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Abstract The effectiveness of an ensemble Kalman filter
(EnKF) is assessed in the Selat Pauh of Singapore using
observing system simulation experiment. Perfect model
experiments are first considered. The perfect model experi-
ments examine the EnKF in reducing the initial perturba-
tions with no further errors than those in the initial
conditions. Current velocity at 15 observational sites from
the true ocean is assimilated every hour into the false ocean.
While EnKF reduces the initial velocity error during the
first few hours, it fails after one tidal cycle (approximately
12 h) due to the rapid convergence of the ensemble
members. Successively, errors are introduced in the surface
wind forcing. A random perturbation ε is applied indepen-
dently to each ensemble member to maintain the ensemble
spread. The assimilation results showed that the success of
EnKF depends critically on the presence of ε, yet it is not
sensitive to the magnitude of ε, at least in the range of weak
to moderate perturbations. Although all experiments were
made with EnKF only, the results could be applicable in
general to all other ensemble-based data assimilation
methods.

Keywords Ocean modeling . Data assimilation .
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1 Introduction

Numerical ocean models have become capable of simulat-
ing the four dimensional evolution of the ocean with the
flexible resolution that is essential to reproduce and
understand the processes not captured by the limited
observations. In spite of this progress, ocean models still
contain errors because of the incomplete representation of
ocean physics, numerical implementation, insufficient
resolution, as well as errors in forcing functions and
observations. Thus, it is necessary to correct for them, and
this can be done through data assimilation. Data assimila-
tion methods synthetize the model solution with the
available limited observations to obtain an optimal solution
(analysis) which can be used as the new initial condition for
model forecasting. In general, the analysis procedure
minimizes the misfit between the model states and the
observations using least-square methods. In this study, we
focus on the ensemble Kalman filter (EnKF), one of the
most advanced sequential assimilation methods, introduced
in oceanography by Evensen (1994).

The original Kalman filter is developed for a linear
system, and the extended Kalman filter (EKF) extends its
basic algorithm to nonlinear problems by linearizing the
nonlinear function around the current estimate. For a
realistic ocean model, however, it is difficult to directly
apply the EKF because ocean dynamics is strongly
nonlinear and any linearization fails very quickly. Thus, a
number of suboptimal approximations have been proposed.
Among them are the filters based on ensemble estimation
(Evensen 1994; Houtekamer and Mitchell 1998; Tippett et
al. 2003; Zang and Malanotte-Rizzoli 2003; Chen et al.
2009).

The EnKF predicts a flow-dependent error covariance
through a set of ensemble forecasts computed directly from
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nonlinear models. We do not include a detailed illustration
of the EnKF procedure as it has been amply discussed in
the published literature and can be found in the references
quoted above. The success of EnKFs for large scales is in
part due to the global and continuous coverage of satellite
data which provides stringent constraints on the ocean
models. In contrary, the studies of Kalman filters in coastal
areas are very limited. Chen et al. (2009) present an
extensive application of the ensemble filters with limited,
point-wise measurements in three coastal problems. They
used the twin experiment approach considering a perfect
model and 20 ensemble members. They showed that the
ensemble-based filters (traditional EnKF and ensemble
square root Kalman filter) are very successful in an
idealized tide- and buoyancy-driven problem in an estuary.
In this study, we examine the EnKF scheme in a realistic
coastal region, the Selat Pauh of Singapore. Perfect and
perturbed model experiments are carried out to examine the
reliability and limitation of the EnKF. The paper is
organized as follows. Section 2 describes the study area
and the ocean model. Section 3 briefly discusses the
experimental design. Section 4 presents the observing
system simulation experiment (OSSE) results, and Section 5
gives a conclusive discussion.

2 Study area and ocean model

In Malay, “selat” means strait or channel. Selat Pauh is
located to the west of the Singapore Strait and is
surrounded by four major islands, Pulau Bukom, Pulau
Semakau, Pulau Sudong, and Pulau Busing (Fig. 1). Selat
Pauh is about 8×2 km in the west–east and south–north
directions, respectively. The maximum depth in the channel
is about 25 m. The circulation in the Selat Pauh is
dominated by barotropic tidal flow with a weak vertical
stratification. Its subtidal circulation is characterized by
vortices induced by tide-island interactions and the wind
(monsoon) driven circulation.

