
MIT Open Access Articles

REPETITION ERROR CORRECTING SETS: EXPLICIT 
CONSTRUCTIONS AND PREFIXING METHODS

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Dolecek, Lara, and Venkat Anantharam. “Repetition Error Correcting Sets: Explicit 
Constructions and Prefixing Methods.” SIAM Journal on Discrete Mathematics 23.4 (2010) : 2120. 
© 2010 Society for Industrial and Applied Mathematics

As Published: http://dx.doi.org/10.1137/080730093

Publisher: Society for Industrial and Applied Mathematics.

Persistent URL: http://hdl.handle.net/1721.1/64810

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/64810


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. DISCRETE MATH. c© 2010 Society for Industrial and Applied Mathematics
Vol. 23, No. 4, pp. 2120–2146

REPETITION ERROR CORRECTING SETS: EXPLICIT
CONSTRUCTIONS AND PREFIXING METHODS∗

LARA DOLECEK† AND VENKAT ANANTHARAM‡

Abstract. In this paper we study the problem of finding maximally sized subsets of binary
strings (codes) of equal length that are immune to a given number r of repetitions, in the sense that no
two strings in the code can give rise to the same string after r repetitions. We propose explicit number
theoretic constructions of such subsets. In the case of r = 1 repetition, the proposed construction
is asymptotically optimal. For r ≥ 1, the proposed construction is within a constant factor of the
best known upper bound on the cardinality of a set of strings immune to r repetitions. Inspired
by these constructions, we then develop a prefixing method for correcting any prescribed number r
of repetition errors in an arbitrary binary linear block code. The proposed method constructs for
each string in the given code a carefully chosen prefix such that the resulting strings are all of the
same length and such that despite up to any r repetitions in the concatenation of the prefix and the
codeword, the original codeword can be recovered. In this construction, the prefix length is made
to scale logarithmically with the length of strings in the original code. As a result, the guaranteed
immunity to repetition errors is achieved while the added redundancy is asymptotically negligible.

Key words. synchronization error correcting codes, enumeration problems, generating func-
tions, congruencies, residue systems

AMS subject classifications. 94B50, 05A15, 11A07

DOI. 10.1137/080730093

1. Introduction. Substitution error correcting codes are traditionally used in
communication systems for encoding of a binary input message x into a coded se-
quence c = C(x). The modulated version of this sequence is usually corrupted by
additive noise and is seen at the receiver as a waveform s(t),

(1.1) s(t) =
∑
i

cih(t− iT ) + n(t),

where ci is the ith bit of c, h(t) is the modulating pulse, and n(t) is the noise in-
troduced in the channel. The received waveform s(t) is sampled at certain sampling
points determined by the timing recovery process, and the resulting sampled sequence
is passed to the decoder, which then produces the estimate of c (or x). In the analysis
of substitution error correcting codes and their decoding algorithms, it is traditionally
assumed that the decoder receives a sequence which is a properly sampled version of
the waveform s(t).

The timing recovery process involves a substantial overhead in the design of com-
munication chips, both in terms of occupying area on the chip and in terms of power
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consumption. To avoid some of this cost, particularly in high speed systems, an alter-
native solution is to operate under a poorer timing recovery while oversampling the
received waveform in order to ensure that no information is lost. Thus the waveform
s(t), instead of being sampled at instances kTs + τk, might be sampled at instances
roughly T apart for T < Ts. In the idealized infinite signal-to-noise ratio limit of a
pulse amplitude modulation (PAM) system, it appears as if some symbols are sampled
more than once. As a result, instead of creating n samples from s(t), n + r samples
are produced, where r ≥ 0. As a consequence, when r > 0, the decoder is presented
with a sampled sequence whose length exceeds the length of a codeword.

Motivated by this scenario, in this paper we study the problem of finding maxi-
mally sized subsets of binary strings (codes) that are immune to a given number r of
repetitions, in the sense that no two strings in the code can give rise to the same string
after r repetitions. In particular, we develop explicit number-theoretic constructions
of sets of binary strings immune to multiple repetitions and provide results on their
cardinalities. We then use these constructions to develop a prefixing method which
transforms a given set of binary strings into another set that itself satisfies number-
theoretic constraints of the proposed constructions. The redundancy introduced by
this carefully chosen prefix is shown to be logarithmic in the length of the strings in
the given set.

The remainder of the paper is organized as follows. In section 2 we first introduce
an auxiliary transformation that converts our problem into that of creating subsets
of binary strings immune to the insertions of 0’s. In section 3 we focus on subsets
of binary strings immune to single repetitions. We present explicit constructions of
such subsets and use number-theoretic techniques to give explicit formulas for their
cardinalities. Our constructions here are asymptotically optimal. In section 4 we
discuss subsets of binary strings immune to multiple repetitions. Our constructions
here are asymptotically within a constant factor of the best known upper bounds and
asymptotically better, by a constant factor, than the best previously known such con-
structions, due to Levenshtein [4]. Inspired by these number-theoretic constructions,
in section 5 we develop a general prefixing-based method which injectively converts a
given set of binary strings of the same length into another set such that the resulting
set is immune to a prescribed number of repetition errors. The method produces
for each string in the original set a carefully chosen prefix such that the result of the
concatenation of the prefix and this string satisfies number-theoretic congruential con-
straints previously developed in section 4 (where these constraints were shown to be
sufficient to provide immunity to repetition errors). The prefix length in the proposed
method is shown to scale logarithmically with the length of the strings in the origi-
nal given set. Thus, the proposed construction guarantees immunity to a prescribed
number of repetition errors, while the incurred redundancy becomes asymptotically
negligible.

2. Auxiliary transformation. To construct a binary, r repetition correcting
code C of length n, we first construct an auxiliary code C̃ of length m = n−1 which is
an r “0”-insertion correcting code. These two codes are related through the following
transformation.

Suppose c ∈ C. We let c̃ = c × Tn mod 2, where Tn is an n × n − 1 matrix
satisfying

(2.1) Tn(i, j) =

{
1 if i = j, j + 1,
0 else.
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2122 LARA DOLECEK AND VENKAT ANANTHARAM

Now, the repetition in c in position p corresponds to the insertion of “0” in
position p − 1 in c̃, and weight(c̃) = the number of runs in c −1. We let C̃ be the
collection of strings of length n − 1 obtained by applying Tn to all strings C. Note
that c and its complement both map into the same string in C̃.

It is thus sufficient to construct a code of length n−1 capable of overcoming r “0”-
insertions and apply the inverse Tn transformation to obtain r repetitions correcting
code of length n.

Since the strings starting with runs of different types cannot be confused under
repetition errors, both preimages under Tn may be included in such a code immune
to repetition errors.

3. Single repetition error correcting set. Following the analysis of Sloane [9]
and Levenshtein [5] of the related so-called Varshamov–Tenengolts codes [11] known
to be capable of overcoming one deletion or one insertion, let Am

w be the set of all
binary strings of length m and with w ones (1’s) for 0 ≤ w ≤ m. Partition Am

w based
on the value of the first moment of each string. More specifically, let Sm,t

w,k be the
subset of Am

w such that

(3.1) Sm,t
w,k =

{
(s1, s2, . . . , sm)

∣∣∣ m∑
i=1

i× si ≡ k mod t

}
.

In the subsequent analysis we say that an element of Sm,t
w,k has the first moment

congruent to k mod t.

Lemma 3.1. Each subset Sm,w+1
w,k is a single “0”-insertion correcting code.

Proof. Suppose the string s′ is received. We want to uniquely determine the
codeword s = (s1, s2, . . . , sm) ∈ Sm,w+1

w,k such that s′ is the result of inserting at most
one zero in s.

If the length of s′ is m, conclude that no insertion occurred and that s = s′.
If the length of s′ ism+1, a zero has been inserted. For s′ = (s

′
1, s

′
2, . . . , s

′
m, s

′
m+1),

compute
∑m+1

i=1 i×s
′
i mod (w+1). Due to the insertion,

∑m+1
i=1 i×s

′
i =

∑m
i=1 i×si+R1,

where R1 denotes the number of 1’s to the right of the insertion. Note that R1 is
always between 0 and w.

Let k′ be equal to
∑m+1

i=1 i × s
′
1 mod (w + 1). If k′ = k, the insertion occurred

after the rightmost one, so we declare s to be the m leftmost bits in s′. If k′ > k,
R1 is equal to k′ − k, and we declare s to be the string obtained by deleting the zero
immediately preceding the rightmost k′−k ones. Finally, if k′ < k, R1 is w+1−k+k′,
and we declare s to be the string obtained by deleting the zero immediately preceding
the rightmost w + 1− k + k′ ones.

A related, number- and group-theoretic–based construction of a code for correct-
ing a single error and for detecting all unidirectional (asymmetric) errors is presented
in [6].

3.1. Cardinality results. Since |Am
w | = (mw ), there exists k such that

(3.2) |Sm,w+1
w,k | ≥ 1

w + 1

(
m
w

)
.

Since two codewords of different weights cannot result in the same string when at
most one zero is inserted, we may let C̃ be the union of the largest sets Sm,w+1

w,k∗
w

over
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different weights w, i.e.,

(3.3) C̃ =

m⋃
w=1

Sm,w+1
w,k∗

w
,

where Sm,w+1
w,k∗

w
is the set of the largest cardinality among all sets Sm,w+1

w,k for 0 ≤ k ≤ w.

Thus, the cardinality of C̃ is at least

(3.4)

m∑
w=0

(
m
w

)
1

w + 1
=

1

m+ 1

(
2m+1 − 1

)
.

The upper bound U1(m) on any set of strings each of length m capable of over-
coming one insertion of a zero is derived in [4] to be

(3.5) U1(m) =
2m+1

m
.

Hence the proposed construction is asymptotically optimal in the sense that the
ratio of its cardinality to the largest possible cardinality approaches 1 as m → ∞.

By applying inverse Tn transformation for n = m + 1 to C̃ and noting that
both preimages under Tn can simultaneously belong to a repetition correcting set, we
obtain a code of length n and of size at least 1

n

(
2n+1 − 2

)
capable of correcting one

repetition.
The cardinalities of the sets Sm,w+1

w,k may be computed explicitly as we now show.
Recall that the Möbius function μ(x) of a positive integer x = pa1

1 pa2
2 . . . pak

k for
distinct primes p1, p2, . . . , pk is defined as [1]

(3.6) μ(x) =

⎧⎨⎩
1 for x = 1,
(−1)k if a1 = · · · = ak = 1,
0 otherwise

and that the Euler function φ(x) denotes the number of integers y, 1 ≤ y ≤ x − 1,
that are relatively prime with x. By convention φ(1) = 1.

Lemma 3.2. Let g = gcd(m+ 1, w + 1). The cardinality of Sm,w+1
w,k is

(3.7) |Sm,w+1
w,k | = 1

m+ 1

∑
d|g

(
m+1
d

w+1
d

)
(−1)(w+1)(1+ 1

d )φ(d)
μ
(

d
gcd(d,k)

)
φ
(

d
gcd(d,k)

) ,
where gcd(d, k) is the greatest common divisor of d and k, interpreted as d if k = 0.

