
Probabilistically Safe Avoidance of Dynamic Obstacles with Uncertain
Motion Patterns

Brandon Luders, Georges Aoude, Joshua Joseph, Nicholas Roy, and Jonathan P. How

Abstract— This paper presents a real-time path planning
algorithm which can guarantee probabilistic feasibility for au-
tonomous robots subject to process noise and an uncertain en-
vironment, including dynamic obstacles with uncertain motion
patterns. The key contribution of the work is the integration of
a novel method for modeling dynamic obstacles with uncertain
future trajectories. The method, denoted as RR-GP, uses a
learned motion pattern model of the dynamic obstacles to
make long-term predictions of their future paths. This is done
by combining the flexibility of Gaussian processes (GP) with
the efficiency of RRT-Reach, a sampling-based reachability
computation method which ensures dynamic feasibility. This
prediction model is then utilized within chance-constrained
rapidly-exploring random trees (CC-RRT), which uses chance
constraints to explicitly achieve probabilistic constraint satisfac-
tion while maintaining the computational benefits of sampling-
based algorithms. With RR-GP embedded in the CC-RRT
framework, theoretical guarantees can be demonstrated for
linear systems subject to Gaussian uncertainty, though the
extension to nonlinear systems is also considered. Simulation
results show that the resulting approach can be used in real-
time to efficiently and accurately execute safe paths.

I. INTRODUCTION

To operate safely in stochastic environments, it is crucial
for agents to be able to plan in real time in the presence of
uncertainty. Indeed, the stochasticity of such environments
often precludes the guaranteed existence of safe, collision-
free paths. Instead, this work considers probabilistically
safe planning, in which paths must be able to satisfy all
constraints with a user-mandated minimum probability.

A major challenge in utilizing trajectory prediction algo-
rithms is addressing the multiple sources of uncertainty in the
environment, often classified between environment sensing
(ES) and environment predictability (EP) [1]. Under this
partition, ES uncertainties might be attributable to imperfect
sensor measurements and/or incomplete knowledge of the
environment, while EP uncertainties, the focus of this paper,
consider the typically limited knowledge of the future state
of the environment. While probabilistic planning frameworks
can readily admit dynamic obstacles, such objects are often
very difficult to model in real-world domains. For example,
for a car to reliably traverse a busy intersection, it must have

B. Luders, Ph. D. Candidate, Dept. of Aeronautics and Astronautics, MIT,
Cambridge, MA 02139, USA, luders@mit.edu

G. Aoude, Ph. D. Candidate, Dept. of Aeronautics and Astronautics, MIT,
Cambridge, MA 02139, USA, gaoude@mit.edu

J. Joseph, Ph. D. Candidate, Dept. of Aeronautics and Astronautics, MIT,
Cambridge, MA 02139, USA, jmjoseph@mit.edu

N. Roy, Associate Professor of Aeronautics and Astronautics, MIT,
Cambridge, MA 02139, USA, nickroy@mit.edu

J. P. How, Richard C. Maclaurin Professor of Aeronautics and Astronau-
tics, MIT, Cambridge, MA 02139, USA, jhow@mit.edu

some understanding of how other vehicles typically cross that
intersection. Even under the assumptions of perfect sensors
and complete knowledge of the current environment, predict-
ing long-term trajectories of other mobile agents remains a
difficult problem.

In Ref. [2], the authors surveyed several existing tech-
niques for long-term trajectory prediction, and concluded
that pattern-based approaches, despite some existing limi-
tations, are typically the most suitable solution. There are
two main techniques that fall into this category: a) discrete
state-space, and b) clustering-based [3]. In discrete state-
space techniques, the motion model is typically based on
learned Markov chains, while clustering-based techniques
group previously-observed trajectories into clusters which are
each represented by a trajectory prototype.

Both classes of pattern-based approaches have proven
popular in solving long-term prediction problems for mobile
agents [3], [4]. However, discrete state-space techniques can
suffer from over-fitting or under-fitting problems due to space
discretization issues, unlike clustering-based techniques. In
our previous work [5], [6], we presented a Bayesian non-
parametric approach to modeling motion patterns that is well-
suited to modeling dynamic obstacles with unknown motion
patterns. This nonparametric model, a mixture of Gaussian
process (GP), generalizes well from small amounts of data
and allows the model to capture complex trajectories as more
data is seen. However, in practice, GPs suffer from two inter-
connected shortcomings: their high computational cost and
their inability to embed static feasibility or vehicle dynamical
constraints. To handle both problems simultaneously, recent
work introduced the RR-GP algorithm, a trajectory prediction
solution using Bayesian nonparametric reachability trees [2]
built via rapidly-exploring random trees (RRTs) [7]. This
algorithm improves on the original GP algorithm in both
prediction accuracy and computation time, making it well
suited for real-time applications in prediction problems with
poorly understood trajectory patterns.

The algorithm presented in this paper has similarities
with [4], which uses Gaussian processes to model moving
obstacles in an RRT path planner. However, unlike this
work, [4] relies solely on Gaussian processes, which can
lead to less precise prediction, especially when available
data is sparse. RR-GP also embeds dynamic feasibility and
prior knowledge of the environment, leading to better results
than GP-only approaches. Finally, the planner in [4] uses
heuristics to assess the safety of generated paths, while the
planner developed in this paper uses a principled approach
to achieve probabilistic safety.

This paper presents a real-time path planning framework
which guarantees probabilistic feasibility for autonomous
agents subject to both process noise and an uncertain en-
vironment, particularly dynamic obstacles with uncertain
motion patterns. The planning framework chosen for this
work is chance-constrained RRTs (CC-RRT) [8], based on
the chance constraint formulation of [9] for linear systems
subject to Gaussian uncertainty. CC-RRT uses chance con-
straints to evaluate the risk of constraint violation at each
timestep, embedding uncertainty directly within the planner.
This approach maintains the benefits of sampling-based
algorithms, particularly the fast identification of feasible
solutions for complex motion planning problems. While
several apparoaches have been previously proposed for path
planning with probabilistic constraints, our approach does
not require the use of MILP/SOCP optimizations [9], [10]
or particle-based approximations [11]–[13], each of which
can severely limit real-time applicability.

