some realizations of the covariates, the model will predict two

pure strategies, with one or the other of the firms entering the market, and a single mixed

strategy. If the mixed strategy equilibrium is played, there is a chance of either no firms

entering the market or both firms entering the market. It is only when these mistakes are

observed is the econometrician certain that the mixed strategy is played. Behind this is a

subtle and complex relationship between variables, as the probability of observing a mistake

is a function of both θ1, which controls how often a mixed strategy occurs, and the payoffs

of the game, which determine the probability of observing a mistake conditional on playing

a mixed strategy.

This interplay illustrates a more general point, which is that although the parameters are

identified, in small samples the estimation of some parameters may depend on a relatively

small subset of outcomes. Note well that this is true even in the extreme case when the payoff

functions, including the idiosyncratic shocks, are known with certainty, since the model itself

generates probabilistic outcomes through both the equilibrium selection mechanism and the

random nature of mixed strategies. In light of this, the results here are very positive, as we
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are able to recover estimates of the true parameters with acceptable precision in moderate

sample sizes.

There is one caveat to our procedure that researchers have to address in practice. In

each Monte Carlo, we know the true parameters of the game, and we are able to generate

importance games using these. With real data, of course, these parameters are initially

unknown. The importance sampler can generate imprecise parameter estimates with poor

initial guesses, so it is necessary to derive starting parameters from a separate source. Below

we use a related game of private information to generate initial starting values. Parametric

identification is another difficult empirical issue. In the monte carlo example, we are able

to calculate the rank condition explicitly at the true parameter values and find it to be

nonsingular. This is an overly strong condition for local identification but not sufficient for

global identification, which is difficult to obtain.

B.3 Rank Conditions in the Monte Carlo Example

As an illustration, we explicitly analyze the rank condition for identification, which re-

quires that the Jacobian matrix is invertible everywhere, in the context of the Monte Carlo

simulation example. The Jacobian matrix is formed by taking derivatives of the outcome

probabilities with respect to the parameters:

A =


∂P (1,1|x,β1,β1,θ1)

∂β1

∂P (1,1|x,β1,β1,θ1)
∂β2

∂P (1,1|x,β1,β1,θ1)
∂θ1

∂P (1,0|x,β1,β1,θ1)
∂β1

∂P (1,0|x,β1,β1,θ1)
∂β2

∂P (1,0|x,β1,β1,θ1)
∂θ1

∂P (0,0|x,β1,β1,θ1)
∂β1

∂P (0,1|x,β1,β1,θ1)
∂β2

∂P (1,1|x,β1,β1,θ1)
∂θ1

 .
Despite the simple structure of the Monte Carlo setup, the observed outcome probabilities,

P (1, 1|x, β1, β1, θ1) , P (1, 0|x, β1, β1, θ1) , and P (0, 0|x, β1, β1, θ1) ,

are highly complex functions of the model parameters, and the calculation of A is non-

trivial.14 We investigate the nonsingularity of the Jacobian matrix A. Because this is

a conditional model, for each vector of parameters (β1, β2, θ1) we look for a covariate x

that gives a nonsingular Jacobian matrix A. Due to the computation cost of numerically

evaluating an integral in the Jacobian matrix, it is prohibitively time consuming to verify

nonsingularity for an exhaustive search over the parameter space. Therefore we take a grid

14We derive these relationships in supplementary material which is available upon request. Calculating the
numerical values of A also requires integrating a one-dimensional integral numerically which we evaluate by
simulation. Since the derivatives are expressed analytically, we do not need to choose a step size to compute
the numerical derivatives.
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of size 6 with interval length 0.3 symmetrically around each of the true parameter values.

For each combination of the parameter values in the grid, we evaluate the smallest absolute

value of the eigenvalues of the Jacobian A at 25 values of the covariates x. The maximum

over the covariates x of the smallest absolute eigenvalue of the Jacobian matrix A is recorded

and plotted in Figure 1. The histogram of the minimum absolute eigenvalues suggests that

they are bounded away from zero and, as a result, that the rank condition is satisfied.

While this is not definitive analytical proof that the Jacobian is invertible everywhere (this

requires demonstrating strong conditions on the Jacobian, e.g. that it is a P-matrix, which

is infeasible given the complexity of our system), as formally required for identification, it

does suggest that our problem is identified in a neighborhood of the true parameters.

Figure 1: Distribution of absolute eigenvalues in the Monte Carlo example
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B.4 Maximal Number of Nash Equilibria

When considering the nonparametric identification of the equilibrium selection mechanism,

knowledge of generic properties of the set of Nash equilibria proves useful. Here we briefly

review results in the literature on the maximum number of equilibria to normal form games

of the class considered here.