Proof. Motivated by the analysis of Sloane [9] of the Varshamov–Tenengolts
codes [11], let us introduce the function fb,n(U, V ) in which the coefficient of UsV k

(call it gbk,s(n)) represents the number of strings of length n, weight s, and the first

moment equal to k mod b (i.e., gbk,s(n) = |Sn,b
s,k |),

(3.8) fb,n(U, V ) =

b−1∑
k=0

n∑
s=0

gbk,s(n)U
sV k.

Observe that fb,n(U, V ) can be written as a generating function

(3.9) fb,n(U, V ) =

n∏
t=1

(1 + UV t) mod (V b − 1).
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Let a = ei
2π
b so that for V = aj

(3.10) fb,n(U, e
i 2πj

b ) =

b−1∑
k=0

n∑
s=0

gbk,s(n)U
sei

2πjk
b .

By inverting this expression we can write

(3.11)

∑n
s=0 g

b
k,s(n)U

s

= 1
b

∑b−1
j=0 fb,n(U, e

i 2πj
b )e−i 2πjk

b

= 1
b

∑b−1
j=0

∏n
t=1(1 + Uei

2πjt
b )e−i 2πjk

b .

Our next goal is to evaluate the coefficient U b on the right-hand side in (3.11).
To do so we first evaluate the following expression:

(3.12)

b∏
t=1

(1 + Uei
2πjt

b ).

Let dj = b/gcd(b, j) and sj = j/gcd(b, j), and write

(3.13)

∏b
t=1(1 + Uei

2πjt
b )

=
(∏dj

t=1(1 + Ue
i
2πsjt

dj )
)gcd(b,j)

=
(
1 + U

∑dj

t1=1 e
i
2πsjt1

dj + U2
∑dj

t1=1

∑dj

t2=t1+1 e
i
2πsj(t1+t2)

dj + · · ·+
Udje

i
2πsj(1+2+···+dj)

dj

)gcd(b,j)

.

Since gcd(dj , sj) = 1, the set

(3.14) V = {ei
2πsj1

dj , e
i
2πsj2

dj , . . . , e
i
2πsjdj

dj }
represents all distinct solutions of the equation

(3.15) xdj − 1 = 0.

For a polynomial equation P (x) of degree d, the coefficient multiplying xk is
a scaled symmetric function of d − k roots. Hence, by (3.15), symmetric functions
involving at most dj − 1 elements of V evaluate to zero. The symmetric function
involving all elements of V , which is their product, evaluates to (−1)dj+1.

Therefore,

(3.16)

b∏
t=1

(1 + Uei
2πjt

b ) =
(
1 + (−1)1+djUdj

)gcd(b,j)
.

Returning to the inner product in (3.11), let us first suppose that b|n. Then

(3.17)

∏n
t=1

(
1 + Uei

2πjt
b

)
=

(∏b
t=1

(
1 + Uei

2πjt
b

))n/b

=
(
1 + (−1)1+djUdj

)gcd(b,j)n/b
=

∑ n
dj

l=0

( n
dj

l

)
(−1)l(1+dj)U ldj .
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Thus (3.11) becomes

(3.18)

∑n
s=0 g

b
k,s(n)U

s

= 1
b

∑b−1
j=0

∑ n
dj

l=0

( n
dj

l

)
(−1)l(1+dj)Udjle−i 2πjk

b .

We now regroup the terms whose j’s yield the same dj ’s:

(3.19)

∑n
s=0 g

b
k,s(n)U

s

= 1
b

∑
d|b

∑n
d

l=0

(
n
d
l

)
(−1)l(1+d)Udl ×∑

j:gcd(j,b)=b/d,0≤j≤b−1 e
−i 2πjk

b .

The rightmost sum can also be written as

(3.20)
∑

j:gcd(j,b)=b/d,0≤j≤b−1

e−i 2πjk
b =

∑
s:0≤s≤d−1,gcd(s,d)=1

e−i 2πsk
d .

This last expression is known as the Ramanujan sum [1] and simplifies to

(3.21)
∑

s:0≤s≤d−1,gcd(s,d)=1

e−i 2πsk
d = φ(d)

μ
(

d
gcd(d,k)

)
φ
(

d
gcd(d,k)

) .

Now the coefficient of U b in (3.11) is

(3.22)
1

b

∑
d|b

(
n
d
b
d

)
(−1)

b
d (1+d)φ(d)

μ
(

d
gcd(d,k)

)
φ
(

d
gcd(d,k)

) ,

which is precisely the number of strings of length n, weight b, and the first moment
congruent to k mod b, i.e., |Sn,b

b,k |.
Consider the set of strings described by Sm,w+1

w,k for m = n− 1 and w = b− 1, i.e.,

Sm,w+1
w,k = Sn−1,b

b−1,k . If we append “1” to each such string, we would obtain a fraction

of b/n of all strings that belong to the set Sn,b
b,k . To see why this is true, first note

that the cardinality of the set Sn−1,b
b−1,k and of the subset T n

b,k of Sn,b
b,k which contains all

strings ending in “1” is the same (since, when a “1” is appended to each element of the

set Sn−1,b
b−1,k , the resulting set contains strings of length n, weight b, and first moment

congruent to (k + n) mod b, which is also congruent to k mod b since by assumption

b|n). It is thus sufficient to show that |T n
b,k| = b

n |Sn,b
b,k |. Let Ak = |Sn,b

b,k |. Write
Ak =

∑
u,u|b Ak(n, b,

n
u ), where Ak(n, b, v) denotes the number of strings of length n,

weight b, first moment congruent to k mod b, and with period v. Consider a string
accounted for in Ak(n, b,

n
u ). Its single cyclic shift has the first moment congruent to

(k + b) mod b and is thus also accounted for in Ak(n, b,
n
u ). Since n

u is the period,

and since b
u is the weight per period, fraction b/u

n/u of Ak(n, b,
n
u ) represents distinct

strings that end in “1,” have length n, weight b, first moment congruent to k mod b,

and period n
u . Thus, |T n

b,k| =
∑

u,u|b
b/u
n/uAk(n, b,

n
u ) =

b
nAk, as required.

Therefore, the cardinality of Sm,w+1
w,k is b/n times the expression in (3.22),

(3.23) |Sm,w+1
w,k | = 1

m+ 1

∑
d|w+1

(
m+1
d

w+1
d

)
(−1)

w+1
d (1+d)φ(d)

μ
(

d
gcd(d,k)

)
φ
(

d
gcd(d,k)

) .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2126 LARA DOLECEK AND VENKAT ANANTHARAM

Notice that the last expression is the same as the one proposed in Lemma 3.2
with gcd(m+ 1, w + 1) = w + 1.

Now suppose that b is not a factor of n. We work with fg,n(U, V ) as in (3.9),
where g = gcd(n, b), and get
(3.24)

n∑
s=0

ggk,s(n)U
s =

1

g

∑
d|g

n
d∑

l=0

(
n
d
l

)
(−1)l(1+d)Udl ×

∑
j:gcd(j,g)=g/d,0≤j≤g−1

e−i 2πjk
g .

Thus the coefficient of U b here is

(3.25)
1

g

∑
d|g

(
n
d
b
d

)
(−1)

b
d (1+d)φ(d)

μ
(

d
gcd(d,k)

)
φ
(

d
gcd(d,k)

) .

This is the number of strings of length n, weight b, and the first moment congruent
to k mod g; namely, it is the cardinality of the set Sn,g

b,k . Let Bk = |Sn,g
b,k |. Write

Bk =
∑

u,u|g Bk(n, b,
n
u ), where Bk(n, b, v) denotes the number of strings of length n,

weight b, first moment congruent to k mod g, and with period v. By cyclically shifting
a string of length n, weight b, first moment congruent to k mod g, and with period
n/u for n/u steps, and observing that each cyclic shift also has the first moment

congruent to k mod g, it follows that a fraction b/u
n/u of Bk(n, b,

n
u ) represents the

number of strings that end in “1,” have length n, weight b, first moment congruent
to k mod g, and period n

u . Thus a fraction b/n of Bk denotes the number of strings
that end in “1,” are of length n, weight b, and have the first moment congruent to k
mod g. Since each string of length n−1, weight b−1, and the first moment congruent
to k mod g produces a unique string that ends in “1,” is of length n, weight b, and has
the first moment congruent to k mod g by appending “1,” it follows that b

nBk is also
the number of strings of length n − 1, weight b − 1, and the first moment congruent
to k mod g. Thus the number of strings given by Sn−1,g

b−1,k is also b
nBk.

Consider again cyclic shifts of a string of length n, weight b, the first moment
congruent to k mod g and with period n/u. A fraction b/u of these shifts produce
strings with a “1” in the last position. Let us consider one such string s0. Its first
n− 1 bits correspond to a string of length n− 1, weight b− 1, and the first moment
congruent to k mod g. This n − 1-bit string has the first moment congruent to k0
mod b for some k0. Cyclically shift s0 for t1 places until the first time “1” again
appears in the nth position, and call the resulting string s1. (Since b > g and u|g,
b/u > 1, and thus s1 �= s0.) The first n− 1 bits of s1 correspond to a string of length
n − 1, weight b − 1, and the first moment congruent to k1 ≡ k0 + t1(b − 1) + t1 −
mod g ≡ k0 + t1b − n mod b ≡ k0 − gy mod b, where y = n

g . Cyclically shift s1 for
for t2 places until the first time “1” again appears in the nth position, and call the
resulting string s2. The first n − 1 bits of s2 correspond to a string of length n − 1,
weight b − 1, and the first moment congruent to k2 ≡ k0 − gy + t2(b − 1) + t2 − n
mod g ≡ k0 − gy + t2b − n mod b ≡ k0 − 2gy mod b. Each subsequent cyclic shift
with “1” in the last place gives a string si whose first n−1 bits have the first moment
congruent to ki ≡ k0 − igy mod b. The last such string, sb/u−1, before the string s0
is encountered again, has the left n− 1 bit substring whose first moment is congruent
to kb/u−1 ≡ k0 − ( b

u − 1)gy mod b. Note that the sequence {k0, k1, k2, . . . , kb/u−1}
is periodic with period z (here gcd(y, g) = 1 by construction), where z = b

g . Since

z| bu , each of k0, k1 through k b
g−1 appears an equal number of times in this sequence.
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Consequently, the number of strings in the set Sn−1,b
b−1,ki

is g
b of the size of the set Sn−1,g

b−1,k

for every ki ≡ ig + k mod b.
Therefore, |Sm,w+1

w,k | is

(3.26)
|Sm,w+1

w,k | = b
n

g
b |Sn,g

b,k |
= 1

m+1

∑
d|g

(
m+1
d

w+1
d

)
(−1)(w+1+ 1

d (1+w))φ(d)
μ( d

gcd(d,k) )
φ( d

gcd(d,k) )
,

which completes the proof of the lemma.