The CC-RRT algorithm has been demonstrated to ef-
fectively and efficiently guarantee probabilistic feasibility,
even in the presence of dynamic obstacles, as long as the
future state distributions are known [8]. This is effectively
integrated here with the RR-GP algorithm, which can provide
a likelihood and state distribution for each possible behavior
of a dynamic obstacle at each future timestep. The CC-RRT
formulation is revisited for the case of dynamic obstacles
modelled via RR-GP, showing that probabilistic feasibility
can still be guaranteed. Simulation results demonstrate the
effectiveness of this approach in enabling agents to avoid
dynamic threats with high likelihood.

II. PROBLEM STATEMENT

Consider a discrete-time linear time-invariant (LTI) system
with process noise,

xt+1 = Axt +But + wt, (1)
x0 ∼ N (x̂0, Px0

), (2)
wt ∼ N (0, Pwt

), (3)

where xt ∈ Rnx is the state vector, ut ∈ Rnu is the input
vector, and wt ∈ Rnx is a disturbance vector acting on
the system; N (â, Pa) represents a random variable whose
probability distribution is Gaussian with mean â and co-
variance Pa. The i.i.d. random variables wt are unknown at
current and future time steps, but have the known probability
distribution (3) (Pwt

≡ Pw ∀ t).
There are also constraints acting on the system state and

input. These constraints are assumed to take the form

xt ∈ Xt ≡ X − Xt1 − · · · − XtB , (4)
ut ∈ U , (5)

where X ,Xt1, . . . ,XtB ⊂ Rnx are convex polyhedra, U ⊂
Rnu , and the − operator denotes set subtraction. The set X
defines a set of time-invariant convex constraints acting on
the state, while Xt1, . . . ,XtB represent B convex obstacles
to be avoided. For each obstacle, the shape and orientation

are assumed to be known, while the placement is uncertain.
This is represented as

Xtj = X 0
j + ctj , ∀ j ∈ Z1,B , ∀ t, (6)

ctj ∼ p(ctj) ∀ j ∈ Z1,B , ∀ t, (7)

where the + operator denotes set translation and Za,b rep-
resents the set of integers between a and b inclusive. In this
model, X 0

j ⊂ Rnx is a convex polyhedron of known, fixed
shape, while ctj ∈ Rnx is a possibly time-varying translation,
represented by the probability distribution p(ctj). This can
be used to represent dynamic obstacles whose future state
distributions are known, as is done in Section V.

The primary objective of the planning problem is to
reach the goal region Xgoal ⊂ Rnx in minimum time,
while ensuring the constraints (4)-(5) are satisfied at each
time step t ∈ {0, . . . , tgoal} with probability of at least
psafe. In practice, since there is uncertainty in the state, we
assume it is sufficient for the distribution mean to reach the
goal region Xgoal. A secondary objective may be to avoid
some undesirable behaviors, such as proximity to constraint
boundaries.

Note that we are assessing probabilistic feasibility of the
constraints at each time step, rather than over the entire path.
Because the uncertainty at each timestep is correlated, due to
the dynamics (1)-(3), one cannot approximate the probability
of path feasibility by assuming independence and multiplying
the probabilities of feasibility at each timestep. Instead,
assessment of path feasibility requires the evaluation of a
complex nested integral, necessitating the use of approximate
solutions even under the assumption of Gaussian uncertainty.
While such approximations do exist [13], [14], they require
significant computation for most problems of interest. For
the applications being considered, real-time identification of
feasible paths is paramount; thus in this work we focus on
feasibility at each timestep, using the efficient assessment
of risk affored by CC-RRT [8]. Because the constraints are
made more restrictive as the lower bound on probabilistic
feasibility is increased, a positive correlation is expected
between feasibility at each timestep and feasibility of the
whole path; this is shown to be the case in Section VI.

A. Motion Pattern
We define a motion pattern as a mapping from locations to

a distribution over velocities (trajectory derivatives).1 Given
an agent’s current position (xt, yt) and a trajectory deriva-
tive (∆xt

∆t ,
∆yt
∆t), its predicted next position (xt+1, yt+1)

is (xt + ∆xt

∆t ∆t, yt + ∆yt
∆t ∆t). Thus, modeling trajectory

derivatives is equivalent to modeling trajectories. In addition
to being indepdendent of the lengths and discretizations of
the trajectories, modeling motion patterns as flow fields also
allows us to group trajectories sharing key characteristics.
For example, a single motion pattern can capture all the paths
that an agent might take from different starting points to a
single ending location.

1The choice of ∆t determines the scales at which we can expect to predict
an agent’s next position well, making the trajectory derivative more useful
than instantaneous velocity.

B. Mixtures of Motion Patterns

Our finite mixture model defines a distribution over the
ith observed trajectory ti.2 This distribution is written as

p(ti) =

M∑
j=1

p(bj)p(t
i|bj). (8)

where bj is motion pattern j and p(bj) is its prior probability.
Since we are interested in vehicles traveling along a known
road network we can assume the number of motion patterns,
M , is known a priori.

III. MOTION MODEL

We define the motion model as the mixture of weighted
motion patterns (Eq. 8). Each motion pattern is weighted
by its probability and is modeled by a pair of Gaussian
processes mapping (x, y) locations to distributions over
trajectory derivatives ∆x

∆t and ∆y
∆t . This section provides a

brief overview of the motion model; please consult [2], [6],
[15] for more details.

A. Gaussian Process Motion Patterns

This section describes the model for p(ti|bj) from Eq.
8, the probability of trajectory ti given motion pattern bj .
This model is the distribution over trajectories expected for
a particular mobility pattern. An example distribution over
trajectories might be a linear model with Gaussian noise, of
the form xt+1 ∼ N (Ajxt, σj). Unfortunately, this model
is too simplistic to capture the dynamics of the variety
of expected motion patterns. Another common approach,
discrete Markov models, is ill suited to model mobile agents
in the types of real-world domains of interest [6], [15]. They
are inherently plagued by the decision of how to perform the
state discretization.