Solutions to normal form games can be characterized using polynomial equalities and

inequalities. Therefore, before considering games, we review some important results on the

solutions of a system polynomials. Let F = {fi(x)}ni=1 be the system of n polynomials of n
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variables, and we are looking for the set of all common roots of this system. A polynomial

fi(x) =
J∑
j=1

aj x
eij1
1 x

eij2
2 . . . xe

ij
n
n =

J∑
j=1

aj
n∏
k=1

x
eijk
k . The powers eijk are integers in general: index

i refers to the equation number, index j refers to the number of monomial in polynomial i,

and index k refers to the specific variable xk. The points eij =
(
eij1 , . . . , e

ij
n

)
form the finite

sets Ei = (eij, j = 1, . . . , J) and indicate which monomial terms appear in fi. For instance,

in the polynomial fi(x1, x2) = x21 x
3
2 + 2x21, the support set is Ei = {(2, 3) , (2, 0)}.

The collection of sets E = (E1, E2, . . . , En) is called the support of the system of poly-

nomials. The convex hulls Conv (Ei) are called Newton polytopes of fi. For example, the

Newton polytope of the polynomial f(x1, x2) = x1 x2 + x1 + x2 + 1 is the unit square with

vertices in (1, 1), (1, 0), (0, 1), and (0, 0).

The degree of the polynomial i is di = maxj
n∑
k=1

eijk . One of the most important theorems

describing the behavior of zeros of F in the complex space Cn is Bézout’s theorem, which

says that the total number of common complex roots of F is at most
n∏
i=1

di. Bézout’s

theorem provides an upper bound to the number of common roots in the system, giving little

information on the polynomials that are sparse. In fact, for sparse systems, the number of

common roots of the polynomial system can be significantly less than the bound set by this

theorem. A universal and powerful tool for root counting in case of sparse polynomial is

Bernstein’s theorem.

Let Pi be Newton polytopes of equations fi(x) in the system F defined previously. The

mixed volume of the system of polytopes is defined as:

M (P1, . . . , Pn) =
∑

S⊆{1,...,n}

(−1)|S|Vol

(∑
i∈S

Pi

)
, (21)

where S are all subsets of {1, 2, . . . , n}, |S| is the cardinality (number of elements) of a

particular subset, and Vol (·) is the conventional geometric volume. The sum of the polytopes

is defined for two polytopes P and Q as P +Q = {p+ q | p ∈ P, q ∈ Q}.

Theorem 6 (Bernstein). The number of common roots in the system F is equal to the mixed

volume of the n Newton polytopes of this system.

This is an extremely powerful result because the mixed volume is easy to compute. A

general problem with complex roots though is that they are not invariant with respect to the

group of polynomial transformations of F . For example, if the polynomial f(x) has degree

d and thus has d distinct complex roots, then the polynomial f(x)2 can have 2d distinct

complex roots. This is not the case with the real roots of a system of polynomials and thus

power transformations have no effect on the number of distinct real roots. This is captured
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by Khovanskii’s theorem, which sets the upper bound on the number of common real roots of

the polynomial system which does not depend on the degrees of the equations in the system.

Theorem 7 (Khovanskii). If m is the number of all monomials in F (or equivalently m =

|E| =
∑n

i=1 J − i - cardinality of the support) and there are n polynomials in F , then the

maximum number of real solutions of the system is 2((m
2 )) (n+ 1)m.

In many cases, however, the so-called Kouchnirenko’s conjecture holds: if the number of

terms in fi is at most mi, then the number of isolated real roots is at most
n∏
i=1

(mi− 1). This

conjecture is violated for some generic (although quite complex) counterexamples.

Consider an arbitrary N -person game where the player i has ni strategies. Using La-

grangian multiplier techniques, it can be reduced to a system of n+
∑

i ni polynomial equa-

tions with n +
∑

i ni unknowns. Let x
(i)
k denote strategy k of player i, ξ

(i)
j1,j2,...,ji−1,k,ji+1,...,jN

be the payoff function, representing the payoff of player i when she plays the pure strategy

k and the other players are playing j1, . . . , jN , and π(i) be the expected payoff of player i.

Let λ
(i)
k0 be the Lagrange multiplier for the constraint x

(i)
k ≥ 0, and λ̃

(i)
be the Lagrange

multiplier for the constraint
ni∑
k=1

x
(i)
k = 1. The Lagrangian for bidder i can be written as:

L(i) =

ni∑
k=1

x
(i)
k

∑
j−i

ξ
(i)
j1,j2,...,ji−1,k,ji+1,...,jN

x
(1)
j1
. . . x

(i−1)
ji−1

x
(i+1)
ji+1

. . . x
(N)
jN

−
ni∑
k=1

λ
(i)
k0x

(i)
k + λ̃

(i)

(
1−

ni∑
k=1

x
(i)
k

)
.