3.2. Connection with necklaces. It is interesting to briefly visit the relation-
ship between optimal single insertion of a zero correcting code and combinatorial
objects known as necklaces [2].

A necklace consisting of n beads can be viewed as an equivalence class of strings
of length n under cyclic shift (rotation).

Let us consider two-colored necklaces of length n with b black beads and n − b
white beads. It is known that the total number of distinct necklaces is [2]

(3.27) T (n) =
1

n

∑
d|gcd(n,b)

(
n
d
b
d

)
φ(d).

In general necklaces may exhibit periodicity. However, consider, for example, the
case gcd(n, b) = 1. Then there are

(3.28)
1

n

(
n
b

)
distinct necklaces, all of which are aperiodic. Now assume that b+1|n, and note that
this implies gcd(n+ 1, b+ 1) = 1. Suppose we label each necklace bead in increasing
order 1 through n and we rotate each necklace by one position at the time relative to
this labeling. At each step we sum mod b+1 the positions of b black beads. For each
necklace, each of the residues k, 0 ≤ k ≤ b, is encountered n/(b+ 1) times. The total
number of times each residue k is encountered is thus

(3.29)
1

b+ 1

(
n
b

)
=

1

n+ 1

(
n+ 1
b+ 1

)
,

which, as expected, equals the number of binary strings of weight b, length n, and the
first moment congruent to k mod b+ 1 (same for all k).

4. Multiple repetition error correcting set. We now present an explicit
construction of a multiple repetition error correcting set and discuss its cardinality.

Let a = (a1, a2, . . . , ar) for r ≥ 1, and consider the set Ŝ(m,w, a, p) for w ≥ 1
defined as

(4.1)

Ŝ(m,w, a, p) = {s = (s1, s2, . . . , sm) ∈ {0, 1}m :
v0 = 0, vw+1 = m+ 1, and
vi is the position of the ith 1 in s for 1 ≤ i ≤ w,
bi = vi − vi−1 − 1 for 1 ≤ i ≤ w + 1,∑m

i=1 si = w,∑w+1
i=1 ibi ≡ a1 mod p,∑w+1
i=1 i2bi ≡ a2 mod p,

...∑w+1
i=1 irbi ≡ ar mod p}.
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The set Ŝ(m, 0,0, p) contains just the all-zeros string. Let a0 = 0, and let Ŝ
(
m, (a1, p1),

(a2, p2), . . . , (am, pm)
)
be defined as

(4.2) Ŝ (m, (a1, p1), (a2, p2), . . . , (am, pm)) =

m⋃
l=0

Ŝ(m, l, al, pl),

where b1, . . . , bw+1 denote the sizes of the bins of 0’s between successive 1’s.
Lemma 4.1. If each pl is prime and pl > max(r, l), the set Ŝ (m, (a1, p1), (a2, p2),

. . . , (am, pm)), provided it is nonempty, is r-insertions of zeros correcting.
Proof. It suffices to show that each nonempty set Ŝ(m, l, al, pl) is r-insertions of

zeros correcting. This is obvious for l = 0. For l > 0 suppose a string x ∈ Ŝ(m, l, al, pl)
is transmitted. After experiencing r insertions of zeros, it is received as a string x′.
We now show that x is always uniquely determined from x′.

Let i1 ≤ i2 ≤ · · · ≤ ir be the (unknown) indices of the bins of zeros that have

experienced insertions. For each j, 1 ≤ j ≤ r, compute a′j ≡
∑w+1

i=1 ijb′i mod pl, where
b′i is the size of the ith bin of zeros of x′,

(4.3)
a′j ≡ ∑w+1

i=1 ijb′i mod pl
≡ aj + (ij1 + ij2 + · · ·+ ijr) mod pl,

where aj is the jth entry in the residue vector al (to lighten the notation the subscript
l in aj is omitted).

By collecting the resulting expressions over all j and setting a
′′
j ≡ a′j − aj mod

pl, we arrive at

(4.4) Er =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a

′′
1 ≡ i1 + i2 + · · ·+ ir mod pl,

a
′′
2 ≡ i21 + i22 + · · ·+ i2r mod pl,

...

a
′′
r ≡ ir1 + ir2 + · · ·+ irr mod pl.

The terms on the right-hand side of the congruency constraints are known as power
sums in r variables. Let Sk denote the kth power sum mod pl of {i1, i2, . . . , ir},
(4.5) Sk ≡ ik1 + ik2 + · · ·+ ikr mod pl,

and let Λk denote the kth elementary symmetric function of {i1, i2, . . . , ir} mod pl,

(4.6) Λk ≡
∑

v1<v2<···<vk

iv1iv2 · · · ivk mod pl.

Using Newton’s identities over GF (pl), which relate power sums to symmetric
functions of the same variable set and are of the type

(4.7) Sk − Λ1Sk−1 + Λ2Sk−2 − · · ·+ (−1)k−1Λk−1S1 + (−1)kkΛk = 0

for k ≤ r, we can obtain an equivalent system of r equations:

(4.8) Ẽr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d1 ≡ ∑r

j=1 ij mod pl,

d2 ≡ ∑
j<k ijik mod pl,

...
dr ≡ ∏r

j=1 ij mod pl,
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where each residue dk is computed recursively from {d1, . . . , dk−1} and {a′′
1 , a

′′
2 , . . . , a

′′
k}.

Specifically, since the largest coefficient in (4.7) is r, and r < pl by construction, the
last term in (4.7) never vanishes due to the multiplication by the coefficient k.

Consider now the equation

(4.9)

r∏
j=1

(x− ij) ≡ 0 mod pl,

and expand it into the standard form

(4.10) xr + cr−1x
r−1 + · · ·+ c1x+ c0 ≡ 0 mod pl.

By collecting the same terms in (4.9) and (4.10), it follows that dk ≡ (−1)kcr−k mod pl.
Furthermore, by the Lagrange theorem, (4.10) has at most r solutions. Since ir ≤ pl,
all incongruent solutions are distinguishable, and thus the solution set of (4.10) is
precisely the set {i1, i2, . . . , ir}.

Therefore, since the system Er of r equations uniquely determines the set
{i1, i2, . . . , ir}, the locations of the inserted zeros (up to the position within the bin
they were inserted in) are uniquely determined, and thus x is always uniquely recov-
ered from x′.

Hence, Ŝ (m, (a1, p1), (a2, p2), . . . , (am, pm)) is r-insertions of zeros correcting for
pl prime and pl > max(r, l).

Remark. In fact, when nonempty, the set Ŝ (m, (a1, p1), (a2, p2), . . . , (am, pm))
in (4.2) is u-insertions of zeros correcting for any u up to r, since each nonempty
constituent set Ŝ(m, l, al, pl) is itself u-insertions of zeros correcting. Note that under
the current set-up the actual number of insertions, u, can be inferred from the length
of received string, which is m + u. It then suffices to set up a system of equations
Eu consisting of the first u power sums of the unknown indices, as in (4.3) and (4.4).
While the collection in (4.1) is defined in terms of r congruential constraints, the
remaining r− u power sums are redundant for determining these u unknown indices.
With r replaced by u, the rest of the proof is as in Lemma 4.1.

In particular, for r = 1, the constructions in (3.1) and (4.1) are related as follows.
Lemma 4.2. For p prime and p > w, the set Sm,p

w,a defined in (3.1) equals the set

Ŝ(m,w, â, p) defined in (4.1), where â = fm,w − a mod p for fm,w = (w + 2)(2m −
w + 1)/2− (m+ 1).

Proof. Consider a string s = (s1, s2, . . . , sm) ∈ Sm,p
w,a , and let vi be the position of

the ith 1 in s, so that
∑m

i=1 isi =
∑w

i=1 vi. Observe that vk =
∑k

i=1 bi + k, where bi
is the size of the ith bin of zeros in s. Write

(4.11)

∑w
i=1 vi + (m+ 1) = (b1 + 1) + (b1 + b2 + 2) + · · ·+

(b1 + b2 + · · ·+ bw + w) + (b1 + b2 + · · ·+ bw+1 + w + 1)

=
∑w+1

i=1 (w + 2− i)bi + (w + 1)(w + 2)/2

= (w + 2)(m− w) + (w + 1)(w + 2)/2−∑w+1
i=1 ibi

= (w + 2)(2m− w + 1)/2−∑w+1
i=1 ibi.

Thus, for a ≡ ∑m
i=1 isi mod p, the quantity â ≡ ∑w+1

i=1 ibi mod p is (fm,w − a)
mod p.

Observe that the indices i = 1, . . . , (w + 1) in (4.1) play the role of the “weight-
ings” of the appropriate bins of zeros in the construction above and that they do not
necessarily have to be in increasing order for the construction and the validity of the
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proof to hold. We can therefore replace each i in (4.1) with the weighting fi with the

property that each fi is a residue mod p and that fi �= fj for i �= j. Let
ˆ̂
S(m,w, a, f , p)

for w ≥ 1 be defined as

(4.12)

ˆ̂
S(m,w, a, f , p) = {s = (s1, s2, . . . , sm) ∈ {0, 1}m :

v0 = 0, vw+1 = m+ 1, and
vi is the position of the ith 1 in s for 1 ≤ i ≤ w,
bi = vi − vi−1 − 1 for 1 ≤ i ≤ w + 1,∑m

i=1 si = w,
fi mod p �= fj , mod p for i �= j,∑w+1

i=1 fibi ≡ a1 mod p,∑w+1
i=1 (fi)

2bi ≡ a2 mod p,
...∑w+1

i=1 (fi)
rbi ≡ ar mod p}.

The set
ˆ̂
S(m, 0,0,0, p) contains just the all-zeros string. Let a0 = 0, and let

ˆ̂
S (m, (a1, f1, p1), (a2, f2, p2), . . . , (am, fm, pm)) be defined as

(4.13)
ˆ̂
S (m, (a1, f1, p1), (a2, f2, p2), . . . , (am, fm, pm)) =

m⋃
l=0

ˆ̂
S(m, l, al, fl, pl).

We note that
ˆ̂
S(m,w, a, f , p) = Ŝ(m,w, a, p) when f = (1, 2, . . . , (w + 1)).

Lemma 4.3. If each pl is prime and pl > max(r, l), the set
ˆ̂
S (m, (a1, f1, p1),

(a2, f2, p2), . . . , (am, fm, pm)) is r-insertions of zeros correcting.
Proof. The proof follows that of Lemma 4.1 with appropriate substitutions of fi

for i.

The object
ˆ̂
S(m,w, a, f , p) will be of further interest to us in section 5.2 when we

discuss a prefixing method for improved immunity to repetition errors.
We now present some cardinality results for the construction of present inter-

est. For simplicity we focus on the set Ŝ(m,w, a, p) as the results hold verbatim for
ˆ̂
S(m,w, a, f , p) with appropriate weighting assignments.