The model used in this study is an unstructured grid,
three-dimensional, free surface, primitive-equation finite
volume coastal ocean model, developed by Chen et al.
(2003, 2006a, b) to which the reader is referred for details.
The model grid covers the large Selat Pauh area and is
closed by a circular open boundary (Fig. 1). Horizontal
resolution is 20 m along the coast of the islands and
increases to 500 m at the open boundary. The model is
configured with five sigma levels in vertical. We note that
even though the configuration of five layers is not enough
for a 3-D baroclinic simulation, it is justifiable in our case
as only barotropic velocities are considered, and it is
efficient for testing the EnKF. The model simulation is
driven by the realistic tide along the open boundary and the

wind stress at the surface. The tidal forcing is obtained from
a regional Singapore Strait model (courtesy of the Tropical
Marine Science Institute of the National University of
Singapore), and the wind stress is from the 6-h National
Centers for Environmental Prediction reanalysis, uniform
over the domain. The model is spun up under homogeneous
condition and is integrated from January 3 to 12, 2007,
period for which we have the boundary tidal forcing.
Therefore, the model is used in its barotropic version, and
the assimilated data are the barotropic velocities.

We chose east Selat Pauh (hereafter referred as ESP
domain which is marked in Fig. 1) as assimilation domain
to focus on small scales. The control run (true ocean) and
the simulation with wrong initial conditions and, succes-
sively, wrong wind forcing (false ocean) are integrated
with the large Selat Pauh domain (including the ESP
domain), while the analysis procedure (assimilation) is
conducted only in the ESP domain. The barotropic
velocities are observed from the true ocean and assimi-
lated into the false ocean at 15 observational sites in the
ESP domain (Fig. 1).

3 Experimental design

The algorithm of EnKF is described in Kalnay (2003) to
which the reader is referred for details. The EnKF theory is
based on the statistical estimation of sufficient ensemble
members. Large ensemble size however requires large
computational resource. In this study, we use 20 ensemble
members following Chen et al. (2009), which showed its
efficiency in nonlinear tidal and buoyancy-driven problems.

Fig. 1 Large Selat Pauh model domain and bottom topography.
Fifteen observational sites are marked in the east Selat Pauh (ESP)
sub-domain. The latitude and longitude of origin (0,0) is marked
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A localization scheme is necessary for coastal ocean data
assimilations. First, from the statistical point of view, the
forecast error covariance contains large sampling errors
amongst those distant grid points (Anderson 2001; Hamill
et al. 2001), and, theoretically, the localization scale should
be consistent with the dominant scale of the flow structure.
We use a localization scheme introduced by Gaspari and
Cohn (1999). A smooth function with 500 m cut-off radius
is applied to each observation point when calculating the
error covariance. The cut-off radius defines the utmost
distance that an observation might affect the neighboring
grid points.

OSSE with twin experiment approach provides a
complete knowledge of the true ocean state and is widely
used to assess the data assimilation method. All OSSE
experiments in this study are listed in Table 1. The perfect
model experiments examine the EnKF in reducing the
initial perturbations with no other errors. There are three
model runs: the true ocean, the false ocean, and the
assimilation. The true ocean is the unconstrained model
simulation. The false ocean run is integrated in the same
period but starting from different, and wrong, initial
conditions uncorrelated with the initial condition of the
true ocean. In the assimilation run, barotropic velocity
from the true ocean is assimilated every hour into the
false ocean. The perturbed model experiments consider
errors both in the initial conditions and in the surface
wind forcing. The true ocean is the same as the perfect
model. In the false ocean, the wind stress is perturbed,
and the perturbed wind is constructed from the true wind
plus a weighted difference between the true wind and the
wrong wind

Wi ¼ Wtrue þ Wwrong �Wtrue

� �� a þ "ið Þ i ¼ 1; 2 . . . ens

ð1Þ

Wtrue is the wind actually observed in the period January
3–12, 2007 and Wwrong is the wind observed during the
successive 10 days, January 12–21, 2007. Two perturbation

factors (α and ε) are used to control the wind perturbations;
α controls the major difference between the true wind and
the perturbed wind, which is the same for all ensemble
members, and εs controls the magnitude of the added
random perturbation which is different for each ensemble
member. Note that in real applications, only ε is needed
because the wind error (equivalent to α here) is usually
unknown. We consider errors only in the wind forcing and
not in the open boundary conditions for the following
reason. Errors in open boundary forcing data become
important in areas not tidally driven, where mesoscale
eddies can induce random fluctuations difficult to measure.
The Selat Paul channel is fully tidally driven, and the tide
data are excellent as a 23-year tidal record exists at the
Tanjong Pajar gauge of Singapore. The tide has been very
faithfully reconstructed all around the islands of Singapore
through harmonic analysis (Tkalich et al. 2009). On the
other side, the wind data are very poor as no wind
observations are taken in the channels of the island with
important daily excursion.