To capture the variety of trajectories that may be encoun-
tered, an expressive representation (a fine discretization) is
necessary, resulting in a model that requires a large amount
of training data. In real-world domains where collecting a
large data set is costly or impossible, these models can be-
come prone to over-fitting. To prevent over-fitting, a coarser
discretization may be used, but this then risks being unable
to accurately capture the agent’s dynamics.

This work uses Gaussian processes (GP) as the model for
motion patterns; although they come at significant math-
ematical and computational cost, they provide a natural
balancing between generalization in regions with sparse
data and preventing under-fitting in regions of dense data
[15], [16]. Observations of an agent’s trajectory are discrete
measurements from its continuous path through space. A GP
[17] places a distribution over functions, serving as a non-
parametric form of interpolation between these discrete mea-
surements. Gaussian process models are extremely robust
to unaligned, noisy measurements, and are well-suited for
modeling the continuous paths underlying potentially non-
uniformly sampled time-series samples.

2Throughout the paper a t with a superscript, such as ti, refers to a
trajectory, whereas a t without a superscript refers to a time value.

The first term inside the summation of Eq. (8), p(bj), is
the prior probability of motion pattern bj . Given an agent’s
trajectory ti, the posterior probability of motion pattern is

p(bj |ti) ∝ p(ti|bj)p(bj), (9)

where p(ti|bj) is the probability of trajectory ti under motion
pattern bj . This distribution, p(ti|bj), is computed by

p(ti|bj) =

Li∏
t=0

p

(
∆xt
∆t

∣∣∣∣xi0:t, y
i
0:t, {tk : zk = j}, θGPx,j

)
· p
(

∆yt
∆t

∣∣∣∣xi0:t, y
i
0:t, {tk : zk = j}, θGPy,j

)
, (10)

where Li is the length of trajectory i, zk indicates the motion
pattern trajectory tk is assigned to, and θGPx,j and θGPy,j are the
hyperparameters of the Gaussian process for pattern bj .

A motion pattern’s GP is specified by a set of mean and
covariance functions. We describe the mean functions as
E[∆x

∆t] = µx(x, y) and E[∆y
∆t] = µy(x, y), and implicitly set

both of them to initially be zero everywhere (for all x and y)
by our choice of parametrization of the covariance function.
This encodes the prior bias that, without any additional
knowledge, we expect the target to stay in the same place.

We denote the covariance function of the x-direction
as Kx(x, y, x′, y′), which describes the correlation between
trajectory derivatives at two points, (x, y) and (x′, y′). Given
locations (x1, y1, .., xk, yk), the corresponding trajectory
derivatives (∆x1

∆t , ..,
∆xk

∆t) are jointly distributed according
to a Gaussian with mean {µx(x1, y1), .., µx(xk, yk)} and
covariance Σ, where the cell Σij = Kx(xi, yi, xj , yj). In this
work, we use the squared exponential covariance function

Kx(x, y, x′, y′) = σ2
x exp

(
− (x− x′)2

2wx2
− (y − y′)2

2wy2

)
+ σ2

nδ(x, y, x
′, y′), (11)

where δ(x, y, x′, y′) = 1 if x = x′ and y = y′ and zero
otherwise. The exponential term above encodes that similar
trajectories should make similar predictions and the length-
scale parameters wx and wy normalize for the scale of the
data. The σn-term represents within-point variation (e.g., due
to noisy measurements); the ratio of σn and σx weights the
relative effects of noise and influences from nearby points.
We use θGPx,j to refer to the set of hyperparameters σx, σn,
wx, and wy associated with motion pattern bj .3

For a GP over trajectory derivatives trained with tuples
(xk, yk,

∆xk

∆t), the predictive distribution over the trajectory
derivative ∆x

∆t

∗
for a new point (x∗, y∗) is given by

µ∆x
∆t

∗ = Kx(x
∗,y∗,X,Y)Kx(X,Y,X,Y)−1 ∆X

∆t
, (12)

σ2
∆x
∆t

∗ = Kx(x
∗,y∗,X,Y)Kx(X,Y,X,Y)−1Kx(X,Y,x

∗,y∗),

where the expression Kx(X,Y,X, Y) is shorthand for the
covariance matrix Σ with terms Σij = Kx(xi, yi, xj , yj).
The equations for ∆y

∆t

∗
are defined equivalently.

3We described the kernel for two dimensions, but it can be easily
generalized to more.

IV. RR-GP TRAJECTORY PREDICTION ALGORITHM

Section III outlined the approach of using GP mixtures
to model mobility patterns. In practice, GPs suffer from
two interconnected shortcomings: their high computational
cost and their inability to embed static feasibility or vehicle
dynamics constraints. Very dense training data may elevate
this feasibility problem by capturing, in great detail, the
environment configuration and physical limitations of the
vehicle. Unfortunately, the computation time for predicting
future trajectories using the resulting GPs would suffer
significantly, rendering the motion model unusable for real-
time application.

To handle both of these problems simultaneously, we
developed RR-GP, a trajectory prediction solution using
Bayesian nonparametric reachability trees [2]. RR-GP aug-
ments RRT-Reach [18], a reachability based method which
creates dense, feasible trajectories from sparse samples using
the GP mixture model (Section III). The developed approach
is reviewed below.