4.1. Cardinality results. Let Ŝ∗ (m, (a1, p1), (a2, p2), . . . , (am, pm)) be defined
as

(4.14) Ŝ∗ (m, (a1, p1), (a2, p2), . . . , (am, pm)) =

m⋃
l=0

Ŝ(m, l, al
∗, pl),

where Ŝ(m, l, al
∗, pl) is the largest among all sets Ŝ(m, l, al, pl) for al ∈ {0, 1, . . . , pl}r.

The cardinality of Ŝ(m, l, al
∗, pl) is at least

(4.15)

(
m
l

)
1

prl
.

Since for all n there exists a prime between n and 2n, it follows that one can choose
the pl, 1 ≤ l ≤ m, so that cardinality of Ŝ(m, l, al

∗, pl) for l ≥ r is at least

(4.16)

(
m
l

)
1

(2l)r
.
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Thus p1, . . . , pm can be chosen so that the cardinality of Ŝ∗(m, (a1, p1), (a2, p2), . . . ,

(am, pm)
)
is at least

(4.17) 1 +
r−1∑
w=1

(
m
w

)
1

(2r)
r +

m∑
w=r

(
m
w

)
1

(2w)r
,

which is lower bounded by
(4.18)

1 +
1

(2r)
r

r−1∑
w=1

(
m
w

)
+

1

(2r)(m+ 1)(m+ 2) . . . (m+ r)

(
2m+r −

2r−1∑
k=0

(
m+ r

k

))
.

The prime counting function π(n), which counts the number of primes up to n, satisfies
for n ≥ 67 the inequalities [8]

(4.19)
n

ln(n)− 1/2
< π(n) <

n

ln(n)− 3/2
.

From (4.19) it follows that

(4.20)
(1 + ε)n

ln((1 + ε)n)− 1/2
< π((1 + ε)n) <

(1 + ε)n

ln((1 + ε)n)− 3/2
.

For a prime number to exist between n and (1 + ε)n, it is sufficient to have

(4.21) π((1 + ε)n) > π(n).

Using (4.19) and (4.20), it is sufficient to have

(4.22) π((1 + ε)n) >
(1 + ε)n

ln((1 + ε)n)− 1/2
≥ n

ln(n)− 3/2
> π(n).

Comparing the innermost terms in (4.22), it follows that it is sufficient for ε to satisfy

(4.23) ε ln(n) ≥ ln(1 + ε) +
3ε

2
+ 1

for (4.21) to hold.
For n ≥ 67 and ε = 3

ln(n) , the left-hand side of (4.1) evaluates to 3 while the

right-hand side of (4.1) is upper bounded by (0.539 + 1.071 + 1) < 3.
Since π(n) is a nondecreasing function of n, it follows that for n ≥ 67 there exists

a prime between n and (1+ε)n for ε ≥ 3
ln(n) . Thus the lower bound on the asymptotic

cardinality of the best choice over p1, . . . , pm of Ŝ∗ (m, (a1, p1), (a2, p2), . . . , (am, pm))
can be improved to

(4.24)
1

(1 + ε)r(m+ 1)(m+ 2) . . . (m+ r)

(
2m+r

)− P (m),

where ε = 3
lnm and P (m) is a polynomial in m. In the limit m → ∞, (4.24) is

approximately

(4.25)
2m+r

(m+ 1)r
.
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A construction proposed by Levenshtein [4] has the lower asymptotic bound on
the cardinality given by

(4.26)
1

(log2 2r)
r

2m

mr
.

Note that both (4.17) and the improved bound (4.24) improve on (4.26) by at
least a constant factor.

The upper bound Ur(m) on any set of strings, each of length m, capable of
overcoming r insertions of zero is

(4.27) Ur(m) = c(r)
2m

mr
,

as obtained in [4], where

(4.28) c(r) =

{
2rr!, odd r,
8r/2((r/2)!)2, even r,

which makes the proposed construction be within a factor of this bound. By applying
the inverse Tn transformation for n = m+1 to Ŝ∗ (m, (a1, p1), (a2, p2), . . . , (am, pm))
and noting that both strings under the inverse Tn transformation can simultaneously
belong to the repetition error correcting set, we obtain a code of length n capable of
overcoming r repetitions and of asymptotic size at least

(4.29)
2n+r

nr
.

5. Prefixing-based method for multiple repetition error correction. In
this section we develop a general prefixing method which injectively transforms a given
collection S of binary strings of length n into another collection TS of binary strings of
equal length, such that the collection TS is guaranteed to be immune to the prescribed
number of repetition errors. The proposed method is inspired by the number-theoretic
construction developed in the previous section. Given an element s of S, a string
ts = [pss], ts ∈ TS, is created; that is, the prefix ps is prepended to s to produce ts,
such that the string ts under transformation (2.1) satisfies the set of conditions given
by (4.12). In the proposed method, the set TS has the property that the length of the
prefix ps is Θ(log(n)). Thus, if the set S is used for transmission, the proposed method
provides increased immunity to repetition errors with asymptotically vanishing loss
in the rate.

We start with some auxiliary results.

5.1. Auxiliary results. Consider a prime number P with the property that
lcm(2, 3, . . . , r)| (P −1) for a given positive integer r. Since each i, 1 ≤ i ≤ r, satisfies
i|(P −1), it follows that in the residue set mod P , there are P−1

i elements that are ith
power residues, each having i distinct roots (an ith power residue x satisfies yi ≡ x
mod P for some y) [1]. For convenience, let G = 	log2(P )
.

For each i, 1 ≤ i ≤ r, we will construct a specific subset Vi of the ith power
residues mod P such that all other residues can be expressed as a sum of a subset of
elements of Vi, and such that each Vi has size that is logarithmic in P . The set of
the ith roots of the elements of the set Vi will be denoted Fi. Thus, Fi will also have
size logarithmic in P . The elements of M =

⋃r
i=1 Fi ∪ {0} (the sets Fi will be made

disjoint) will be reserved for the weightings fi of the bins of zeros of the prefix string
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ps in the transformed domain (see the construction (4.12)). Note that M also has size
that is logarithmic in P . Since each bin in the prefix in the transformed domain will
have at most one zero apart possibly from the zero-weighting bin, the length of the
prefix in the transformed domain is 2M , and the length of the prefix in the original
domain is ln = 2|M | + 1 and thus also logarithmic in P .1 The sets Vi will serve to
satisfy the ith congruency constraint of the type given in (4.12) for the string ts in
the transformed domain, as further explained below.

In the remainder of this section we will first show how to construct sets Vi, and
then we will provide the proof that it is possible to construct sets Vi with all distinct
elements as well as sets Fi (from sets Vi) that have distinct elements and are non-
intersecting, for the prime P large enough. We will also provide a proof that for a
given integer n, for n large enough, there exists a prime P for which we can construct
nonintersecting sets Fi containing distinct elements, where the prime P lies in an
interval that linearly depends on n.

Combined with the encoding method described in the next section we will there-
fore have constructed a prefix whose length is logarithmic in n such that the overall
string (which is a concatenation of the prefix and original string) in the transformed
domain satisfies equations of congruential type given in (4.12), which we have already
proved in section 4 are sufficient for the immunity to r repetition errors.

We now provide some auxiliary results. Let [x]P indicate the residue mod P
congruent to x.

Lemma 5.1. For an integer P , each residue v mod P can be expressed as a
sum of a subset of elements of the set Tz,P = {[z]P , [2z]P , [22z]P , . . . , [2Gz]P }, where
G = 	log2 P 
 and z is an arbitrary nonzero residue mod P .

Proof. Observe that T1,P = {1, 2, 22, . . . , 2G}. We first show that each residue v
mod P can be expressed as a sum of a subset of elements of the set T1,P . Note that
each residue i, 0 ≤ i ≤ 2G − 1 (mod P ), can be expressed as a sum of a subset (call
this subset Ki) of the set {1, 2, 22, . . . , 2G−1}. Here K0 is the empty set. Adding 2G

to the sum of each Ki for 0 ≤ i ≤ 2G − 1 mod P generates the remaining residues
{2G, 2G + 1, . . . , P − 1}. As a result every residue mod P can be expressed as a sum
of a subset of T1,P = {1, 2, 22, . . . , 2G}.

Suppose there exists an element v which cannot be expressed as a sum of a
subset of elements of Tz,P for z > 1, that is, v �= ∑G

i=0 εiz2
i mod P , for all choices

of {ε0, . . . , εG}, εi ∈ {0, 1}. Let z−1 be the inverse element of z under multiplication

mod P . Then the residue v′ = vz−1 �= ∑G
i=0 εi2

i mod P for all choices of {ε0, . . . , εG},
εi ∈ {0, 1}, which contradicts the result from the previous paragraph.

For a prime number P for which i|P − 1 and i < P − 1, let Qi(P ) be the set of
distinct ith power residues mod P . We also state the following convenient result.

Lemma 5.2. For a prime P such that i|(P − 1), each residue u mod P can be
expressed as a sum of two distinct elements of Qi(P ) in at least P/(2i2)−√

P/2− 3
ways.

Proof. The result follows from Theorem II in [3], which states that over GF (P )
the equation

(5.1) xi + yi = a,

1Since each bin stemming from Fi’s in the transformed domain has size at most 1, the special
zero-weighting bin ensures that the total of |⋃r

i=1 Fi| = |M | − 1 zeros is allocated to bins of zeros in
the prefix in the transformed domain (in particular, it is empty if all Fi bins have size 1). Accounting
for the 1’s separating adjacent bins of zeros, the total length of the prefix in the transformed domain
is then 2(|M | − 1) + 2, and so the prefix in the original domain has size 2|M |+ 1.
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where x, y, a ∈ GF (P ) and nonzero and 0 < i < P − 1, has at least

(5.2)
(P − 1)2

P
− P−1/2

(
1 + (i− 1)P 1/2

)2

solutions. Rearrange the terms in (5.2) to conclude that (5.1) has at least

(5.3) P − (i− 1)2
√
P − 2(i− 1)− 2 +

1

P
− 1√

P

solutions. Noting that i distinct values of x result in the same xi, accounting for the
symmetry of x and y and omitting the case xi = yi, we obtain a lower bound on
the number of ways a residue u can be expressed as a sum of two distinct ith power
residues to be P/(2i2)−√

P/2− 3.
Equations of the type in (5.1) were also studied by Weil [12].
We now continue with the introduction of some convenient notation. For xi,1 an

ith power residue define the set Ai,1(xi,1) to be

(5.4) Ai,1(xi,1) =

{
[2ikxi,1]P |0 ≤ k ≤

⌊
G

i

⌋}
.

