
Planning the reconfiguration of grounded truss structures
with truss climbing robots that carry truss elements

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Seung-kook Yun et al. “Planning the Reconfiguration of Grounded
Truss Structures with Truss Climbing Robots That Carry Truss
Elements.” Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference On. 2009. 1327-1333. Copyright © 2009,
IEEE

As Published http://dx.doi.org/10.1109/ROBOT.2009.5152714

Publisher Institute of Electrical and Electronics Engineers

Version Final published version

Citable link http://hdl.handle.net/1721.1/64782

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/64782

Planning the Reconfiguration of Grounded Truss Structures

with Truss Climbing Robots that Carry Truss Elements

Seung-kook Yun1, David Alan Hjelle2, Eric Schweikardt2, Hod Lipson2,3, Daniela Rus1

1Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

2Sibley School of Mechanical and Aerospace Engineering
3Computing and Information Science

Cornell University, Ithaca, New York, USA

yunsk@mit.edu, dah283@cornell.edu, ees68@cornell.edu, hod.lipson@cornell.edu, rus@csail.mit.edu

Abstract— In this paper we describe an optimal reconfigura-
tion planning algorithm that morphs a grounded truss structure
of known geometry into a new geometry. The plan consists of a
sequence of paths to move truss elements to their new locations
that generate the new truss geometry. The trusses are grounded
and remain connected at all time. Intuitively, the algorithm
grows gradually the new truss structure from the old one. The
truss elements are rigid bars joined with 18-way connectors.
The paper also introduces the design of a truss-climbing robot
that can execute the plan.

I. INTRODUCTION

Our long-term goal is to apply a reconfiguration paradigm

to construction via self-assembly. We wish to create self-

assembling robot systems consisting of passive structural

modules, possibly manufactured on-demand and/or com-

posed from elements present in the environment, combined

with active robotic modules. The structural passive elements

are rigid passive bars and general connectors capable of

supporting multiple bars. The active elements are robotic

modules that may travel on the structural components, pick

up or disassemble a passive element from a known location

in the structure, carry the element to a desired location

on the structure and connect the passive element at the

destination. For the case when the passive elements are rigid

bars, the structures that can be created with this paradigm are

self-assembling and self-reconfiguring trusses. If the robot

elements are an integral part of the truss, the truss is a

dynamic and controllable structure. The resulting structures

form a large class of truss and linkage geometries. We

introduced some of our initial ideas for designing robots and

passive parts, as well as self-assembly and control algorithms

for these types of trusses in [1], [2], [3].

In this paper we describe an algorithm for reconfiguring

truss structures. We assume that the truss structure consists

of passive elements. Truss-climbing robots are capable of

(1) disconnecting a truss element, (2) carrying it along a

path on the truss, an (3), re-attaching it to new locations

on the truss. We develop an algorithm that takes as input

a grounded target truss structure and a grounded goal truss

Fig. 1. Artist rendition of several hinge robots decomposing and recompos-
ing truss structures. Structural metabolism replicates properties of biological
metabolism such as autonomous disassembly and assembly, continuous
reuse of modular elements, automated design from functional requirements,
and resilience to raw material variation.

structure. The algorithm computes an optimal set of truss

element moves that reconfigure the target truss into the goal

truss while ensuring that all truss elements stay connected

at all times. The algorithm considers trusses that consist of

rigid bars of a fixed number of lengths and connectors of one

type. Figure 1 shows an example for changing the geometry

of a truss structure.

The main contribution of this paper is algorithmic. We

also propose a system design for truss elements (connectors

and edges of two types), and robots capable of executing the

reconfiguration algorithms proposed. This truss robot system

is partially completed and will be the subject of a different

paper.

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 1327

A. Inspiration

In developing our problem formulation and solution, we

were inspired by biological metabolism. An organism breaks

down food into constituent building blocks (catabolism)

and then uses those building blocks for its own growth

(anabolism). This process has several properties of interest to

our problem: extensive reuse and recycling of modular build-

ing blocks, autonomous deconstruction and reconstruction,

autonomous design given a set of functional requirements,

resilience to raw material variation, and self-repair. These

properties have not generally been replicated in synthetic

structures. Duplicating such properties in a robotic ecology

could yield a number of practical benefits, from more robust

manufacturing processes to improved recycling ability to

space exploration.