The first order condition for the Lagrangian and the complementary slackness conditions for

the multipliers λ
(i)
k0 are:

∂L(i)

∂x
(i)
k

=
∑
j−i

ξ
(i)
j1,j2,...,ji−1,k,ji+1,...,jN

x
(1)
j1
. . . x

(i−1)
ji−1

x
(i+1)
ji+1

. . . x
(N)
jN
− λ(i)k0 − λ

(i) = 0, (22)

1−
ni∑
k=1

x
(i)
k = 0, (23)

x
(i)
k λ

(i)
k0 = 0, k = 1, . . . , ni. (24)
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If we multiply the first equation by xik, it reduces to:

x
(i)
k

∑
j1,j2,...,ji−1,ji+1,...,jN

ξ
(i)
j1,j2,...,ji−1,k,ji+1,...,jN

x
(1)
j1
. . . x

(i−1)
ji−1

x
(i+1)
ji+1

. . . x
(N)
jN
− x(i)k λ̃

(i)
= 0, (25)

1−
ni∑
k=1

x
(i)
k = 0, (26)

x
(i)
k λ

(i)
k0 = 0, k = 1, . . . , ni. (27)

Summing the first equation over all k, we obtain π(i) = λ̃
(i)

. Then each bidder is characterized

by the system of equations:

x
(i)
k

πi − ∑
j1,j2,...,ji−1,ji+1,...,jN

ξ
(i)
j1,j2,...,ji−1,k,ji+1,...,jN

x
(1)
j1
. . . x

(i−1)
ji−1

x
(i+1)
ji+1

. . . x
(N)
jN

 = 0, (28)

ni∑
k=1

x
(i)
k − 1 = 0, k = 1, . . . , ni, i = 1, . . . , N. (29)

Thus, for each player we have ni + 1 equations and ni + 1 unknown parameters (ni mixed

strategies and the expected payoff). The individual equation has
∏

j 6=i nj + 1 terms (the

number of strategies of the other players when the strategy of player i is fixed, plus the

expected payoff of player i). In addition, the linear equations limiting the mixed strategies

to the simplex have ni + 1 terms each. So in total there are
∑

i ni + N equations and

unknowns. The total number of terms is
∑

i

∏
j 6=i nj +

∑
i ni + 2N . If we consider purely

mixed strategies, then x
(i)
k > 0, and thus the system can be rewritten as:∑

j−i

(
ξ
(i)
j1,j2,...,ji−1,k,ji+1,...,jN

− ξ(i)j1,j2,...,ji−1,ni,ji+1,...,jN

)
x
(1)
j1
. . . x

(i−1)
ji−1

x
(i+1)
ji+1

. . . x
(N)
jN

= 0, (30)

k = 1, . . . , ni − 1, i = 1, . . . , N. (31)

This system has ni−1 unknowns for player i and
∑

i ni−N unknowns in total. The number

of terms for each equation is
∏

j 6=i nj, according to the number of strategies of the rival

players when the strategy of the given player is fixed. The total number of terms is then

given by the sum
∑

i

(∏
j 6=i nj

)
(ni − 1).

McKelvey and McLennan (1996) directly apply Bernstein’s theorem to the given system

of equations and express the number of solutions in terms of the mixed volume of Newton

polytopes for the case of totally mixed solutions (the case with possible pure strategies needs

specific consideration for each payoff structure). We can also apply Khovanskii’s result to this

system as follows. First, by Kouchnirenko’s conjecture, the maximum number of solutions
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to this system is

N∏
i=1

(∏
j 6=i

nj − 1

)ni−1

, (32)

which gives an approximate upper bound on the number of solutions. An exact application

of Khovanskii’s formula with m =
∑

i

(∏
j 6=i nj

)
(ni − 1) gives the maximum number of

solutions as 2
m!

2(m−2)! (
∑

i ni −N + 1)m.

For a particular case when k equals the number of strategies, Kouchnirenko’s formula

gives
(
kN−1 − 1

)N(k−1)
for the number of equilibria, while Khovanskii’s bound is

2(Nk(N−1)(k−1)
2 ) [N(k − 1) + 1]Nk

(N−1)(k−1) .

The number of moments with N players when each player has k strategies is kN − 1. The

corresponding numbers of moments are tabulated in Table 11. They are significantly smaller

than Kouchnirenko’s bounds.
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Table 10: Tabulation of Kouchnirenko’s formula

Number of Strategies (k)
N 2 3 4 5 6
2 3 16 729 65536 9765625
3 27 262144 38443359375 3.65203E+16 1.44884E+23
4 2401 2.08827E+11 3.90919E+21 3.12426E+33 4.45419E+46
5 759375 1.07374E+19 1.25344E+36 8.01109E+55 6.40832E+77
6 887503681 4.03445E+28 1.50578E+54 7.4656E+83 5.2603E+116

Table 11: Tabulation of the Number of Available Moments

Number of Strategies (k)
N 2 3 4 5 6
2 3 8 15 24 35
3 7 26 63 124 215
4 15 80 255 624 1295
5 31 242 1023 3124 7775
6 63 728 4095 15624 46655
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