Let xi,2 and xi,3 be distinct ith power residues such that xi,2 + xi,3 ≡ 2xi,1 mod P .
These two power residues generate sets Ai,2(xi,2) and Ai,3(xi,3), where

Ai,2(xi,2) =

{
[2ikxi,2]P |0 ≤ k ≤

⌊
G− 1

i

⌋}
and(5.5)

Ai,3(xi,3) =

{
[2ikxi,3]P |0 ≤ k ≤

⌊
G− 1

i

⌋}
.(5.6)

Likewise, for each 2lxi,1, for 1 ≤ l ≤ i − 1, let xi,2l and xi,2l+1 be distinct ith
power residues such that xi,2l + xi,2l+1 ≡ 2lxi,1 mod P . These residues generate sets
Ai,2l(xi,2l) and Ai,2l+1(xi,2l+1), where

Ai,2l(xi,2l) =

{
[2ikxi,2l]P |0 ≤ k ≤

⌊
G− l

i

⌋}
and(5.7)

Ai,2l+1(xi,2l+1) =

{
[2ikxi,2l+1]P |0 ≤ k ≤

⌊
G− l

i

⌋}
.(5.8)

By introducing sets Ai,j(xi,j) we have effectively decomposed all residues of the
type [2ik+lxi,1]P , 0 ≤ ik+ l ≤ G, 1 ≤ l ≤ i− 1, into a sum of two ith power residues,
namely, [2ikxi,2l]P and [2ikxi,2l+1]P . For each set Ai,j(xi,j), 1 ≤ j ≤ 2i − 1, we let
Bi,j(xi,j) be the set of all ith power roots of elements of Ai,j(xi,j),
(5.9)

Bi,j(xi,j) =

{
[2ky

(t)
i,j ]P |(y(t)i,j )

i ≡ xi,j mod P, 1 ≤ t ≤ i, 0 ≤ k ≤
⌊
G− 	 j

2

i

⌋}
.

First note that all elements in Ai,j(xi,j) are ith power residues by construction.

Moreover, they are all distinct since 2ij1 �= 2ij2 mod P for 1 ≤ j1, j2 ≤ 	G−� j
2 �

i 
,
for j1 �= j2 implies xi,j2

ij1 �= xi,j2
ij2 mod P . Thus, |Aij(xi,j)| = 	G−� j

2 �
i 
 + 1,

and since the ith power roots of distinct ith power residues are themselves distinct,

|Bij(xi,j)| = i (	G−� j
2 �

i 
+ 1).
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Lemma 5.3. Suppose P is a prime number such that i|(P − 1). Let xi,1 be an
ith power residue. Suppose xi,j for 2 ≤ j ≤ 2i − 1 are ith power residues such that
2kxi,1 ≡ xi,2k + xi,2k+1 mod P for 1 ≤ k ≤ (i − 1). Let Ai,j(xi,j) = {[2ilxi,j ]P |0 ≤
l ≤ 	G−� j

2 �
i 
} for 1 ≤ j ≤ 2i− 1 and G = 	log2 P 
. If the sets Ai,j(xi,j) are disjoint

for 1 ≤ j ≤ 2i − 1, each residue u mod P can be expressed as a sum of a subset of
elements of the set Lz,P =

⋃2i−1
j=1 Ai,j(xi,j), where z denotes xi,1.

Proof. The proof follows immediately from Lemma 5.1 by observing that, with z
denoting xi,1, we have in fact decomposed elements [2kz]P in the set Tz,P for k not a
multiple of i into a sum of two component elements such that all component elements
are distinct from one another and distinct from [2kz]P for i|k.

The following lemma proves that it is possible to construct subsets Aij(xi,j), and
subsets Bij(xi,j) from them, of the set of residues mod P for P prime that satisfies
lcm(2, 3, . . . , r)|(P −1) for a given positive integer r, provided that P is large enough,
such that for fixed i the subsets Aij(xi,j) are disjoint, and such that all subsets
Bij(xi,j) for 1 ≤ i ≤ r, 1 ≤ j ≤ 2i− 1 are also disjoint. Let Wi denote the number of
ways any residue mod P can be expressed as a sum of two distinct nonzero ith power
residues mod P . A universal lower bound on Wi that holds for all residues was given
in Lemma 5.2.

Lemma 5.4. For a given integer r, suppose a prime number P satisfies
lcm(2, 3, . . . , r)|(P − 1). Let G = 	log2 P 
. If P − 1 > (G + r)(G + r − 1)(r − 1)2

and Wi > 2i(G + i)(G + i − 1) for each i in the range 2 ≤ i ≤ r, there exist subsets
Aij(xi,j) of the type given in (5.7) and (5.8) and Bij(xi,j) of the type given in (5.9)
such that for fixed i subsets Aij(xi,j) for 1 ≤ j ≤ 2i−1 are disjoint, and for 1 ≤ i ≤ r,
1 ≤ j ≤ 2i− 1 all subsets Bij(xi,j) are disjoint.

Proof. We inductively build the sets Aij(xi,j) and Bij(xi,j) for 1 ≤ i ≤ r and
1 ≤ j ≤ 2i − 1, starting with the level i = 1. We then increment i by one to reach
the next collection of sets Aij(xi,j) and Bij(xi,j), while making sure the sets Bij(xi,j)
at the current level are disjoint from one another and with all previously constructed
sets at lower levels.

Consider i = 1. Let x1,1 be an arbitrary residue mod P , and let

(5.10) A1,1(x1,1) = {[2kx1,1]P |0 ≤ k ≤ G}.

Let z1 = x1,1 and y
(1)
1,1 = x1,1. Here B1,1(z1) is simply A1,1(x1,1) for i = 1. All

elements in B1,1(z1) are distinct and |B1,1(z1)| = (G + 1). If r = 1, we are done, as
we did not even appeal to the condition on the lower bound on P − 1 (it is simply
P − 1 > 0).

If r ≥ 2, let us consider i = 2. Consider quadratic residues x2,1, x2,2, and x2,3. Let

their respective distinct quadratic roots be y
(1)
2,1, y

(2)
2,1 (so that (y

(1)
2,1)

2 ≡ (y
(2)
2,1)

2 ≡ x2,1

mod P ), y
(1)
2,2, y

(2)
2,2 (so that (y

(1)
2,2)

2 ≡ (y
(2)
2,2)

2 ≡ x2,2 mod P ), and y
(1)
2,3, y

(2)
2,3 (so that

(y
(1)
2,3)

2 ≡ (y
(2)
2,3)

2 ≡ x2,3 mod P ). These quadratic residues give rise to sets

A2,1(x2,1) =

{
[22kx2,1]P |0 ≤ k ≤

⌊
G

2

⌋}
,(5.11)

A2,2(x2,2) =

{
[22kx2,2]P |0 ≤ k ≤

⌊
G− 1

2

⌋}
, and(5.12)

A2,3(x2,3) =

{
[22kx2,3]P |0 ≤ k ≤

⌊
G− 1

2

⌋}
.(5.13)
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Quadratic roots of elements of sets A2,1(x2,1), A2,2(x2,2), and A2,3(x2,3) give rise to
sets B2,1(x2,1), B2,2(x2,2), and B2,3(x2,3):

B2,1(x2,1) =

{
[2ky

(t)
2,1]P |1 ≤ t ≤ 2, 0 ≤ k ≤

⌊
G

2

⌋}
,(5.14)

B2,2(x2,2) =

{
[2ky

(t)
2,2]P |1 ≤ t ≤ 2, 0 ≤ k ≤

⌊
G− 1

2

⌋}
, and(5.15)

B2,3(x2,3) =

{
[2ky

(t)
2,3]P |1 ≤ t ≤ 2, 0 ≤ k ≤

⌊
G− 1

2

⌋}
.(5.16)

Having fixed the set B1,1(x1,1) based on the earlier selection of the residue x1,1,
we want to show that it is possible to find quadratic residues x2,1, x2,2, and x2,3 such
that x2,2 + x2,3 ≡ 2x2,1 mod P and such that the resulting sets B1,1(x1), B2,1(x2,1),
B2,2(x2,2), and B2,3(x2,3) are all disjoint.

In particular, we require that x2,1 is a quadratic residue mod P (there are (P−1)/2
quadratic residues) with the property that the set B2,1(x2,1) is disjoint from B1,1(x1,1).
That is, we require

(5.17) y
(1)
2,12

k �= y
(1)
1,12

l mod P

and

(5.18) y
(2)
2,12

k �= y
(1)
1,12

l mod P

for 0 ≤ k ≤ 	G
2 
 and 0 ≤ l ≤ G. By squaring the expressions, these two conditions

can be combined into

(5.19) x2,12
2k �= (x1,1)

222l mod P

for 0 ≤ k ≤ 	G
2 
 and 0 ≤ l ≤ G. For the already chosen y

(1)
1,1 (= x1,1) at most

(G + 1)(	G
2 
 + 1) candidate quadratic residues out of the total (P − 1)/2 quadratic

residues violate (5.19). Observe that the function (G+ i)(G+ i− 1)(i− 1)2 is strictly
increasing for positive i, 2 ≤ i ≤ r, and thus the condition P − 1 > (G + r)(G +
r − 1)(r − 1)2 in the statement of the lemma implies P − 1 > (G + 2)(G+ 1). Since
P−1
2 > (G+1)(G+2)

2 ≥ (G+ 1)(	G
2 
+ 1), such x2,1 exists.

Fix x2,1 such that (5.19) holds. Having chosen such x2,1, we now look for x2,2 and
x2,3 as distinct quadratic residues that satisfy x2,2 + x2,3 ≡ 2x2,1 mod P . We require
that B2,2(x2,2) be disjoint from both B1,1(x1,1) and B2,1(x2,1) (by construction, if
B2,2(x2,2) and B2,1(x2,1) are disjoint, so are A2,2(x2,2) and A2,1(x2,1)) so that

(5.20)

y
(1)
2,22

k3 �= y
(1)
1,12

k1 mod P,

y
(2)
2,22

k3 �= y
(1)
1,12

k1 mod P,

y
(1)
2,22

k3 �= y
(1)
2,12

k2 mod P,

y
(2)
2,22

k3 �= y
(1)
2,12

k2 mod P,

y
(1)
2,22

k3 �= y
(2)
2,12

k2 mod P,

y
(2)
2,22

k3 �= y
(2)
2,12

k2 mod P,

where 0 ≤ k1 ≤ G, 0 ≤ k2 ≤ 	G
2 
, and 0 ≤ k3 ≤ 	G−1

2 
.
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Alternatively, by squaring both sides in each expression in (5.20),

(5.21)
x2,22

2k3 �= (x1,1)
222k1 mod P,

x2,22
2k3 �= x2,12

2k2 mod P,

where 0 ≤ k1 ≤ G, 0 ≤ k2 ≤ 	G
2 
, and 0 ≤ k3 ≤ 	G−1

2 
.
Likewise, we require that B2,3(x2,3) be disjoint from B1,1(x1,1), B2,1(x2,1), and

B2,2(x2,2) (again, ifB2,3(x2,3) is disjoint fromB2,2(x2,2) andB2,1(x2,1), then A2,3(x2,3)
is disjoint from A2,2(x2,2) and A2,1(x2,1)) so that

(5.22)
x2,32

2k4 �= (y
(1)
1,1)

222k1 mod P,

x2,32
2k4 �= x2,12

2k2 mod P,
x2,32

2k4 �= x2,22
2k3 mod P,

where 0 ≤ k1 ≤ G, 0 ≤ k2 ≤ 	G
2 
, 0 ≤ k3 ≤ 	G−1

2 
, and 0 ≤ k4 ≤ 	G−1
2 
. For

the already chosen values of x2,1 and y1,1 at most N2 = 2
[(	G

2 
+ 1
) (	G−1

2 
+ 1
)
+

(G+1)
(	G−1

2 
+1
)]
+
(	G−1

2 
+1
)2

choices for x2,2 and x2,3 violate (5.21) and (5.22).
We thus require that W2 be strictly larger than N2. Dropping floor operations it

is sufficient that W2 > (G+1)(G+2)
2 + 5(G+1)2

4 . Further simplification yields that

(5.23) W2 >
7(G+ 1)(G+ 2)

4

is sufficient to ensure that there exist x2,2, x2,3 that make the respective sets disjoint.
Note that this last condition follows from the requirement in the statement of the
lemma for i = 2, namely, that W2 > 4(G + 1)(G + 2). If r = 2, we are done; else we
consider i = 3. Before considering general level i, let us present the i = 3 case.