The general replication of these properties is a distant

computational goal. Many challenges exist. How many and

what kind of building blocks could be used for effective

metabolic processes? (Doyle et. al. [4] suggest that a rela-

tively small set of building blocks can yield a large number

of source and target structures in a robust manner.) How can

functional definitions be transformed into physical designs in

an autonomous way? What kind of manipulation is required?

How is the transformation process to be accomplished?

If one simplifies the problem to solely deal with single-

diagonal cubic truss structures as shown in Figure 1, the

problem becomes more tractable, but significant questions

still remain.

B. Related Work

Many robots have been developed as climbers and/or

manipulators of various structures, including general truss

structures. An inchworm robot, using electromagnetic force

to attach itself to ferrous surfaces, was developed in [5],

but structural manipulation abilities are not included. Ripin

et al. [6] and Tavakoli et al. [7] developed pole-climbing

robots, and the latter has some capacity for manipulation.

Amano, Osuka, and Tarn [8] developed a robot for climbing

high-rise buildings. None of these three robot is capable of

general truss traversal, however. TREPA [9], a parallel robot;

ROMA [10], a caterpillar-like robot; and Shady3D[11], a

modular robot utilizing a passive member, are capable of

traversing a wide variety of structures, but do not have

the ability to effect structural assembly. Nechyba and Xu

[12] developed a truss-walking inspection robot, SM2, for

space station trusses. Skyworker was developed for orbital

assembly tasks [13], and was demonstrated performing truss-

like assembly tasks [14]. However, the truss structure was not

specifically designed for robotic manipulation and required

an independent vision robot to perform the assembly. Our

proposed robot design (discussed briefly in section II and

in more detail in [15]) is fashioned for traversal of general

cubic trusses with face-centered diagonals and for physical

manipulation and reconfiguration of such trusses. It utilizes

a custom truss design discussed briefly in Figure 3 and in

detail in [16].

C. Outline

This paper is organized as follows. Section II introduces

the design for a truss climbing robot and for the truss

elements (edges and nodes) it operates with. Section III-B

describes and analyzes an optimal reconfiguration planning

solution that is centralized and efficient but does not maintain

truss connectivity. Section III-C describes and analyzes a

reconfiguration planning solution that is guaranteed to main-

tain connectivity and compute the correct plan. Section IV

presents simulation results.

II. DESIGNING A ROBOT TRUSS CARRIER

The robot design we have chosen for this work is one we

refer to as a hinge robot, as shown in Figure 2. Two halves

of the robot are connected together via a hinge. The angle

between the halves can be adjusted to any angle between

35◦ and 180◦. This is done with a pair of linear actuators

and a rigid connecting link. Moving one or both of the linear

actuators changes the angle between the halves. Each half,

then, is capable of gripping a truss element, rotating itself

and the entire robot around that truss element, and translating

along that truss element using internal wheeled grippers.

Fig. 2. The hinge robot (a) is capable of 35◦ to 180◦ actuation between
the halves via two linear actuators, one on each half. The translational
mechanism [shown from the bottom in (a)] and rotational mechanism
[shown in a cutaway view in (b)] can be actuated to grip or release the
truss element, as well as move the robot along the element. The rotational
actuation doubles as the ability to fasten and unfasten the truss elements via
twisting.

If a single half of the robot is currently gripping a truss

element, the robot can then move about a truss by translating,

rotating, and adjusting the angle between halves in order to

align the free half with another truss element adjacent to

it. (This element may be at an angle of 45◦, 90◦, 135◦, or

180◦ from the originating element.) The robot then grips the

destination element, releases the originating element, and the

process begins again.

If a strut needs to be carried from one location to another

on the truss, a carrying pod (shown on the side of each half

of the robot in Figure 2) can be actuated to retrieve a strut

from the structure, hold it, and return it as needed.

The robot is also capable of manipulating the truss, given

amenable truss element designs. The truss elements in Figure

1328

Fig. 3. Truss elements designed for robotic manipulation. The hubs contain
threaded holes in each principle axis as well as in the diagonal axes. The
struts contain threaded studs on either end, and also have a threaded stud and
mating insert in the middle. This allows the sides to be inserted or removed
from the hub independently via rotation without requiring the movement of
the hub.

