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One of the most striking examples of self-organization in landscapes is the 

emergence of evenly spaced ridges and valleys
1-6

. Despite the prevalence of 

uniform valley spacing, no theory has been shown to predict this fundamental 

topographic wavelength. Models of long-term landscape evolution can produce 

landforms that look realistic
7-9

, but few metrics exist to assess the similarity 

between models and natural landscapes. Here we show that the ridge-valley 

wavelength can be predicted from erosional mechanics. From equations of mass 

conservation and sediment transport, we derive a characteristic length scale at 

which the timescales for erosion by diffusive soil creep and advective stream 

incision are equal. This length scale is directly proportional to the valley spacing 

that emerges in a numerical model of landform evolution, and to the measured 

valley spacing at five field sites. Our results provide a quantitative explanation for 

one of the most widely observed characteristics of landscapes. They also imply that 

valley spacing is a fundamental topographic signature that records how material 

properties and climate regulate erosional processes.  

The spacing between adjacent ridges and valleys is a fundamental dimension of 

hilly topography
1-6

. Even a casual observer can see from an airplane window that ridges 
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and valleys in many landscapes appear to be uniformly spaced (Fig. 1), even where their 

locations are not controlled by bedrock structure. Indeed, uniform spacing is often most 

clearly visible where bedrock is mechanically homogeneous
10

. This implies that the 

characteristic ridge-valley wavelength is an emergent property of the erosion and 

sediment transport processes that shape the landscape. Any theory for the long-term 

evolution of Earth’s surface should be able to explain fundamental landscape scales like 

the ridge-valley wavelength. 

Some of the earliest theories of landscape evolution focused on the segmentation 

of landscapes into ridges (or, more generally, hillslopes) and valleys. Davis
11

 and 

Gilbert
10,12

 suggested that hillslopes are dominated by sediment transport mechanisms 

that smooth the land surface, and that hillslopes give way to valleys where water runoff 

becomes concentrated enough to outpace the smoothing processes and incise into the 

land surface. Later studies showed how this competition might lead to the development 

of evenly spaced valleys. Smith and Bretherton
13

 demonstrated that a concave-up, 

erodible surface under a sheet of flowing water—a situation analogous to a freshly 

exposed soil embankment during a rainstorm—is unstable with respect to perturbations, 

with the shortest-wavelength topographic features growing fastest. This result implied 

no preferred wavelength. Subsequent studies found that if smoothing is introduced, 

either by diffusive processes
14,15

 such as rain splash
16

 or by the dispersive effects of the 

free water surface
2
, perturbations with an intermediate wavelength will grow fastest, 

forming incipient erosional rills with a characteristic spacing. Some studies additionally 

included a sediment transport threshold that encouraged the selection of an intermediate 

wavelength
2,5

. 

These studies considered incipient channelization of a surface by a sheet of 

flowing water, and cannot be used to predict the dimensions of large-scale landforms 

like those in Fig. 1. Numerical models based on a similar competition between stream 
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channel incision and diffusive soil creep have been used to explore the long-term 

evolution of such landforms, including the factors controlling the upslope drainage area 

at which hillslopes transition into valleys
8,9,17-21

, but not the characteristic ridge-valley 

wavelength. Moreover, comparisons between models and natural landscapes have been 

hampered by the scarcity of high-resolution topographic data and the difficulty of 

measuring the long-term rates of erosion and transport processes in the field. 

To investigate the factors that control valley spacing, we developed a numerical 

model (Methods, Supplementary Information) that simulates landscape evolution under 

the combined influence of soil creep (here used to mean downslope soil flux due to 

abiotic and biotic processes that depends linearly on the local surface gradient) and 

stream incision. The transient evolution of the model illustrates how uniform valley 

spacing emerges over time (Supplementary Information). As the topography evolves 

from a randomly rough, horizontal initial surface, irregularly spaced incipient valleys 

form at the boundaries and begin to grow by lengthening and widening. Competition for 

drainage area (a proxy for water flux) stunts the growth of valleys that are too small or 

spaced too closely together. This transient evolution is similar in many respects to early 

conceptual models of drainage network development
10,16,22

. The model eventually 

reaches a deterministic equilibrium in which the spacing of valleys is approximately 

uniform. 