A. High Level Architecture

Figure 1 shows the high level architecture of the RR-GP
solution approach. RR-GP is based on two main components:
1) an intent predictor based on the GP mixture model
(Section III) and 2) a trajectory generator based on the RRT-
Reach algorithm. The intention predictor uses the history
of sensor position measurements (x0:t, y0:t), along with a
set of typical GP motion patterns bj , j ∈ {1, . . . ,M}, to
produce an intent distribution which is given to the trajectory
generation component. The inputs to the trajectory generator
are the aforementioned intent information, a dynamic model
of the target vehicle, a map of the environment, and a
sparse distribution of the future positions of the target vehicle
using (12). The trajectory generator uses closed-loop RRT
[19] to grow a separate tree of smooth trajectories for each
motion pattern, thus embedding dynamical feasibility and
collision avoidance. The resulting trees produce an improved
probabilistic prediction of the future trajectories of the tar-
get vehicle. Note that to limit the scope of the problem
to uncertainty in predictability, the sensors measurements
are assumed to be noise-free, despite our motion pattern
representation being robust to noisy measurements.

B. Multi-Tree RR-GP Algorithm

A key step of RR-GP is the expansion algorithm per-
formed on each tree. It is illustrated in Figure 2 and detailed
in [2]. This section presents the complete RR-GP algorithm,
also called multi-tree RR-GP, because it extends the single-
tree RR-GP expansion algorithm to handle multiple motion
patterns for the target vehicle.

We denote the time duration of the prediction problem and
the prediction time horizon as T and Th, respectively; both
are measured in seconds throughout the paper. The value of
Th is problem specific, and depends on the time length of the
training data. For example, in a threat assessment problem
for road intersections, Th might be on the order of 5 seconds
[20]. The RR-GP algorithm updates its measurement of the

Trajectory

Generation
RRT-Reach

Intent

Prediction
GP Mixture

Probabilistic

Trajectory

Predictions

Typical

Motion

Patterns

Dynamical

Model

Environment

Map

Sensor

Measurements

Trajectory

Prediction

Algorithm

(TPA)

Intent

distribution

Position

distribution

using GPj

Fig. 1. High-level architecture for RR-GP.

Root

Obstacle

Δt

2Δt

T
h

Fig. 2. Illustration of the single-tree RR-GP expansion algorithm. For more
details about the algorithm, please refer to [2].

target vehicle every dt seconds; this value is chosen such that
it ensures that the inner loop (lines 6-9) of the Algorithm
1 reaches completion before the next measurement update.
Finally, the time step size for the low-level controller is
equal to δt seconds. A low δt signifies a higher precision of
the predicted trajectories, with a trade-off of slightly larger
computation times.

The inputs to the RR-GP algorithm are the set of GP
motion patterns and the initial probability distribution over
the motion patterns. This prior knowledge is typically pro-
portional to the size of each motion pattern. In line 4, the po-
sition of the target vehicle is measured. Then, the probability
that the vehicle trajectory belongs to each of the M motion
patterns is updated. For each motion pattern (in parallel),
line 7 grows a single-tree T jGP rooted at the current position
of the target vehicle using the RR-GP single-tree algorithm
[2]. In line 8, the means and variances of the predicted
positions of the target vehicle (x̂(t), ŷ(t)) are computed for
each time step τ using position and time information of
the nodes and edges of the single-tree output; note that
τ ∈ [t + δt, t + 2δt, . . . , t + Th]. This process can also be
parallelized for the different motion patterns, since there is no

Algorithm 1 RR-GP, Multi-Tree Trajectory Prediction
1: Inputs: GP motion pattern bj ; p(bj(0)) ∀j ∈ [1, . . . ,M]
2: t← 0
3: while t < T do
4: Measure target vehicle position (x(t), y(t))
5: Update probability of each motion pattern p(bj(t)|x0:t, y0:t)

using Eq. (9)
6: for each motion pattern bj do
7: Grow a single T j

GP tree rooted at (x(t), y(t)) using bj
(Single-Tree RR-GP Algorithm)

8: Using T j
GP , compute means and variances of predicted

distribution (x̂j(τ), ŷj(τ)),
∀τ ∈ [t+ δt, t+ 2δt, . . . , t+ Th]

9: end for
10: p(x̂(τ), ŷ(τ))←

∑
j p(x̂j(τ), ŷj(τ))p(bj(t)|x0:t, y0:t) ∀τ

11: t← t+ dt
12: end while

message passing between the RR-GP tree growth operations
for each tree. Line 10 combines the position predictions
from the single-tree RR-GP outputs into one distribution
by incorporating the updated motion pattern probabilities
bj into the position distribution of the target vehicle. This
computation is performed for all times τ , resulting in a
probability distribution on the future trajectories of the target
vehicle based on a mixture of GPs.

Since the RR-GP tree is grown at a higher rate compared
to the original GP learning phase, the resulting distribution
is generated at increments of δt << ∆t. As shown in [2],
the result is a significant improvement of the accuracy of the
prediction compared to traditional GP algorithms, without a
deterioration of the computation times, which makes RR-GP
a suitable solution for real-time trajectory prediction.

V. CC-RRT WITH INTEGRATED RR-GP
This section integrates the RR-GP model for uncertain,

dynamic obstacles established in previous sections into a
probabilistic planning framework, CC-RRT, to identify tra-
jectories which can probabilistically avoid those obstacles.
First, the CC-RRT formulation is reviewed under the as-
sumption that each obstacle’s uncertainty is modeled by a
single Gaussian; the simple extension to the multi-Gaussian
formulation yielded by RR-GP follows.

A. Review of Online CC-RRT
In this section, the uncertainty of each obstacle is assumed

to be represented by a single Gaussian:

ctj ∼ N (ĉjt, Pcjt) ∀ j ∈ Z1,B , ∀ t. (13)

Given a sequence of inputs u0, . . . , uN−1, under the as-
sumptions of linear dynamics and Gaussian uncertainty,
the distribution of the state xt (represented as the random
variable Xt) can be shown to be Gaussian [9]:

P (Xt|u0, . . . , uN−1) ∼ N (x̂t, Pxt
) ∀ t ∈ Z0,N ,

where N is some time step horizon. The mean x̂t and
covariance Pxt

can be updated implicitly using the relations

x̂t+1 = Ax̂t +But ∀ t ∈ Z0,N−1, (14)
Pxt+1 = APxtA

T + Pw ∀ t ∈ Z0,N−1. (15)