3 are designed for ease of robotic manipulation via a twisting

action in complex truss structures [16]. Since the robot is able

to rotate itself about a truss element, it is also able to remove

struts via rotation. Thus, the robot is capable of completely

manipulating such truss structures.

III. PLANNING THE OPTIMAL RECONFIGURATION OF

TRUSSES

In this section we formulate the specific truss reconfigura-

tion problem we solve in this work and describe an efficient

algorithm.

The truss structures we consider are general compositions

and arrangements of rigid bars of different lengths connected

at truss nodes using the connector design described in

Section II. Our truss uses a meta-module with the geometry

of a cube. Thus, without loss of generality, we focus on two

types of truss elements: (1) sides, which are short bars for

the cube sides, and (2) diagonals, bars that make up the

diagonals in the basic cube meta-structure. All trusses are

grounded.

Each truss structure is represented as a weighted graph

G = (V,E) . Vertices V correspond to the nodes of the

truss. Edges E show the connectivity of the truss nodes by

truss elements. The weight of each edge indicates the type

of edge (e.g. side or diagonal for the proposed design.)

Planning for the reconfiguration of the truss represented

by graph G1 into the truss represented by graph G2 can

be formulated as optimal matching between G1 and G2. we

wish to keep the truss connected at all times as well as to

guarantee the globally optimal matching solution. The intu-

ition is as follows. First, we compare G1 and G2 to identify

their overlap. The overlap corresponds to truss elements that

do not have to move in the process of reconfiguring one

object into another. Next, truss elements in G1 that are not

part of this overlap are assigned new locations to assemble

G2. This involves computing a truss trajectory for moving

each element to the new location (by robots that can carry

truss elements), and the order in which the moves have to

be done. We wish to minimize the total number of steps

required to complete the truss reassembly task.

A. Problem Formulation and Assumptions

The goals for the truss reassembly planning algorithm are

as follows:

Fig. 4. Source and target structure: G1 (left) and G2 (right)

• find the graph Gm = G1 ∩ G2 that yields the optimal

matching between G1 −G2 and G2 −G1

• compute the trajectories for moving the edges in G1 −
G2 to assemble G2 subject to the constraint of main-

taining connectivity of the entire structure

The cost function is the total traveling distance of the truss

elements (e.g. for the edges in G1 −G2). The cost function

can be extended with other criteria such as maintaining the

integrity of the structure in the presence of gravity, etc.

The goals for the general reassembly planning problem

of arbitrary trusses are challenging. The maximal common

subgraph (MCS) isomorphism algorithm is NP-hard [17] in

the general case. Though the bipartite matching in a graph

can be solved, executing the matching may disconnect the

graphs in our case because the matching physically moves a

truss that includes an edge and a couple of nodes.

In order to find an efficient solution for truss reassembly

planning, we make the following assumptions:

• G1 and G2 are restricted to two types of truss elements:

sides and diagonals. Each edge is labeled by its type

(side or diagonal). This assumption is relaxed straight-

forwardly to trusses with a finite number of types for

their truss elements.

• The orientation of the side truss elements is orthogonal

along one of the x, y, or z axes.

• A truss node (vertex) has the ability to hold and store

multiple truss elements.

• Trusses are grounded.

The first, second, and fourth assumptions restrict the

geometric structure of the truss. This class of trusses admits

polynomial-time algorithms for reconfiguration planning.

The third assumption is needed to ensure that during the

process of reconfiguration the structure remains connected.

The prototype connector (see Figure 3) was designed with

this goal in mind. Thus, a robot can connect a truss element

to a node temporarily.

We do not impose any restriction on the size of G1 and

G2. Specifically the size of the initial truss does not have to

be identical to the size of G2.

B. Finding the optimal matching by scanning

The truss elements have fixed lengths and orientations.

Therefore, we may consider the truss structure as a set of the

square cubes whose edges are the side truss elements and

whose diagonals are diagonal truss elements. The optimal

matching can be obtained by scanning G2 over the G1 as

described in Algorithm 1.

Figure 4 illustrates Algorithm 1 in the context of a 2D

example for ease of explanation. Algorithm 1 works with

1329

(a) (b)

Fig. 5. Scanning the target structure over the source structure. black edges are trusses that belong to only G1 and Blue edges are only for G2. The
overlapped edges (common subgraph) are highlighted by the red lines. (a) G2 is scanned from left to right (b) Flipped G2 is scanned over G1

Algorithm 1 Scanning algorithm for the optimal matching.