Nonlinearities in the governing equation (Equation 1) preclude an analytic 

solution for the equilibrium topography, so we used dimensional analysis to explore 

how the erosion and transport parameters control the valley spacing. The governing 

equation is a nonlinear advection-diffusion equation, and we derived a quantity 

analogous to a Péclet number, Pe (Equation 2), that expresses the relative magnitudes of 

the advective stream incision and diffusive soil creep mechanisms shaping the 

landscape. When Pe is small, the landscape is dominated by creep, and forms a smooth 



4 

slope with no valleys. When Pe is large, the landscape is dominated by stream incision, 

and forms networks of branching valleys. Setting Pe = 1 yields a characteristic length 

scale, c (Equation 3), at which the characteristic timescales for stream incision and 

creep are equal. Numerical modelling has shown that c
2
 is approximately the drainage 

area at which the topography transitions from a concave-down, creep–dominated 

hillslope to a concave-up, stream incision–dominated valley
23

. We computed 

equilibrium model solutions using parameters that give a range of values for c, and 

measured valley spacing, , by identifying the dominant peaks in the two-dimensional 

Fourier spectra of the simulated topography
6,23

. For a given value of c, a range of 

valley spacing is possible because a range of slope lengths can give rise to first-order 

valleys (valleys that do not branch), and longer slopes form more widely spaced valleys 

(Fig. 2). The range of slope lengths is limited, however, because slopes that are too long 

will become dissected by branching valleys, and slopes that are too short will remain 

smooth and undissected. The minimum and maximum valley spacings are directly 

proportional to c, as shown in Fig. 2. 

To test whether this theoretical prediction is consistent with valley spacing in 

natural landscapes, we measured c in five landscapes in the United States that have 

different valley spacings: Gabilan Mesa (GM) and Napa Valley (NV), in the California 

Coast Ranges; the Dragon’s Back pressure ridge (DB) along the San Andreas Fault in 

the Carrizo Plain, California; Point of the Mountain (PM) in the Salt Lake Valley, Utah; 

and Eaton Hollow (EH) in southwestern Pennsylvania. All five sites display uniform 

valley spacing (Fig. 1, Table 1) that is not determined by structural heterogeneities in 

the underlying bedrock. GM is an oak savannah with a Mediterranean climate, and 

erosion of the moderately consolidated sandstones, siltstones and conglomerates of the 

Paso Robles Formation has formed valleys with a spacing of 163 ± 11 m. NV has 

similar vegetation and climate, with valleys spaced at 128 ± 23 m that have formed in 

sandstones and mudstones of the Franciscan Complex. DB is a semi-arid grassland 
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underlain by sediments of the Paso Robles Formation that are less consolidated than in 

GM, with a valley spacing of 30 ± 3 m. PM is a sand and gravel spit formed by 

Pleistocene Lake Bonneville, with a valley spacing of 54 ± 13 m. EH is a temperate 

mixed forest underlain by horizontal beds of Permian and Pennsylvanian sandstone, 

shale, limestone, and coal, and has a valley spacing of 321 ± 33 m. Valley spacings 

were measured from peaks in two-dimensional Fourier spectra derived from high-

resolution laser altimetry maps
6
. Comparison with spectra for random surfaces with the 

same roughness characteristics as the observed topography
6
 shows that valley spacing 

as uniform as that observed in the study sites is very unlikely to arise by chance 

(p<0.001). 

Erosion and transport at all five sites are dominated by stream channel incision 

and by diffusive soil creep, which occurs mainly through bioturbation such as tree throw 

and rodent burrowing. Mean hillslope gradients are between 0.2 and 0.4, and evidence 

of landslides is rare. In NV, some of the areas surrounding our study site are steeper and 

have experienced landslides, but we avoided these areas in our analysis. Similarly, 

portions of DB experience nonlinear creep and frequent landslides due to a spatial 

gradient in uplift rates
24

, but we restricted our analysis to the drainage basins farthest 

from the zone of maximum uplift, which are dominated by linear creep. The 

mechanically homogeneous substrates and the two dominant erosion and transport 

mechanisms conform to the simplifying assumptions behind the numerical model, 

making these sites suitable locations to test predictions of valley spacing. 