4 OSSE results

The true ocean state is the model simulation of January 8–
12, 2007. The velocity field is mainly controlled by the
boundary tidal forcing and slightly modified by the wind
forcing. The false ocean run is initialized with a set of
wrong initial conditions (ensemble members) uncorrelated
with the initial condition of the true ocean. The initial
ensemble members of the false ocean are constructed from
a random sampling of the model states in the period
January 3–7. Each ensemble member is integrated forward
without data assimilation, and the mean of ensemble
forecasts is regarded as the false ocean state and is used
to calculate the root mean square (RMS) errors with respect
to the true ocean. Figure 2a,b shows the RMS errors of the
false ocean (only first 48-h results are showed). The initial
velocity error decreases dramatically in the first 12 h
(approximately one tidal cycle) and remains at the level of

Perfect model experiments True ocean Unconstrained model simulation

False ocean Forecast with wrong initial conditions

Assimilation Assimilation with velocity from true ocean

Perturbed model experiments False ocean Forecast with perturbed wind stress

Experiments of ε Case 1: α=0.5, εs=0.5

Case 2: α=0.5, εs=0.2

Case 3: α=0.5, εs=0

Experiments of α Case 4: α=0.5, εs=0.2

Case 5: α=0.2, εs=0.2

Case 6: α=0, εs=0.2

Table 1 Experiment list
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10−3 cm/s. Since the model is the same for the true and
false ocean simulations, the false ocean has only the initial
errors, and their rapid dissipation is due to the enforcement
of the “true” boundary tidal forcing.

In the assimilation experiment, the observations
extracted from the true ocean include an observational
error for all the ensemble members. Random noise is in fact
added to the data, specified as 1% of the standard deviation
of the true solution relative to the mean. The random noise
is derived from a Gaussian distribution with zero mean and
unit standard deviation. Figure 2a,b also show the analysis
RMS errors after data assimilation. The analysis RMS
errors are smaller than the false ocean errors in the first 12 h
due to the data assimilation, while afterward, they quickly
converge to the false ocean errors implying the subsequent
ineffectiveness of the EnKF. We also calculate the
normalized error (En) to reveal the error reduction due to
the assimilation only as

En¼ 1� RMS analysisð Þ
RMS false oceanð Þ

� �
ð2Þ

which is shown in Fig. 2c. The normalized error is above
0.8 in the first few hours and gradually decreases to around
zero, indicating that indeed the EnKF fails to reduce the
errors with respect to the false ocean after 12 h. The
ineffectiveness of the EnKF is due to the rapid convergence

of the ensemble members indicated by the decrease of
ensemble spread. The ensemble spread is calculated as

Espread¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

1

M

XM
j¼1

x� xð Þ
2

vuut ð3Þ

where x is the state variable, M is ensemble size, and N is
the total number of model grid points for state variables.
Figure 2d shows the ensemble spread over the ESP domain.
The spread decreases from 10−2 cm/s at t=0 to 10−4 cm/s at
hour 12 and remains at the same level afterward. This result
is not surprising. We point out that in the assimilation
experiment, there are only velocity errors in the initial
condition, O(1 cm/s). They decrease rapidly to 0.01–
0.001 cm/s as the model solution quickly converges to the
true ocean because the tidal boundary forcing and wind
forcing are correct. Even though after each analysis
procedure the analysis is again randomly perturbed to a
set of new ensemble members used as initial conditions for
the next forecast, the initial perturbations are mostly
swamped out by the dominant tidal forcing during the next
1-h model forecasting.

In the perturbed model experiments, the wind forcing is
modified according to Eq. 1. Figure 3a shows the difference

(square root of Uwrong � Utrue

� �2 þ Vwrong � Vtrue

� �2h i
)

between the true wind and the wrong wind. The maximum
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ments. a Root mean square
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sites, (b) RMS errors over the
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difference is about 6 m/s at hour 36. In Eq. 1, ε is a random
number with zero mean and standard deviation of εs for
which different values are used as shown in Table 1. The
false ocean is calculated as the mean of the ensemble
members without data assimilation. Different from the
perfect model case, the perturbed model experiments
contain an imperfect model (with wind forcing errors) and
inconsistent errors (consequence of both initial and wind
stress errors). Figure 3b shows the RMS errors of the false
ocean and the analysis with perturbation factors α=0.5 and
εs=0.5 (case 1). In the false ocean, the RMS error in the
initial condition decreases in the first 12 h, but then
gradually increases again to approximately 0.1 cm/s due
to the inaccurate wind forcing which evidently plays a
fundamental role in affecting the flow. Notice that 0.1 cm/s
is a domain-averaged RMS error, while the maximum
velocity errors can reach 10 cm/s within the domain. The
analysis RMS error is significantly reduced throughout the
48 h. The normalized error as given by Eq. 2 indicates that
the data assimilation reduces the errors up to 90% after a
few hours (Fig. 3c). A remarkable degradation of the error
reduction at hour 40 is likely due to the large wind
perturbation at that time. Figure 3d compares the ensemble
spreads for the perturbed and perfect model experiments.
The ensemble spread of the perturbed ones is well
maintained between 10−2 and 10−3 cm/s and is about ten
times bigger than for the perfect model.