To ensure that the probability of collision with any obsta-
cle on a given time step does not exceed ∆ ≡ 1− psafe, it is
sufficient to show that the probability of collision with each
of the B obstacles at that time step does not exceed ∆/B. [9]
The jth obstacle is represented through the conjunction of
linear inequalities

nj∧
i=1

aTijxt < aTijcijt ∀ t ∈ Z0,tf , (16)

where nj is the number of constraints defining the jth
obstacle, and cijt is a point nominally (i.e. cjt = ĉjt) on the
ith constraint at time step t; note that aij is not dependent
on t, since the obstacle shape and orientation are fixed. To
avoid all obstacles, the system must satisfy B disjunctions
of constraints at each time step,

nj∨
i=1

aTijxt ≥ aTijcijt ∀ j ∈ Z1,B , ∀ t ∈ Z0,N . (17)

For each obstacle – consider the jth one below – it is
sufficient to not satisfy any one constraint in the conjunction
(16). Thus, the probability of collision is lower-bounded by
the probability of satisfying any single constraint:

P (collision) ≤ P (aTijXt < aTijcijt) ∀ i ∈ Z1,nj
.(18)

To prove the probability of collision with the jth obstacle
does not exceed ∆/B, it is thus sufficient to show that

nj∨
i=1

P (aTijXt < aTijCijt) ≤ ∆/B, (19)

where Cijt = cijt + (cjt − ĉjt) is a random variable.
Next, a change of variables is made to render the problem

tractable for path planning algorithms. For the ith constraint
of the jth obstacle at time step t apply the change of variable

V = aTijXt − aTijCijt; (20)

it can be shown [8] that the mean and covariance for V are

v̂ = aTij x̂t − aTijcijt, (21)

Pv =
√
aTij(Pxt

+ Pcjt)aij . (22)

With this change of variables, the probabilistic constraint can
be shown to be equivalent to a deterministic constraint, [9]

P (V < 0) ≤ ∆/B

⇔ v̂ ≥ γ ≡
√

2Pverf−1

(
1− 2

∆

B

)
,

where erf(·) denotes the standard error function. Using this,
the constraints (17) are probabilistically satisfied for the true
state xt if the conditional mean x̂t satisfies

nj∨
i=1

aTij x̂t ≥ bij + b̄ijt ∀ j ∈ Z1,B , ∀ t ∈ Z0,N ,(23)

where b̄ijt = γ represents the amount of deterministic con-
straint tightening necessary to ensure probabilistic constraint
satisfaction.

Whereas the traditional RRT algorithm incrementally
grows a tree of states which are known to be feasible [7],
the chance constrained RRT (CC-RRT) algorithm grows a
tree of state distributions which are known to satisfy an
upper bound on probability of collision. Furthermore, the
CC-RRT algorithm can leverage a key property of the RRT
algorithm – trajectory-wise constraint checking – by explic-
itly computing a bound on the probability of collision at each
node, rather than simply satisfying tightened constraints for a
fixed bound. In particular, the Online CC-RRT approach [8]
leverages the relationship in (23) to compute the exact
probability of satisfying each individual constraint for a given
distribution N (x̂, Px) – an operation which is possible due
to iterative constraint checking in the RRT algorithm. The
key to the Online CC-RRT approach is the relationship

P (V < 0) =
1

2

(
1− erf

[
v̂√
2Pv

])
, (24)

which has been shown [8] to be derived from (23). Again
consider the ith constraint of the jth obstacle at time step t,
using the change of variables (20). Let ∆ijt(x̂, Px) denote
the probability that this constraint is satisfied for a Gaussian
distribution with mean x̂ and covariance Px; using (24),

∆ijt(x̂, Px) =
1

2

1− erf

 aTij x̂t − aTijcijt√
2aTij(Pxt

+ Pcj)aij

 (25)

Now define

∆t(x̂t, Pxt
) ≡

B∑
j=1

min
i=1,...,nj

∆ijt(x̂t, Pxt
). (26)

This term provides an upper bound on the probability of a
collision with any obstacle at time step t [8]:

P (collision) ≤
B∑
j=1

P (collision with obstacle j) (27)

≤
B∑
j=1

min
i=1,...,nj

P (aTijXt < aTijCijt)

=

B∑
j=1

min
i=1,...,nj

∆ijt(x̂t, Pxt) = ∆t(x̂t, Pxt)

Thus, for a node/timestep with state distribution N (x̂t, Pxt
)

to be probabilistically feasible, it is sufficient to check that
∆t(x̂t, Pxt

) ≤ 1− psafe.
The CC-RRT algorithm consists of two main routines, a

tree expansion step which incrementally adds probabilisti-
cally feasible nodes to the tree, and an execution loop which
periodically chooses the cost-minimizing path in the tree;
see [8] for more details.

B. RR-GP Integration

Suppose the jth obstacle is one of the dynamic obstacles
modelled using RR-GP (Section IV); that dynamic obsta-
cle may follow one of k = 1, . . . , b possible behaviors.
At each timestep t, and for each behavior k, the RR-GP

algorithm provides a likelihood δk and Gaussian distribution
N (ĉkjt, P

k
cjt) for the uncertainty distribution of the obstacle

if following that behavior. Thus, the overall state distribution
for this obstacle at timestep t is given by

ctj ∼
b∑

k=1

δkN (ĉkjt, P
k
cjt). (28)

At each timestep, the probability of collision with dynamic
obstacle j can be written as a weighted sum of the proba-
bilities of collision for the dynamic obstacle j under each
behavior, using δk as the weights:

P (collision with obstacle j)

=

b∑
k=1

δkP (collision with obstacle j, behavior k).

Comparing with (27), a dynamic obstacle with uncertain
behaviors can actually be modelled as b separate obstacles,
each with its own Gaussian uncertainty, with the modification
that each such term is weighted by δk. The existing CC-
RRT framework can be used by treating each behavior’s
state distribution as a separate obstacle, so long as the
resulting risk is scaled by δk. Thus the existing guarantees of
probabilistic feasibility [8] still hold under this modification.