The algorithm returns the optimally merged graph Gm and

the optimal matching Mm in Gm.

1: Make G1 and G2 cornered at the origin

2: for orientation OG2
∈

[

0, π
2
, π, 3π

2

]

do

3: Rotate G2 by OG2
w.r.t z-axis

4: X1 = max{x(G1)}, Y1 = max{y(G1)}
5: X2 = max{x(G2)}, Y2 = max{y(G2)}
6: for xt ∈ [−X2 . . . X1 + X2], yt ∈ [−Y2 . . . Y1 + Y2]

do

7: Transform G2 by (xt, yt)
8: n = number of the overlapped elements in G1∩G2

9: G3 = G1 ∪G2

10: M = OptimalMatchingside (G1 − G2, G2 − G1)

+ OptimalMatchingdiagonal (G1 −G2, G2 −G1)

11: end for

12: end for

13: Mm = argminM (cost(M))
14: Gm = argminG3

(cost(M))

general 3D trusses that meet our assumptions. The principle

of operation in 3D is similar to 2D. First, G2 is overlapped

on G1 from the left to the right as in Figure 5. Next, G2 is

flipped about z-axis and scanned again. Here the optimally

merged graph is the right of Figure 5(b). In a 3D structure,

the scan is over the x-y plane, and G2 is rotated to account

for four types of orientation. Matching is done separately

for each edge type. The optimal matching is the sum of the

optimal matchings for the side truss elements and the optimal

matching for the diagonal truss elements using the optimally

merged graph Gm.

Note that Algorithm 1 can be extended to trusses with

a finite number of edge types. Optimal matching is done

for each edge type and all the results are merged (line 10).

Algorithm 1 can be applied even for a cases in which the

initial truss represented by G1 and the goal truss represented

by G2 are not identical in the type and number. When m1

is greater than m2, the algorithm chooses the optimal edges

of G1 to build G2. If m2 > m1, the algorithm builds only

parts of G2 with the minimal cost from G1.

Theorem 1: The running time of Algorithm 1 is O(nm4),
where n is number of the nodes and m is number of the truss

elements.

Proof: The computation required for comparing the

graphs is O(m). The number of the scans is bounded by

the xy-region of the graphs which can not be more than

Fig. 6. Broken connectivity by performing the matching. The black trusses
are G1 − G2 and The blue ones are G2 − G1. The black trusses move to
the locations of the blue ones.

n1+n2. The optimal matching is computed by the Hungarian

algorithm [18], which has O(m3) runtime. Note that com-

puting the cost matrix for the Hungarian algorithm requires

the execution of Dijkstra’s algorithm O(m) times; however,

the running time of the Hungarian algorithm dominates.

C. Maintaining Connectivity

Algorithm 1 yields the optimal matching for transforming

G1 into G2 but does not provide a correct sequence of moves

to ensure that the structure (e.g. all the truss elements) will

stay connected at all time. Figure 6 illustrates some snapshots

from performing the reconfiguration from G1 to G2 for

the example of Figure 4. Note that one of the black truss

elements has to be moved to the uppermost edge. However,

this location is not reachable before the other truss elements

move to their matched locations. Additionally, the next black

truss loses its shortest path because the first black truss is

gone.

To maintain connectivity and the shortest paths, an addi-

tional computational step is needed. The order of the ob-

tained optimal matching needs to be analyzed and processed

so that all truss elements stay connected at all times. If a

target location is not reachable by any means, that truss

element is moved along its trajectory to the farthest available

intermediate truss vertex and temporarily stored there. That

is, the paths for the truss elements are divided so that the

elements may move to an intermediate point along the path

until full connectivity to the target location is available. Prac-

tically, elements can be buffered by temporarily connecting

them to a joint with a free connector.

Algorithm 2 describes the analysis and computation re-

quired in order to generate trajectories with intermediate

storage locations that connectivity at all time for all truss

elements. Let S be the set of the source truss elements of

G1 −G2 and T be the set of the target edges for G2 −G1.

Initially T is empty.