An estimate of c for each landscape requires values for the constants that describe 

the long-term strengths of the erosional processes: soil diffusivity D, stream erosivity K, 

and drainage area exponent m (Equation 3). These parameters are difficult to measure 

directly because erosion is usually slow or episodic, and because present-day rates may 

not be representative of long-term rates. We therefore used the shapes of hilltops and 
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stream profiles measured from high-resolution topography to solve for time-averaged 

values of D/K and m (Fig. 3, Methods). 

The comparison in Fig. 2 shows that valley spacing is proportional to c across all 

five study sites, consistent with the predictions of the numerical model. The good 

agreement suggests that the two-process model, despite its simplifications, captures the 

mechanisms that exert the strongest influence on valley spacing in these landscapes. To 

demonstrate that this agreement is not an inevitable consequence of our procedure for 

measuring c, we performed the same topographic measurements in three landscapes 

shaped by erosional processes that are not well described by our model; the valley 

spacing in those landscapes is inconsistent with the inferred values of c (Supplementary 

Information). 

Our measurements and the geology and climate of the study sites offer some 

insight into the differences in c and valley spacing. In our model, longer c and wider 

valley spacing can result from larger D, smaller K, or smaller m (Equation 3). Our 

topographic measurements (Table 1) indicate that the drainage area exponent m is 

similar for the five sites, and that the differences in valley spacing primarily reflect 

differences in D/K, the ratio of soil diffusivity to stream erosivity. Systematic variations 

in bedrock mechanical strength among the five sites further suggest that rock strength, 

which we expect to be negatively correlated with K, is a major source of variability in 

D/K. Sites with the least consolidated sediments (DB and PM) have the narrowest valley 

spacing, sites with moderately consolidated sediments (GM and NV) have intermediate 

spacing, and the site with the most competent bedrock (EH) has the widest valley 

spacing.  

A comparison of precipitation rates at the five sites (Table 1) suggests that climate 

may also influence valley spacing: with the exception of GM, wider valley spacing 
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corresponds to greater present-day mean annual precipitation. One possible cause is the 

stream erosivity, which depends on drainage basin hydrology as well as on rock 

strength
7-9,23

. Although higher rainfall should increase streamflow, the dominant effect 

of precipitation in soil-mantled landscapes like those analysed here may be to reduce K 

by promoting vegetation growth and infiltration, thereby inhibiting overland flow 

erosion
9
. It also seems likely that more intense bioturbation in wetter environments 

leads to higher soil diffusivity
9
, an effect consistent with previous measurements

25
 of D 

and with the observed correlation between precipitation and the hilltop curvature, 
2
zh 

(Table 1, Methods). Although we are presently unable to quantify the relative 

importance of these mechanisms, our observations suggest that valley spacing may 

serve as a topographic proxy for the combined effects of bedrock mechanical strength 

and climate on the relative magnitudes of different erosional processes. 

It is notable that our theory closely predicts valley spacing in the five study sites 

even though it does not include a threshold for fluvial erosion. Soil cohesion and plant 

roots impart strength to the soil surface, such that very small flows may not exert 

enough stress to erode the underlying material. There is evidence that such thresholds 

influence the locations of fluvial channel heads
26

, and it has been proposed that 

thresholds also influence the scale at which hillslopes transition into valleys
22,27-29

. If a 

fluvial erosion threshold is included in the model equations, its effect is generally to 

widen valley spacing
23

, though not as much as a comparable fractional change in D or 

K. The fact that our model does not systematically underpredict valley spacing suggests 

that competition between soil creep and stream incision is the primary mechanism that 

controls valley spacing in these landscapes, but we acknowledge that erosion thresholds 

could have a stronger influence in others.  

Also notable is the prediction that c, and therefore valley spacing, is independent 

of erosion rate. This is consistent with previous observations
8,9,23

 that steady-state model 
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topography is independent of erosion rate when both creep flux and stream incision rate 

vary linearly with topographic slope (Equation 1). The trend in Figure 2, defined by 

sites that likely have different erosion rates, suggests that this linearity assumption is 

reasonable. 

Valley spacing is a fundamental topographic signature that varies widely across 

the Earth
1-6,23

 and other planetary surfaces
23

. The simplified yet mechanistic approach 

introduced here enables one to predict valley spacing by parameterizing erosion and 

transport expressions through topographic analysis. This analysis shows that differences 

in valley spacing are linked to elementary ratios of rate coefficients that may in turn 

depend on geologic materials and climate, two regulators of landform evolution that 

currently are poorly quantified in erosion theory. Thus, valley spacing is a measurable 

clue to aspects of a site’s geologic past that can otherwise be difficult to assess. The 

same may be true of other emergent patterns in landscapes.  