Finally, we note that the guarantees presented in this sec-
tion only hold under the assumptions of linear dynamics and
Gaussian uncertainty. Modifications are possible to alleviate
these assumptions [14], though this may yield an increase
in computational load (particularly if the uncertainty is non-
Gaussian).

VI. SIMULATION RESULTS

This section presents simulation results which demonstrate
the effectiveness of the RR-GP algorithm in predicting the
future behavior of an unknown, “hostile” vehicle, allowing
the CC-RRT planner to design paths to safely avoid it. In
these examples, only a single dynamic, uncertain obstacle is
present; the approach can be extended to multiple dynamic,
uncertain obstacles without further modification, and in fact
has been shown to scale well under such conditions [8].

Examples for both linear and nonlinear dynamics are
provided. As the probabilistic safety bound psafe is increased
at each timestep, the algorithm selects more conservative
paths, which are more likely to reach the goal without
colliding with any obstacles, but may require additional path
length/time to do so. By placing the bound sufficiently high,
however, the planner can design paths which consistently
guide the host vehicle out of unsafe situations with high
likelihood.

This section is organized as follows. First, the software
infrastructure used to generate these results is explained. Two
sets of simulation results then follow. The most thorough
results consider a vehicle in an intersection scenario, where
the agent must cross an intersection while avoiding another
vehicle which is traveling on the wrong side of the road. In
this case, the host vehicle is modeled as a double integrator,
such that the theoretical CC-RRT results still hold. In the

second scenario, the host vehicle, modelled using nonlinear
car dynamics, must navigate across a complex obstacle field.
In this case, the hostile vehicle may follow as many as six
different behaviors.

A. Infrastructure

The path planning algorithms in this paper have been
implemented using a multi-threaded, real-time Java applica-
tion, executed on a 2.53GHz quad-core laptop with 3.48GB
of RAM. The “hostile” vehicle’s trajectories, both for GP
training and simulated motion, were pre-generated by having
a human operator manually drive the vehicle in simulation
with a steering wheel, in a manner consistent with each be-
havior. The hostile vehicle dynamics are based on the iRobot
Create skid-steered platform; a software wrapper imposes
rate limits in acceleration and wheel speed differences, such
that the vehicle emulates traditional automative dynamics at
a maximum speed of 0.4 m/s. During each trial, one of these
paths is randomly selected as the trajectory for the hostile
vehicle.

B. Intersection Scenario

Consider a ground vehicle operating in a simple road
network (Figure 3(a)). In this scenario, which assumes left-
hand traffic, the objective of the host vehicle is to go straight
through the intersection at bottom-center of Figure 3(a),
reaching a goal location 6 meters ahead on the opposite side.
However, to get there, the host vehicle must successfully
avoid a hostile vehicle, which incorrectly believes that right-
hand traffic rules are in effect and thus is traveling in the
wrong lane. There are three possible behaviors for the hostile
vehicle as it enters the intersection: (a) left turn, (b) right
turn, and (c) straight.

The vehicle is modeled as a discrete, double integrator,
xt+1

yt+1

vxt+1

vyt+1

 =

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

xt
yt
vxt
vyt

+

dt2

2 0

0 dt2

2
1 0
0 1

([uxt
uyt

]
+

[
wxt
wyt

])
,

with vehicle state (xt+1, yt+1, v
x
t+1, v

y
t+1) and timestep dt =

0.2s, subject to avoidance constraints X (including velocity
bounds) and input constraints U = {(ux, uy) | |ux| ≤
4, |uy| ≤ 4}. This choice of dynamics was made to ensure
that the dynamics are still linear, such that the theoretical
guarantees are still available [8]. To emphasize the impact
of the hostile vehicle’s uncertainty, the host vehicle’s own
dynamics are assumed deterministic. The vehicle is simulated
and executed in closed-loop, using the controller

uxt = −1.5(xt − rxt)− 3(vxt − r
vx
t),

uyt = −1.5(yt − ryt)− 3(vyt − r
vy
t),

where (rxt , r
y
t) is the reference position and (rvxt , r

vy
t) is the

reference velocity (0.35 m/s in the direction of the waypoint).

TABLE I
SIMULATION RESULTS, INTERSECTION SCENARIO

Method psafe % to Path Time per Time per
Goala Duration, sb Node, msc RR-GP, sd

Naive – 52% 17.22 (0.13%) 0.618 –
Nominal – 70% 17.95 (4.39%) 0.753 –
CC-RRT 0.5 64% 17.97 (4.47%) 1.208 2.245
CC-RRT 0.8 72% 18.55 (7.85%) 1.255 2.206
CC-RRT 0.9 72% 19.01 (10.4%) 1.192 2.202
CC-RRT 0.99 92% 20.60 (19.8%) 1.183 2.173
CC-RRT 0.999 96% 20.63 (19.9%) 1.176 2.196

a Number of trials where system executed a path to goal without colliding
with any obstacles.
b Percentage is average increase in path duration relative to minimal-time
(obstacle-free) path, 17.2s. Only paths which reach goal are included.
c Cumulative time spent growing the CC-RRT tree, divided by number of
nodes generated.
d Time spent in Algorithm 1.

In the RR-GP algorithm, Th = 10s and ∆t = 1s,
though the vehicle dynamics are simulated at 50 Hz. A total
of 20 samples are attempted per ∆t; each behavior’s tree
is terminated as infeasible once 300 samples are marked
infeasible. RR-GP is called once every 2.5 seconds, each time
giving Algorithm 1 at most 1.5 seconds to grow its trees. If
the time limit is reached, the algorithm is terminated without
reaching the time horizon Th. A total of 350 trials were
performed, consisting of 50 trials each for seven different
algorithms:
• Naive RRT: nominal RRT (no chance constraints) in

which hostile vehicle is ignored entirely
• Nominal RRT: nominal RRT in which hostile vehicle is

treated as a static obstacle at its most recent location
• CC-RRT (5 cases): CC-RRT using RR-GP with
psafe = 0.5, 0.8, 0.9, 0.99, or 0.999

Each trial differs only in the path followed by the hostile
vehicle and the random RRT samples; the sequence of
hostile vehicle paths is consistent across all seven cases. Four
quantities were measured and averaged across these trials:
the percentage of trials in which the vehicle safely reaches
the goal; the average duration of such paths; the average time
to generate an RRT/CC-RRT tree node; and the average time
per execution of Algorithm 1.