Algorithm 2 uses a dynamic graph G. G has all the edges

of G1∪G2, however only the edges of G1 are activated at the

1330

Fig. 7. The adjusted order of the matching in Figure 6.

start. As the computation proceeds, the set of active edges

changes. The algorithm ends if all the si ∈ S reach their

target locations ti. The algorithm chooses a truss element si

whose target is connected to the current structure S − T . If

the element does not belong to any paths of the other truss

elements, it advances to its target. Otherwise, the algorithm

picks another element the path of which includes the current

element. If the two elements are the same trusses (diagonal

or side), they exchange their target and adjust the paths

according to the new targets. The exchange is reasonable

since the two trusses are physically same and it does not hurt

the optimality. If there is no same element of the same type

among the path-overlapping elements, the algorithm searches

for the deepest predecessor of the element and let it advance

to its target. After the exchange, we repeat the process until

S = T .

Algorithm 2 guarantees no queue when the structures are

made of only a single type of the trusses, since it can always

fill the picked edge with the deepest predecessor as long

as no cycle in the paths. The queue is necessary only if

the only predecessor has the different type. The concept of

exchanging is also useful when the work is extended to a

distributed system where many robots collaborate [1], [3].

Theorem 2: An edge si that is not in pj (j 6= i) can always

be founded.

Proof: Suppose every si is in pj (j 6= i). Then at least

a pair of paths pi crosses each other, which means there is a

loop in P . This is a contradiction because it means we can

have a better matching by exchanging ti with the intersection

of the paths pi or by cutting the loop.

Theorem 3: Algorithm 2 terminates.

Proof: By Lemma 2, the algorithm adds a part of P to

the trajectory in every loop. Since P has a finite number of

the paths, it will be completely traversed by S.

Figure 7 shows the adjusted paths of Figure 6. The black

edges move to the blue edge locations without breaking

connectivity. In this example, no source truss edge has been

paused and added to the queue of elements with unreachable

destination.

IV. RESULTS

We have implemented the algorithms described in Sec-

tion III and we evaluated them on six 3D canonical struc-

tures. In this section we describe the results.

A. Solution examples

Figure 8 shows an example set of truss structures[16]. The

left structure consists of 6 cubes connected as a compact

Algorithm 2 Exchange algorithm for trajectories to maintain

the connectivity and the shortest paths

1: S = truss(G1 −G2)
2: T = edge(G2 −G1)
3: P = path(S → T) in Gm

4: deactivate T in Gm

5: Q = ∅

6: while S 6= T do

7: pick si such that ti ∈ T − S is connected to S − T
and pi ∈ S − T

8: trussSelected = false

9: while not trussSelected do

10: if si /∈ pj (j 6= i, j ∈ S − T) or si ∈ Q then

11: move si along pi

12: delete pi

13: activate the edges that are connected to ti
14: pull out si from Q (if si ∈ Q)

15: trussSelected = true

16: else

17: choose sj such that si ∈ pj

18: if ∃sj such that si ∈ pj and type(si)=type(sj)

then

19: exchange ti and tj
20: pi ← pj(si → tj)
21: pj ← pj(sj → si) + pi(si → ti)
22: i← j
23: else

24: pick sk, the deepest predecessor of sj

25: move sk along pk

26: if sk 6= tk then

27: sk → Q
28: end if

29: trussSelected = true

30: end if

31: end if

32: end while

33: end while

structure. The others are like a tower. G1 to G5 has a total of

83 truss elements, 31 of which are diagonal and the rest side.

G6 has only 75 truss elements. Figure 9 and 11 show how

the planning algorithms in this paper morph G1 into G3 and

G6 for this example. Figure 10 shows transformation G1 to

G5 with a programmatically generated animation. Between

individual reconfiguration steps, the robot uses Dijkstra’s

algorithm to plan the shortest path to the start point of its

next reconfiguration step. The exchange algorithm is used to

generate the paths. Fortunately, the structure does not require

a queue. Note that G1 can transform to G6 in the optimal

way even though the numbers of the trusses are different.

B. Performance analysis

Table I summarizes the performance of the algorithm for

all combinations of the given truss geometries. The source

structure is successfully transformed into the target structure

as minimizing the total displacements of the truss elements.