The results of the perturbed model experiment (case 1 of
Table 1) indicate that the success of the EnKF is highly
sensitive to the ensemble spread. Figure 4 shows the results
of a series of sensitivity experiments with different values
of α and εs (cases 1–6 in Table 1). In the experiments of ε,
α is set to 0.5 and εs=0, 0.2, and 0.5. The normalized errors
calculated as Eq. 2 for εs=0.2 and 0.5 are similar, while the
normalized error for εs=0 rapidly decreases to zero
showing failure of the assimilation. The ensemble spreads
of cases 1–3 also confirm that the failure of the EnKF in
case 3 is due to the convergence of the ensemble members.
In the experiments of α, εs is set to 0.2 and α=0, 0.2, and
0.5. EnKF succeeds in all three cases, and all ensemble
spreads remain the order of 10−3 cm/s. It is noted that the
difference between case 6 and the perfect model experiment
is the presence of ε (0.2), indicating that the ineffectiveness
of the EnKF in the perfect model can be improved by
applying a small random perturbation to each ensemble
member.

5 Summary and discussions

OSSE experiments are designed to assess the effectiveness
of the EnKF data assimilation method in the Selat Pauh of
Singapore. Perfect and perturbed model experiments are
carried out. Twenty ensemble members are used, based on
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the successful experience in the idealized experiments
(Chen et al. 2009). In the perfect model experiments, while
the EnKF reduces the initial velocity error in the first few
hours, it fails after one tidal cycle due to the rapid
convergence of the ensemble members. In the perturbed
model experiments, a wrong wind is used as specified in
Eq. 1. The EnKF successfully reduces the velocity errors
throughout the 48-h assimilation run in the presence of a
random perturbation ε applied independently to each
ensemble member. The assimilation-induced error reduction
is up to 90% with respect to the false ocean.

Our model results are consistent with the EnKF theory
that the success of the EnKF depends on the diversity of the
ensemble members. Since our model only considers the
barotropic circulation, the flow evolution is strongly
controlled by the boundary tidal forcing. In the perfect
model experiments, the tidal forcing is identical to the true
ocean, and thus the ensemble members converge rapidly in
spite of initial perturbations. In the experiments with the
perturbed wind, the tidal forcing is the same. The presence
of ε is essential for the effectiveness of the EnKF as the
EnKF succeeds in all the cases including it but fails in the
case without. The results also suggest that the success of
EnKF is not seriously sensitive to the magnitude of ε,
but to its presence, at least for the range of considered
values, indicating that in this range, the effect of wind

forcing is linear. The degradation of the normalized error
observed in Fig. 3c, due to the very large wind
perturbation, shows the emergence of nonlinear effects,
arguably equivalent to considering much higher values of
this perturbation parameter.

Houtekamer and Mitchell (1998) found that the ensem-
ble members tend to converge if the same unperturbed
observations are used to update the ensemble analysis. To
prevent the convergence of the ensemble members, they
proposed to update the analysis with a perturbed set of
observations different for each ensemble member. Burgers
et al. (1998) and Whitaker and Hamill (2002) also
discussed the need of perturbed observations. A recently
developed version of the EnKF, the square root filter (SRF;
Hoffman et al. 2008), allows maintaining the ensemble
spread by directly updating the analysis covariance matrix
and by inflating the covariance. The SRF therefore needs
no artificial perturbed observations for maintaining the
ensemble spread. Our model results showed that for a
barotropic regime, even with a set of observations
differently perturbed for each ensemble member, the
ensemble members still converge rapidly in a few hours,
which causes the failure of the EnKF in the perfect and
perturbed model experiments (case 3). Differently from
Hoffman et al., however, we have added a small random
perturbation on wind stress to each ensemble member
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which effectively prevents their convergence and insures
the effectiveness of the EnKF. In these experiments, we
have focused exclusively on the EnKF. A possible
comparison between the EnKF and other possible
versions of the filter, such as the SRF, is well beyond
the scope of the present investigation.

As a concluding remark, we point out again that the
barotropic flow in our simulations is dominated by the tidal
boundary forcing. A natural extension would be to reverse
the role of tides and wind by perturbing the tidal forcing
and leaving the wind unchanged. This extension would
require a much greater sensitivity analysis to cover the
much broader amplitude/phase perturbation ranges of the
prescribed boundary tides. This scenario would however
correspond to a rather unrealistic situation as tides, being
fully deterministic, are known with a much greater accuracy
than the wind field over a small, regional domain affected
by land-sea interactions, and this is the reason why we have
not addressed this further problem.
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