METHODS SUMMARY 

Numerical model. Following several previous studies
7-9,17

, we describe the evolution of 

the topography with a nonlinear advection-diffusion equation, 

,  (1) 

where z is elevation, t is time, D is soil diffusivity, A is drainage area, K and m are 

constants, and U is surface uplift rate. Equation (1) assumes that soil creep flux is 

proportional to the local topographic gradient, and that the rate of erosion by 

channelized flow of water is proportional to the rate of energy expenditure
30

. A 

derivation of Equation (1) and details of the numerical solution method can be found in 

ref. 23. Non-dimensionalizing Equation (1) yields a quantity analogous to a Péclet 

number
23

, 
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, (2) 

where  is a horizontal length scale. Setting Pe = 1, we solved for a characteristic 

length, c, at which the timescales for advection and diffusion are equal, 

. (3) 

By solving Equation (1) numerically, we found that the valley spacing, , is 

proportional to c (Fig. 2).  

Topographic analysis. We used topographic data to infer the value of c for the study 

sites. At equilibrium ( z/ t=0) and on hilltops, where A and z approach zero, Equation 

(1) reduces to 

, (4) 

and thus U/D can be inferred from the Laplacian of elevation on hilltops, 
2
zh. 

Rearranging Equation (1) with z/ t=0 and using Equation (4) gives  

, (5) 

which implies a power-law relationship between the quantity | z|/(
2
z - 

2
zh), which 

we abbreviate S
*
, and A. We used laser altimetry data to calculate A, | z|, and 

2
z, and 

measured 
2
zh as the value that 

2
z approaches as A| z| 0 (Fig. 3a). We then 

calculated S
*
, found D/K and m from least-squares regression of log10(S

*
) against 

log10(A) (Fig. 3b), and calculated c with Equation (3). Values of 
2
zh, D/K, m, c, and  

for the five study sites are listed in Table 1. 
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Supplementary Information is linked to the online version of the paper at www.nature.com/nature.  
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Table 1. Topographic measurements 

 
2
zh        

(m
-1

10
-3

) 

D/K 

(m
2m+1

) m c (m)  (m) 

Mean ann. 

precip* (m) 

Dragon’s Back -94 ± 3 12 ± 1 0.42 ± 0.01 4.0 ± 0.2 30 ± 3 0.23 

Point of the 

Mountain 
-28 ± 4 26 ± 3 0.31 ± 0.02 7.5 ± 0.6 54 ± 13 0.50 

Napa Valley -18.8 ± 0.3 86 ± 13 0.35 ± 0.02 13.7 ± 1.5 128 ± 23 0.93 

Gabilan Mesa -11.8 ± 0.4 124 ± 3 0.35 ± 0.003 17.2 ± 0.4 163 ± 11 0.32 

Eaton Hollow -5.5 ± 0.1 802 ± 82 0.37 ± 0.01 46.0 ± 3.4 321 ± 33 1.05 

*For the period 1971-2000. PRISM Group, Oregon State University, http://prismclimate.org. 
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a
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d
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Figure 1. Uniform valley spacing. Shaded relief maps of representative 

sections of: a, Eaton Hollow, Pennsylvania, b, Gabilan Mesa, California, c, 

Napa Valley, California, d, Point of the Mountain, Utah, e, Dragon’s Back ridge, 

California. Tick spacing is 200m. For clarity, d and e have been enlarged by a 

factor of 2 relative to a-c. Vegetation has been filtered out of the data to reveal 

the underlying topography. Eaton Hollow data are from the State of 

Pennsylvania PAMAP program; Point of the Mountain data are from the State of 

Utah Automated Geographic Reference Center; California data are from the 

National Center for Airborne Laser Mapping (NCALM).
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Figure 2. Comparison of predicted and observed valley spacing. Plot of 

valley spacing, , against the characteristic length scale, c (Equation 3, 

Methods), for first-order drainage basins. Each gray circle represents the valley 

spacing in a single numerical model solution. Blue trend shows the range of 

possible valley spacings, which correspond to different slope lengths, for each 

value of c. Slope length was controlled by varying the width of the model grid in 