1331

−1
0

1

−1

0

1

0

1

2

G
1

−4
−2

0
2

4

−4
−2

0
2

4

0

5

10

G
2

−4
−2

0
2

4

−4
−2

0
2

4

0

5

10

G
3

−4
−2

0
2

4

−4
−2

0
2

4

0

5

10

G
4

−4
−2

0
2

4

−4
−2

0
2

4

0

5

10

G
5

−4
−2

0
2

4

−4
−2

0
2

4

0

5

10

G
6

Fig. 8. 6 truss structures. Each structure has 83 trusses except for G6 that has only 75 trusses[16].

−2

0

2

−2

0

2

0

2

4

6

8

10

−2

0

2

−2

0

2

0

2

4

6

8

10

−2

0

2

−2

0

2

0

2

4

6

8

10

−2

0

2

−2

0

2

0

2

4

6

8

10

−2

0

2

−2

0

2

0

2

4

6

8

10

−2

0

2

−2

0

2

0

2

4

6

8

10

Fig. 9. Morph from G1 to G3. Thickness of a truss element denotes number of the queued truss elements at that location. The red dotted line is a path
of the currently moving truss elements. 62 truss elements move to their matched edge in 257 steps.

Fig. 10. Morph from G1 to G5. The figures are programmatically generated animation depicting a structural reconfiguration planned by the algorithm.

−2

0

2

−2

0

2

0

2

4

6

8

10

−2

0

2

−2

0

2

0

2

4

6

8

10

−2

0

2

−2

0

2

0

2

4

6

8

10

−2

0

2

−2

0

2

0

2

4

6

8

10

−2

0

2

−2

0

2

0

2

4

6

8

10

−2

0

2

−2

0

2

0

2

4

6

8

10

Fig. 11. Morph from G1 to G6. 63 trusses move to the matched edge with 427 steps. G1 has more trusses and there are 8 remaining trusses.

We do not need any queue for the given structures. In

the future, the required conditions for no queue will be

considered.

On the other hand, the cost can be considered as time

required for a robot to finish the transformations. In future,

an algorithm for multi-robot processing may reduce the times

by parallelism.

V. CONCLUSIONS

This paper presented and demonstrated an algorithm that

solves the problem of how to optimally transform a given

truss structure into another structure, piece by piece, subject

to maintaining a variety of constraints. The algorithm is

realizable using a future robot capable of traversing a truss

and executing element removal and insertion operations at

desired locations. We have also presented initial designs

for such a robot, as well as physical elements that can be

removed and inserted at any valid truss location.

Because of the regular nature of the truss lattice, the

algorithms presented remain tractable in the size of the

source and target graphs. Similarly, capabilities of the robot,

such as the type of joints it can traverse and the number

1332

TABLE I

RESULT OF THE SIMULATIONS

Matching Moving trusses Cost Total Q

G1 → G2 68 418 0
G1 → G3 62 257 0
G1 → G4 70 462 0
G1 → G5 72 449 0
G1 → G6 63 427 0
G2 → G3 62 220 0
G2 → G4 68 158 0
G2 → G5 63 128 0
G2 → G6 49 122 0
G3 → G4 60 249 0
G3 → G5 58 240 0
G3 → G6 55 248 0
G4 → G5 69 139 0
G4 → G6 56 145 0
G5 → G6 56 135 0

elements it can carry in one pass greatly affect the type

and performance of the algorithm that can be achieved.

Various aspects of the truss elements design also impact the

algorithm performance, such as the ability to remove and

insert elements at random access, and structural the ability

of cantilevered elements to sustain the load of a working

robot.

The coupled algorithmic and hardware centered nature of

this problem open the door to many future challenges and

opportunities. In particular, we are interested in performance

of this system when multiple robots operate on the struc-

ture simultaneously, and when knowledge about the current

global state of the structure, resource availability and inter-

robot communications are imperfect. In addition, practical

considerations related to structural integrity, stress, and vi-

bration, as well as assembly failures and non-regular lattices

are also of interest. An additional interesting challenge is the

inverse problem of designing useful target structures that a

given structure can be easily transformed into [16].

VI. ACKNOWLEDGEMENTS

This work was done as a collaboration between the DRL

group at MIT and the Cornell Computational Synthesis Lab

as part of the U.S. National Science Foundation, Emerging

Frontiers in Research and Innovation (EFRI) grant #0735953.

Seung-kook Yun is supported in part by Samsung Fellowship.