For i = 3 we seek distinct cubic residues x3,1, x3,2, x3,3, x3,4, and x3,5 with the
property that x3,2 + x3,3 ≡ 2x3,1 mod P and x3,4 + x3,5 ≡ 22x3,1 mod P , and such
that the respective sets B3,j(x3,j) for 1 ≤ j ≤ 5 generated from the cubic roots of
these residues are disjoint and are disjoint from previously constructed sets B1,1(x1,1),
B2,1(x2,1), B2,2(x2,2), and B2,3(x2,3).

We start with x3,1, a cubic residue mod P (there are (P − 1)/3 cubic residues)
with the property that the set B3,1(x3,1) is disjoint from each of B1,1(x1,1), B2,1(x2,1),
B2,2(x2,2), and B2,3(x2,3). That is, after raising the elements of these sets to the third
power, we require

(5.24)

x3,12
3k5 �= (y

(1)
1,1)

323k1 mod P,

x3,12
3k5 �= (y

(1)
2,1)

323k2 mod P,

x3,12
3k5 �= (y

(2)
2,1)

323k2 mod P,

x3,12
3k5 �= (y

(1)
2,2)

323k3 mod P,

x3,12
3k5 �= (y

(2)
2,2)

323k3 mod P,

x3,12
3k5 �= (y

(1)
2,3)

323k4 mod P,

x3,12
3k5 �= (y

(2)
2,3)

323k4 mod P,

where 0 ≤ k1 ≤ G, 0 ≤ k2 ≤ 	G
2 
, 0 ≤ k3 ≤ 	G−1

2 
, 0 ≤ k4 ≤ 	G−1
2 
, and

0 ≤ k5 ≤ 	G
3 
.

For the already chosen values of x1,1 through x2,3, which in turn determine y
(1)
1,1

through y
(2)
2,3, the condition in (5.24) prevents N3 =

(	G
3 
+1

) [
(G+1)+2

(	G
2 
+1

)
+
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4
(	G−1

2 
 + 1
)]

choices for x3,1. Since there are P−1
3 cubic residues, after simplify-

ing and upper bounding the expression for N3, it follows that it is sufficient that
P−1
3 be strictly larger than 4(G+2)(G+3)

3 . Note that this condition is implied by the
requirement that P − 1 > (r − 1)2(G + r)(G + r − 1) (again, since the function
(i− 1)2(G+ i)(G+ i− 1) is strictly increasing for positive i).

Fix x3,1 such that (5.24) holds. Having chosen such x3,1, we now look for distinct
x3,2, x3,3, x3,4, x3,5 cubic residues that satisfy x3,2 + x3,3 ≡ 2x3,1 mod P and x3,4 +
x3,5 ≡ 22x3,1 mod P that make all sets Bi,j(xi,j), 1 ≤ i ≤ 3, 1 ≤ j ≤ 2i− 1 disjoint.

In order that residue x3,2 generates setB3,2(x3,2) with the property thatB3,2(x3,2)
is disjoint from each of B1,1(x1,1), B2,1(x2,1), B2,2(x2,2), B2,3(x2,3), and B3,1(x3,1),
we require that their respective elements raised to the third power be distinct,

(5.25)

x3,22
3k6 �= (y

(1)
1,1)

323k1 mod P,

x3,22
3k6 �= (y

(1)
2,1)

323k2 mod P,

x3,22
3k6 �= (y

(2)
2,1)

323k2 mod P,

x3,22
3k6 �= (y

(1)
2,2)

323k3 mod P,

x3,22
3k6 �= (y

(2)
2,2)

323k3 mod P,

x3,22
3k6 �= (y

(1)
2,3)

323k4 mod P,

x3,22
3k6 �= (y

(2)
2,3)

323k4 mod P,
x3,22

3k6 �= x3,12
3k5 mod P,

where 0 ≤ k1 ≤ G, 0 ≤ k2 ≤ 	G
2 
, 0 ≤ k3 ≤ 	G−1

2 
, 0 ≤ k4 ≤ 	G−1
2 
, 0 ≤ k5 ≤ 	G

3 
,
and 0 ≤ k6 ≤ 	G−1

3 
.
Likewise, we require that B3,3(x3,3) be disjoint from all of B1,1(x1,1), B2,1(x2,1),

B2,2(x2,2), B2,3(x2,3), B3,1(x3,1), and B3,2(x3,2), so that

(5.26)

x3,32
3k7 �= (y

(1)
1,1)

323k1 mod P,

x3,32
3k7 �= (y

(1)
2,1)

323k2 mod P,

x3,32
3k7 �= (y

(2)
2,1)

323k2 mod P,

x3,32
3k7 �= (y

(1)
2,2)

323k3 mod P,

x3,32
3k7 �= (y

(2)
2,2)

323k3 mod P,

x3,32
3k7 �= (y

(1)
2,3)

323k4 mod P,

x3,32
3k7 �= (y

(2)
2,3)

323k4 mod P,

x3,32
3k7 �= x3,12

3k5 mod P,
x3,32

3k7 �= x3,22
3k6 mod P,

where 0 ≤ k1 ≤ G, 0 ≤ k2 ≤ 	G
2 
, 0 ≤ k3 ≤ 	G−1

2 
, 0 ≤ k4 ≤ 	G−1
2 
, 0 ≤ k5 ≤ 	G

3 
,
0 ≤ k6 ≤ 	G−1

3 
, and 0 ≤ k7 ≤ 	G−1
3 
.

From (5.25) and (5.26) it follows that at most

N ′
3 = 2

(	G−1
3 
+ 1

) [
(G+ 1) + 2

(	G
2 
+ 1

)
+ 4

(	G−1
2 
+ 1

)
+

(	G
3 
+ 1

)]
+
(	G−1

3 
+ 1
)2(5.27)

candidate pairs (x3,2, x3,3) do not make the respective Bi,j(xi,j) sets disjoint. Since

(5.28)
N ′

3 ≤ 2
(
G+2
3

) [
(G+ 1) + 2

(
G+2
2

)
+ 4

(
G+1
2

)
+

(
G+3
3

)]
+

(
G+2
3

)2
< 2

(
G+2
3

) · 13 (G+3
3

)
+

(
G+2
3

)2
< 3(G+ 2)(G+ 3),
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it follows that it is sufficient that

(5.29) W3 > 3(G+ 2)(G+ 3),

where W3 is the number of ways a residue mod P can be expressed as a sum of two
different cubic residues. The same is true for the cubic residues x3,4 and x3,5 for which
the respective disjoint Bi,j(xi,j) sets exist, provided that

(5.30)
W3 > 2

(	G−2
3 
+ 1

) [
(G+ 1) + 2

(	G
2 
+ 1

)
+ 4

(	G−1
2 
+ 1

)
+

(	G
3 
+ 1

)
+2

(	G−1
3 
+ 1

)]
+

(	G−2
3 
+ 1

)2
.

Some simplification of (5.30) yields

(5.31) W3 >
31

9
(G+ 2)(G+ 3),

which subsumes the lower bound on W3 given in (5.29). Note that (5.31) is implied
by the condition in the statement of the lemma, namely, W3 > 6(G+ 2)(G+ 3).

We now inductively show the existence of the appropriate ith power residues and
their sets, assuming that we have successfully identified power residues at lower levels
for which all the sets Bk,j(xk,j) for 1 ≤ k < i, 1 ≤ j ≤ 2k − 1 are disjoint.

Consider xi,1 an ith power residue mod P (there are (P −1)/i such residues) with
the property that the set Bi,1(xi,1) is disjoint from all of Bk,j(xk,j) for 1 ≤ k < i,
1 ≤ j ≤ 2k − 1.

These constraints on disjointness (an example of which is given in (5.19) for i = 2

and in (5.24) for i = 3) prevent no more than (G+i
i )(G+k

k ) choices for xi,1 for each y
(t)
k,j ,

where 1 ≤ k ≤ i−1, 1 ≤ j ≤ 2k−1, and 1 ≤ t ≤ k (since |Ai,1(xi,1)| = 	G
i 
+1 ≤ G+i

i ,

and |Ak,j(xk,j)| = 	G−� j
2 �

k 
+ 1 ≤ G+k
k ). By summing over all choices it follows that

at most

(5.32)

(
G+i
i

)∑i−1
k=1(2k − 1)k

(
G+k
k

)
≤ (G+ i)

(
G+i−1

i

)∑i−1
k=1(2k − 1)

= (G+ i)
(
G+i−1

i

)
(i − 1)2

ith power residues cannot be chosen for xi,1. Since there are P−1
i ith power residues,

we thus require

(5.33) P − 1 > (G+ i)(G+ i− 1)(i− 1)2

for each level i. Note that since the expression on the right-hand side of the inequality
(5.33) is an increasing function of positive i, each subsequent level poses a lower
bound on P that subsumes all previous bounds. It is thus sufficient to have P − 1 >
(G+ r)(G + r − 1)(r − 1)2, as given in the statement of the lemma.

Consider xi,2 and xi,3 as distinct ith power residues mod P that satisfy xi,2+xi,3 ≡
2xi,1 mod P for a previously chosen xi,1. We require that xi,2 and xi,3 give rise to sets
Bi,2(xi,2) and Bi,3(xi,3) that are disjoint and that are disjoint from each of Bk,j(xk,j)
for 1 ≤ k < i, 1 ≤ j ≤ 2k − 1 and from Bi,1(xi,1). By construction, if the sets
Bi,1(xi,1), Bi,2(xi,2), and Bi,3(xi,3) are disjoint, then so are sets Ai,1(xi,1), Ai,2(xi,2),

and Ai,3(xi,3). Constraints based on the previously encountered y
(t)
j,k for 1 ≤ k < i,

1 ≤ j ≤ 2k − 1, 1 ≤ t ≤ k prevent at most (G+i−1
i )(G+k

k ) choices for each of

xi,2 and xi,3, for each y
(t)
j,k (since |Ai,2(xi,2)| = |Ai,3(xi,3)| = 	G−1

i 
 + 1 ≤ G+i−1
i
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and |Ak,j(xk,j)| = 	G−� j
2 �

k 
 + 1 ≤ G+k
k ). Combined with the restriction based on

the disjointness with Bi,1(xi,1) and the requirement that Bi,2(xi,2) and Bi,3(xi,3) be
nonintersecting, it follows that

(5.34) Wi > 2
(
G+i−1

i

) [∑i−1
k=1(2k − 1)k(G+k

k ) +
(
G+i
i

)]
+

(
G+i−1

i

)2
is sufficient for the pair (xi,2, xi,3) to exist.