the direction normal to the main ridgeline. The minimum and maximum spacing 

for a given value of c correspond to the shortest and longest slopes that form 

first-order valleys. Expression for the blue trend is 6.4 c    12.7 c. Insets are 

perspective views of numerical model solutions with the same c but different 

slope lengths, with valley bottoms shaded blue. Yellow points are the means for 

first-order valleys in the study sites. Error bars are one standard error of the 

mean. 
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Figure 3. Measurement of model parameters from topography. a, Plot of 

the Laplacian of elevation against the product of drainage area and slope for 

first-order drainage basins in Gabilan Mesa. Filled circles are means of log-

transformed data within logarithmically spaced bins. On hilltops, where both 

drainage area and slope are small (green shading), the Laplacian is roughly 

constant, consistent with equilibrium topography (Equation 4, Methods). Inset 

shows several representative hilltops. For clarity, the plot shows a random 

subsample of 25% of the raw data points. b, Plot of slope function (Equation 5, 

Methods) against drainage area for stream profiles in the same basins. Filled 

circles are means of log-transformed data within logarithmically spaced bins, 

and line is a least-squares fit to the binned data. Plots for all study sites are 

shown in the Supplementary Information.  
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1. Numerical model 

1.1. Supplementary methods 

We solved Equation (1) forward in time on a regular grid with periodic x boundaries 

and 
2
z, z, U = 0 at the y boundaries, equivalent to a ridgeline bounded by two 

streams with constant elevation. The initial condition was a fractal surface with relief 

approximately 100 times lower than the final surface, and iteration proceeded until 

z/ t=0 for all (x,y). Grids ranged from 300 80 to 300 250 points (x y) with a point 

spacing of 0.2 to 20 m. Model solutions with the range of c shown in Fig. 2 were 

obtained by varying D and K.  

1.2. Avoiding resolution effects 

Drainage area in landscape evolution models tends to become concentrated in 

valleys along paths one grid cell wide. If no steps are taken to compensate for this 

effect, the steady-state topography for a given set of rate parameters can depend on the 

spatial resolution of the finite difference grid. To prevent the modelled valley spacing 

from being resolution-dependent, we smoothed the drainage area field with a square 

moving average kernel at each time step. For filters wider than a few grid points but 
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narrower than the valleys, valley spacing is only weakly dependent on grid resolution 

and filter size (Fig. S1). The magnitude of this dependence is comparable to the 

variability among runs resulting from different initial surfaces. We performed numerical 

experiments, like that summarized in Fig. S1, to identify the range of acceptable filter 

sizes for each parameter combination used to construct the blue trend in Fig. 2, and to 

confirm that the trend is insensitive to spatial resolution. This method for avoiding 

resolution effects differs from that used in some previous studies of landscape 

evolution
8,23

, but is more broadly applicable. 
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Figure S1. Effects of grid resolution on valley spacing. Plot of modelled valley 

spacing as a function of drainage area filter size for a range of grid resolutions. Filter 

sizes correspond to odd numbers of grid points ( x, 3 x, 5 x…). Each point is the 

mean valley spacing for a set of model runs with c = 10.7 m. Error bars are 2 . 

 

2. Topographic measurements 

2.1. Supplementary methods 

Figure S2 shows the topographic measurements used to calculate c for the field 

sites discussed in the main text. We performed topographic analyses on gridded 

elevations with a horizontal point spacing of 1 m. We calculated the gradient and 

Laplacian of elevation from the coefficients of a least-squares quadratic fit to the points 
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within a 7 m radius. The hilltop Laplacian, 
2
zh, was calculated from the mean values 

within logarithmically spaced bins over the range of A| z| for which the binned 

Laplacian was roughly constant (Fig. 3a). 
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Figure S2. Measurement of model parameters from topography. a, Plot of the 