We are grateful for this support. We are also grateful to

the groups of Eric Klavins and Mark Yim for insightful

discussions on reconfiguration. Support for this work was

also provided in part by Intel. Thanks to Daniel Lobo for

providing the source and target truss data.

REFERENCES

[1] C. Detweiler, M. Vona, Y. Yoon, S. kook Yun, and D. Rus, “Self-
assembling mobile linkages,” IEEE Robotics and Automation Maga-

zine, vol. 14(4), pp. 45–55, 2007.

[2] S. kook Yun and D. Rus, “Self assembly of modular manipulators with
active and passive modules,” in Proc. of IEEE/RSJ IEEE International

Conference on Robotics and Automation, May 2008, pp. 1477–1482.

[3] S. kook Yun and D. Rus, “Optimal distributed planning for self
assembly of modular manipulators,” in Proc. of IEEE/RSJ IEEE

International Conference on Intelligent Robots and Systems, Nice,
France, Sep 2008, pp. 1346–1352.

[4] M. Csete and J. Doyle, “Bow ties, metabolism, and disease,” Trends

in Biotechnology, vol. 22, pp. 446–450, 2004.
[5] K. D. Kotay and D. L. Rus, “Navigating 3d steel web structures with

an inchworm robot,” Intelligent Robots and Systems’ 96, IROS 96,

Proceedings of the 1996 IEEE/RSJ International Conference on, vol. 1,
pp. 1178–1185 vol.2, 1996.

[6] Z. M. Ripin, T. Soon, A. B. Abdullah, and Z. Samad, “Development
of a low-cost modular pole climbing robot,” in TENCON 2000, vol. 1,
2000, pp. 196–200 vol.1.

[7] M. Tavakoli, M. Zakerzadeh, G. Vossoughi, and S. Bagheri, “A hybrid
pole climbing and manipulating robot with minimum DOFs for con-
struction and service applications,” Industrial Robot: An International

Journal, vol. 32, no. 2, pp. 171–178, 2005.
[8] H. Amano, K. Osuka, and T. J. Tarn, “Development of vertically

moving robot with gripping handrails for fire fighting,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, vol. 2,
2001, pp. 661–667 vol.2.

[9] R. Aracil, R. Salateru, and O. Reinoso, “A climbing parallel robot,”
Robotics & Automation Magazine, IEEE, vol. 13, no. 1, pp. 16–22,
2006.

[10] C. Balaguer, A. Gimnez, J. Pastor, V. Padrn, and M. Abderrahim, “A
climbing autonomous robot for inspection applications in 3D complex
environments,” Robotica, vol. 18, no. 03, pp. 287–297, 2000.

[11] Y. Yoon and D. Rus, “Shady3d: A robot that climbs 3d trusses,”
Robotics and Automation, 2007 IEEE International Conference on,
pp. 4071–4076, April 10-14 2007.

[12] M. Nechyba and Y. Xu, “Human-robot cooperation in space: SM
2 for

new spacestation structure,” Robotics & Automation Magazine, IEEE,
vol. 2, no. 4, pp. 4–11, 1995.

[13] P. J. Staritz, S. Skaff, C. Urmson, and W. Whittaker, “Skyworker:
a robot for assembly, inspection and maintenance of large scale
orbital facilities,” in IEEE International Conference on Robotics and

Automation (ICRA 2001), vol. 4, 2001, pp. 4180–4185 vol.4.
[14] S. Skaff, P. Staritz, and W. Whittaker, “Skyworker: Robotics for

space assembly, inspection and maintenance,” Space Studies Institute

Conference, 2001.
[15] D. Hjelle and H. Lipson, “A robotically reconfigurable truss,” in

ASME/IEEE International Conference on Reconfigurable Mechanisms

and Robots (ReMAR 2009), 2009.
[16] D. Lobo, D. Hjelle, and H. Lipson, “Reconfiguration algorithms

for robotically manipulatable structures,” in ASME/IEEE Interna-

tional Conference on Reconfigurable Mechanisms and Robots (ReMAR

2009), 2009.
[17] Computers and Intractability : A Guide to the Theory of NP-

Completeness (Series of Books in the Mathematical Sciences). W. H.
Freeman, January 1979.

[18] H. Kuhn, “The hungarian method for the assignment problem,” Naval

Res. Logist. Quart., vol. 2, pp. 83–97, 1955.

1333