Likewise, for xi,2l and xi,2l+1 to be distinct ith power residues mod P that sat-
isfy xi,2l + xi,2l+1 ≡ 2lxi,1 mod P , that give rise to disjoint sets Bi,2l(xi,2l) and
Bi,2l+1(xi,2l+1) and that are also disjoint from all previously constructed set Bk,j(xk,j),
we require

(5.35) Wi > 2(G+i−1
i )

[∑i−1
k=1(2k − 1)k(G+k

k ) + (2l − 1)
(
G+i
i

)]
+

(
G+i−1

i

)2
for the pair (xi,2l, xi,2l+1) to exist. Note that (5.35) subsumes (5.34). Since at each
level i we construct i−1 pairs xi,2l and xi,2l+1, and since the right-hand side of (5.35)
is an increasing function of l, it is sufficient to upper bound the expression in (5.35)
for l = i− 1,

(5.36)

Wi > 2(G+i−1
i )

[∑i−1
k=1(2k − 1)k(G+k

k ) + (2i− 3)
(
G+i
i

)]
+

(
G+i−1

i

)2
⇐ Wi > 2(G+i−1

i )
[
(i− 1)2(G+ i) + 2i−3

i (G+ i)
]
+

(
G+i−1

i

)2
⇐ Wi > (G+ i)(G+ i − 1)

(
2
i (i − 1)2 + 2

i
2i−3

i + 1
i2

)
.

Some simplification yields

(5.37) Wi > (G+ i)(G+ i− 1)2i
3−4i2+6i−5

i2

as a sufficient condition for the disjoint sets Bi,j(xi,j) to exist that are also disjoint
from all sets Bk,l(xk,l) for k < i.

Further simplifying the last inequality, it is sufficient that

(5.38) Wi > 2i(G+ i)(G+ i − 1)

to make these sets disjoint. We have thus demonstrated that with the appropriate
lower bounds on P and Wi’s, it is possible to construct disjoint sets Bi,j(xi,j).

Note that all residues mod P can be expressed as a sum of a subset of elements
of Vi =

⋃2i−1
j=1 Ai,j(xi,j) by Lemma 5.3 for each i, 1 ≤ i ≤ r. Also note that |Vi| scales

as log2(P ), since |Ai,j(xi,j)| = 	G−� j
2 �

i 
+ 1. For Fi =
⋃2i−1

j=1 Bij(xi,j), |Fi| also scales

as log2(P ), since |Bi,j(xi,j)| = i (	G−� j
2 �

i 
+ 1).
We now discuss how large prime P needs to be so that the conditions of Lemma 5.4

hold. Namely, we require

(5.39) P − 1 > (r − 1)2(G+ r)(G + r − 1)

and

(5.40) Wi > 2i(G+ i)(G+ i− 1) for 2 ≤ i ≤ r.

Using Lemma 5.2 it follows that it is sufficient that

(5.41) P > 4r3(G+ r)(G + r − 1) + r2
√
P + 6r2 for r ≥ 2,
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for (5.40) to hold. Moreover, if (5.41) holds, it implies (5.39). (For r = 1, the
requirement is P > 1.) The expression (5.41) certainly holds as P → ∞, and for the
finite values of P we (loosely) have that

(5.42)

P > 2× 102 for r = 1,
P > 4× 103 for r = 2,
P > 2× 104 for r = 3,
P > 6× 104 for r = 4,
P > 2× 105 for r = 5.

For a given large enough integer n, we now show that there exists a prime number
P that satisfies (5.41) (which holds for P large enough) and for which lcm(2, 3, . . . , r)|(P
− 1) such that P lies in an interval that is linear in n. Since the elements of
M =

⋃r
i=1 Fi ∪ {0} are to be reserved for the indices of bins of zeros of the pre-

fix in the transformed domain, we also require that P − n > |M |, since the total
number of bins of zeros to be used is at most n (from the original string)+ |M | (from
the prefix), and each bin receives a distinct index. Since Fi = ∪2i−1

j=1 Bi,j(xi,j) and

|Bi,j(xi,j)| = i (	G−� j
2 �

i 
+1), whereby i
(
G−i
i

) ≤ |Bi,j(xi,j)| ≤ i
(
G+i
i

)
, it follows that

(5.43) |M | ≤
r∑

i=1

(2i− 1)(G+ i) + 1 ≤ (G+ r)

r∑
i=1

(2i− 1) = r2(G+ r) + 1

and

(5.44) |M | ≥
r∑

i=1

(2i− 1)(G− i) + 1 ≥ (G− r)

r∑
i=1

(2i− 1) = r2(G− r) + 1.

Equation (5.43) yields a sufficient requirement on how large P needs to be:

(5.45) P > n+ r2(log2(P ) + r) + 1.

By (5.43) and (5.44), the total number of bins |M | reserved for the prefix scales
as Θ(r2 log2(P )), and since the length of the prefix ln is 2|M | + 1, it also scales as
Θ(r2 log2(P )).

To express this logarithmic scaling in terms of n, for given integers n and r (n is
typically large and r is small), we essentially need to show that there exists a prime P
for which k = lcm(2, 3, . . . , r)|(P − 1) and P ∈ (c1n, c2n) (here c1 and c2 are positive
numbers that do not depend on n) and such that P satisfies (5.41) and (5.45).

For the asymptotic regime as n → ∞ we recall the prime number theorem for
arithmetic progressions [10], which states that

(5.46) π(n, k, 1) ∼ 1

φ(k)

n

log(n)
,

where π(n, k, 1) denotes the number of primes ≤ n that are congruent to 1 mod k,
and φ(k) is the Euler function and represents the number of integers ≤ k that are
relatively prime with k. As n → ∞, we may let c1 : = 2 and c2 : = 4, so that

(5.47)
π(4n, k, 1)

π(2n, k, 1)
∼ 2,
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and thus there exists a prime P , k|(P − 1), in an interval that is linear in n. Clearly,
as n → ∞, such P also satisfies (5.41) and (5.45).

For finite (but possibly very large) values of n and certain small r, we appeal to
results by Ramare and Rumely [7]. The number-theoretic function θ(x; k, l) is usually
defined as

(5.48) θ(x; k, l) =
∑

p prime, p≡lmod k, p≤x

ln p.

To show that there exists a prime P in the interval (c1n, c2n) for which k =
lcm(2, 3, . . . , r)|(P − 1) it is sufficient to have

(5.49) θ(c2n; k, 1) > θ(c1n; k, 1),

where k = lcm(2, 3, . . . , r).
Theorem 2 in [7] states that |θ(x; k, 1) − x

φ(k) | ≤ 2.072
√
x for all x ≤ 1010 for k

given in Table I of [7]. For larger x, Theorem 1 in [7] provides the bounds of the type

(5.50) (1− ε)
x

φ(k)
≤ θ(x; k, 1) ≤ (1 + ε)

x

φ(k)

for k given in Table I of [7] and ε also given in Table I of [7] for various x. Here φ(k)
is the Euler function and denotes the number of integers ≤ k that are relatively prime
with k.

For c2n ≤ 1010, using

(5.51) θ(c1n; k, 1) <
c1n

φ(k)
+ 2.072

√
c1n

and

(5.52) θ(c2n; k, 1) >
c2n

φ(k)
− 2.072

√
c2n,

it is thus sufficient to have

(5.53) 2.072φ(k) <
√
n(
√
c2 −√

c1)

for θ(c2n; k, 1) > θ(c1n; k, 1) to hold.
For c1n ≤ 1010, using

(5.54) θ(c1n; k, 1) < (1 + ε)
c1n

φ(k)

and

(5.55) θ(c2n; k, 1) > (1 − ε)
c2n

φ(k)
,

after some simplification, it is sufficient to have

(5.56) (1 + ε)c1 < (1− ε)c2

for θ(c2n; k, 1) > θ(c1n; k, 1) to hold.
Expressing P ∈ (c1n, c2n) in terms of c1n and c2n, it is sufficient that

(5.57) (c1 − 1)n > r2(log2 n+ log2 c2 + r) + 1
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for (5.45) to hold. Likewise, for r ≥ 2, it is sufficient that

(5.58) c1n > 4r3(log2 n+ log2 c2 + r)(log2 n+ log2 c2 + r − 1) + r2(6 +
√
c2n)

for (5.41) to hold.
Parameters c1 and c2 can be chosen as a function of r to make (5.53) (or (5.56)),

(5.57), and (5.58) hold. We consider now some suitable choices for c1 and c2 for small
values of r and provide explicit bounds on the length of the prefix ln in terms of n.

• r = 1: The condition (5.57) reduces to (c1 − 1)n > log2 n + log2 c2 + 2. For
c2n < 1010, the condition (5.53) reduces to

√
n(
√
c2−√

c1) > 2.072. We may
let c2 = 4 and c1 = 2 for 12 < n < 1010/4 to ensure that there exists a prime
in the interval (2n, 4n) which satisfies (5.57).
The condition (5.56) applies to c1n > 1010, and so we may let c1 = 4 for
n > 1010/4. Since all ε entries for k = 1 in Table I of [7] are � 1/9, we may
let c2 = 5 to make the condition (5.57) hold.
Since |M | ≤ (	log2 P 
+ 2) ≤ (log2 n+ log2 c2 + 2) (from (5.43)), and |M | ≥
	log2 P 
 ≥ (log2 n + log2 c1 − 2) + 1 (from (5.44)) it follows that (log2 n) ≤
|M | ≤ (log2 n+ 4) for 12 < n < 1010/4 and (log2 n+ 1) ≤ |M | ≤ (log2 n+ 5)
for n > 1010/4.
Since the length of the the prefix ln is 2|M |+ 1, it follows that for n ≥ 12,
2 log2 n+ 1 ≤ ln ≤ 2 log2 n+ 11.

• r = 2: The conditions (5.57) and (5.58) reduce to (c1 − 1)n > 4(log2 n +
log2 c2 + 2) + 1 and c1n > 4 · 8(log2 n + log2 c2 + 2)(log2 n + log2 c2 + 1) +
4(6 +

√
c2n).