Laplacian of elevation against the product of drainage area and slope. Circles are 

means of log-transformed data within logarithmically spaced bins. Coloured circles are 

the points used to measure 
2
zh. b, Plot of slope function (Equation 5, Methods) against 

drainage area. Circles are means of log-transformed data within logarithmically spaced 

bins, and lines are least-squares fits to the binned data. 
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We mapped the drainage network by starting at a threshold drainage area, which 

was determined by the square of the wavelength at which a kink in the power spectrum 

indicated a rapid decline in topographic roughness
6
, and then routing flow downslope 

with a steepest-descent algorithm. Network links with no tributaries were identified as 

first-order streams. Drainage basins were delineated by starting at the basin outlet, 

defined as the point just upslope of the junction with a second-order stream, and 

identifying all upslope points that drain to the outlet. Points showing power-law 

relationships between S
*
and A within individual basins were pooled, and D/K and m 

were calculated from an iteratively reweighted least-squares fit to the mean values of 

log10(S
*
) within bins spaced logarithmically in A (Fig. 3b). Uncertainties in c were 

calculated from the uncertainties in D/K, m, and 
2
zh. 

2.2. Test of topographic measurement procedure 

To verify that our method for inferring c from high-resolution topographic data can 

yield a negative result—i.e., a value of c that is inconsistent with the relationship 

between valley spacing and c predicted by the numerical model—we applied the 

measurement procedure to three landscapes shaped by erosional processes that are not 

well described by the model (Fig. S3). The Zabriskie Point badlands in Death Valley, 

California, consist of eroded mudstone with a mean valley spacing of 12 ± 3 m, and are 

completely unvegetated due to highly arid conditions. The steep, nearly planar slopes 

and sharp drainage divides indicate that hillslope soil transport at Zabriskie Point is 

dominated by nonlinear creep
31,32

, which is not well described by the linear diffusive 

term in Equation (1). Mettman Ridge in the Oregon Coast Range is a mountainous 

landscape underlain by sandstone, formerly forested but recently clear-cut, with a valley 

spacing of 42 ± 12 m. It is a well-documented example of a landscape influenced by 

nonlinear soil creep
31

, with straight slopes and sharp divides similar to those at 

Zabriskie point. In addition, valley incision in the Oregon Coast Range is known to be 

strongly influenced by shallow landslides, debris flows
33-37

 and, in some locations, 

deep-seated landslides
38

, processes for which no well-documented laws for long-term 

sediment flux exist, and which therefore are not included in our numerical model. Dark 

Canyon, which lies within the drainage basin of the south fork of the Eel River in 

California, is a forested landscape underlain by sandstone and mudstone, and has a 
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valley spacing of 176 ± 9 m (ref. 6). Like Mettman Ridge, Dark Canyon is steep and 

experiences both nonlinear soil creep and valley incision by debris flows. Parts of the 

Eel River basin are strongly affected by deep-seated landslides
39

 and earthflows
40

. We 

therefore do not expect the valley spacing at these three sites to be consistent with the 

scaling relationship in Fig. 2. 

a

b

c
 

Figure S3. Shaded relief maps of sites with nonlinear soil creep. a, Zabriskie Point, 

California, b, Mettman Ridge, Oregon, c, Dark Canyon, California. Tick spacing is 100 

m. For clarity, a has been enlarged by a factor of 4 relative to b and c. Laser altimetry 

data for Zabriskie Point and Dark Canyon are from the National Center for Airborne 

Laser Mapping (NCALM). 

Analysing the topography at Zabriskie Point, Mettman Ridge, and Dark Canyon 

with the same procedure used for the other study sites, we obtain the values in Table S1. 

For Zabriskie Point, with c = 2.9 m, the relationship in Fig. 2 predicts a valley spacing 

between 19 and 37 m, wider than the observed spacing of 12 ± 3 m. The result for 

Mettman Ridge is similar: for c = 9.1 m, the relationship in Fig. 2 predicts a valley 

spacing between 59 and 116 m, wider than the observed spacing of 42 ± 12 m. For Dark 

Canyon, in contrast, the predicted valley spacing of 84 to 166 m for c = 13.0 m is 

narrower than the observed spacing of 176 ± 9. The overprediction of valley spacing at 
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Zabriskie point and Mettman Ridge suggests that valley spacing in landscapes shaped 

by nonlinear soil creep may be narrower than in landscapes shaped by linear creep. The 

underprediction at Dark Canyon may be due to the influence of mass wasting processes 

such as earthflows or deep-seated landslides, which have the demonstrated effect of 

altering the distribution of topographic variance with respect to wavelength
41

. We 

conclude from our analysis of these three sites that our method for inferring c from 

topographic data is capable of identifying landscapes that have uniform valley spacing 

but are inconsistent with the model prediction. 
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