Table I presents the averaged results over the 50 trials
for each case. The most immediate observation is the clear
trade-off between overall path safety (in terms of percentage
of trials which reach the goal) and average path duration
when using CC-RRT. As psafe is increased from 0.5 to
0.999, the percentage of safe trials steadily increases from
64% to 96%.4 Furthermore, as psafe is increased and the
planner becomes more conservative, the average degree of
suboptimality of the safe trajectories also increases.

In the current configuration, maintaining a safe trajectory
in 100% of trials is likely unobtainable, as the time interval
between RR-GP updates (2.5s) is sufficiently large that the
planner cannot always react quickly enough to environmental
changes. Subsequent work [21] has significantly reduced the

4Note that since psafe is a bound on feasibility at each timestep, rather
than over an entire path, it does not act as a bound on the percentage of
paths which safely reach the goal. However, as discussed in Section II, a
positive correlation between the two is expected.

(a) Intersection scenario (b) Complex scenario

Fig. 3. Environments used for each scenario. The objective of the host vehicle (orange circle) is to reach the goal position (green circle) while avoiding
all static obstacles (black) and the dynamic hostile vehicle (magenta diamond). The blue curves indicate the possible trajectories followed by the hostile
vehicle. All objects are shown at true size; the grey lines are lane markings, which do not serve as constraints. Both environments are 11.2 × 5.5 m2 in
size.

runtime necessary to perform the RR-GP update operation,
achieving runtimes (approximately 0.5s) which allow for a
more rapid response and the possibility of all trials staying
feasible.

Figure 4 sheds some light on how different values of
psafe affect the types of paths chosen by the planner. In this
particular trial, the hostile vehicle crosses the intersection, a
behavior the RR-GP is able to predict with high accuracy
(indicated by the small 2 − σ uncertainty ellipses) after 2
iterations. When psafe = 0.8, the planner selects a path with
the minimum perturbation needed to avoid the hostile vehicle
(Figure 4(a)). After the third RR-GP update, the hostile
vehicle’s predicted path drifts slightly closer to the centerline;
thus the host vehicle adds another small perturbation, barely
missing the hostile vehicle as it passes (Figure 4(b)). On the
other hand, when psafe = 0.999, the host vehicle immediately
tries to put as much distance as possible between itself
and the hostile vehicle (Figure 4(c)). In realistic driving
scenarios, the most desirable behavior is likely somewhere
between these two extremes.

Using Naive RRT (i.e., CC-RRT as psafe → 0), we see
that by ignoring the hostile vehicle, the time-optimal path
is almost always achieved, but that a collision takes place
in nearly half of all trials. The results for Nominal RRT
are competitive with CC-RRT for lower values of psafe (0.5
and 0.8). By treating the hostile vehicle as a static obstacle
at its present location, the algorithm can quickly react to
its movement; however, this interaction itself often leads
to collisions (e.g., the host vehicle turns right to avoid the
hostile vehicle, which is turning left). In general, nominal
RRT is fundamentally limited in its ability to react to a
dynamic vehicle, degrading its safety relative to CC-RRT.

Finally, we note that the average time to either generate
an RRT node or call RR-GP is largely independent of psafe
for CC-RRT. There is a modest increase in average time
per node when moving from nominal RRT algorithms to
CC-RRT, though previous work has demonstrated that this
increases scales well with environment complexity [8].

C. Complex Scenario

In the complex scenario (Figure 3(b)), as the hostile
vehicle moves from right to left, it may display as many as
six possible behaviors, corresponding to the sides on which it
passes each obstacle. Furthermore, the hostile vehicle moves
twice as quickly compared to the previous scenario (0.8
m/s), while the host vehicle’s speed is only 0.5 m/s. The
host vehicle and hostile vehicle are to swap positions; the
host vehicle must move from left to right, while avoiding a
collision with a faster-moving dynamic obstacle moving in
the opposite direction.

For this scenario, the host vehicle is modeled as nonlinear
car dynamics with a fixed speed v = 0.5 m/s,

xt+1 = xt + (dt)v cos θt + wxt ,

yt+1 = yt + (dt)v sin θt + wyt ,

θt+1 = θt + (dt)
v

Lw
tan δt + wθt ,

where dt = 0.2s, (x, y) is the vehicle position, θ is the head-
ing, the wheel base Lw = 0.2 m, and δt ∈ [−π/4,+π/4]
is the steering angle input. The vehicle is controlled in
closed-loop using a nonlinear steering controller [22]. In this
scenario, the vehicle must also contend with process noise,
where the covariance on the disturbance wt = (wxt , w

y
t , w

θ
t)

is Pw = diag(5× 10−5, 5× 10−5, 2× 10−4).
Using RR-GP for this scenario, the vehicle dynamics are

simulated at 10 Hz rather than 50 Hz, and a total of 10
samples are attempted per ∆t, rather than 20. The RR-GP
algorithms are called once every 3.5 seconds, each time
giving Algorithm 1 a total of 2.5 seconds to grow trees for
each behavior.

Figure 5 demonstrates the operation of CC-RRT using RR-
GP for a typical trial. When the simulation is initialized, all
possible behaviors are perceived as equally likely; the host
vehicle selects a path aimed between the two center obsta-
cles (Figure 5(a)). As the hostile vehicle moves downward,
the three behaviors moving in that direction are assigned
higher likelihoods, including two down the center path. As
a result, the host vehicle’s initial path selection becomes
probabilistically infeasible, and thus the planner picks a new

(a) psafe = 0.8, after 2 uses of RR-GP

(b) psafe = 0.8, after 3 uses of RR-GP

(c) psafe = 0.999, after 2 uses of RR-GP

Fig. 4. Representative screenshots of the RR-GP and CC-RRT algorithms during Trial 5 of the intersection scenario, for two different values of psafe. The
host vehicle’s path history and current path are in orange. The blue paths indicate the paths predicted by the RR-GP algorithm for each possible behavior,
including 2 − σ uncertainty ellipses; more likely paths are indicated with a brighter shade of blue.