For c2n < 1010, the condition (5.53) is again
√
n(
√
c2 − √

c1) > 2.072. We
may let c1 = 210 and c2 = 211 to satisfy the required conditions (5.53), (5.57),
and (5.58) for 10 ≤ n ≤ 1010/211 = 1/2× 510.
For n ≥ 1/2× 510, we may let c1 = 211 and c2 = 212 to satisfy the required
conditions (5.56) (since all ε entries in Table I of [7] are � 1/3), (5.57), and
(5.58).
Thus we have, for n ≥ 10, 4(log2 n + 7) + 1 ≤ |M | ≤ 4(log2 n + 14) + 1.
Consequently, by ln = 2|M |+1, it follows that 8 log2 n+59 ≤ ln ≤ 8 log2 n+
115.

• r = 3: The conditions (5.57) and (5.58) reduce to (c1 − 1)n > 9(log2 n +
log2 c2 + 3) + 1 and c1n > 4 · 27(log2 n + log2 c2 + 3)(log2 n + log2 c + 2) +
9(6 +

√
c2n).

For c2n < 1010, the condition (5.53) is now
√
n(
√
c2 −√

c1) > 2.072× 2. We
may let c1 = 212 and c2 = 213 to satisfy the required conditions (5.53), (5.57),
and (5.58) for 10 ≤ n ≤ 1010/213 = 1/8× 510.
For n ≥ 1/8×510 it suffices to let c1 = 213 and c2 = 214 to ensure that (5.53),
(5.57), and (5.58) are satisfied.
Thus for n ≥ 10, we have 9(log2 n + 8) + 1 ≤ |M | ≤ 9(log2 n + 17) + 1 and,
consequently, 18 log2 n+ 147 ≤ ln ≤ 18 log2 n+ 309.

• r = 4: The conditions (5.57) and (5.58) reduce to (c1 − 1)n > 16(log2 n +
log2 c2 + 4) + 1 and c1n > 4 · 64(log2 n+ log2 c2 + 4)(log2 n + log2 c2 + 3) +
16(6 +

√
c2n).

For c2n < 1010, the condition (5.53) is
√
n(
√
c2 −√

c1) > 2.072× 4. We may
let c1 = 213 and c2 = 214 to satisfy the required conditions (5.53), (5.57), and
(5.58) for 16 ≤ n ≤ 1010/214 = 1/16× 510.
For n ≥ 1/16 × 510 it suffices to let c1 = 214 and c2 = 215 to ensure that
(5.53), (5.57), and (5.58) are satisfied.
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Thus for n ≥ 16, we have 16(log2 n+8)+ 1 ≤ |M | ≤ 16(log2 n+19)+ 1 and,
consequently, 32 log2 n+ 259 ≤ ln ≤ 32 log2 n+ 611.

• r = 5: The conditions (5.57) and (5.58) reduce to (c1 − 1)n > 25(log2 n +
log2 c2 + 5) + 1 and c1n > 4 · 125(log2 n+ log2 c2 + 5)(log2 n+ log2 c2 + 4) +
25(6 +

√
c2n).

For c2n < 1010, the condition (5.53) is
√
n(
√
c2−√

c1) > 2.072× 16. We may
let c1 = 214 and c2 = 215 to satisfy the required conditions (5.53), (5.57), and
(5.58) for 19 ≤ n ≤ 1010/215 = 1/32× 510.
For n ≥ 1/32 × 510 it suffices to let c1 = 215 and c2 = 216 to ensure that
(5.53), (5.57), and (5.58) are satisfied.
Thus for n ≥ 19, we have 25(log2 n+8)+ 1 ≤ |M | ≤ 25(log2 n+21)+ 1 and,
consequently, 50 log2 n+ 403 ≤ ln ≤ 50 log2 n+ 1053.

5.2. Prefixing algorithm. Let r denote the target synchronization error cor-
rection capability. The goal of this section is to provide an explicit prefixing scheme
which, based on the string s of length n, produces a fixed length prefix ps of length
ln, where ps is a function of s, such that the string ts = [ps s] after the transforma-
tion Tln+n given in (2.1) satisfies first r congruency constraints of the type previously
described in (4.12), which were shown to be sufficient to provide immunity to r repe-
tition errors. Using a judiciously chosen prefix, we will show that this will be possible
for ln = |ps| = Θ(logn).

We select as ps that preimage with the property that in the concatenation [ps s]
the last bit of ps is the complement of the first bit of s. This property ensures that no
bin of zeros in the transformed domain spans the boundary separating the substrings
corresponding to the transformed prefix and the transformed original string.

For a given repetition error correction capability r and the original string length
n, let P be a prime number with the property that k = lcm(2, 3, . . . , r)|(P − 1) and
such that P lies in the interval that scales linearly with n, namely, that P ∈ (c1n, c2n)
for 1 < c1 < c2, where c1, c2 possibly depend on r but not on n and are chosen such
that (5.53) (or (5.56) for appropriate k and n), (5.57), and (5.58) hold. The existence
of such P was discussed in the previous section. Let RP be the set of all residues
mod P . Recall that M = ∪r

i=1Fi ∪ {0} denotes the set of indices of bins of zeros
reserved for the prefix, where Fi = ∪2i−1

j=1 Bi,j(xi,j), where Bi,j(xi,j) are given in (5.9),
and are constructed such that all sets Bi,j(xi,j) for 1 ≤ i ≤ r, 1 ≤ j ≤ 2i − 1 are
nonintersecting. The existence of disjoint sets Bi,j(xi,j) for such P was proved in
Lemma 5.4. Let L = |M |. Let N denote the total number of bins of zeros of s̃, where
s̃ = sTn. By construction, N ≤ n. Let

(5.59)

a′1 ≡ ∑L+N
i=L+1 bifi mod P,

a′2 ≡ ∑L+N
i=L+1 bif

2
i mod P,

...

a′r ≡ ∑L+N
i=L+1 bif

r
i mod P,

where bi is the size of the ith bin of zeros in t̃s (obtained by transforming ts using
(2.1)) and fi in (5.59) are chosen in increasing order from the set RP \ M . Since
N ≤ n, and since, by condition (5.57), n ≤ P − L, the set RP \M is large enough to
accommodate such fi’s.

We may think of a′1 through a′r as the contribution of the original string to the
overall congruency value of t̃s, since the ith bin of zeros for L + 1 ≤ i ≤ L + N is
precisely the jth bin of zeros in s̃ for j = i− L, since no run spans both ps and s by
the choice of ps.
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Since not all strings in the original code may have the same number of bins of
zeros in the transformed domain, we may view the unused elements of the set RP \M
as corresponding to “virtual” bins of size zero. Since these bins are not altered during
the transmission that causes r or fewer repetitions, the locations of repetitions can be
uniquely determined as shown in the proof of Lemmas 4.1 and 4.3.

We now show that it is always possible to achieve

(5.60)

a1 ≡ ∑L+N
i=1 bifi mod P,

a2 ≡ ∑L+N
i=1 bif

2
i mod P,

...

ar ≡ ∑L+N
i=1 bif

r
i mod P

for arbitrary but fixed values a1 through ar irrespective of the values a′1 through a′r,
where bi is either 0 or 1 for 1 ≤ i ≤ L− 1, and where fL = 0.

Before describing the encoding method that achieves (5.60), we state the following
convenient result.

Lemma 5.5. Suppose P is a prime number such that i|(P − 1). Suppose the
equation xi ≡ a mod P has a solution, 1 ≤ a ≤ P − 1. Then the equation xi ≡ a
mod P has i distinct solutions [1], and we may call them x1 through xi. The sum∑i

k=1 x
j
k ≡ 0 mod P for 1 ≤ j ≤ i− 1.

Proof. Let us consider the equation xi ≡ a mod P . Using Vieta’s formulas and
Newton’s identities over GF (P ) it follows that

∑i
k=1 x

j
k ≡ 0 mod P for 1 ≤ j ≤

i− 1.
The encoding procedure is recursive and proceeds as follows. Let l be the lth

level of recursion for l = 1 to l = r. The lth level ensures that the lth congruency
constraint in (5.60) is satisfied without altering previous l − 1 levels. At each level l,
starting with l = 1 and while l ≤ r, do the following.

1. Select a subset Tl of Fl = ∪2l−1
j=1 Bl,j(xl,j) such that

∑
k∈Tl

kl ≡ al − a′l −∑l−1
i=1 di,l mod P , and such that if an element y, yl ≡ z mod P of Bl,j(xl,j)

is selected, then so are all other l − 1 lth roots of z (which are also elements
of Bl,j(xl,j) by construction). For l = 1,

∑
k∈T1

k ≡ a1 − a′1 mod P .

2. Let dl,j ≡
∑

k∈Tl
kj mod P for l + 1 ≤ j ≤ r.

3. For each i, 1 ≤ i ≤ |Fl|, for which fi ∈ Tl, we set bi = 1, and for each i for
which fi ∈ (Fl \ Tl), we set bi = 0.

4. Proceed to level l + 1.
After the level r is completed, let bL =

∑r
i=1(|Fi| − |Ti|). The purpose of this

bin with zero-weighting is to ensure that the overall string ts has the same length
irrespective of the structure of the starting string s: Since |∪r

i=1Fi| = |M | − 1, and
each bin of zeros is bordered by a single “1,” the total prefix length in the transformed
domain is 2(|M |− 1)+2 = 2|M |, and thus the prefix length ln in the original domain
is always 2|M |+ 1.

The existence of Tl, Tl ⊆ Fl in step 1 follows from the lemmas in section 2. In
particular, recall that each residue mod P can be expressed as a sum of a subset
Ll of ∪2l−1

j=1 Al,j(xl,j) by Lemma 5.3. We then let Tl consist of all lth power roots
of elements in Ll. By construction, Tl is the union of appropriate subsets of sets
Bl,j(xl,j), whose lth powers are precisely the elements of Ll, and these subsets are
disjoint by construction.

Recall that the sets Bl,j(xl,j) are constructed such that if an lth power root of
a residue y belongs to Bl,j(xl,j), then all l power roots of y also belong to Bl,j(xl,j).
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Then, by Lemma 5.5, the contribution to each congruency sum for levels 1 through
l− 1 of the elements of Fl is zero. Hence, once the target congruency value is reached
for a particular level, it will not be altered by establishing congruencies at subsequent
levels. As a result, since each string t̃s satisfies congruency constraints given in (4.12),
the resulting set of strings is immune to r repetitions while incurring asymptotically
negligible redundancy.

6. Summary and concluding remarks. In this paper we discussed the prob-
lem of constructing repetition error correcting codes (subsets of binary strings) and
the problem of guaranteeing immunity to repetition errors of a collection of binary
strings. We presented explicit number-theoretic constructions and provided results
on the cardinalities of these constructions. We provided a generalization of a gener-
ating function calculation of Sloane [9] and a construction of multiple repetition error
correcting codes that is asymptotically a constant factor better than the previously
best known construction due to Levenshtein [4]. The latter construction was then
used to develop a technique for prefixing a collection of binary strings for guaranteed
immunity to repetition errors. The presented prefixing scheme relies on introducing
a carefully chosen prefix for each original binary string such that the resulting strings
(each consisting of the prefix and one of the original strings) belong to the set previ-
ously shown to be immune to repetition errors. The prefix length is constructed to
be only logarithmic in the size of the original collection.
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