(a) t = 1 s

(b) t = 4 s

(c) t = 7.5 s

Fig. 5. Demonstration of the CC-RRT algorithm with RR-GP applied to a representative trial in the complex scenario. The CC-RRT tree is shown in
green. Uncertainty ellipses for the host vehicle’s process noise are indicated by 2 − σ uncertainty ellipses on the RRT tree.

path across the top of the environment, where the hostile
vehicle is much less likely to appear (Figure 5(b)). This
allows the host vehicle to safely reach the goal as the hostile
vehicle continues to move to the left (Figure 5(c)). Note that
due to the large time interval between RR-GP updates, it
is possible for the RR-GP prediction to poorly match the
vehicle’s current position, as in Figure 5(c). As mentioned
previously, subsequent updates to this work have reduced
these update cycles to well under a second, allowing RR-
GP to update more frequently based on the vehicle’s current
position [21].

VII. CONCLUSION

This paper introduced a real-time path planning frame-
work for safe navigation of autonomous agents navigating
in an environment populated with dynamic obstacles with
uncertain motion patterns. The developed solution combined
RR-GP, a Bayesian nonparametric reachability tree method
[2], with chance-constrained rapidly-exploring random trees
[8], resulting in a probabilistic path planning formulation that
guarantees probabilistic feasability and is suitable for real-
time implementation. Simulation results demonstrated the
effectiveness of the developed approach in designing paths
for vehicles to safely avoid the risk posed by a “hostile”
vehicle with unknown future behavior.

REFERENCES

[1] S. M. Lavalle and R. Sharma, “On motion planning in changing,
partially-predictable environments,” International Journal of Robotics
Research, vol. 16, pp. 775–805, 1997.

[2] G. S. Aoude, J. Joseph, N. Roy, and J. P. How, “Mobile Agent Tra-
jectory Prediction using Bayesian Nonparametric Reachability Trees,”
in AIAA Infotech@Aerospace, St. Louis, Missouri, March 2011.

[3] D. Vasquez, T. Fraichard, O. Aycard, and C. Laugier, “Intentional mo-
tion on-line learning and prediction,” Machine Vision and Applications,
vol. 19, no. 5, pp. 411–425, 2008.

[4] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, “Probabilistic nav-
igation in dynamic environment using rapidly-exploring random trees
and gaussian processes,” in Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, 2008, pp. 1056–1062.

[5] J. Joseph, F. Doshi-Velez, and N. Roy, “A bayesian nonparametric
approach to modeling mobility patterns,” 2010.

[6] J. Joseph, F. Doshi-Velez, A. S. Huang, and N. Roy, “A bayesian
nonparametric approach to modeling motion patterns,” Tech. Rep.,
2011.

[7] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Iowa State University, Tech. Rep. 98-11, October 1998.

[8] B. Luders, M. Kothari, and J. P. How, “Chance constrained RRT for
probabilistic robustness to environmental uncertainty,” in AIAA Guid-
ance, Navigation, and Control Conference (GNC), Toronto, Canada,
August 2010 (AIAA-2010-8160).

[9] L. Blackmore, H. Li, and B. Williams, “A probabilistic approach to
optimal robust path planning with obstacles,” in Proceedings of the
IEEE American Control Conference, 2006, pp. 2831–2837.

[10] G. C. Calafiore and L. E. Ghaoui, “Linear programming with prob-
ability constraints – part 1,” in Proceedings of the IEEE American
Control Conference, 2007.

[11] L. Blackmore, “A probabilistic particle control approach to optimal,
robust predictive control,” in Proceedings of the AIAA Guidance,
Navigation and Control Conference, 2006.

[12] ——, “A probabilistic particle control approach to optimal robust
predictive control,” in Proceedings of the IEEE American Control
Conference, 2007.

[13] L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams, “A proba-
bilistic particle-control approximation of chance-constrained stochastic
predictive control,” IEEE Transactions on Robotics, vol. 26, no. 3, pp.
502–517, 2010.

[14] B. Luders and J. P. How, “Probabilistic feasibility for nonlinear
systems with non-gaussian uncertainty using rrt,” in Proceedings of
the AIAA Infotech@Aerospace Conference, 2011.

[15] J. Joseph, F. Doshi-Velez, and N. Roy, “A bayesian nonparametric
approach to modeling mobility patterns,” in AAAI, 2010.

[16] M. Tay and C. Laugier, “Modelling smooth paths using gaussian
processes,” pp. 381–390, 2008.

[17] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learning),
2005.

[18] G. S. Aoude, B. D. Luders, D. S. Levine, and J. P. How, “Threat-
aware Path Planning in Uncertain Urban Environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, Taipei,
Taiwan, October 2010.

[19] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Transactions on Control Systems Technology, vol. 17,
no. 5, pp. 1105–1118, September 2009.

[20] G. S. Aoude, B. D. Luders, D. S. Levine, K. K. H. Lee, and
J. P. How, “Threat Assessment Design for Driver Assistance System
at Intersections,” in IEEE Conference on Intelligent Transportation
Systems, Madeira, Portugal, September 2010.

[21] G. Aoude, B. Luders, J. Joseph, N. Roy, and J. P. How, “Probabilis-
tically safe avoidance of dynamic obstacles with uncertain motion
patterns,” Autonomous Robots, 2011 (submitted).

[22] M. R. Walter, S. Karaman, E. Frazzoli, and S. Teller, “Closed-loop
pallet manipulation in unstructured environments,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Taipei, Taiwan, October 2010.

